1
|
Williams IR, Ryugo DK. Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse. Front Neural Circuits 2024; 18:1430598. [PMID: 39184455 PMCID: PMC11341401 DOI: 10.3389/fncir.2024.1430598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 μm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
2
|
Sheng CQ, Wu SS, Cheng YK, Wu Y, Li YM. Comprehensive review of indicators and techniques for optical mapping of intracellular calcium ions. Cereb Cortex 2024; 34:bhae346. [PMID: 39191664 DOI: 10.1093/cercor/bhae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Calcium ions (Ca2+) play crucial roles in almost every cellular process, making the detection of changes in intracellular Ca2+ essential to understanding cell function. The fluorescence indicator method has garnered widespread application due to its exceptional sensitivity, rapid analysis, cost-effectiveness, and user-friendly nature. It has successfully delineated the spatial and temporal dynamics of Ca2+ signaling across diverse cell types. However, it is vital to understand that different indicators have varying levels of accuracy, sensitivity, and stability, making choosing the right inspection method crucial. As optical detection technologies advance, they continually broaden the horizons of scientific inquiry. This primer offers a systematic synthesis of the current fluorescence indicators and optical imaging modalities utilized for the detection of intracellular Ca2+. It elucidates their practical applications and inherent limitations, serving as an essential reference for researchers seeking to identify the most suitable detection methodologies for their calcium-centric investigations.
Collapse
Affiliation(s)
- Chu-Qiao Sheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Shuang-Shuang Wu
- Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Kang Cheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yao Wu
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yu-Mei Li
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Gilad A. Wide-field imaging in behaving mice as a tool to study cognitive function. NEUROPHOTONICS 2024; 11:033404. [PMID: 38384657 PMCID: PMC10879934 DOI: 10.1117/1.nph.11.3.033404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Cognitive functions are mediated through coordinated and dynamic neuronal responses that involve many different areas across the brain. Therefore, it is of high interest to simultaneously record neuronal activity from as many brain areas as possible while the subject performs a cognitive behavioral task. One of the emerging tools to achieve a mesoscopic field of view is wide-field imaging of cortex-wide dynamics in mice. Wide-field imaging is cost-effective, user-friendly, and enables obtaining cortex-wide signals from mice performing complex and demanding cognitive tasks. Importantly, wide-field imaging offers an unbiased cortex-wide observation that sheds light on overlooked cortical regions and highlights parallel processing circuits. Recent wide-field imaging studies have shown that multi-area cortex-wide patterns, rather than just a single area, are involved in encoding cognitive functions. The optical properties of wide-field imaging enable imaging of different brain signals, such as layer-specific, inhibitory subtypes, or neuromodulation signals. Here, I review the main advantages of wide-field imaging in mice, review the recent literature, and discuss future directions of the field. It is expected that wide-field imaging in behaving mice will continue to gain popularity and aid in understanding the mesoscale dynamics underlying cognitive function.
Collapse
Affiliation(s)
- Ariel Gilad
- Hebrew University of Jerusalem, Institute for Medical Research Israel-Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
4
|
Ghosh S, Dahiya M, Kumar A, Bheri M, Pandey GK. Calcium imaging: a technique to monitor calcium dynamics in biological systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1777-1811. [PMID: 38222278 PMCID: PMC10784449 DOI: 10.1007/s12298-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Calcium ion (Ca2+) is a multifaceted signaling molecule that acts as an important second messenger. During the course of evolution, plants and animals have developed Ca2+ signaling in order to respond against diverse stimuli, to regulate a large number of physiological and developmental pathways. Our understanding of Ca2+ signaling and its components in physiological phenomena ranging from lower to higher organisms, and from single cell to multiple tissues has grown exponentially. The generation of Ca2+ transients or signatures for various stress factor is a well-known mechanism adopted in plant and animal systems. However, the decoding of such remarkable signatures is an uphill task and is always an interesting goal for the scientific community. In the past few decades, studies on the concentration and dynamics of intracellular Ca2+ are significantly increasing and have become a trend in modern biology. The advancement in approaches from Ca2+ binding dyes to in vivo Ca2+ imaging through the use of Ca2+ biosensors to achieve spatio-temporal resolution in micro and milliseconds range, provide us phenomenal opportunities to study live cell Ca2+ imaging or dynamics. Here, we describe the usage, improvement and advancement of Ca2+ based dyes, genetically encoded probes and sensors to achieve extraordinary Ca2+ imaging in plants and animals. Graphical abstract
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Monika Dahiya
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|
5
|
Hu Y, Zhang RQ, Liu SL, Wang ZG. In-situ quantification of lipids in live cells through imaging approaches. Biosens Bioelectron 2023; 240:115649. [PMID: 37678059 DOI: 10.1016/j.bios.2023.115649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Lipids are important molecules that are widely distributed within the cell, and they play a crucial role in several biological processes such as cell membrane formation, signaling, cell motility and division. Monitoring the spatiotemporal dynamics of cellular lipids in real-time and quantifying their concentrations in situ is crucial since the local concentration of lipids initiates various signaling pathways that regulate cellular processes. In this review, we first introduced the historical background of lipid quantification methods. We then delve into the current state of the art of in situ lipid quantification, including the establishment and utility of fluorescence imaging techniques based on sensors of lipid-binding domains labeled with organic dyes or fluorescent proteins, and Raman and magnetic resonance imaging (MRI) techniques that do not require lipid labeling. Next, we highlighted the biological applications of live-cell lipid quantification techniques in the study of in situ lipid distribution, lipid transformation, and lipid-mediated signaling pathways. Finally, we discussed the technical challenges and prospects for the development of lipid quantification in live cells, with the aim of promoting the development of in situ lipid quantification in live cells, which may have a profound impact on the biological and medical fields.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Kim HS, Kim JE, Hwangbo A, Akerboom J, Looger LL, Duncan R, Son H, Czymmek KJ, Kang S. Evaluation of multi-color genetically encoded Ca 2+ indicators in filamentous fungi. Fungal Genet Biol 2021; 149:103540. [PMID: 33607281 DOI: 10.1016/j.fgb.2021.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Genetically encoded Ca2+ indicators (GECIs) enable long-term monitoring of cellular and subcellular dynamics of this second messenger in response to environmental and developmental cues without relying on exogenous dyes. Continued development and optimization in GECIs, combined with advances in gene manipulation, offer new opportunities for investigating the mechanism of Ca2+ signaling in fungi, ranging from documenting Ca2+ signatures under diverse conditions and genetic backgrounds to evaluating how changes in Ca2+ signature impact calcium-binding proteins and subsequent cellular changes. Here, we attempted to express multi-color (green, yellow, blue, cyan, and red) circularly permuted fluorescent protein (FP)-based Ca2+ indicators driven by multiple fungal promoters in Fusarium oxysporum, F. graminearum, and Neurospora crassa. Several variants were successfully expressed, with GCaMP5G driven by the Magnaporthe oryzae ribosomal protein 27 and F. verticillioides elongation factor-1α gene promoters being optimal for F. graminearum and F. oxysporum, respectively. Transformants expressing GCaMP5G were compared with those expressing YC3.60, a ratiometric Cameleon Ca2+ indicator. Wild-type and three Ca2+ signaling mutants of F. graminearum expressing GCaMP5G exhibited improved signal-to-noise and increased temporal and spatial resolution and are also more amenable to studies involving multiple FPs compared to strains expressing YC3.60.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Aram Hwangbo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jasper Akerboom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States; Delaware Biotechnology Institute, Newark, DE 19711, United States; Donald Danforth Plant Science Center, Saint Louis, MO 63132, United States.
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
7
|
Gasterstädt I, Jack A, Stahlhut T, Rennau LM, Gonda S, Wahle P. Genetically Encoded Calcium Indicators Can Impair Dendrite Growth of Cortical Neurons. Front Cell Neurosci 2020; 14:570596. [PMID: 33192315 PMCID: PMC7606991 DOI: 10.3389/fncel.2020.570596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
A battery of genetically encoded calcium indicators (GECIs) with different binding kinetics and calcium affinities was developed over the recent years to permit long-term calcium imaging. GECIs are calcium buffers and therefore, expression of GECIs may interfere with calcium homeostasis and signaling pathways important for neuronal differentiation and survival. Our objective was to investigate if the biolistically induced expression of five commonly used GECIs at two postnatal time points (days 14 and 22–25) could affect the morphological maturation of cortical neurons in organotypic slice cultures of rat visual cortex. Expression of GCaMP3 in both time windows, and of GCaMP5G and TN-XXL in the later time window impaired apical and /or basal dendrite growth of pyramidal neurons. With time, the proportion of GECI transfectants with nuclear filling increased, but an only prolonged expression of TN-XXL caused higher levels of neurodegeneration. In multipolar interneurons, only GCaMP3 evoked a transient growth delay during the early time window. GCaMP6m and GCaMP6m-XC were quite “neuron-friendly.” Since growth-impaired neurons might not have the physiological responses typical of age-matched wildtype neurons the results obtained after prolonged developmental expression of certain GECIs might need to be interpreted with caution.
Collapse
Affiliation(s)
- Ina Gasterstädt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Tobias Stahlhut
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lisa-Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Valley MT, Moore MG, Zhuang J, Mesa N, Castelli D, Sullivan D, Reimers M, Waters J. Separation of hemodynamic signals from GCaMP fluorescence measured with wide-field imaging. J Neurophysiol 2020; 123:356-366. [DOI: 10.1152/jn.00304.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wide-field calcium imaging is often used to measure brain dynamics in behaving mice. With a large field of view and a high sampling rate, wide-field imaging can monitor activity from several distant cortical areas simultaneously, revealing cortical interactions. Interpretation of wide-field images is complicated, however, by the absorption of light by hemoglobin, which can substantially affect the measured fluorescence. One approach to separating hemodynamics and calcium signals is to use multiwavelength backscatter recordings to measure light absorption by hemoglobin. Following this approach, we develop a spatially detailed regression-based method to estimate hemodynamics. This Spatial Model is based on a linear form of the Beer–Lambert relationship but is fit at every pixel in the image and does not rely on the estimation of physical parameters. In awake mice of three transgenic lines, the Spatial Model offers improved separation of hemodynamics and changes in GCaMP fluorescence. The improvement is pronounced near blood vessels and, in contrast with the Beer–Lambert equations, can remove vascular artifacts along the sagittal midline and in general permits more accurate fluorescence-based determination of neuronal activity across the cortex. NEW & NOTEWORTHY This paper addresses a well-known and strong source of contamination in wide-field calcium-imaging data: hemodynamics. To guide researchers toward the best method to separate calcium signals from hemodynamics, we compare the performance of several methods in three commonly used mouse lines and present a novel regression model that outperforms the other techniques we consider.
Collapse
Affiliation(s)
- M. T. Valley
- Allen Institute for Brain Science, Seattle, Washington
| | - M. G. Moore
- Neuroscience Program and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - J. Zhuang
- Allen Institute for Brain Science, Seattle, Washington
| | - N. Mesa
- Allen Institute for Brain Science, Seattle, Washington
| | - D. Castelli
- Allen Institute for Brain Science, Seattle, Washington
| | - D. Sullivan
- Allen Institute for Brain Science, Seattle, Washington
| | - M. Reimers
- Neuroscience Program and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - J. Waters
- Allen Institute for Brain Science, Seattle, Washington
| |
Collapse
|
9
|
Rojo-Ruiz J, Navas-Navarro P, Nuñez L, García-Sancho J, Alonso MT. Imaging of Endoplasmic Reticulum Ca 2+ in the Intact Pituitary Gland of Transgenic Mice Expressing a Low Affinity Ca 2+ Indicator. Front Endocrinol (Lausanne) 2020; 11:615777. [PMID: 33664709 PMCID: PMC7921146 DOI: 10.3389/fendo.2020.615777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum (ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER ([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3 targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to mimick the physiological environment, intact pituitary glands or acute slices from the transgenic mouse were used to image [Ca2+]ER. [Ca2+]C was measured simultaneously with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.
Collapse
|
10
|
Chang YC, Haji Ghaffari D, Chow RH, Weiland JD. Stimulation strategies for selective activation of retinal ganglion cell soma and threshold reduction. J Neural Eng 2019; 16:026017. [PMID: 30560810 PMCID: PMC6648650 DOI: 10.1088/1741-2552/aaf92b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Retinal prosthetic implants restore partial vision to patients blinded due to outer retinal degeneration, using a camera-guided multielectrode array (MEA) that electrically stimulates surviving retinal neurons. Commercial epi-retinal prostheses use millisecond-scale charge-balanced, symmetric, cathodic-first biphasic pulses to depolarize retinal ganglion cells (RGCs) and bipolar cells (BCs), frequently creating oblong perceptions of light related to axonal activation of RGCs. Stimulation strategies that avoid axonal stimulation and decrease the threshold of targeted neurons may significantly improve prosthetic vision in terms of spatial resolution and power efficiency. APPROACH We developed a virus-transduced genetically encoded calcium indicator (GECI) GCaMP6f and microscopy platform for calcium imaging to record the neural activity from RGCs at single-cell resolution in wholemount retinas. Multiple stimulation paradigms were applied through a microelectrode array (MEA) with transparent indium tin oxide electrodes. The evoked neuronal activities were converted to corresponding 2D calcium imaging transient pattern and spatial threshold map to identify the ideal focal response which corresponds to optimal percept in patient. MAIN RESULTS The proposed optical system with GCaMP6f is capable of recording from population of mouse RGCs in real time during electrical stimulation with precise location information relative to the stimulation sites. Optimal duration and phase order of pulse were identified to avoid axonal stimulation and selectively activate targeted RGC somas, without requiring a significant increase in stimulation charge. Additionally, we show that reduced stimulus threshold can be achieved with the special design of asymmetric anodic-first pulse. SIGNIFICANCE Our findings support the possibility of manipulating the responses of RGCs through varying the stimulation waveform. Focal response can be achieved with relative short duration (⩽120 μs) pulses, and can be improved by reversing the standard phase order. The RGCs threshold can be significantly reduced by 33.3%-50% in terms of charge through applying hyperpolarizing pre-pulses with a 20:1 ratio (pre-pulse:stimulus pulse). The results support the future retinal prosthesis design that potentially forms more ideal shape perception with higher spatial resolution and power efficiency.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Center for Bioelectronic Medicine & Biomedical Science, Feinstein Institute for Medical Research, Manhasset, NY 11030, United States of America
| | | | | | | |
Collapse
|
11
|
Vicario M, Calì T. Measuring Ca 2+ Levels in Subcellular Compartments with Genetically Encoded GFP-Based Indicators. Methods Mol Biol 2019; 1925:31-42. [PMID: 30674014 DOI: 10.1007/978-1-4939-9018-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Ca2+ homeostasis is crucial for the entire life of eukaryotic cells from the beginning to the end. Mishandling in Ca2+ homeostasis is indeed linked with a large number of pathological conditions. Thus, the possibility to specifically monitor cellular calcium fluxes in different subcellular compartments represents a key tool to deeply understand the mechanisms involved in cellular dysfunctions. To cope with this need, several Ca2+ indicators have been developed allowing to accurately measure both basal Ca2+ concentration and agonist-induced Ca2+ signals in a wide spectrum of organelles. Among these, the genetically encoded GFP-based indicators are routinely used to measure Ca2+ transients thanks to their ability to change their spectral properties in response to Ca2+ binding. In this chapter, we will describe a protocol that utilizes the GCaMP6f probe targeted to mitochondria (4mtGCaMP) to measure mitochondrial calcium levels in resting conditions in HeLa cells. This method allows to easily and quickly register alterations of mitochondrial Ca2+ homeostasis in different cell populations and experimental settings, representing a precious tool to unravel the pathological pathways leading to pathogenic conditions.
Collapse
Affiliation(s)
- Mattia Vicario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
12
|
Thy1 transgenic mice expressing the red fluorescent calcium indicator jRGECO1a for neuronal population imaging in vivo. PLoS One 2018; 13:e0205444. [PMID: 30308007 PMCID: PMC6181368 DOI: 10.1371/journal.pone.0205444] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
Calcium imaging is commonly used to measure the neural activity of large groups of neurons in mice. Genetically encoded calcium indicators (GECIs) can be delivered for this purpose using non-invasive genetic methods. Compared to viral gene transfer, transgenic targeting of GECIs provides stable long-term expression and obviates the need for invasive viral injections. Transgenic mice expressing the green GECI GCaMP6 are already widely used. Here we present the generation and characterization of transgenic mice expressing the sensitive red GECI jRGECO1a, driven by the Thy1 promoter. Four transgenic lines with different expression patterns showed sufficiently high expression for cellular in vivo imaging. We used two-photon microscopy to characterize visual responses of individual neurons in the visual cortex in vivo. The signal-to-noise ratio in transgenic mice was comparable to, or better than, mice transduced with adeno-associated virus. In addition, we show that Thy1-jRGECO1a transgenic mice are useful for transcranial population imaging and functional mapping using widefield fluorescence microscopy. We also demonstrate imaging of visual responses in retinal ganglion cells in vitro. Thy1-jRGECO1a transgenic mice are therefore a useful addition to the toolbox for imaging activity in intact neural networks.
Collapse
|
13
|
Bootman MD, Allman S, Rietdorf K, Bultynck G. Deleterious effects of calcium indicators within cells; an inconvenient truth. Cell Calcium 2018; 73:82-87. [DOI: 10.1016/j.ceca.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 01/20/2023]
|
14
|
An improved inverse-type Ca2+ indicator can detect putative neuronal inhibition in Caenorhabditis elegans by increasing signal intensity upon Ca2+ decrease. PLoS One 2018; 13:e0194707. [PMID: 29694380 PMCID: PMC5918796 DOI: 10.1371/journal.pone.0194707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
Sensory processing is regulated by the coordinated excitation and inhibition of neurons in neuronal circuits. The analysis of neuronal activities has greatly benefited from the recent development of genetically encoded Ca2+ indicators (GECIs). These molecules change their fluorescence intensities or colours in response to changing levels of Ca2+ and can, therefore, be used to sensitively monitor intracellular Ca2+ concentration, which enables the detection of neuronal excitation, including action potentials. These GECIs were developed to monitor increases in Ca2+ concentration; therefore, neuronal inhibition cannot be sensitively detected by these GECIs. To overcome this difficulty, we hypothesised that an inverse-type of GECI, whose fluorescence intensity increases as Ca2+ levels decrease, could sensitively monitor reducing intracellular Ca2+ concentrations. We, therefore, developed a Ca2+ indicator named inverse-pericam 2.0 (IP2.0) whose fluorescent intensity decreases 25-fold upon Ca2+ binding in vitro. Using IP2.0, we successfully detected putative neuronal inhibition by monitoring the decrease in intracellular Ca2+ concentration in AWCON and ASEL neurons in Caenorhabditis elegans. Therefore, IP2.0 is a useful tool for studying neuronal inhibition and for the detailed analysis of neuronal activities in vivo.
Collapse
|
15
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
16
|
Dong TX, Othy S, Jairaman A, Skupsky J, Zavala A, Parker I, Dynes JL, Cahalan MD. T-cell calcium dynamics visualized in a ratiometric tdTomato-GCaMP6f transgenic reporter mouse. eLife 2017; 6:32417. [PMID: 29239725 PMCID: PMC5747524 DOI: 10.7554/elife.32417] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Calcium is an essential cellular messenger that regulates numerous functions in living organisms. Here, we describe development and characterization of ‘Salsa6f’, a fusion of GCaMP6f and tdTomato optimized for cell tracking while monitoring cytosolic Ca2+, and a transgenic Ca2+ reporter mouse with Salsa6f targeted to the Rosa26 locus for Cre-dependent expression in specific cell types. The development and function of T cells was unaffected in Cd4-Salsa6f mice. We describe Ca2+ signals reported by Salsa6f during T cell receptor activation in naive T cells, helper Th17 T cells and regulatory T cells, and Ca2+ signals mediated in T cells by an activator of mechanosensitive Piezo1 channels. Transgenic expression of Salsa6f enables ratiometric imaging of Ca2+ signals in complex tissue environments found in vivo. Two-photon imaging of migrating T cells in the steady-state lymph node revealed both cell-wide and localized sub-cellular Ca2+ transients (‘sparkles’) as cells migrate. To help protect the body from disease, small immune cells called T lymphocytes move rapidly, searching for signs of infection. These signs are antigens – processed pieces of proteins from invading bacteria and viruses – which are displayed on the surface of so-called antigen-presenting cells. To visit as many different antigen-presenting cells as possible, T cells move quickly from one to the next in an apparently random manner. How T cells are programmed to move in this way is largely unknown. The entry of calcium ions into cells, through channel proteins, triggers characteristic actions in many cells throughout the body. As such it is possible that the T cells’ movements are related to calcium signals too. However, it was technically challenging to directly measure the amount of calcium in moving cells within the body. To overcome this issue, Dong, Othy et al. genetically engineered mice to produce a new calcium-sensitive reporter protein in their T cells. The reporter, which was named Salsa6f, consisted of a red fluorescent protein fused to another protein that glows green when it binds to calcium ions. Measuring the ratio of red and green fluorescence gives a measure of the concentration of calcium ions inside the cell. In the absence of calcium signaling, the cells can still be tracked via the red fluorescence of Salsa6f. Importantly, the reporter did not affect the development or activity of the T cells in the mice. In a related study, Dong, Othy et al. then used their transgenic mice to ask whether calcium signals guide moving T cells as they search for antigens. Future studies could use these transgenic mice to track the calcium ion concentration in numerous cell types. This would enable new approaches to relate the inner workings of cells to their behaviors in many different organ systems throughout the body.
Collapse
Affiliation(s)
- Tobias X Dong
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Amit Jairaman
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Jonathan Skupsky
- Department of Physiology and Biophysics, University of California, Irvine, United States.,Department of Medicine, University of California, Irvine, United States
| | - Angel Zavala
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, United States.,Department of Neurobiology & Behavior, University of California, Irvine, United States
| | - Joseph L Dynes
- Department of Physiology and Biophysics, University of California, Irvine, United States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, United States.,Institute for Immunology, University of California, Irvine, United States
| |
Collapse
|
17
|
Waadt R, Krebs M, Kudla J, Schumacher K. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis. THE NEW PHYTOLOGIST 2017; 216:303-320. [PMID: 28850185 DOI: 10.1111/nph.14706] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/15/2017] [Indexed: 05/17/2023]
Abstract
Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots.
Collapse
Affiliation(s)
- Rainer Waadt
- Entwicklungsbilogie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Melanie Krebs
- Entwicklungsbilogie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Karin Schumacher
- Entwicklungsbilogie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| |
Collapse
|
18
|
Barykina NV, Subach OM, Piatkevich KD, Jung EE, Malyshev AY, Smirnov IV, Bogorodskiy AO, Borshchevskiy VI, Varizhuk AM, Pozmogova GE, Boyden ES, Anokhin KV, Enikolopov GN, Subach FV. Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi. PLoS One 2017; 12:e0183757. [PMID: 28837632 PMCID: PMC5570312 DOI: 10.1371/journal.pone.0183757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022] Open
Abstract
Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCaMP in vivo to perform structural and functional imaging of zebrafish using wide-field, confocal, and light-sheet microscopy.
Collapse
Affiliation(s)
- Natalia V. Barykina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- P.K. Anokhin Institute of Normal Physiology of RAMS, Moscow, Russia
| | - Oksana M. Subach
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Kiryl D. Piatkevich
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Erica E. Jung
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Aleksey Y. Malyshev
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Ivan V. Smirnov
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- Medico-Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | - Anna M. Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | - Galina E. Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Edward S. Boyden
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, United States of America
| | - Konstantin V. Anokhin
- P.K. Anokhin Institute of Normal Physiology of RAMS, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Grigori N. Enikolopov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Department of Anesthesiology, Stony Brook University Medical Center, Stony Brook, NY, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, United States of America
| | - Fedor V. Subach
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
19
|
Abstract
Genetically encoded calcium indicators (GECIs) enable imaging of in vivo brain cell activity with high sensitivity and specificity. In contrast to viral infection or in utero electroporation, indicator expression in transgenic reporter lines is induced noninvasively, reliably, and homogenously. Recently, Cre/tTA-dependent reporter mice were introduced, which provide high-level expression of green fluorescent GECIs in a cell-type-specific and inducible manner when crossed with Cre and tTA driver mice. Here, we generated and characterized the first red-shifted GECI reporter line of this type using R-CaMP1.07, a red fluorescent indicator that is efficiently two-photon excited above 1000 nm. By crossing the new R-CaMP1.07 reporter line to Cre lines driving layer-specific expression in neocortex we demonstrate its high fidelity for reporting action potential firing in vivo, long-term stability over months, and versatile use for functional imaging of excitatory neurons across all cortical layers, especially in the previously difficult to access layers 4 and 6.
Collapse
|
20
|
Yang W, Yuste R. In vivo imaging of neural activity. Nat Methods 2017; 14:349-359. [PMID: 28362436 DOI: 10.1038/nmeth.4230] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
Since the introduction of calcium imaging to monitor neuronal activity with single-cell resolution, optical imaging methods have revolutionized neuroscience by enabling systematic recordings of neuronal circuits in living animals. The plethora of methods for functional neural imaging can be daunting to the nonexpert to navigate. Here we review advanced microscopy techniques for in vivo functional imaging and offer guidelines for which technologies are best suited for particular applications.
Collapse
Affiliation(s)
- Weijian Yang
- Department of Biological Sciences, Neurotechnology Center, Columbia University, New York, New York, USA
| | - Rafael Yuste
- Department of Biological Sciences, Neurotechnology Center, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Bassett JJ, Monteith GR. Genetically Encoded Calcium Indicators as Probes to Assess the Role of Calcium Channels in Disease and for High-Throughput Drug Discovery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:141-171. [PMID: 28528667 DOI: 10.1016/bs.apha.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The calcium ion (Ca2+) is an important signaling molecule implicated in many cellular processes, and the remodeling of Ca2+ homeostasis is a feature of a variety of pathologies. Typical methods to assess Ca2+ signaling in cells often employ small molecule fluorescent dyes, which are sometimes poorly suited to certain applications such as assessment of cellular processes, which occur over long periods (hours or days) or in vivo experiments. Genetically encoded calcium indicators are a set of tools available for the measurement of Ca2+ changes in the cytosol and subcellular compartments, which circumvent some of the inherent limitations of small molecule Ca2+ probes. Recent advances in genetically encoded calcium sensors have greatly increased their ability to provide reliable monitoring of Ca2+ changes in mammalian cells. New genetically encoded calcium indicators have diverse options in terms of targeting, Ca2+ affinity and fluorescence spectra, and this will further enhance their potential use in high-throughput drug discovery and other assays. This review will outline the methods available for Ca2+ measurement in cells, with a focus on genetically encoded calcium sensors. How these sensors will improve our understanding of the deregulation of Ca2+ handling in disease and their application to high-throughput identification of drug leads will also be discussed.
Collapse
Affiliation(s)
- John J Bassett
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Lissek T, Obenhaus HA, Ditzel DAW, Nagai T, Miyawaki A, Sprengel R, Hasan MT. General Anesthetic Conditions Induce Network Synchrony and Disrupt Sensory Processing in the Cortex. Front Cell Neurosci 2016; 10:64. [PMID: 27147963 PMCID: PMC4830828 DOI: 10.3389/fncel.2016.00064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022] Open
Abstract
General anesthetics are commonly used in animal models to study how sensory signals are represented in the brain. Here, we used two-photon (2P) calcium activity imaging with cellular resolution to investigate how neuronal activity in layer 2/3 of the mouse barrel cortex is modified under the influence of different concentrations of chemically distinct general anesthetics. Our results show that a high isoflurane dose induces synchrony in local neuronal networks and these cortical activity patterns closely resemble those observed in EEG recordings under deep anesthesia. Moreover, ketamine and urethane also induced similar activity patterns. While investigating the effects of deep isoflurane anesthesia on whisker and auditory evoked responses in the barrel cortex, we found that dedicated spatial regions for sensory signal processing become disrupted. We propose that our isoflurane-2P imaging paradigm can serve as an attractive model system to dissect cellular and molecular mechanisms that induce the anesthetic state, and it might also provide important insight into sleep-like brain states and consciousness.
Collapse
Affiliation(s)
- Thomas Lissek
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of HeidelbergHeidelberg, Germany
| | - Horst A Obenhaus
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Désirée A W Ditzel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Takeharu Nagai
- Laboratory for Nanosystems Physiology, Hokkaido University Hokkaido, Japan
| | - Atsushi Miyawaki
- RIKEN-Brain Science Institute, Laboratory for Cell Function Dynamics Saitama, Japan
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Molecular Neurobiology, Neurocure Cluster of Excellence, Charite-UniversitätsmedizinBerlin, Germany
| |
Collapse
|
23
|
Zhang X, Bi A, Gao Q, Zhang S, Huang K, Liu Z, Gao T, Zeng W. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System. ACS Chem Neurosci 2016; 7:4-14. [PMID: 26616533 DOI: 10.1021/acschemneuro.5b00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.
Collapse
Affiliation(s)
| | | | - Quansheng Gao
- Laboratory of the Animal Center, Academy of Military Medical Sciences, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
24
|
Heindorf M, Hasan MT. Fluorescent Calcium Indicator Protein Expression in the Brain Using Tetracycline-Responsive Transgenic Mice. Cold Spring Harb Protoc 2015; 2015:689-96. [PMID: 26134909 DOI: 10.1101/pdb.prot087627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To achieve robust long-term fluorescent calcium indicator protein (FCIP) expression in mammalian neurons in vivo, classical mouse transgenesis by pronuclear DNA injection using tetracycline (Tet)-controlled genetic switches can be deployed. This protocol describes methods for regulated expression of FCIP using Tet-responsive transgenic mice. The Tet-inducible system requires three components for inducible and reversible control of gene expression: (1) a potent transcriptional activator protein, either Tet transactivator (tTA) or reverse tTA (rtTA); (2) a minimal Tet-promoter (P(tet)) or a bidirectional Tet-promoter (P(tet)bi) to express one or more responder genes; and (3) Tet or one of its derivatives such as doxycycline (Dox) as an inducer. To ensure a high level of FCIP expression in neurons, transgenic founder mice are screened using an ear fibroblast culture method to identify those that are responsive to Dox treatment before use in experiments. The protocol describes the use of Dox to regulate gene expression and provides a short description of in vivo recording of luciferase activity.
Collapse
|
25
|
Dogbevia GK, Marticorena-Alvarez R, Bausen M, Sprengel R, Hasan MT. Inducible and combinatorial gene manipulation in mouse brain. Front Cell Neurosci 2015; 9:142. [PMID: 25954155 PMCID: PMC4404871 DOI: 10.3389/fncel.2015.00142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 12/30/2022] Open
Abstract
We have deployed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches to manipulate gene expression in mouse brain. Here, we show a combinatorial genetic approach for inducible, cell type-specific gene expression and Cre/loxP mediated gene recombination in different brain regions. Our chemical-genetic approach will help to investigate 'when', 'where', and 'how' gene(s) control neuronal circuit dynamics, and organize, for example, sensory signal processing, learning and memory, and behavior.
Collapse
Affiliation(s)
- Godwin K Dogbevia
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany ; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck Lübeck, Germany
| | | | - Melanie Bausen
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany ; NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
26
|
Abstract
Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals.
Collapse
Affiliation(s)
- Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853;
| | | | | |
Collapse
|
27
|
Broussard GJ, Liang R, Tian L. Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 2014; 7:97. [PMID: 25538558 PMCID: PMC4256991 DOI: 10.3389/fnmol.2014.00097] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.
Collapse
Affiliation(s)
- Gerard J Broussard
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| |
Collapse
|
28
|
Rose T, Goltstein PM, Portugues R, Griesbeck O. Putting a finishing touch on GECIs. Front Mol Neurosci 2014; 7:88. [PMID: 25477779 PMCID: PMC4235368 DOI: 10.3389/fnmol.2014.00088] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/29/2014] [Indexed: 01/12/2023] Open
Abstract
More than a decade ago genetically encoded calcium indicators (GECIs) entered the stage as new promising tools to image calcium dynamics and neuronal activity in living tissues and designated cell types in vivo. From a variety of initial designs two have emerged as promising prototypes for further optimization: FRET (Förster Resonance Energy Transfer)-based sensors and single fluorophore sensors of the GCaMP family. Recent efforts in structural analysis, engineering and screening have broken important performance thresholds in the latest generation for both classes. While these improvements have made GECIs a powerful means to perform physiology in living animals, a number of other aspects of sensor function deserve attention. These aspects include indicator linearity, toxicity and slow response kinetics. Furthermore creating high performance sensors with optically more favorable emission in red or infrared wavelengths as well as new stably or conditionally GECI-expressing animal lines are on the wish list. When the remaining issues are solved, imaging of GECIs will finally have crossed the last milestone, evolving from an initial promise into a fully matured technology.
Collapse
Affiliation(s)
- Tobias Rose
- Max-Planck-Institute of Neurobiology Martinsried, Germany
| | | | | | | |
Collapse
|
29
|
Wu J, Prole D, Shen Y, Lin Z, Gnanasekaran A, Liu Y, Chen L, Zhou H, Chen SR, Usachev Y, Taylor C, Campbell R. Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 2014; 464:13-22. [PMID: 25164254 PMCID: PMC4214425 DOI: 10.1042/bj20140931] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/01/2023]
Abstract
Ca2+ is a key intermediary in a variety of signalling pathways and undergoes dynamic changes in its cytoplasmic concentration due to release from stores within the endoplasmic reticulum (ER) and influx from the extracellular environment. In addition to regulating cytoplasmic Ca2+ signals, these responses also affect the concentration of Ca2+ within the ER and mitochondria. Single fluorescent protein-based Ca2+ indicators, such as the GCaMP series based on GFP, are powerful tools for imaging changes in the concentration of Ca2+ associated with intracellular signalling pathways. Most GCaMP-type indicators have dissociation constants (Kd) for Ca2+ in the high nanomolar to low micromolar range and are therefore optimal for measuring cytoplasmic [Ca2+], but poorly suited for use in mitochondria and ER where [Ca2+] can reach concentrations of several hundred micromolar. We now report GCaMP-type low-affinity red fluorescent genetically encoded Ca2+ indicators for optical imaging (LAR-GECO), engineered to have Kd values of 24 μM (LAR-GECO1) and 12 μM (LAR-GECO1.2). We demonstrate that these indicators can be used to image mitochondrial and ER Ca2+ dynamics in several cell types. In addition, we perform two-colour imaging of intracellular Ca2+ dynamics in cells expressing both cytoplasmic GCaMP and ER-targeted LAR-GECO1. The development of these low-affinity intensiometric red fluorescent Ca2+ indicators enables monitoring of ER and mitochondrial Ca2+ in combination with GFP-based reporters.
Collapse
Key Words
- endoplasmic reticulum (er)
- fluorescence ca2+ imaging
- gcamp
- mitochondrion
- multicolour imaging
- red fluorescent genetically encoded ca2+ indicator for optical imaging (r-geco)
- [ca2+]i and [ca2+]mt, free ca2+ concentration in cytosol and mitochondrial matrix, respectively
- cam, calmodulin
- cpfp, circularly permuted fluorescent protein
- dmem, dulbecco’s modified eagle’s medium
- drg, dorsal root ganglion
- er, endoplasmic reticulum
- fp, fluorescent protein
- fret, förster resonance energy transfer
- gfp, green fluorescent protein
- hbs, hepes-buffered saline
- hek, human embryonic kidney
- lar-geco, low-affinity red fluorescent genetically encoded ca2+ indicator for optical imaging
- led, light-emitting diode
- na, numerical aperture
- nta, nitrilotriacetic acid
- rfp, red fluorescent protein
- ryr2, type 2 ryanodine receptor
- serca, sarcoplasmic/endoplasmic reticulum ca2+-atpase
- soicr, store overload-induced ca2+ release
- sr, sarcoplasmic reticulum
Collapse
Affiliation(s)
- Jiahui Wu
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - David L. Prole
- †Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | - Yi Shen
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Zhihong Lin
- ‡Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Aswini Gnanasekaran
- ‡Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Yingjie Liu
- §Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Lidong Chen
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Hang Zhou
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - S. R. Wayne Chen
- §Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
- ¶Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Yuriy M. Usachev
- ‡Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Colin W. Taylor
- †Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K
| | - Robert E. Campbell
- *Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
30
|
Lab-on-a-brain: implantable micro-optical fluidic devices for neural cell analysis in vivo. Sci Rep 2014; 4:6721. [PMID: 25335545 PMCID: PMC4205880 DOI: 10.1038/srep06721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/03/2014] [Indexed: 12/02/2022] Open
Abstract
The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology.
Collapse
|
31
|
Dana H, Chen TW, Hu A, Shields BC, Guo C, Looger LL, Kim DS, Svoboda K. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS One 2014; 9:e108697. [PMID: 25250714 DOI: 10.1371/joumal.pone.0108697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 08/11/2014] [Indexed: 05/28/2023] Open
Abstract
Genetically-encoded calcium indicators (GECIs) facilitate imaging activity of genetically defined neuronal populations in vivo. The high intracellular GECI concentrations required for in vivo imaging are usually achieved by viral gene transfer using adeno-associated viruses. Transgenic expression of GECIs promises important advantages, including homogeneous, repeatable, and stable expression without the need for invasive virus injections. Here we present the generation and characterization of transgenic mice expressing the GECIs GCaMP6s or GCaMP6f under the Thy1 promoter. We quantified GCaMP6 expression across brain regions and neurons and compared to other transgenic mice and AAV-mediated expression. We tested three mouse lines for imaging in the visual cortex in vivo and compared their performance to mice injected with AAV expressing GCaMP6. Furthermore, we show that GCaMP6 Thy1 transgenic mice are useful for long-term, high-sensitivity imaging in behaving mice.
Collapse
Affiliation(s)
- Hod Dana
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Tsai-Wen Chen
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Amy Hu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Brenda C Shields
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Caiying Guo
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Loren L Looger
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Douglas S Kim
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Karel Svoboda
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
32
|
Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS One 2014; 9:e108697. [PMID: 25250714 PMCID: PMC4177405 DOI: 10.1371/journal.pone.0108697] [Citation(s) in RCA: 395] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 08/11/2014] [Indexed: 12/01/2022] Open
Abstract
Genetically-encoded calcium indicators (GECIs) facilitate imaging activity of genetically defined neuronal populations in vivo. The high intracellular GECI concentrations required for in vivo imaging are usually achieved by viral gene transfer using adeno-associated viruses. Transgenic expression of GECIs promises important advantages, including homogeneous, repeatable, and stable expression without the need for invasive virus injections. Here we present the generation and characterization of transgenic mice expressing the GECIs GCaMP6s or GCaMP6f under the Thy1 promoter. We quantified GCaMP6 expression across brain regions and neurons and compared to other transgenic mice and AAV-mediated expression. We tested three mouse lines for imaging in the visual cortex in vivo and compared their performance to mice injected with AAV expressing GCaMP6. Furthermore, we show that GCaMP6 Thy1 transgenic mice are useful for long-term, high-sensitivity imaging in behaving mice.
Collapse
|
33
|
Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, Katus HA, Müller OJ, Kotlikoff MI, Lipp P. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res 2014; 114:1623-39. [PMID: 24812351 DOI: 10.1161/circresaha.114.303475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.
Collapse
Affiliation(s)
- Lars Kaestner
- From the Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg-Saar, Germany (L.K., A.S., Q.T., S.R., W.T., K.W., P.L.); Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany (H.A.K., O.J.M.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.); and Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY (M.I.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Friedrich RW. Calcium imaging in the intact olfactory system of zebrafish and mouse. Cold Spring Harb Protoc 2014; 2014:310-6. [PMID: 24591696 DOI: 10.1101/pdb.prot081166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Odors are first detected by olfactory sensory neurons (OSNs) and evoke stimulus-specific patterns of activation across the input channels of the olfactory bulb (OB), the glomeruli. The output of the OB consists of spatiotemporal activity patterns across mitral/tufted cells that are conveyed to multiple pallial and subpallial target areas. In the main olfactory system of vertebrates, as well as in the olfactory system of insects, odor information is encoded by distributed patterns of activity across a large number of glomeruli or neurons. Ca(2+) imaging has therefore become an important approach used to analyse the encoding and processing of olfactory information by populations of glomeruli or neurons. Experiments in the intact olfactory system are important to maintain the integrity of the system, to analyse activity patterns evoked by natural odors, and to examine the influence of active sampling strategies, such as sniffing in mammals. This protocol focuses on how to visualize glomerular Ca(2+) signals after loading a dextran-coupled Ca(2+) indicator into OSNs. Separate procedures are described for zebrafish and mice.
Collapse
|
36
|
Hill JM, De Stefani D, Jones AWE, Ruiz A, Rizzuto R, Szabadkai G. Measuring baseline Ca(2+) levels in subcellular compartments using genetically engineered fluorescent indicators. Methods Enzymol 2014; 543:47-72. [PMID: 24924127 DOI: 10.1016/b978-0-12-801329-8.00003-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling. However, it has been challenging to specifically detect highly localized Ca(2+) fluxes such as those bridging these two organelles. To circumvent this issue, various recombinant Ca(2+) indicators that can be targeted to specific subcellular compartments have been developed over the past two decades. While the use of these probes for measuring agonist-induced Ca(2+) signals in various organelles has been extensively described, the assessment of basal Ca(2+) concentrations within specific organelles is often disregarded, in spite of the fact that this parameter is vital for several metabolic functions, including the enzymatic activity of mitochondrial dehydrogenases of the Krebs cycle and protein folding in the endoplasmic reticulum. Here, we provide an overview on genetically engineered, organelle-targeted fluorescent Ca(2+) probes and outline their evolution. Moreover, we describe recently developed protocols to quantify baseline Ca(2+) concentrations in specific subcellular compartments. Among several applications, this method is suitable for assessing how changes in basal Ca(2+) levels affect the metabolic profile of cancer cells.
Collapse
Affiliation(s)
- Julia M Hill
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Diego De Stefani
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Asier Ruiz
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Achúcarro Basque Center for Neuroscience-UPV/EHU, Leioa, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, (CIBERNED), Madrid, Spain
| | - Rosario Rizzuto
- Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom; Department of Biomedical Sciences, CNR Neuroscience Institute, University of Padua, Padua, Italy.
| |
Collapse
|
37
|
Randriamampita C, Lellouch AC. Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol J 2013; 9:203-12. [PMID: 24166755 DOI: 10.1002/biot.201300195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/09/2013] [Accepted: 10/07/2013] [Indexed: 11/10/2022]
Abstract
Many recent advances in our understanding of T lymphocyte functions in adaptive immunity are derived from sophisticated imaging techniques used to visualize T lymphocyte behavior in vitro and in vivo. A current challenge is to couple such imaging techniques with methods that will allow researchers to visualize signaling phenomenon at the single-cell level. Fluorescent biosensors, either synthetic or genetically encoded, are emerging as important tools for revealing the spatio-temporal regulation of intracellular biochemical events, such as specific enzyme activities or fluctuations in metabolites. In this review, we revisit the development of fluorescent Ca(2+) sensors with which the first experiments visualizing T lymphocyte activation at the single-cell were performed, and which have since become routine tools in immunology. We then examine a number of examples of how fluorescence resonance energy transfer (FRET)-based biosensors have been developed and applied to T lymphocyte migration, adhesion and T-cell receptor (TCR)-mediated signal transduction. These include the study of small GTPases such as RhoA, Rac and Rap1, the tyrosine kinases Lck and ZAP-70, and metabolites such as cAMP and Ca(2+) . Future development and use of biosensors should allow immunologists to reconcile the vast wealth of existing biochemical data concerning T-cell functions with the power of dynamic live-cell imaging.
Collapse
Affiliation(s)
- Clotilde Randriamampita
- CNRS UMR8104, Institut Cochin, Paris, France; INSERM U567, Institut Cochin, Paris, France; Paris Descartes University, Institut Cochin, Paris, France.
| | | |
Collapse
|
38
|
Aihara E, Hentz CL, Korman AM, Perry NPJ, Prasad V, Shull GE, Montrose MH. In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium. J Biol Chem 2013; 288:33585-33597. [PMID: 24121509 DOI: 10.1074/jbc.m113.488098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report that a localized intracellular and extracellular Ca(2+) mobilization occurs at the site of microscopic epithelial damage in vivo and is required to mediate tissue repair. Intravital confocal/two-photon microscopy continuously imaged the surgically exposed stomach mucosa of anesthetized mice while photodamage of gastric epithelial surface cells created a microscopic lesion that healed within 15 min. Transgenic mice with an intracellular Ca(2+)-sensitive protein (yellow cameleon 3.0) report that intracellular Ca(2+) selectively increases in restituting gastric epithelial cells adjacent to the damaged cells. Pretreatment with U-73122, indomethacin, 2-aminoethoxydiphenylborane, or verapamil inhibits repair of the damage and also inhibits the intracellular Ca(2+) increase. Confocal imaging of Fura-Red dye in luminal superfusate shows a localized extracellular Ca(2+) increase at the gastric surface adjacent to the damage that temporally follows intracellular Ca(2+) mobilization. Indomethacin and verapamil also inhibit the luminal Ca(2+) increase. Intracellular Ca(2+) chelation (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxymethyl ester, BAPTA/AM) fully inhibits intracellular and luminal Ca(2+) increases, whereas luminal calcium chelation (N-(2-hydroxyetheyl)-ethylendiamin-N,N,N'-triacetic acid trisodium, HEDTA) blocks the increase of luminal Ca(2+) and unevenly inhibits late-phase intracellular Ca(2+) mobilization. Both modes of Ca(2+) chelation slow gastric repair. In plasma membrane Ca-ATPase 1(+/-) mice, but not plasma membrane Ca-ATPase 4(-/-) mice, there is slowed epithelial repair and a diminished gastric surface Ca(2+) increase. We conclude that endogenous Ca(2+), mobilized by signaling pathways and transmembrane Ca(2+) transport, causes increased Ca(2+) levels at the epithelial damage site that are essential to gastric epithelial cell restitution in vivo.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Courtney L Hentz
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Abraham M Korman
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Nicholas P J Perry
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Vikram Prasad
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267.
| |
Collapse
|
39
|
Generation and characterization of a transgenic zebrafish expressing the reverse tetracycline transactivator. J Genet Genomics 2013; 40:523-31. [PMID: 24156918 DOI: 10.1016/j.jgg.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/20/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Conditional expression of a target gene during zebrafish development is a powerful approach to elucidate gene functions. The tetracycline-controlled systems have been successfully used in the modulation of gene expression in mammalian cells, but few lines of zebrafish carrying these systems are currently available. In this study, we had generated a stable transgenic zebrafish line that ubiquitously expressed the second-generation of reverse Tet transactivator (rtTA-M2). Southern blotting analysis and high-throughput genome sequencing verified that a single copy of rtTA-M2 gene had stably integrated into the zebrafish genome. After induction with doxycycline (Dox), a strong green fluorescent protein (GFP) was seen in rtTA-transgenic eggs injected with pTRE-EGFP plasmids. The fluorescent signal gradually decreased after the withdrawal of Dox and disappeared. However, leaky expression of GFP was undetectable before Dox-induction. Additionally, transgenic embryos expressing rtTA-M2 exhibited no obvious defects in morphological phenotypes, hatching behavior and expression patterns of developmental marker genes, suggesting that rtTA-M2 had little effect on the development of transgenic zebrafish. Moreover, expressed Dickkopf-1 (DKK1) in pTRE-DKK1-injected embryos led to alterations in the expression of marker genes associated with Wnt signaling. Thus, this rtTA-transgenic zebrafish can be utilized to dissect functions of genes in a temporal manner.
Collapse
|
40
|
Steady or changing? Long-term monitoring of neuronal population activity. Trends Neurosci 2013; 36:375-84. [PMID: 23608298 DOI: 10.1016/j.tins.2013.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 11/23/2022]
Abstract
Stability and flexibility are both hallmarks of brain function that allow animals to thrive in ever-changing environments. Investigating how a balance between these opposing features is achieved with a dynamic array of cellular and molecular constituents requires long-term tracking of activity from individual neurons. Here, we review in vivo chronic extracellular recording studies and recent long-term two-photon calcium-imaging investigations that address the question of stability and plasticity of neuronal population activity in the mammalian brain. Overall, spiking activity is heterogeneously distributed among neurons in local populations and largely remains stable for individual cells over time. Tuning properties appear more flexible and may be adaptively stabilized, possibly by neuromodulators, to encode reliably and specifically salient stimuli or behaviors.
Collapse
|
41
|
Johannssen HC, Helmchen F. Two-photon imaging of spinal cord cellular networks. Exp Neurol 2013; 242:18-26. [DOI: 10.1016/j.expneurol.2012.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 03/27/2012] [Accepted: 07/21/2012] [Indexed: 11/30/2022]
|
42
|
Weitz AC, Behrend MR, Lee NS, Klein RL, Chiodo VA, Hauswirth WW, Humayun MS, Weiland JD, Chow RH. Imaging the response of the retina to electrical stimulation with genetically encoded calcium indicators. J Neurophysiol 2013; 109:1979-88. [PMID: 23343890 DOI: 10.1152/jn.00852.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epiretinal implants for the blind are designed to stimulate surviving retinal neurons, thus bypassing the diseased photoreceptor layer. Single-unit or multielectrode recordings from isolated animal retina are commonly used to inform the design of these implants. However, such electrical recordings provide limited information about the spatial patterns of retinal activation. Calcium imaging overcomes this limitation, as imaging enables high spatial resolution mapping of retinal ganglion cell (RGC) activity as well as simultaneous recording from hundreds of RGCs. Prior experiments in amphibian retina have demonstrated proof of principle, yet experiments in mammalian retina have been hindered by the inability to load calcium indicators into mature mammalian RGCs. Here, we report a method for labeling the majority of ganglion cells in adult rat retina with genetically encoded calcium indicators, specifically GCaMP3 and GCaMP5G. Intravitreal injection of an adeno-associated viral vector targets ∼85% of ganglion cells with high specificity. Because of the large fluorescence signals provided by the GCaMP sensors, we can now for the first time visualize the response of the retina to electrical stimulation in real-time. Imaging transduced retinas mounted on multielectrode arrays reveals how stimulus pulse shape can dramatically affect the spatial extent of RGC activation, which has clear implications in prosthetic applications. Our method can be easily adapted to work with other fluorescent indicator proteins in both wild-type and transgenic mammals.
Collapse
Affiliation(s)
- Andrew C Weitz
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Characterization of calcium signals in human embryonic stem cells and in their differentiated offspring by a stably integrated calcium indicator protein. Cell Signal 2013; 25:752-9. [PMID: 23305950 DOI: 10.1016/j.cellsig.2012.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/15/2012] [Accepted: 12/28/2012] [Indexed: 11/23/2022]
Abstract
Intracellular calcium signaling pathways play a major role in cellular responses such as proliferation, differentiation and apoptosis. Human embryonic stem cells (hESC) provide new possibilities to explore the development and differentiation of various cell types of the human body. Intracellular calcium responses to various ligands and the calcium signaling pathways, however, have not been thoroughly studied in embryonic stem cells and in their differentiated progenies. In our previous work we demonstrated that the use of the fluorescent calcium indicator Fluo-4 with confocal microscopy allows sensitive and reliable measurements of calcium modulation in human embryonic stem cells and stem-cell derived cardiomyocytes. Here we developed a human embryonic stem cell line stably expressing a genetically encoded Ca(2+) indicator (GCaMP2) using a transposon-based gene delivery system. We found that the differentiation properties were fully preserved in the GCaMP2-expressing hESC lines and Ca imaging could be performed without the need of toxic dye-loading of the cells. In undifferentiated hES cells the calcium signals induced by various ligands, ATP, LPA, trypsin or angiotensin II were comparable to those in Fluo-4 loaded cells. In accordance with previous findings, no calcium signal was evoked by thrombin, histamine or GABA. Cardiomyocyte colonies differentiated from hES-GCaMP2 cells could be recognized by spontaneous contractions and Ca(2+) oscillations. GCaMP2-expressing neural cells were identified based on their morphological and immuno-staining properties and Ca signals were characterized on those cells. Characteristics of both the spontaneous and ligand-induced Ca(2+) signals, as well as their pharmacological modification could be successfully examined in these model cells by fluorescence imaging.
Collapse
|
44
|
Costa A, Drago I, Zottini M, Pizzo P, Pozzan T. Peroxisome Ca(2+) homeostasis in animal and plant cells. Subcell Biochem 2013; 69:111-33. [PMID: 23821146 DOI: 10.1007/978-94-007-6889-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ca(2+) homeostasis in peroxisomes has been an unsolved problem for many years. Recently novel probes to monitor Ca(2+) levels in the lumen of peroxisomes in living cells of both animal and plant cells have been developed. Here we discuss the contrasting results obtained in mammalian cells with chemiluminecsent (aequorin) and fluorescent (cameleon) probes targeted to peroxisomes. We briefly discuss the different characteristics of these probes and the possible pitfalls of the two approaches. We conclude that the contrasting results obtained with the two probes may reflect a heterogeneity among peroxisomes in mammalian cells. We also discuss the results obtained in plant peroxisomes. In particular we demonstrate that Ca(2+) increases in the cytoplasm are mirrored by similar rises of Ca(2+) concentration the lumen of peroxisomes. The increases in peroxisome Ca(2+) level results in the activation of a catalase isoform, CAT3. Other functional roles of peroxisomal Ca(2+) changes in plant physiology are briefly discussed.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
45
|
Espinosa JS, Stryker MP. Development and plasticity of the primary visual cortex. Neuron 2012; 75:230-49. [PMID: 22841309 DOI: 10.1016/j.neuron.2012.06.009] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 01/17/2023]
Abstract
Hubel and Wiesel began the modern study of development and plasticity of primary visual cortex (V1), discovering response properties of cortical neurons that distinguished them from their inputs and that were arranged in a functional architecture. Their findings revealed an early innate period of development and a later critical period of dramatic experience-dependent plasticity. Recent studies have used rodents to benefit from biochemistry and genetics. The roles of spontaneous neural activity and molecular signaling in innate, experience-independent development have been clarified, as have the later roles of visual experience. Plasticity produced by monocular visual deprivation (MD) has been dissected into stages governed by distinct signaling mechanisms, some of whose molecular players are known. Many crucial questions remain, but new tools for perturbing cortical cells and measuring plasticity at the level of changes in connections among identified neurons now exist. The future for the study of V1 to illuminate cortical development and plasticity is bright.
Collapse
Affiliation(s)
- J Sebastian Espinosa
- Center for Integrative Neuroscience, Department of Physiology, 675 Nelson Rising Lane, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | | |
Collapse
|
46
|
Chen Q, Cichon J, Wang W, Qiu L, Lee SJR, Campbell NR, Destefino N, Goard MJ, Fu Z, Yasuda R, Looger LL, Arenkiel BR, Gan WB, Feng G. Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 2012; 76:297-308. [PMID: 23083733 DOI: 10.1016/j.neuron.2012.07.011] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
The ability to chronically monitor neuronal activity in the living brain is essential for understanding the organization and function of the nervous system. The genetically encoded green fluorescent protein-based calcium sensor GCaMP provides a powerful tool for detecting calcium transients in neuronal somata, processes, and synapses that are triggered by neuronal activities. Here we report the generation and characterization of transgenic mice that express improved GCaMPs in various neuronal subpopulations under the control of the Thy1 promoter. In vitro and in vivo studies show that calcium transients induced by spontaneous and stimulus-evoked neuronal activities can be readily detected at the level of individual cells and synapses in acute brain slices, as well as chronically in awake, behaving animals. These GCaMP transgenic mice allow investigation of activity patterns in defined neuronal populations in the living brain and will greatly facilitate dissecting complex structural and functional relationships of neural networks.
Collapse
Affiliation(s)
- Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Knöpfel T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 2012; 13:687-700. [PMID: 22931891 DOI: 10.1038/nrn3293] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a departure from previous top-down or bottom-up strategies used to understand neuronal circuits, many forward-looking research programs now place the circuit itself at their centre. This has led to an emphasis on the dissection and elucidation of neuronal circuit elements and mechanisms, and on studies that ask how these circuits generate behavioural outputs. This movement towards circuit-centric strategies is progressing rapidly as a result of technological advances that combine genetic manipulation with light-based methods. The core tools of these new approaches are genetically encoded optical indicators and actuators that enable non-destructive interrogation and manipulation of neuronal circuits in behaving animals with cellular-level precision. This Review examines genetically encoded reporters of neuronal function and assesses their value for circuit-oriented neuroscientific investigations.
Collapse
Affiliation(s)
- Thomas Knöpfel
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
48
|
Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat Commun 2012; 3:1031. [DOI: 10.1038/ncomms2035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 07/31/2012] [Indexed: 11/08/2022] Open
|
49
|
Kuhn B, Ozden I, Lampi Y, Hasan MT, Wang SSH. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex. Front Neural Circuits 2012; 6:49. [PMID: 22866030 PMCID: PMC3408591 DOI: 10.3389/fncir.2012.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/09/2012] [Indexed: 11/13/2022] Open
Abstract
Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs) requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs) to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN) led to high levels of expression (50–100 μM) in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs) (≤10 μM), yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA), a second rAAV containing the bidirectional TET promoter (Ptetbi) could drive strong D3cpv expression in PCs (10–300 μM), enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging.
Collapse
Affiliation(s)
- Bernd Kuhn
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
50
|
Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A, Duncan R, Gilroy S, Kang S. Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca(2+) signatures associated with polarized growth, development, and pathogenesis. Fungal Genet Biol 2012; 49:589-601. [PMID: 22683653 DOI: 10.1016/j.fgb.2012.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|