1
|
Freitas-Santos J, Brito IRR, Santana-Melo I, Oliveira KB, de Souza FMA, Gitai DLG, Duzzioni M, Bueno NB, de Araujo LA, Shetty AK, Castro OWD. Effects of cocaine, nicotine, and marijuana exposure in Drosophila Melanogaster development: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111049. [PMID: 38844126 DOI: 10.1016/j.pnpbp.2024.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Abuse-related drug usage is a public health issue. Drosophila melanogaster has been used as an animal model to study the biological effects of these psychoactive substances in preclinical studies. Our objective in this review is to evaluate the adverse effects produced by cocaine, nicotine, and marijuana during the development of D. melanogaster. We searched experimental studies in which D. melanogaster was exposed to these three psychoactive drugs in seven online databases up to January 2023. Two reviewers independently extracted the data. Fifty-one studies met eligibility criteria and were included in the data extraction: nicotine (n = 26), cocaine (n = 20), and marijuana (n = 5). Fifteen studies were eligible for meta-analysis. Low doses (∼0.6 mM) of nicotine increased locomotor activity in fruit flies, while high doses (≥3 mM) led to a decrease. Similarly, exposure to cocaine increased locomotor activity, resulting in decreased climbing response in D. melanogaster. Studies with exposure to marijuana did not present a profile for our meta-analysis. However, this drug has been less associated with locomotor changes, but alterations in body weight and fat content and changes in cardiac function. Our analyses have shown that fruit flies exposed to drugs of abuse during different developmental stages, such as larvae and adults, exhibit molecular, morphological, behavioral, and survival changes that are dependent on the dosage. These phenotypes resemble the adverse effects of psychoactive substances in clinical medicine.
Collapse
Affiliation(s)
- Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Isa Rafaella Rocha Brito
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Daniel Leite Góes Gitai
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Nassib Bezerra Bueno
- Faculty of nutrition (FANUT), Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Lucas Anhezini de Araujo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
2
|
Chitre K, Kairamkonda S, Dwivedi MK, Yadav S, Kumar V, Sikdar SK, Nongthomba U. Beadex, the Drosophila LIM only protein, is required for the growth of the larval neuromuscular junction. J Neurophysiol 2024; 132:418-432. [PMID: 38838299 DOI: 10.1152/jn.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
The appropriate growth of the neurons, accurate organization of their synapses, and successful neurotransmission are indispensable for sensorimotor activities. These processes are highly dynamic and tightly regulated. Extensive genetic, molecular, physiological, and behavioral studies have identified many molecular candidates and investigated their roles in various neuromuscular processes. In this article, we show that Beadex (Bx), the Drosophila LIM only (LMO) protein, is required for motor activities and neuromuscular growth of Drosophila. The larvae bearing Bx7, a null allele of Bx, and the RNAi-mediated neuronal-specific knockdown of Bx show drastically reduced crawling behavior, a diminished synaptic span of the neuromuscular junctions (NMJs) and an increased spontaneous neuronal firing with altered motor patterns in the central pattern generators (CPGs). Microarray studies identified multiple targets of Beadex that are involved in different cellular and molecular pathways, including those associated with the cytoskeleton and mitochondria that could be responsible for the observed neuromuscular defects. With genetic interaction studies, we further show that Highwire (Hiw), a negative regulator of synaptic growth at the NMJs, negatively regulates Bx, as the latter's deficiency was able to rescue the phenotype of the Hiw null mutant, HiwDN. Thus, our data indicate that Beadex functions downstream of Hiw to regulate the larval synaptic growth and physiology.NEW & NOTEWORTHY A novel role for Beadex (Bx) regulates the larval neuromuscular junction (NMJ) structure and function in a tissue-specific manner. Bx is expressed in a subset of Toll-6-expressing neurons and is involved in regulating synaptic span and physiology, possibly through its negative interaction with Highwire (Hiw). The findings of this study provide insights into the molecular mechanisms underlying NMJ development and function and warrant further investigation to understand the role of Bx in these processes fully.
Collapse
Affiliation(s)
- Kripa Chitre
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| | - Subhash Kairamkonda
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Saumitra Yadav
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc), Bangalore, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Sujit K Sikdar
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc), Bangalore, India
| | - Upendra Nongthomba
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
3
|
Cummins-Beebee PN, Chvilicek MM, Rothenfluh A. The Stage-Based Model of Addiction-Using Drosophila to Investigate Alcohol and Psychostimulant Responses. Int J Mol Sci 2023; 24:10909. [PMID: 37446084 PMCID: PMC10341944 DOI: 10.3390/ijms241310909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Addiction is a progressive and complex disease that encompasses a wide range of disorders and symptoms, including substance use disorder (SUD), for which there are few therapeutic treatments. SUD is the uncontrolled and chronic use of substances despite the negative consequences resulting from this use. The progressive nature of addiction is organized into a testable framework, the neurobiological stage-based model, that includes three behavioral stages: (1) binge/intoxication, (2) withdrawal/negative affect, and (3) preoccupation/anticipation. Human studies offer limited opportunities for mechanistic insights into these; therefore, model organisms, like Drosophila melanogaster, are necessary for understanding SUD. Drosophila is a powerful model organism that displays a variety of SUD-like behaviors consistent with human and mammalian substance use, making flies a great candidate to study mechanisms of behavior. Additionally, there are an abundance of genetic tools like the GAL4/UAS and CRISPR/Cas9 systems that can be used to gain insight into the molecular mechanisms underlying the endophenotypes of the three-stage model. This review uses the three-stage framework and discusses how easily testable endophenotypes have been examined with experiments using Drosophila, and it outlines their potential for investigating other endophenotypes.
Collapse
Affiliation(s)
- Pearl N. Cummins-Beebee
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Rigo F, Filošević A, Petrović M, Jović K, Andretić Waldowski R. Locomotor sensitization modulates voluntary self-administration of methamphetamine in Drosophila melanogaster. Addict Biol 2021; 26:e12963. [PMID: 32833318 DOI: 10.1111/adb.12963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
As complexities of addictive behaviors cannot be fully captured in laboratory studies, scientists use simple addiction-associated phenotypes and measure them in laboratory animals. Locomotor sensitization, characterized by an increased behavioral response to the same dose of the drug, has been extensively used to elucidate the genetic basis and molecular mechanisms of neuronal plasticity. However, to what extent it contributes to the development of addiction is not completely clear. We tested if the development of locomotor sensitization to methamphetamine affects voluntary self-administration, and vice versa, in order to investigate how two drug-associated phenotypes influence one another. In our study, we used the genetically tractable model organism, Drosophila melanogaster, and quantified locomotor sensitization and voluntary self-administration to methamphetamine using behavioral tests that were developed and adapted in our laboratory. We show that flies express robust locomotor sensitization to the second dose of volatilized methamphetamine, which significantly lowers preferential self-administration of methamphetamine. Naive flies preferentially self-administer food with methamphetamine over plain food. Exposing flies to volatilized methamphetamine after voluntary self-administration abolishes locomotor sensitization. We tested period null (per01 ) mutant flies and showed that they do not develop locomotor sensitization, nor do they show preferential self-administration of methamphetamine. Our results suggest that there may be partially overlapping neural circuitry that regulates the expression of locomotor sensitization and preferential self-administration to methamphetamine and that this circuitry requires a functional per gene.
Collapse
Affiliation(s)
- Franka Rigo
- Department of Biotechnology University of Rijeka Rijeka Croatia
| | - Ana Filošević
- Department of Biotechnology University of Rijeka Rijeka Croatia
| | - Milan Petrović
- Department of Informatics University of Rijeka Rijeka Croatia
| | - Katarina Jović
- Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | | |
Collapse
|
6
|
Interactions between the microbiome and mating influence the female's transcriptional profile in Drosophila melanogaster. Sci Rep 2020; 10:18168. [PMID: 33097776 PMCID: PMC7584617 DOI: 10.1038/s41598-020-75156-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Drosophila melanogaster females undergo a variety of post-mating changes that influence their activity, feeding behavior, metabolism, egg production and gene expression. These changes are induced either by mating itself or by sperm or seminal fluid proteins. In addition, studies have shown that axenic females-those lacking a microbiome-have altered fecundity compared to females with a microbiome, and that the microbiome of the female's mate can influence reproductive success. However, the extent to which post-mating changes in transcript abundance are affected by microbiome state is not well-characterized. Here we investigated fecundity and the post-mating transcript abundance profile of axenic or control females after mating with either axenic or control males. We observed interactions between the female's microbiome and her mating status: transcripts of genes involved in reproduction and genes with neuronal functions were differentially abundant depending on the females' microbiome status, but only in mated females. In addition, immunity genes showed varied responses to either the microbiome, mating, or a combination of those two factors. We further observed that the male's microbiome status influences the fecundity of both control and axenic females, while only influencing the transcriptional profile of axenic females. Our results indicate that the microbiome plays a vital role in the post-mating switch of the female's transcriptome.
Collapse
|
7
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Nian X, Chen W, Bai W, Zhao Z, Zhang Y. miR-263b Controls Circadian Behavior and the Structural Plasticity of Pacemaker Neurons by Regulating the LIM-Only Protein Beadex. Cells 2019; 8:cells8080923. [PMID: 31426557 PMCID: PMC6721658 DOI: 10.3390/cells8080923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
: Circadian clocks drive rhythmic physiology and behavior to allow adaption to daily environmental changes. In Drosophila, the small ventral lateral neurons (sLNvs) are primary pacemakers that control circadian rhythms. Circadian changes are observed in the dorsal axonal projections of the sLNvs, but their physiological importance and the underlying mechanism are unclear. Here, we identified miR-263b as an important regulator of circadian rhythms and structural plasticity of sLNvs in Drosophila. Depletion of miR-263b (miR-263bKO) in flies dramatically impaired locomotor rhythms under constant darkness. Indeed, miR-263b is required for the structural plasticity of sLNvs. miR-263b regulates circadian rhythms through inhibition of expression of the LIM-only protein Beadex (Bx). Consistently, overexpression of Bx or loss-of-function mutation (BxhdpR26) phenocopied miR-263bKO and miR-263b overexpression in behavior and molecular characteristics. In addition, mutating the miR-263b binding sites in the Bx 3' UTR using CRISPR/Cas9 recapitulated the circadian phenotypes of miR-263bKO flies. Together, these results establish miR-263b as an important regulator of circadian locomotor behavior and structural plasticity.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Wenfeng Chen
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Weiwei Bai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
9
|
Kairamkonda S, Nongthomba U. Beadex, a Drosophila LIM domain only protein, function in follicle cells is essential for egg development and fertility. Exp Cell Res 2018; 367:97-103. [PMID: 29580687 DOI: 10.1016/j.yexcr.2018.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
LIM domain, constituted by two tandem C2H2 zinc finger motif, proteins regulate several biological processes. They are usually found associated with various functional domains like Homeodomain, kinase domain and other protein binding domains. LIM proteins that are devoid of other domains are called LIM only proteins (LMO). LMO proteins were first identified in humans and are implicated in development and oncogenesis. They regulate various cell specifications by regulating the activity of respective transcriptional complexes. The Drosophila LMO protein (dLMO), Beadex (Bx), regulates various developmental processes like wing margin development and bristle development. It also regulates Drosophila behavior in response to cocaine and ethanol. We have previously generated Bx null flies and shown its essential function in neurons for multiple aspects of female reproduction. However, it was not known whether Bx affects reproduction through its independent function in ovaries. In this paper we show that female flies null for Bx lay eggs with multiple defects. Further, through knock down studies we demonstrate that function of Bx in follicle cells is required for normal egg development. We also show that function of Bx is particularly required in border cells for Drosophila fertility.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|
11
|
Manfredini F, Brown MJF, Toth AL. Candidate genes for cooperation and aggression in the social wasp Polistes dominula. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:449-463. [PMID: 29488013 PMCID: PMC5907630 DOI: 10.1007/s00359-018-1252-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
Cooperation and aggression are ubiquitous in social groups, and the genetic mechanisms underlying these behaviours are of great interest for understanding how social group formation is regulated and how it evolves. In this study, we used a candidate gene approach to investigate the patterns of expression of key genes for cooperation and aggression in the brain of a primitively eusocial wasp, Polistes dominula, during colony founding, when multiple foundresses can join the same nest and establish subtle hierarchies of dominance. We used a comparative approach to select candidate genes for cooperation and aggression looking at two previously published studies on global gene expression in wasps and ants. We tested the expression of these genes in P. dominula wasps that were either displaying aggressive behaviour (dominant and single foundresses) or cooperation (subordinate foundresses and workers) towards nestmates. One gene in particular, the egg yolk protein vitellogenin, known for its reproductive role in insects, displayed patterns of expression that strongly matched wasp social rank. We characterize the genomic context of vitellogenin by building a head co-expression gene network for P. dominula, and we discuss a potential role for vitellogenin as a mediator of social interactions in wasps.
Collapse
Affiliation(s)
- Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, UK.
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Amy L Toth
- Departments of Ecology, Evolution, and Organismal Biology and Entomology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Filošević A, Al-Samarai S, Andretić Waldowski R. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster. Front Mol Neurosci 2018; 11:25. [PMID: 29459820 PMCID: PMC5807336 DOI: 10.3389/fnmol.2018.00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/18/2018] [Indexed: 02/04/2023] Open
Abstract
Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per), Clock (Clk), and cycle (cyc). The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to cocaine in individual Drosophila. Because of its high-throughput nature, FlyBong can be used in genetic screens or in selection experiments aimed at the unbiased identification of functional genes involved in acute or chronic effects of volatilized psychoactive substances.
Collapse
Affiliation(s)
- Ana Filošević
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | | |
Collapse
|
13
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
14
|
Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep. PLoS Genet 2017; 13:e1007098. [PMID: 29240764 PMCID: PMC5730107 DOI: 10.1371/journal.pgen.1007098] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022] Open
Abstract
Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways—EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive. One of the biggest mysteries in biology is the need to sleep. Sleep duration has an underlying genetic basis, suggesting that very long and short sleep times could be bred for experimentally. How far can sleep duration be driven up or down? Here we achieved extremely long and short night sleep duration by subjecting a wild-derived population of Drosophila melanogaster to an experimental breeding program. At the end of the breeding program, long sleepers averaged 9.97 hours more nightly sleep than short sleepers. We analyzed whole-genome sequences from seven generations of the experimental breeding to identify allele frequencies that diverged between long and short sleepers, and verified genes and genomic regions with mutation and deficiency testing. These alleles map to classic developmental and signaling pathways, implicating many diverse processes that potentially affect sleep duration.
Collapse
|
15
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
16
|
Vaccaro A, Issa AR, Seugnet L, Birman S, Klarsfeld A. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function. PLoS Genet 2017; 13:e1006507. [PMID: 28072817 PMCID: PMC5224980 DOI: 10.1371/journal.pgen.1006507] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/23/2016] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| | - Abdul-Raouf Issa
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| | - Laurent Seugnet
- Integrated Physiology of the Brain Arousal Systems (WAKING), Lyon Neuroscience Research Centre, INSERM/CNRS/UCBL1, Lyon, France
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| | - André Klarsfeld
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, ESPCI Paris/CNRS, PSL Research University, Paris, France
| |
Collapse
|
17
|
Renteria R, Jeanes ZM, Mangieri RA, Maier EY, Kircher DM, Buske TR, Morrisett RA. Using In Vitro Electrophysiology to Screen Medications: Accumbal Plasticity as an Engram of Alcohol Dependence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:441-65. [PMID: 27055622 DOI: 10.1016/bs.irn.2016.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nucleus accumbens (NAc) is a central component of the mesocorticolimbic reward system. Increasing evidence strongly implicates long-term synaptic neuroadaptations in glutamatergic excitatory activity of the NAc shell and/or core medium spiny neurons in response to chronic drug and alcohol exposure. Such neuroadaptations likely play a critical role in the development and expression of drug-seeking behaviors. We have observed unique cell-type-specific bidirectional changes in NAc synaptic plasticity (metaplasticity) following acute and chronic intermittent ethanol exposure. Other investigators have also previously observed similar metaplasticity in the NAc following exposure to psychostimulants, opiates, and amazingly, even following an anhedonia-inducing experience. Considering that the proteome of the postsynaptic density likely contains hundreds of biochemicals, proteins and other components and regulators, we believe that there is a large number of potential molecular sites through which accumbal metaplasticity may be involved in chronic alcohol abuse. Many of our companion laboratories are now engaged in identifying and screening medications targeting candidate genes and its products previously linked to maladaptive alcohol phenotypes. We hypothesize that if manipulation of such target genes and their products change NAc plasticity, then that observation constitutes an important validation step for the development of novel therapeutics to treat alcohol dependence.
Collapse
Affiliation(s)
- R Renteria
- University of Texas at Austin, Austin, TX, United States
| | - Z M Jeanes
- University of Texas at Austin, Austin, TX, United States
| | - R A Mangieri
- University of Texas at Austin, Austin, TX, United States
| | - E Y Maier
- University of Texas at Austin, Austin, TX, United States
| | - D M Kircher
- University of Texas at Austin, Austin, TX, United States
| | - T R Buske
- University of Texas at Austin, Austin, TX, United States
| | - R A Morrisett
- University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
18
|
Guo G, Li Y, Wang H, Cai T, Duncan G. Peer Influence, Genetic Propensity, and Binge Drinking: A Natural Experiment and a Replication. AJS; AMERICAN JOURNAL OF SOCIOLOGY 2015; 121:914-54. [PMID: 26900620 PMCID: PMC6650272 DOI: 10.1086/683224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors draw data from the College Roommate Study (ROOM) and the National Longitudinal Study of Adolescent Health to investigate gene-environment interaction effects on youth binge drinking. In ROOM, the environmental influence was measured by the precollege drinking behavior of randomly assigned roommates. Random assignment safeguards against friend selection and removes the threat of gene-environment correlation that makes gene-environment interaction effects difficult to interpret. On average, being randomly assigned a drinking peer as opposed to a nondrinking peer increased college binge drinking by 0.5-1.0 episodes per month, or 20%-40% the average amount of binge drinking. However, this peer influence was found only among youths with a medium level of genetic propensity for alcohol use; those with either a low or high genetic propensity were not influenced by peer drinking. A replication of the findings is provided in data drawn from Add Health. The study shows that gene-environment interaction analysis can uncover social-contextual effects likely to be missed by traditional sociological approaches.
Collapse
Affiliation(s)
- Guang Guo
- Department of Sociology, University of North Carolina at Chapel Hill, NC 27599
- Carolina Center for Genomic Sciences, University of North Carolina at Chapel Hill, NC 27599
| | - Yi Li
- Department of Sociology, University of North Carolina at Chapel Hill, NC 27599
| | - Hongyu Wang
- Department of Sociology, University of Macau, Av. Padre Tomás Pereira, Taipa, Macau
| | - Tianji Cai
- Department of Sociology, University of Macau, Av. Padre Tomás Pereira, Taipa, Macau
| | - Greg Duncan
- Department of Education, University of California, Irvine 2001 Berkeley Place Irvine, CA 92697-5500
| |
Collapse
|
19
|
Liang ZS, Mattila HR, Rodriguez-Zas SL, Southey BR, Seeley TD, Robinson GE. Comparative brain transcriptomic analyses of scouting across distinct behavioural and ecological contexts in honeybees. Proc Biol Sci 2015; 281:rspb.2014.1868. [PMID: 25355476 DOI: 10.1098/rspb.2014.1868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individual differences in behaviour are often consistent across time and contexts, but it is not clear whether such consistency is reflected at the molecular level. We explored this issue by studying scouting in honeybees in two different behavioural and ecological contexts: finding new sources of floral food resources and finding a new nest site. Brain gene expression profiles in food-source and nest-site scouts showed a significant overlap, despite large expression differences associated with the two different contexts. Class prediction and 'leave-one-out' cross-validation analyses revealed that a bee's role as a scout in either context could be predicted with 92.5% success using 89 genes at minimum. We also found that genes related to four neurotransmitter systems were part of a shared brain molecular signature in both types of scouts, and the two types of scouts were more similar for genes related to glutamate and GABA than catecholamine or acetylcholine signalling. These results indicate that consistent behavioural tendencies across different ecological contexts involve a mixture of similarities and differences in brain gene expression.
Collapse
Affiliation(s)
- Zhengzheng S Liang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heather R Mattila
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Sandra L Rodriguez-Zas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas D Seeley
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Kairamkonda S, Nongthomba U. Beadex function in the motor neurons is essential for female reproduction in Drosophila melanogaster. PLoS One 2014; 9:e113003. [PMID: 25396431 PMCID: PMC4232528 DOI: 10.1371/journal.pone.0113003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023] Open
Abstract
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
21
|
Savarese A, Zou ME, Kharazia V, Maiya R, Lasek AW. Increased behavioral responses to ethanol in Lmo3 knockout mice. GENES BRAIN AND BEHAVIOR 2014; 13:777-83. [PMID: 25176312 DOI: 10.1111/gbb.12176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/20/2014] [Accepted: 08/29/2014] [Indexed: 11/24/2022]
Abstract
LIM-domain-only 3 (LMO3) is a transcriptional regulator involved in central nervous system development and neuroblastoma. Our previous studies implicated a potential role for LMO3 in regulating ethanol sensitivity and consumption. Here, we examined behavioral responses to ethanol in a line of Lmo3 null (Lmo3(Z) ) mice, utilizing the ethanol-induced loss-of-righting-reflex (LORR) test, two-bottle choice ethanol consumption and the drinking in the dark (DID) test, which models binge-like ethanol consumption. We found that Lmo3(Z) mice exhibited increased sedation time in response to ethanol in the LORR test and drank significantly more ethanol in the DID test compared with their wild-type counterparts, but showed no differences in two-bottle choice ethanol consumption. To explore where LMO3 may be acting in the brain to produce an ethanol phenotype, we also examined reporter gene (β-galactosidase) expression in heterozygous Lmo3(Z) mice and found strong expression in subcortical areas, particularly in those areas implicated in drug abuse, including the nucleus accumbens (Acb), cortex, hippocampus and amygdala. We also examined Lmo3 expression in the brains of wild-type mice who had undergone the DID test and found a negative correlation between Lmo3 expression in the Acb and the amount of ethanol consumed, consistent with the increased binge-like drinking observed in Lmo3(Z) mice. These results support a role for LMO3 in regulating behavioral responses to ethanol, potentially through its actions in the Acb.
Collapse
Affiliation(s)
- A Savarese
- Department of Psychiatry and Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL
| | | | | | | | | |
Collapse
|
22
|
Maiya R, Kharazia V, Lasek AW, Heberlein U. Lmo4 in the basolateral complex of the amygdala modulates fear learning. PLoS One 2012; 7:e34559. [PMID: 22509321 PMCID: PMC3317997 DOI: 10.1371/journal.pone.0034559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/02/2012] [Indexed: 01/03/2023] Open
Abstract
Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear.
Collapse
Affiliation(s)
- Rajani Maiya
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America.
| | | | | | | |
Collapse
|
23
|
Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet 2012; 131:959-75. [PMID: 22350798 PMCID: PMC3351628 DOI: 10.1007/s00439-012-1146-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
Abstract
Animal studies have been instrumental in providing knowledge about the molecular and neural mechanisms underlying drug addiction. Recently, the fruit fly Drosophilamelanogaster has become a valuable system to model not only the acute stimulating and sedating effects of drugs but also their more complex rewarding properties. In this review, we describe the advantages of using the fly to study drug-related behavior, provide a brief overview of the behavioral assays used, and review the molecular mechanisms and neural circuits underlying drug-induced behavior in flies. Many of these mechanisms have been validated in mammals, suggesting that the fly is a useful model to understand the mechanisms underlying addiction.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California-San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
24
|
Campbell JL, Gu Q, Guo D, Nash HA. Genetic effects in Drosophila on the potency of diverse general anesthetics: a distinctive pattern of altered sensitivity. J Neurogenet 2012; 23:412-21. [PMID: 19863272 DOI: 10.3109/01677060903177800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations that influence the sensitivity of an organism to a volatile general anesthetic can be divided into two classes. In one, sensitivity to all other volatile agents is affected to a similar degree. Although this class may contain mutations of interest for understanding anesthesia, it is also likely to contain mutations that merely alter general health. In the second class, mutations confer non-uniform effects on potency (NEP), i.e., larger effects for some volatile anesthetics than for others. Members of this class are of special interest for studies of arousal and its pharmacological suppression because they not only avoid the pitfall of effects on global health, but also imply the existence of drug targets that are preferentially affected by particular agents. In this work, we provide the first systematic investigation of the relative frequency and diversity of NEP mutations in Drosophila. As a first step, we isolated and characterized a set of P element insertion mutations that confer altered sensitivity of the fruit fly to the clinical anesthetic halothane. Then we tested the members of this collection for their effect on the sensitivity of flies to five other volatile agents. Not only do we find that most of the mutations show non-uniform effects, they also share a characteristic arrangement of altered potencies (halothane > >desflurane >or= enflurane approximately isoflurane approximately methoxyflurane > sevoflurane). From this result, although we do not know how direct or indirect are the effects of the mutations, we infer the existence of a biologically relevant target for anesthetic action that has a distinct preference for halothane over other agents. Intriguingly, P element insertions that co-map with several NEP loci have been shown to alter the fly's response to cocaine and ethanol, suggesting that common genetic elements are involved in the response to all three drugs.
Collapse
Affiliation(s)
- Joseph L Campbell
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD 20892-3736, USA
| | | | | | | |
Collapse
|
25
|
Alk is a transcriptional target of LMO4 and ERα that promotes cocaine sensitization and reward. J Neurosci 2011; 31:14134-41. [PMID: 21976498 DOI: 10.1523/jneurosci.3415-11.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously, we showed that the mouse LIM-domain only 4 (Lmo4) gene, which encodes a protein containing two zinc-finger LIM domains that interact with various DNA-binding transcription factors, attenuates behavioral sensitivity to repeated cocaine administration. Here we show that transcription of anaplastic lymphoma kinase (Alk) is repressed by LMO4 in the striatum and that Alk promotes the development of cocaine sensitization and conditioned place preference, a measure of cocaine reward. Since LMO4 is known to interact with estrogen receptor α (ERα) at the promoters of target genes, we investigated whether Alk expression might be controlled by a similar mechanism. We found that LMO4 and ERα are associated with the Alk promoter by chromatin immunoprecipitation and that Alk is an estrogen-responsive gene in the striatum. Moreover, we show that ERα knock-out mice exhibit enhanced cocaine sensitization and conditioned place preference and an increase in Alk expression in the nucleus accumbens. These data define a novel regulatory network involved in behavioral responses to cocaine. Interestingly, sex differences in several behavioral responses to cocaine in humans and rodents have been described, and estrogen is thought to mediate some of these differences. Our data suggest that estrogen regulation of Alk may be one mechanism responsible for sexually dimorphic responses to cocaine.
Collapse
|
26
|
Lasek AW, Giorgetti F, Berger KH, Tayor S, Heberlein U. Lmo genes regulate behavioral responses to ethanol in Drosophila melanogaster and the mouse. Alcohol Clin Exp Res 2011; 35:1600-6. [PMID: 21599714 PMCID: PMC3166402 DOI: 10.1111/j.1530-0277.2011.01506.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previous work from our laboratory demonstrated a role for the Drosophila Lim-only (dLmo) gene in regulating behavioral responses to cocaine. Herein, we examined whether dLmo influences the flies' sensitivity to ethanol's sedating effects. We also investigated whether 1 of the mammalian homologs of dLmo, Lmo3, is involved in behavioral responses to ethanol in mice. METHODS To examine dLmo function in ethanol-induced sedation, mutant flies with reduced or increased dLmo expression were tested using the loss of righting (LOR) assay. To determine whether mouse Lmo3 regulates behavioral responses to ethanol, we generated transgenic mice expressing a short-hairpin RNA targeting Lmo3 for RNA interference-mediated knockdown by lentiviral infection of single cell embryos. Adult founder mice, expressing varying amounts of Lmo3 in the brain, were tested using ethanol loss-of-righting-reflex (LORR) and 2-bottle choice ethanol consumption assays. RESULTS We found that in flies, reduced dLmo activity increased sensitivity to ethanol-induced sedation, whereas increased expression of dLmo led to increased resistance to ethanol-induced sedation. In mice, reduced levels of Lmo3 were correlated with increased sedation time in the LORR test and decreased ethanol consumption in the 2-bottle choice protocol. CONCLUSIONS These data describe a novel and conserved role for Lmo genes in flies and mice in behavioral responses to ethanol. These studies also demonstrate the feasibility of rapidly translating findings from invertebrate systems to mammalian models of alcohol abuse by combining RNA interference in transgenic mice and behavioral testing.
Collapse
Affiliation(s)
- Amy W Lasek
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
27
|
Eddison M, Guarnieri DJ, Cheng L, Liu CH, Moffat KG, Davis G, Heberlein U. arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron 2011; 70:979-90. [PMID: 21658589 DOI: 10.1016/j.neuron.2011.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2011] [Indexed: 01/16/2023]
Abstract
A reduced sensitivity to the sedating effects of alcohol is a characteristic associated with alcohol use disorders (AUDs). A genetic screen for ethanol sedation mutants in Drosophila identified arouser (aru), which functions in developing neurons to reduce ethanol sensitivity. Genetic evidence suggests that aru regulates ethanol sensitivity through its activation by Egfr/Erk signaling and its inhibition by PI3K/Akt signaling. The aru mutant also has an increased number of synaptic terminals in the larva and adult fly. Both the increased ethanol sensitivity and synapse number of the aru mutant are restored upon adult social isolation, suggesting a causal relationship between synapse number and ethanol sensitivity. We thus show that a developmental abnormality affecting synapse number and ethanol sensitivity is not permanent and can be reversed by manipulating the environment of the adult fly.
Collapse
Affiliation(s)
- Mark Eddison
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Lasek AW, Lim J, Kliethermes CL, Berger KH, Joslyn G, Brush G, Xue L, Robertson M, Moore MS, Vranizan K, Morris SW, Schuckit MA, White RL, Heberlein U. An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS One 2011; 6:e22636. [PMID: 21799923 PMCID: PMC3142173 DOI: 10.1371/journal.pone.0022636] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/30/2011] [Indexed: 02/01/2023] Open
Abstract
Anaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is predictive of future alcohol use disorders (AUDs). These results suggest that Alk plays an evolutionary conserved role in ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Amy W. Lasek
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (UH); (AL)
| | - Jana Lim
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Christopher L. Kliethermes
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Karen H. Berger
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Geoff Joslyn
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Gerry Brush
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Liquan Xue
- Departments of Pathology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Margaret Robertson
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Monica S. Moore
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Karen Vranizan
- Functional Genomics Laboratory, University of California, Berkeley, California, United States of America
| | - Stephan W. Morris
- Departments of Pathology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Marc A. Schuckit
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Raymond L. White
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Ulrike Heberlein
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- Department of Anatomy and Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (UH); (AL)
| |
Collapse
|
29
|
O'Kane CJ. Drosophila as a model organism for the study of neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:37-60. [PMID: 21225410 DOI: 10.1007/7854_2010_110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fruitfly Drosophila offers a model system in which powerful genetic tools can be applied to understanding the neurobiological bases of a range of complex behaviors. The Drosophila and human lineages diverged several hundred million years ago, and despite their obvious differences, flies and humans share many fundamental cellular and neurobiological processes. The similarities include fundamental mechanisms of neuronal signaling, a conserved underlying brain architecture and the main classes of neurotransmitter system. Drosophila also have a sophisticated behavioral repertoire that includes extensive abilities to adapt to experience and other circumstances, and is therefore susceptible to the same kinds of insults that can cause neuropsychiatric disorders in humans. Given the different physiologies, lifestyles, and cognitive abilities of flies and humans, many higher order behavioral features of the human disorders cannot be modeled readily in flies. However, an increasing understanding of the genetics of human neuropsychiatric disorders is suggesting parallels with underlying neurobiological mechanisms in flies, thus providing important insights into the possible mechanisms of these poorly understood disorders.
Collapse
Affiliation(s)
- Cahir J O'Kane
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK,
| |
Collapse
|
30
|
Meelkop E, Temmerman L, Schoofs L, Janssen T. Signalling through pigment dispersing hormone-like peptides in invertebrates. Prog Neurobiol 2010; 93:125-47. [PMID: 21040756 DOI: 10.1016/j.pneurobio.2010.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 12/19/2022]
Abstract
During recent decades, several research teams engaged in unraveling the molecular structure and the physiological significance of pigment dispersing hormone-like peptides, particularly with respect to colour change and biological rhythms. In this review, we first summarise the entire history of pigment dispersing hormone-like peptide research, thus providing a stepping stone for those who are curious about this growing area of interest. Next, we try to bring order in the plethora of experimental data on the molecular structure of the various peptides and receptors and also discuss immunolocalization, time-related expression and suggested functions in crustaceans, insects and nematodes. In addition, a brief comparison with the vertebrate system is made.
Collapse
Affiliation(s)
- E Meelkop
- Laboratory of Functional Genomics and Proteomics, Zoological Institute, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
31
|
Lasek AW, Kapfhamer D, Kharazia V, Gesch J, Giorgetti F, Heberlein U. Lmo4 in the nucleus accumbens regulates cocaine sensitivity. GENES, BRAIN, AND BEHAVIOR 2010; 9:817-24. [PMID: 20618444 PMCID: PMC3130015 DOI: 10.1111/j.1601-183x.2010.00620.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An estimated 2 million Americans use cocaine, resulting in large personal and societal costs. Discovery of the genetic factors that contribute to cocaine abuse is important for understanding this complex disease. Previously, mutations in the Drosophila LIM-only (dLmo) gene were identified because of their increased behavioral sensitivity to cocaine. Here we show that the mammalian homolog Lmo4, which is highly expressed in brain regions implicated in drug addiction, plays a similar role in cocaine-induced behaviors. Mice with a global reduction in Lmo4 levels show increased sensitivity to the locomotor stimulatory effects of cocaine upon chronic cocaine administration. This effect is reproduced with downregulation of Lmo4 in the nucleus accumbens by RNA interference. Thus, Lmo genes play conserved roles in regulating the behavioral effects of cocaine in invertebrate and mammalian models of drug addiction.
Collapse
Affiliation(s)
- A. W. Lasek
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - D. Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - V. Kharazia
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - J. Gesch
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - F. Giorgetti
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - U. Heberlein
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
- Department of Anatomy and Program in Neuroscience, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Keene AC, Duboué ER, McDonald DM, Dus M, Suh GSB, Waddell S, Blau J. Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr Biol 2010; 20:1209-15. [PMID: 20541409 PMCID: PMC2929698 DOI: 10.1016/j.cub.2010.05.029] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Neural systems controlling the vital functions of sleep and feeding in mammals are tightly interconnected: sleep deprivation promotes feeding, whereas starvation suppresses sleep. Here we show that starvation in Drosophila potently suppresses sleep, suggesting that these two homeostatically regulated behaviors are also integrated in flies. The sleep-suppressing effect of starvation is independent of the mushroom bodies, a previously identified sleep locus in the fly brain, and therefore is regulated by distinct neural circuitry. The circadian clock genes Clock (Clk) and cycle (cyc) are critical for proper sleep suppression during starvation. However, the sleep suppression is independent of light cues and of circadian rhythms as shown by the fact that starved period mutants sleep like wild-type flies. By selectively targeting subpopulations of Clk-expressing neurons, we localize the observed sleep phenotype to the dorsally located circadian neurons. These findings show that Clk and cyc act during starvation to modulate the conflict of whether flies sleep or search for food.
Collapse
Affiliation(s)
- Alex C Keene
- Biology Department, New York University, New York, NY 10003, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Yasuyama K, Meinertzhagen IA. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum ofDrosophila melanogaster. J Comp Neurol 2010; 518:292-304. [DOI: 10.1002/cne.22210] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Corl AB, Berger KH, Ophir-Shohat G, Gesch J, Simms JA, Bartlett SE, Heberlein U. Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell 2009; 137:949-60. [PMID: 19464045 DOI: 10.1016/j.cell.2009.03.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 12/28/2008] [Accepted: 03/12/2009] [Indexed: 11/19/2022]
Abstract
The consequences of alcohol use disorders (AUDs) are devastating to individuals and society, yet few treatments are currently available. To identify genes regulating the behavioral effects of ethanol, we conducted a genetic screen in Drosophila and identified a mutant, happyhour (hppy), due to its increased resistance to the sedative effects of ethanol. Hppy protein shows strong homology to mammalian Ste20 family kinases of the GCK-1 subfamily. Genetic and biochemical experiments revealed that the epidermal growth factor (EGF)-signaling pathway regulates ethanol sensitivity in Drosophila and that Hppy functions as an inhibitor of the pathway. Acute pharmacological inhibition of the EGF receptor (EGFR) in adult animals altered acute ethanol sensitivity in both flies and mice and reduced ethanol consumption in a preclinical rat model of alcoholism. Inhibitors of the EGFR or components of its signaling pathway are thus potential pharmacotherapies for AUDs.
Collapse
Affiliation(s)
- Ammon B Corl
- Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94143-2822, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kilman VL, Zhang L, Meissner RA, Burg E, Allada R. Perturbing dynamin reveals potent effects on the Drosophila circadian clock. PLoS One 2009; 4:e5235. [PMID: 19384421 PMCID: PMC2668759 DOI: 10.1371/journal.pone.0005235] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/19/2009] [Indexed: 01/09/2023] Open
Abstract
Background Transcriptional feedback loops are central to circadian clock function. However, the role of neural activity and membrane events in molecular rhythms in the fruit fly Drosophila is unclear. To address this question, we expressed a temperature-sensitive, dominant negative allele of the fly homolog of dynamin called shibirets1 (shits1), an active component in membrane vesicle scission. Principal Findings Broad expression in clock cells resulted in unexpectedly long, robust periods (>28 hours) comparable to perturbation of core clock components, suggesting an unappreciated role of membrane dynamics in setting period. Expression in the pacemaker lateral ventral neurons (LNv) was necessary and sufficient for this effect. Manipulation of other endocytic components exacerbated shits1's behavioral effects, suggesting its mechanism is specific to endocytic regulation. PKA overexpression rescued period effects suggesting shits1 may downregulate PKA pathways. Levels of the clock component PERIOD were reduced in the shits1-expressing pacemaker small LNv of flies held at a fully restrictive temperature (29°C). Less restrictive conditions (25°C) delayed cycling proportional to observed behavioral changes. Levels of the neuropeptide PIGMENT-DISPERSING FACTOR (PDF), the only known LNv neurotransmitter, were also reduced, but PERIOD cycling was still delayed in flies lacking PDF, implicating a PDF-independent process. Further, shits1 expression in the eye also results in reduced PER protein and per and vri transcript levels, suggesting that shibire-dependent signaling extends to peripheral clocks. The level of nuclear CLK, transcriptional activator of many core clock genes, is also reduced in shits1 flies, and Clk overexpression suppresses the period-altering effects of shits1. Conclusions We propose that membrane protein turnover through endocytic regulation of PKA pathways modulates the core clock by altering CLK levels and/or activity. These results suggest an important role for membrane scission in setting circadian period.
Collapse
Affiliation(s)
- Valerie L. Kilman
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Luoying Zhang
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Rose-Anne Meissner
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Elyssa Burg
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ravi Allada
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Chung BY, Kilman VL, Keath JR, Pitman JL, Allada R. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 2009; 19:386-90. [PMID: 19230663 DOI: 10.1016/j.cub.2009.01.040] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 12/12/2022]
Abstract
Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.
Collapse
Affiliation(s)
- Brian Y Chung
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
37
|
Biryukova I, Asmar J, Abdesselem H, Heitzler P. Drosophila mir-9a regulates wing development via fine-tuning expression of the LIM only factor, dLMO. Dev Biol 2009; 327:487-96. [PMID: 19162004 DOI: 10.1016/j.ydbio.2008.12.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 12/04/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
MicroRNAs are short non-coding endogenous RNAs that are implicated in regulating various aspects of plants and animal development, however their functions in organogenesis are largely unknown. Here we report that mir-9a belonging to the mir-9 family, regulates Drosophila wing development through a functional target site in the 3' untranslated region of the Drosophila LIM only protein, dLMO. dLMO is a transcription cofactor, that directly inhibits the activity of Apterous, the LIM-HD factor required for the proper dorsal identity of the wings. Deletions of the 3' untranslated region, including the mir-9a site, generate gain-of-function dLMO mutants (Beadex) associated with high levels of dLMO mRNA and protein. Beadex mutants lack wing margins, a phenotype also observed in null mir-9a mutants. We found that mir-9a and dLMO are co-expressed in wing discs and interact genetically for controlling wing development. Lack of mir-9a results in overexpression of dLMO, while gain-of-function mir-9a mutant suppresses dLMO expression. These data indicate that a function of mir-9a is to ensure the appropriate stoichiometry of dLMO during Drosophila wing development. The mir-9a binding site is conserved in the human counterpart LMO2, the T-cell acute leukemia oncogene, suggesting that mir-9 might apply a similar strategy to maintain LMO2 expression under a detrimental threshold.
Collapse
Affiliation(s)
- Inna Biryukova
- Department of Cell and Developmental Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Ezio Rosato
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
39
|
Abstract
Neurons acquire their molecular, neurochemical, and connectional features during development as a result of complex regulatory mechanisms. Here, we show that a ubiquitous, multifunctional protein cofactor, Chip, plays a critical role in a set of neurons in Drosophila that control the well described posteclosion behavior. Newly eclosed flies normally expand their wings and display tanning and hardening of their cuticle. Using multiple approaches to interfere with Chip function, we find that these processes do not occur without normal activity of this protein. Furthermore, we identified the nature of the deficit to be an absence of Bursicon in the hemolymph of newly eclosed flies, whereas the responsivity to Bursicon in these flies remains normal. Chip interacts with transcription factors of the LIM-HD (LIM-homeodomain) family, and we identified one member, dIslet, as a potential partner of Chip in this process. Our findings provide the first evidence of transcriptional mechanisms involved in the development of the neuronal circuit that regulates posteclosion behavior in Drosophila.
Collapse
|
40
|
Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster. Proc Natl Acad Sci U S A 2008; 105:12393-8. [PMID: 18713854 DOI: 10.1073/pnas.0804889105] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how the genome empowers the nervous system to express behaviors remains a critical challenge in behavioral genetics. The startle response is an attractive behavioral model for studies on the relationship between genes, brain, and behavior, as the ability to respond rapidly to harmful changes in the environment is a universal survival trait. Drosophila melanogaster provides a powerful system in which genetic studies on individuals with controlled genetic backgrounds and reared under controlled environmental conditions can be combined with neuroanatomical studies to analyze behaviors. In a screen of 720 lines of D. melanogaster, carrying single P[GT1] transposon insertions, we found 267 lines that showed significant changes in startle-induced locomotor behavior. Excision of the transposon reversed this effect in five lines out of six tested. We infer that most of the 267 lines show mutant effects on startle-induced locomotion that are caused by the transposon insertions. We selected a subset of 15 insertions in the same genetic background in autosomal genes with strong mutant effects and crossed them to generate all 105 possible nonreciprocal double heterozygotes. These hybrids revealed an extensive network of epistatic interactions on the behavioral trait. In addition, we observed changes in neuroanatomy that were caused by these 15 mutations, individually and in their double heterozygotes. We find that behavioral and neuroanatomical phenotypes are determined by a common set of genes that are organized as partially overlapping genetic networks.
Collapse
|
41
|
Heberlein U, Tsai LTY, Kapfhamer D, Lasek AW. Drosophila, a genetic model system to study cocaine-related behaviors: a review with focus on LIM-only proteins. Neuropharmacology 2008; 56 Suppl 1:97-106. [PMID: 18694769 PMCID: PMC2819469 DOI: 10.1016/j.neuropharm.2008.07.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 01/21/2023]
Abstract
In the last decade, the fruit fly Drosophila melanogaster, highly accessible to genetic, behavioral and molecular analyses, has been introduced as a novel model organism to help decipher the complex genetic, neurochemical, and neuroanatomical underpinnings of behaviors induced by drugs of abuse. Here we review these data, focusing specifically on cocaine-related behaviors. Several of cocaine's most characteristic properties have been recapitulated in Drosophila. First, cocaine induces motor behaviors in flies that are remarkably similar to those observed in mammals. Second, repeated cocaine administration induces behavioral sensitization a form of behavioral plasticity believed to underlie certain aspects of addiction. Third, a key role for dopaminergic systems in mediating cocaine's effects has been demonstrated through both pharmacological and genetic methods. Finally, and most importantly, unbiased genetic screens, feasible because of the simplicity and scale with which flies can be manipulated in the laboratory, have identified several novel genes and pathways whose role in cocaine behaviors had not been anticipated. Many of these genes and pathways have been validated in mammalian models of drug addiction. We focus in this review on the role of LIM-only proteins in cocaine-induced behaviors.
Collapse
Affiliation(s)
- Ulrike Heberlein
- Department of Anatomy, and Program in Neuroscience, University of California at San Francisco, 1550 4th Street, Rock Hall, Room RH 448F Mission Bay Campus, San Francisco, CA 94143-2324, USA.
| | | | | | | |
Collapse
|
42
|
Asmar J, Biryukova I, Heitzler P. Drosophila dLMO-PA isoform acts as an early activator of achaete/scute proneural expression. Dev Biol 2008; 316:487-97. [PMID: 18329012 DOI: 10.1016/j.ydbio.2008.01.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/11/2008] [Accepted: 01/19/2008] [Indexed: 10/22/2022]
|
43
|
A gain-of-function suppressor screen for genes involved in dorsal-ventral boundary formation in the Drosophila wing. Genetics 2008; 178:307-23. [PMID: 18202376 DOI: 10.1534/genetics.107.081869] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila wing primordium is subdivided into a dorsal (D) and a ventral (V) compartment by the activity of the LIM-homeodomain protein Apterous in D cells. Cell interactions between D and V cells induce the activation of Notch at the DV boundary. Notch is required for the maintenance of the compartment boundary and the growth of the wing primordium. Beadex, a gain-of-function allele of dLMO, results in increased levels of dLMO protein, which interferes with the activity of Apterous and results in defects in DV axis formation. We performed a gain-of-function enhancer-promoter (EP) screen to search for suppressors of Beadex when overexpressed in D cells. We identified 53 lines corresponding to 35 genes. Loci encoding for micro-RNAs and proteins involved in chromatin organization, transcriptional control, and vesicle trafficking were characterized in the context of dLMO activity and DV boundary formation. Our results indicate that a gain-of-function genetic screen in a sensitized background, as opposed to classical loss-of-function-based screenings, is a very efficient way to identify redundant genes involved in a developmental process.
Collapse
|
44
|
Helfrich-Förster C, Shafer OT, Wülbeck C, Grieshaber E, Rieger D, Taghert P. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 2007; 500:47-70. [PMID: 17099895 DOI: 10.1002/cne.21146] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The clock-gene-expressing lateral neurons are essential for the locomotor activity rhythm of Drosophila melanogaster. Traditionally, these neurons are divided into three groups: the dorsal lateral neurons (LN(d)), the large ventral lateral neurons (l-LN(v)), and the small ventral lateral neurons (s-LN(v)), whereby the latter group consists of four neurons that express the neuropeptide pigment-dispersing factor (PDF) and a fifth PDF-negative neuron. So far, only the l-LN(v) and the PDF-positive s-LN(v) have been shown to project into the accessory medulla, a small neuropil that contains the circadian pacemaker center in several insects. We show here that the other lateral neurons also arborize in the accessory medulla, predominantly forming postsynaptic sites. Both the l-LN(v) and LN(d) are anatomically well suited to connect the accessory medullae. Whereas the l-LN(v) may receive ipsilateral photic input from the Hofbauer-Buchner eyelet, the LN(d) invade mainly the contralateral accessory medulla and thus may receive photic input from the contralateral side. Both the LN(d) and the l-LN(v) differentiate during midmetamorphosis. They do so in close proximity to one another and the fifth PDF-negative s-LN(v), suggesting that these cell groups may derive from common precursors.
Collapse
|
45
|
Collins B, Blau J. Even a stopped clock tells the right time twice a day: circadian timekeeping in Drosophila. Pflugers Arch 2007; 454:857-67. [PMID: 17226053 DOI: 10.1007/s00424-006-0188-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
"Even a stopped clock tells the right time twice a day, and for once I'm inclined to believe Withnail is right. We are indeed drifting into the arena of the unwell... What we need is harmony. Fresh air. Stuff like that" "Bruce Robinson (1986, ref. 1)". Although a stopped Drosophila clock probably does not tell the right time even once a day, recent findings have demonstrated that accurate circadian time-keeping is dependent on harmony between groups of clock neurons within the brain. Furthermore, when harmony between the environment and the endogenous clock is lost, as during jet lag, we definitely feel unwell. In this review, we provide an overview of the current understanding of circadian rhythms in Drosophila, focussing on recent discoveries that demonstrate how approximately 100 neurons within the Drosophila brain control the behaviour of the whole fly, and how these rhythms respond to the environment.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/physiology
- Adaptation, Biological/radiation effects
- Animals
- Biological Clocks/physiology
- Biological Clocks/radiation effects
- Circadian Rhythm/physiology
- Circadian Rhythm/radiation effects
- Drosophila/anatomy & histology
- Drosophila/physiology
- Drosophila Proteins/physiology
- Drosophila Proteins/radiation effects
- Feedback, Physiological
- Genes, Insect/physiology
- Light
- Models, Neurological
- Mutagenesis, Site-Directed
- Nerve Net/physiology
- Nerve Net/radiation effects
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/physiology
- Photoreceptor Cells, Invertebrate/radiation effects
- Thermosensing/genetics
- Thermosensing/physiology
Collapse
Affiliation(s)
- Ben Collins
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
46
|
Blau J, Blanchard F, Collins B, Dahdal D, Knowles A, Mizrak D, Ruben M. What is there left to learn about the Drosophila clock? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:243-50. [PMID: 18419281 PMCID: PMC2637790 DOI: 10.1101/sqb.2007.72.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circadian rhythms offer probably the best understanding of how genes control behavior, and much of this understanding has come from studies in Drosophila. More recently, genetic manipulation of clock neurons in Drosophila has helped identify how daily patterns of activity are programmed by different clock neuron groups. Here, we review some of the more recent findings on the fly molecular clock and ask what more the fly model can offer to circadian biologists.
Collapse
Affiliation(s)
- J Blau
- Department of Biology, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Rothenfluh A, Threlkeld RJ, Bainton RJ, Tsai LTY, Lasek AW, Heberlein U. Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 2006; 127:199-211. [PMID: 17018286 DOI: 10.1016/j.cell.2006.09.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 05/19/2006] [Accepted: 09/04/2006] [Indexed: 01/19/2023]
Abstract
In most organisms, low ethanol doses induce increased activity, while high doses are sedating. To investigate the underlying mechanisms, we isolated Drosophila mutants with altered ethanol responsiveness. Mutations in white rabbit (whir), disrupting RhoGAP18B, are strongly resistant to the sedating effects of ethanol. This resistance can be suppressed by reducing the levels of Rho1 or Rac, implicating these GTPases in the behavioral response to ethanol. Indeed, expression of constitutively active forms of Rho1 or Rac1 in adult flies results in ethanol resistance similar to that observed in whir mutants. The whir locus produces several transcripts, RA-RD, which are predicted to encode three distinct RhoGAPs that share only the GAP domain. The RC transcript mediates the sedating effects of ethanol, while the RA transcript regulates its stimulant effects. Thus, distinct RhoGAPs, encoded by the same gene, regulate different manifestations of acute ethanol intoxication.
Collapse
Affiliation(s)
- Adrian Rothenfluh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Molecular oscillations that underlie the circadian clock are coupled to different output signals by which daily rhythms in downstream events are evoked and/or synchronized. Here the authors review the literature that describes circadian output mechanisms in Drosophila. They begin at the most proximal level, within oscillator cells themselves, by surveying studies of rhythmic gene expression within Drosophila heads. Next the authors describe the several neuron groups that compose the circadian pacemaker network underlying rhythmic locomotor activity, and they detail current models of how that network is organized and coordinated. The authors outline the body of evidence that describes a role for the neuropeptide pigment dispersing factor (PDF) as a circadian transmitter in the fly brain. Finally, in the context of PDF, they consider studies that address mechanisms of signaling from the circadian pacemaker network to downstream neurons and nonneuronal cells that directly control rhythmic outputs.
Collapse
Affiliation(s)
- Paul H Taghert
- Department of Anatomy and Neurobiology, Washington University Medical School, Saint Louis, MO 63110, USA.
| | | |
Collapse
|
49
|
Rosato E, Tauber E, Kyriacou CP. Molecular genetics of the fruit-fly circadian clock. Eur J Hum Genet 2006; 14:729-38. [PMID: 16721409 DOI: 10.1038/sj.ejhg.5201547] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/19/2005] [Accepted: 10/21/2005] [Indexed: 11/09/2022] Open
Abstract
The circadian clock percolates through every aspect of behaviour and physiology, and has wide implications for human and animal health. The molecular basis of the Drosophila circadian clock provides a model system that has remarkable similarities to that of mammals. The various cardinal clock molecules in the fly are outlined, and compared to those of their actual and 'functional' homologues in the mammal. We also focus on the evolutionary tinkering of these clock genes and compare and contrast the neuronal basis for behavioural rhythms between the two phyla.
Collapse
Affiliation(s)
- Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
50
|
Hamasaka Y, Nässel DR. Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J Comp Neurol 2006; 494:314-30. [PMID: 16320241 DOI: 10.1002/cne.20807] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several sets of clock neurons cooperate to generate circadian activity rhythms in Drosophila melanogaster. To extend the knowledge on neurotransmitters in the clock circuitry, we analyzed the distribution of some biogenic amines in relation to identified clock neurons. This was accomplished by employing clock neuron-specific GAL4 lines driving green fluorescent protein (GFP) expression, combined with immunocytochemistry with antisera against serotonin, histamine, and tyrosine hydroxylase (for dopamine). In the larval and adult brain, serotonin-immunoreactive (-IR) neuron processes are in close proximity of both the dendrites and the dorsal terminals of the major clock neurons, the s-LN(v)s. Additionally, the terminals of the l-LN(v) clock neurons and serotonergic processes converge in the distal medulla. No histamine (HA)-IR processes contact the s-LN(v)s in the larval brain, but possibly impinge on the dorsal clock neurons, DN2. In the adult brain, HA-IR axons of the extraocular eyelet photoreceptors terminate on the dendritic branches of the LN(v)s. A few tyrosine hydroxylase (TH)-IR processes were seen close to the dorsal terminals of the s-LN(v)s, but not their dendrites, in the larval and adult brain. TH-IR processes also converge with the distal medulla branches of the l-LN(v)s in adults. None of the monoamines was detectable in the different clock neurons. By using an imaging system to monitor intracellular Ca(2+) levels in dissociated GFP-labeled larval s-LN(v)s, loaded with Fura-2, we demonstrated that application of serotonin induced dose-dependent decreases in Ca(2+). Thus, serotonergic neurons form functional inputs on the s-LN(v)s in the larval brain and possibly also in adults.
Collapse
|