1
|
Yuan Z, Mo C, Kang Y, Zhang J, Wang F, Wei W, Qin F, Huang S, Jiang J, Liang H, Ye L. Integration of Transcriptomics and Metabolomics Reveals Metabolism Dysregulation in HIV-1-Infected Macrophages. Curr Microbiol 2025; 82:232. [PMID: 40183936 DOI: 10.1007/s00284-025-04204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
HIV-1 infection leads to metabolic changes in macrophages, yet a comprehensive understanding of its pathogenesis remains limited. To address this, we integrated transcriptomic and metabolomic analyses to uncover intracellular metabolic alterations in HIV-1-infected macrophages. We identified differentially expressed genes (DEGs) using RNA-sequencing, while metabolomic profiling was performed with UHPLC-QE-MS. The integration of transcriptomics and metabolomics was achieved through "Joint Pathway Analysis," and reverse transcription-quantitative PCR (RT-qPCR) was used to validate the identified pathways. Our transcriptomic analysis revealed a total of 890 DEGs, comprising 424 downregulated and 466 upregulated genes in macrophages infected with HIV-1. KEGG enrichment analysis highlighted the biosynthesis of amino acids and glycine, serine, and threonine metabolism as significantly enriched (P < 0.05). RT-qPCR results confirmed the expression of key genes, including PHGDH, PSAT1, PSPH, CBS, CTH, and AOC2, associated with these pathways. From the metabolomic analysis, we identified 60 differential metabolites, with glycerophospholipids representing the majority (51.67%). The integrated analysis revealed significant changes in glycine, serine, and threonine metabolism, glycerophospholipid metabolism, and linoleic acid metabolism in HIV-1-infected macrophages. This study offers an extensive overview of metabolic alterations in HIV-1-infected macrophages, which may enhance our understanding of the pathogenesis and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Junhan Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Fengyi Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Wudi Wei
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Institute of Life Sciences, Guangxi Medical University, Guangxi, 530021, China
| | - Fang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Shihui Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Institute of Life Sciences, Guangxi Medical University, Guangxi, 530021, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Institute of Life Sciences, Guangxi Medical University, Guangxi, 530021, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Guangxi, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Institute of Life Sciences, Guangxi Medical University, Guangxi, 530021, China.
| |
Collapse
|
2
|
Schenck JK, Clarkson-Paredes C, Pushkarsky T, Wang Y, Miller RH, Bukrinsky MI. Nef mediates neuroimmune response, myelin impairment, and neuronal injury in EcoHIV-infected mice. Life Sci Alliance 2025; 8:e202402879. [PMID: 39532531 PMCID: PMC11557684 DOI: 10.26508/lsa.202402879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The introduction of antiretroviral therapy has markedly improved the management of HIV-associated neurocognitive disorders (HAND). However, HAND still affects nearly half of HIV-infected individuals, presenting significant challenges to their well-being. This highlights the critical need for a deeper understanding of HAND mechanisms. Among HIV viral proteins, Nef is notable for its multifaceted role in HIV pathogenesis, though its specific involvement in HAND remains unclear. To investigate this, we used a murine model infected with Nef-expressing (EcoHIV) and Nef-deficient (EcoHIVΔNef) murine HIV. Comparative analyses revealed increased neuroinflammation and reduced myelin and neuronal integrity in EcoHIV-infected brains compared with those with EcoHIVΔNef. Both viruses induced astrogliosis, with stronger GFAP activation in Nef-deficient infections. These findings suggest that Nef contributes to neuroinflammation, primarily through microglial targeting and demyelination, although other factors may regulate astrogliosis. Our results indicate that Nef may significantly contribute to neuronal injury in EcoHIV-infected mice, offering insights into Nef-induced neuropathology in HAND and guiding future research.
Collapse
Affiliation(s)
- Jessica K Schenck
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Cheryl Clarkson-Paredes
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Tatiana Pushkarsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Yongsen Wang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Robert H Miller
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Michael I Bukrinsky
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Spampinato S, Conti GN, Marino A, Raimondo V, Celesia BM, Pellicanò GF, Puci MV, Sotgiu G, Bruno R, Villari N, Mirabile A, Coco VAM, Paternò Raddusa MS, Pistarà E, Boscia V, Fisicaro V, Fiorenza G, Cacopardo B, Rullo EV, Nunnari G. Enhanced metabolic health and immune response with bictegravir/emtricitabine/TAF: Insights from a 96‑week retrospective study. Biomed Rep 2024; 21:179. [PMID: 39387001 PMCID: PMC11462501 DOI: 10.3892/br.2024.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF), as a fixed dosed combination, is effective in people living with human immunodeficiency virus (PLWH) previously treated with other therapeutic regimens. The aim of the present retrospective observational real-life study was to analyze virological suppression and immunological, metabolic and safety profile of B/F/TAF. Data were collected from 127 PLHW who switched from any regimen to B/F/TAF. Viral load and virological suppression (viral load <50 copies/ml) were assessed by using real-time PCR methodologies; CD4 and CD8 T cell count as well as CD4/CD8 ratio were determined by cytofluorimetric analyses; other metabolic parameters such as total cholesterol, triglycerides, High- and Low-Density Lipoproteins were assessed by using immunoenzymatic assay. All of the aforementioned parameters were assessed at different timepoints (Baseline, 48 and 96 weeks) for the patients switching to B/F/TAF. Of 127 PLHW [96 (75.6%) male and 31 (24.4%) female, with a mean age of 46.8±10.7 years], 107 PLHW were included in the analysis. The percentage of virologically suppressed PLWH increased from 66.4 to 74.8% at 96 weeks. A statistically significant increase in absolute CD4 (P<0.0001) and CD8 T cell count (P=0.002) was observed. Of importance, there was a significant increase in CD4/CD8 ratio from 0.95 (0.52-1.31) to 1.16 (0.75-1.39) (P=0.003) after 96 weeks. There was a significant decrease in the median values of triglycerides (P<0.0001) and total cholesterol (P<0.0001). Serum creatinine showed a significant increase (P=0.0001). In real life, switching to B/F/T was safe and highly effective both virologically and immunologically. Decrease in cholesterol and triglyceride levels suggested a favorable metabolic profile, which may decrease inflammation, leading to a healthier state and less organ damage.
Collapse
Affiliation(s)
- Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Giuseppe Nicolò Conti
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Vincenzo Raimondo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Benedetto Maurizio Celesia
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Giovanni Francesco Pellicanò
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Mariangela Valentina Puci
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari I-07100, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari I-07100, Italy
| | - Roberto Bruno
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Nunziatina Villari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Alessia Mirabile
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Viviana Agata Maria Coco
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Michele Salvatore Paternò Raddusa
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Eugenia Pistarà
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Vincenzo Boscia
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Viviana Fisicaro
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Giorgia Fiorenza
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania I-95124, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, G. Martino University Hospital, University of Messina, Department of Clinical and Experimental Medicine, Messina I-98124, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, Azienda di Rilievo Nazionale ed Alta Specializzazione Garibaldi Hospital, University of Catania, Catania I-95124, Italy
| |
Collapse
|
4
|
Obare LM, Bailin SS, Zhang X, Nthenge K, Priest S, Liu Q, Stolze LK, Sheng Q, Gangula R, Behrens M, Jenkins B, Prasad P, Neikirk K, Prakash P, Hogan M, Zhang L, Beasley HK, Shao J, Miller-Fleming TW, Actkins KV, Phillips MA, Hubert D, Malone J, Labeeb C, Gelbard A, Chaillon A, Mashayekhi M, Gabriel CL, Temu T, Olson L, Jones A, Beeri K, Baker P, Kawai K, Ghosh SKB, Guo L, Virmani R, Finn A, Shah P, Yang TS, Bick AG, Kirabo A, Su YR, Phillips EJ, Mallal S, Dash C, Koethe JR, Gianella S, McReynolds MR, Absi T, Hinton A, Wanjalla CN. HIV persists in late coronary atheroma and is associated with increased local inflammation and disease progression. RESEARCH SQUARE 2024:rs.3.rs-5125826. [PMID: 39483879 PMCID: PMC11527356 DOI: 10.21203/rs.3.rs-5125826/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Chronic inflammation contributes to the prevalence of cardiovascular disease in people living with HIV (PLWH). The immune mechanisms driving atherosclerosis progression in PLWH remain unclear. This study conducted comprehensive assessments of medium-sized coronary arteries and aorta from deceased PLWH and controls without HIV using DNA/RNA assays, spatial transcriptomics, and high-resolution mass spectrometry. Findings revealed more significant inflammation correlated with higher HIV copy numbers in late atheroma of PLWH. Enhanced CXCL12 and decreased ABCA1/ABCG1 expression in CD163+ macrophages were co-localized in coronaries of PLWH, suggesting a reduction in plasma lipoprotein clearance compared to controls. Spatial analyses identified potential therapeutic targets by revealing inflammatory changes in medium-sized arteries and the aorta. We examined the relationship between atherosclerotic phenotypes and inflammatory gene expression in Vanderbilts Biobank to study these findings in a larger clinical cohort. This established a significant association between ABCA1 and CXCL12 gene expressions with atherosclerosis, partly influenced by HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel S. Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kisyua Nthenge
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rama Gangula
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madelaine Behrens
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
| | | | - Liang Zhang
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | | | - Kyera V. Actkins
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Jordan Malone
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassia Labeeb
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Gelbard
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antoine Chaillon
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Curtis L. Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Lana Olson
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela Jones
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karen Beeri
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paxton Baker
- VANTAGE, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kenji Kawai
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | - Laing Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | - Aloke Finn
- CVPath Institute, Gaithersburg, Maryland, USA
| | - Palak Shah
- CVPath Institute, Gaithersburg, Maryland, USA
| | - Tzushan Sharon Yang
- Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan R Su
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J. Phillips
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia
| | - Simon Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Chandravanu Dash
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, USA
- NanoString Technologies, Inc., Seattle, WA
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Gianella
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melanie R. McReynolds
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Tarek Absi
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor Hinton
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Mukhuty K, Harit D, Gomber S, Rathi V. Carotid Intima-Media Thickness and Metabolic Complications in Children with HIV on Antiretroviral Therapy: A Cross-Sectional Study. Indian J Pediatr 2024; 91:887-892. [PMID: 38117439 DOI: 10.1007/s12098-023-04950-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES To evaluate carotid intima media thickness (CIMT) in children with Human immunodeficiency virus (HIV) on anti-retroviral therapy (ART) and in controls. Also, to compare body mass index (BMI), body fat percentage, skin-fold thickness (SFT), waist-to-height ratio (WHtR), lipid profile, blood pressure, lipodystrophy syndrome (LDS), non-alcoholic fatty liver disease (NAFLD) in children with HIV and in controls and to determine association between lipid profile, LDS, liver amino-transferases, NAFLD, BMI, body fat percentage, SFT, WHtR and CIMT. METHODS This cross-sectional study was done in 7 to 12 y old children attending the ART clinic and receiving ART for ≥6 mo according to 2018 National Aids Control Organization (NACO) guidelines. Thirty age and gender matched controls were enrolled from the pediatrics OPD. Weight, height, BMI, waist circumference, skin fold thickness and blood pressure were recorded. Lipid profile, liver amino-transferases, USG abdomen and CIMT were done with prior appointment. RESULTS The present study had 43% females and 57% males (mean age of 9.33 ± 1.65 y). All cases were on combination ART (mean treatment duration: 59.1 mo). CIMT was significantly increased in cases as compared to controls 0.481 ± 0.087 mm vs. 0.418 ± 0.072 mm (p = 0.003). However, CIMT did not correlate with any other parameter. Cases had significantly higher body fat percentage (17% vs. 13.15%), systolic blood pressure (SBP), SFT, total cholesterol (TC) and low density lipoprotein- cholesterol (LDL-C) as compared to controls. NAFLD was seen in 3 cases (1%), lipohypertrophy in 7 (23%) cases and 5 (16%) controls. CONCLUSIONS Children with HIV on ART have significantly higher CIMT and increased metabolic abnormalities.
Collapse
Affiliation(s)
- Koyel Mukhuty
- Department of Pediatrics, University College of Medical Sciences & Associated Guru Teg Bahadur Hospital, Room No.611, 6th Floor MCH Block, Dilshad Garden, New Delhi, 110095, India
| | - Deepika Harit
- Department of Pediatrics, University College of Medical Sciences & Associated Guru Teg Bahadur Hospital, Room No.611, 6th Floor MCH Block, Dilshad Garden, New Delhi, 110095, India.
| | - Sunil Gomber
- Department of Pediatrics, University College of Medical Sciences & Associated Guru Teg Bahadur Hospital, Room No.611, 6th Floor MCH Block, Dilshad Garden, New Delhi, 110095, India
| | - Vinita Rathi
- Department of Radiology, University College of Medical Sciences & Associated Guru Teg Bahadur Hospital, Dilshad Garden, New Delhi, India
| |
Collapse
|
7
|
El-Qushayri AE, Hashan MR, Alam MM, Khan MS, Alqahtani NG. The Impact of HIV Upon the PCI Results: A Systematic Review and Meta-Analysis. Rev Med Virol 2024; 34:e2572. [PMID: 39075545 DOI: 10.1002/rmv.2572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
The aim of this systematic review and meta-analysis was to comprehensively evaluate the latest evidences and summarise the impact of HIV on PCI outcomes. A PRISMA guided literature search was conducted on 14 February 2024 in Web of Science, PubMed, Virtual Health Library, Google Scholar and Scopus. We searched with the term '("percutaneous coronary intervention" OR "PCI") AND ("human immunodeficiency virus" OR "HIV" OR "acquired immunodeficiency syndrome" OR "AIDS")' after selecting the keywords from randomly chosen included papers. We included 8 papers of 781 screened records. HIV (+) patients had significant in-hospital, 1-year and overall (event at the last follow up point) all-cause mortality compared to HIV (-) group (OR: 1.73, 95%CI: 1.57-1.90, p < 0.01), (OR: 1.39, 95%CI: 1.07-1.81, p = 0.01) and (OR: 1.69, 95%CI: 1.55-1.85, p < 0.01), respectively. HIV (+) patients had significantly higher odds of developing MACE (OR: 1.35, 95%CI: 1.12-1.62, p = 0.001) compared to the HIV (-) group. No differences between both groups were detected regarding in-hospital and overall CV mortality, TVR, TLR, post-PCI TIMI grade 3 flow, cerebrovascular accidents and recurrent coronary events (p > 0.05). Our study revealed that people with HIV who underwent PCI in this modern era may have worse short and long-term PCI outcomes. This finding highlights the need for specialised cardiovascular care protocols for the HIV population. However, enhanced clinical management and preventative measures are imperative to improve PCI success rates in patients with HIV.
Collapse
Affiliation(s)
| | - Mohammad Rashidul Hashan
- School of Medical, Health and Applied Sciences, Central Queensland University, Rockhampton, Australia
- Central Queensland Public Health Unit, Central Queensland Hospital and Health Service, Rockhampton, Australia
- Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - Md Mahfuj Alam
- Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Muhammad Sanowar Khan
- Emergency Department, Central Queensland Hospital and Health Services, Gladstone, Australia
| | - Nasser G Alqahtani
- Department of Internal Medicine, Cardiology Section, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
9
|
Grunblatt E, Feinstein MJ. Precision Phenotyping of Heart Failure in People with HIV: Early Insights and Challenges. Curr Heart Fail Rep 2024; 21:417-427. [PMID: 38940893 DOI: 10.1007/s11897-024-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE OF REVIEW People with HIV have an elevated risk of developing heart failure even with optimally controlled disease. In this review, we outline the various mechanisms through which HIV infection may directly and indirectly contribute to heart failure pathology and highlight the emerging relationship between HIV, chronic inflammation, and cardiometabolic disease. RECENT FINDINGS HIV infection leads to chronic inflammation, immune dysregulation, and metabolic imbalances even in those with well controlled disease. These dysregulations occur through several diverse mechanisms which may lead to manifestations of different phenotypes of heart failure in people with HIV. While it has long been known that people with HIV are at risk of developing heart failure, recent studies have suggested numerous complex mechanisms involving chronic inflammation, immune dysregulation, and metabolic derangement through which this may be mediated. Further comprehensive studies are needed to elucidate the precise relationship between these mechanisms and the development of different subtypes of heart failure in people with HIV.
Collapse
Affiliation(s)
- Eli Grunblatt
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA
| | - Matthew J Feinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA.
- Division of Cardiology in the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Vanpouille C, Brichacek B, Pushkarsky T, Dubrovsky L, Fitzgerald W, Mukhamedova N, Garcia‐Hernandez S, Matthies D, Popratiloff A, Sviridov D, Margolis L, Bukrinsky M. HIV-1 Nef is carried on the surface of extracellular vesicles. J Extracell Vesicles 2024; 13:e12478. [PMID: 39016173 PMCID: PMC11252832 DOI: 10.1002/jev2.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Extracellular vesicles (EVs) serve as pivotal mediators of intercellular communication in both health and disease, delivering biologically active molecules from vesicle-producing cells to recipient cells. In the context of HIV infection, EVs have been shown to carry the viral protein Nef, a key pathogenic factor associated with HIV-related co-morbidities. Despite this recognition, the specific localisation of Nef within the vesicles has remained elusive. This study addresses this critical knowledge gap by investigating Nef-containing EVs. Less than 1% of the total released Nef was associated with EVs; most Nef existed as free protein released by damaged cells. Nevertheless, activity of EV-associated Nef in downregulating the major cholesterol transporter ABCA1, a critical aspect linked to the pathogenic effects of Nef, was comparable to that of free Nef present in the supernatant. Through a series of biochemical and microscopic assays, we demonstrate that the majority of EV-associated Nef molecules are localised on the external surface of the vesicles. This distinctive distribution prompts the consideration of Nef-containing EVs as potential targets for immunotherapeutic interventions aimed at preventing or treating HIV-associated co-morbidities. In conclusion, our results shed light on the localisation and functional activity of Nef within EVs, providing valuable insights for the development of targeted immunotherapies to mitigate the impact of HIV-associated co-morbidities.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Beda Brichacek
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | | | - Sofia Garcia‐Hernandez
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Anastas Popratiloff
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Dmitri Sviridov
- Baker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
- Faculty of Natural Sciences and MedicineIlia State UniversityTbilisiRepublic of Georgia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
12
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
13
|
Papantoniou E, Arvanitakis K, Markakis K, Papadakos SP, Tsachouridou O, Popovic DS, Germanidis G, Koufakis T, Kotsa K. Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas. Life (Basel) 2024; 14:449. [PMID: 38672720 PMCID: PMC11051320 DOI: 10.3390/life14040449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Infections with human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) represent one of the greatest health burdens worldwide. The complex pathophysiological pathways that link highly active antiretroviral therapy (HAART) and HIV infection per se with dyslipidemia make the management of lipid disorders and the subsequent increase in cardiovascular risk essential for the treatment of people living with HIV (PLHIV). Amongst HAART regimens, darunavir and atazanavir, tenofovir disoproxil fumarate, nevirapine, rilpivirine, and especially integrase inhibitors have demonstrated the most favorable lipid profile, emerging as sustainable options in HAART substitution. To this day, statins remain the cornerstone pharmacotherapy for dyslipidemia in PLHIV, although important drug-drug interactions with different HAART agents should be taken into account upon treatment initiation. For those intolerant or not meeting therapeutic goals, the addition of ezetimibe, PCSK9, bempedoic acid, fibrates, or fish oils should also be considered. This review summarizes the current literature on the multifactorial etiology and intricate pathophysiology of hyperlipidemia in PLHIV, with an emphasis on the role of different HAART agents, while also providing valuable insights into potential switching strategies and therapeutic options.
Collapse
Affiliation(s)
- Eleni Papantoniou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantinos Markakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Olga Tsachouridou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Djordje S. Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, 21137 Novi Sad, Serbia;
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636 Thessaloniki, Greece
| |
Collapse
|
14
|
Singh S, Wright RE, Giri S, Arumugaswami V, Kumar A. Targeting ABCG1 and SREBP-2 mediated cholesterol homeostasis ameliorates Zika virus-induced ocular pathology. iScience 2024; 27:109088. [PMID: 38405605 PMCID: PMC10884761 DOI: 10.1016/j.isci.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes severe neurological and ocular abnormalities in infants, yet no vaccine or antivirals are available. Our transcriptomic analysis of ZIKV-infected retinal pigment epithelial (RPE) cells revealed alterations in the cholesterol pathway. Thus, we investigated the functional roles of ATP binding cassette transporter G1 (ABCG1) and sterol response element binding protein 2 (SREPB-2), two key players in cholesterol metabolism, during ocular ZIKV infection. Our in vitro data showed that increased ABCG1 activity via liver X receptors (LXRs), reduced ZIKV replication, while ABCG1 knockdown increased replication with elevated intracellular cholesterol. Conversely, inhibiting SREBP-2 or its knockdown reduced ZIKV replication by lowering cholesterol levels. In vivo, LXR agonist or SREBP-2 inhibitor treatment mitigated ZIKV-induced chorioretinal lesions in mice, concomitant with decreased expression of inflammatory mediators and increased activation of antiviral response genes. In summary, our study identifies ABCG1's antiviral role and SREBP-2's proviral effects in ocular ZIKV infection, offering cholesterol metabolism as a potential target to develop antiviral therapies.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert E. Wright
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
Nazari I, Feinstein MJ. Evolving mechanisms and presentations of cardiovascular disease in people with HIV: implications for management. Clin Microbiol Rev 2024; 37:e0009822. [PMID: 38299802 PMCID: PMC10938901 DOI: 10.1128/cmr.00098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
People with HIV (PWH) are at elevated risk for cardiovascular diseases (CVDs), including myocardial infarction, heart failure, and sudden cardiac death, among other CVD manifestations. Chronic immune dysregulation resulting in persistent inflammation is common among PWH, particularly those with sustained viremia and impaired CD4+ T cell recovery. This inflammatory milieu is a major contributor to CVDs among PWH, in concert with common comorbidities (such as dyslipidemia and smoking) and, to a lesser extent, off-target effects of antiretroviral therapy. In this review, we discuss the clinical and mechanistic evidence surrounding heightened CVD risks among PWH, implications for specific CVD manifestations, and practical guidance for management in the setting of evolving data.
Collapse
Affiliation(s)
- Ilana Nazari
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Feinstein
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Cardiology in the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
17
|
Linkner TR, Ambrus V, Kunkli B, Szojka ZI, Kalló G, Csősz É, Kumar A, Emri M, Tőzsér J, Mahdi M. Comparative Analysis of Differential Cellular Transcriptome and Proteome Regulation by HIV-1 and HIV-2 Pseudovirions in the Early Phase of Infection. Int J Mol Sci 2023; 25:380. [PMID: 38203551 PMCID: PMC10779251 DOI: 10.3390/ijms25010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In spite of the similar structural and genomic organization of human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2), striking differences exist between them in terms of replication dynamics and clinical manifestation of infection. Although the pathomechanism of HIV-1 infection is well characterized, relatively few data are available regarding HIV-2 viral replication and its interaction with host-cell proteins during the early phase of infection. We utilized proteo-transcriptomic analyses to determine differential genome expression and proteomic changes induced by transduction with HIV-1/2 pseudovirions during 8, 12 and 26 h time-points in HEK-293T cells. We show that alteration in the cellular milieu was indeed different between the two pseudovirions. The significantly higher number of genes altered by HIV-2 in the first two time-points suggests a more diverse yet subtle effect on the host cell, preparing the infected cell for integration and latency. On the other hand, GO analysis showed that, while HIV-1 induced cellular oxidative stress and had a greater effect on cellular metabolism, HIV-2 mostly affected genes involved in cell adhesion, extracellular matrix organization or cellular differentiation. Proteomics analysis revealed that HIV-2 significantly downregulated the expression of proteins involved in mRNA processing and translation. Meanwhile, HIV-1 influenced the cellular level of translation initiation factors and chaperones. Our study provides insight into the understudied replication cycle of HIV-2 and enriches our knowledge about the use of HIV-based lentiviral vectors in general.
Collapse
Affiliation(s)
- Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktor Ambrus
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsófia Ilona Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, 22100 Lund, Sweden
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Ajneesh Kumar
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Miklós Emri
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
| |
Collapse
|
18
|
Ahmad I, Fatemi SN, Ghaheri M, Rezvani A, Khezri DA, Natami M, Yasamineh S, Gholizadeh O, Bahmanyar Z. An overview of the role of Niemann-pick C1 (NPC1) in viral infections and inhibition of viral infections through NPC1 inhibitor. Cell Commun Signal 2023; 21:352. [PMID: 38098077 PMCID: PMC10722723 DOI: 10.1186/s12964-023-01376-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses communicate with their hosts through interactions with proteins, lipids, and carbohydrate moieties on the plasma membrane (PM), often resulting in viral absorption via receptor-mediated endocytosis. Many viruses cannot multiply unless the host's cholesterol level remains steady. The large endo/lysosomal membrane protein (MP) Niemann-Pick C1 (NPC1), which is involved in cellular cholesterol transport, is a crucial intracellular receptor for viral infection. NPC1 is a ubiquitous housekeeping protein essential for the controlled cholesterol efflux from lysosomes. Its human absence results in Niemann-Pick type C disease, a deadly lysosomal storage disorder. NPC1 is a crucial viral receptor and an essential host component for filovirus entrance, infection, and pathogenesis. For filovirus entrance, NPC1's cellular function is unnecessary. Furthermore, blocking NPC1 limits the entry and replication of the African swine fever virus by disrupting cholesterol homeostasis. Cell entrance of quasi-enveloped variants of hepatitis A virus and hepatitis E virus has also been linked to NPC1. By controlling cholesterol levels, NPC1 is also necessary for the effective release of reovirus cores into the cytoplasm. Drugs that limit NPC1's activity are effective against several viruses, including SARS-CoV and Type I Feline Coronavirus (F-CoV). These findings reveal NPC1 as a potential therapeutic target for treating viral illnesses and demonstrate its significance for several viral infections. This article provides a synopsis of NPC1's function in viral infections and a review of NPC1 inhibitors that may be used to counteract viral infections. Video Abstract.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Rezvani
- Anesthesiology Department, Case Western Reserve University, Cleveland, USA
| | - Dorsa Azizi Khezri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Zahra Bahmanyar
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
20
|
Okpaise D, Sluis-Cremer N, Rappocciolo G, Rinaldo CR. Cholesterol Metabolism in Antigen-Presenting Cells and HIV-1 Trans-Infection of CD4 + T Cells. Viruses 2023; 15:2347. [PMID: 38140588 PMCID: PMC10747884 DOI: 10.3390/v15122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) provides an effective method for managing HIV-1 infection and preventing the onset of AIDS; however, it is ineffective against the reservoir of latent HIV-1 that persists predominantly in resting CD4+ T cells. Understanding the mechanisms that facilitate the persistence of the latent reservoir is key to developing an effective cure for HIV-1. Of particular importance in the establishment and maintenance of the latent viral reservoir is the intercellular transfer of HIV-1 from professional antigen-presenting cells (APCs-monocytes/macrophages, myeloid dendritic cells, and B lymphocytes) to CD4+ T cells, termed trans-infection. Whereas virus-to-cell HIV-1 cis infection is sensitive to ART, trans-infection is impervious to antiviral therapy. APCs from HIV-1-positive non-progressors (NPs) who control their HIV-1 infection in the absence of ART do not trans-infect CD4+ T cells. In this review, we focus on this unique property of NPs that we propose is driven by a genetically inherited, altered cholesterol metabolism in their APCs. We focus on cellular cholesterol homeostasis and the role of cholesterol metabolism in HIV-1 trans-infection, and notably, the link between cholesterol efflux and HIV-1 trans-infection in NPs.
Collapse
Affiliation(s)
| | | | | | - Charles R. Rinaldo
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (D.O.); (N.S.-C.); (G.R.)
| |
Collapse
|
21
|
Ortiz AM, Castello Casta F, Rahmberg A, Markowitz TE, Brooks K, Simpson J, Brenchley JM. 2-Hydroxypropyl-β-Cyclodextrin Treatment Induces Modest Immune Activation in Healthy Rhesus Macaques. J Virol 2023; 97:e0060023. [PMID: 37338342 PMCID: PMC10373544 DOI: 10.1128/jvi.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Experimental simian immunodeficiency virus (SIV) infection of Asian macaques is an excellent model for HIV disease progression and therapeutic development. Recent coformulations of nucleoside analogs and an integrase inhibitor have been used for parenteral antiretroviral (ARV) administration in SIV-infected macaques, successfully resulting in undetectable plasma SIV RNA. In a cohort of SIVmac239-infected macaques, we recently observed that administration of coformulated ARVs resulted in an unexpected increase in plasma levels of soluble CD14 (sCD14), associated with stimulation of myeloid cells. We hypothesized that the coformulation solubilizing agent Kleptose (2-hydroxypropyl-β-cyclodextrin [HPβCD]) may induce inflammation with myeloid cell activation and the release of sCD14. Herein, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy macaques with HPβCD from different commercial sources and evaluated inflammatory cytokine production in vitro. Treatment of PBMCs resulted in increased sCD14 release and myeloid cell interleukin-1β (IL-1β) production-with stimulation varying significantly by HPβCD source-and destabilized lymphocyte CCR5 surface expression. We further treated healthy macaques with Kleptose alone. In vivo, we observed modestly increased myeloid cell activation in response to Kleptose treatment without significant perturbation of the immunological transcriptome or epigenome. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations. IMPORTANCE SIV infection of nonhuman primates is the principal model system for assessing HIV disease progression and therapeutic development. HPβCD has recently been incorporated as a solubilizing agent in coformulations of ARVs in SIV-infected nonhuman primates. Although HPβCD has historically been considered inert, recent findings suggest that HPβCD may contribute to inflammation. Herein, we investigate the contribution of HPβCD to healthy macaque inflammation in vitro and in vivo. We observe that HPβCD causes an induction of sCD14 and IL-1β from myeloid cells in vitro and demonstrate that HPβCD stimulatory capacity varies by commercial source. In vivo, we observe modest myeloid cell activation in blood and bronchoalveolar lavage specimens absent systemic immune activation. From our findings, it is unclear whether HPβCD stimulation may improve or diminish immune reconstitution in ARV-treated lentiviral infections. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPβCD in pharmaceutical coformulations.
Collapse
Affiliation(s)
- Alexandra M. Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fabiola Castello Casta
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Brunet MA, Kraft ML. Toward Understanding the Subcellular Distributions of Cholesterol and Sphingolipids Using High-Resolution NanoSIMS Imaging. Acc Chem Res 2023; 56:752-762. [PMID: 36913670 DOI: 10.1021/acs.accounts.2c00760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
ConspectusCharacterizing the subcellular distributions of biomolecules of interest is a basic inquiry that helps inform on the potential roles of these molecules in biological functions. Presently, the functions of specific lipid species and cholesterol are not well understood, partially because cholesterol and lipid species of interest are difficult to image with high spatial resolution but without perturbing them. Because cholesterol and lipids are relatively small and their distributions are influenced by noncovalent interactions with other biomolecules, functionalizing them with relatively large labels that permit their detection may alter their distributions in membranes and between organelles. This challenge has been surmounted by exploiting rare stable isotopes as labels that may be metabolically incorporated into cholesterol and lipids without altering their chemical compositions, and the Cameca NanoSIMS 50 instrument's ability to image rare stable isotope labels with high spatial resolution. This Account covers the use of secondary ion mass spectrometry (SIMS) performed with a Cameca NanoSIMS 50 instrument for imaging cholesterol and sphingolipids in the membranes of mammalian cells. The NanoSIMS 50 detects monatomic and diatomic secondary ions ejected from the sample to map the elemental and isotopic composition at the surface of the sample with better than 50 nm lateral resolution and 5 nm depth resolution. Much effort has focused on using NanoSIMS imaging of rare isotope-labeled cholesterol and sphingolipids for testing the long-standing hypothesis that cholesterol and sphingolipids colocalize within distinct domains in the plasma membrane. By using a NanoSIMS 50 to image rare isotope-labeled cholesterol and sphingolipids in parallel with affinity-labeled proteins of interest, a hypothesis regarding the colocalization of specific membrane proteins with cholesterol and sphingolipids in distinct plasma membrane domains has been tested. NanoSIMS performed in a depth profiling mode has enabled imaging the intracellular distributions of cholesterol and sphingolipids. Important progress has also been made in developing a computational depth correction strategy for constructing more accurate three-dimensional (3D) NanoSIMS depth profiling images of intracellular component distribution without requiring additional measurements with complementary techniques or signal collection. This Account provides an overview of this exciting progress, focusing on the studies from our laboratory that shifted understanding of plasma membrane organization, and the development of enabling tools for visualizing intracellular lipids.
Collapse
|
23
|
Kinoo SM, Naidoo P, Singh B, Chuturgoon A, Nagiah S. Human Hepatocyte Nuclear Factors (HNF1 and LXRb) Regulate CYP7A1 in HIV-Infected Black South African Women with Gallstone Disease: A Preliminary Study. Life (Basel) 2023; 13:life13020273. [PMID: 36836631 PMCID: PMC9968087 DOI: 10.3390/life13020273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Female sex, high estrogen levels, aging, obesity, and dyslipidemia are some of the risk factors associated with gallstone formation. HIV-infected patients on combination antiretroviral therapy (cART) are more prone to hypercholesterolemia. Bile acid synthesis is initiated by cholesterol 7-alpha hydroxylase (CYP7A1) and regulated by hepatocyte nuclear factors (HNF1α, HNF4α, and LXRb). The aim of this study was to evaluate the expression of HNF1α, HNF4α, LXRb, and miRNAs (HNF4α specific: miR-194-5p and miR-122*_1) that regulate CYP7A1 transcription in HIV-infected Black South African women on cART and presenting with gallstones relative to HIV-negative patients with gallstone disease. Females (n = 96) presenting with gallstone disease were stratified based on HIV status. The gene expression of CYP7A1, HNF1α, HNF4α, LXRb, miR-194-5p, and miR-122*_1 was determined using RT-qPCR. Messenger RNA and miRNA levels were reported as fold change expressed as 2-ΔΔCt (RQ min; RQ max). Fold changes >2 and <0.5 were considered significant. HIV-infected females were older in age (p = 0.0267) and displayed higher low-density lipoprotein cholesterol (LDL-c) (p = 0.0419), CYP7A1 [2.078-fold (RQ min: 1.278; RQ max: 3.381)], LXRb [2.595-fold (RQ min: 2.001; RQ max: 3.000)], and HNF1α [3.428 (RQ min: 1.806; RQ max: 6.507] levels. HNF4α [0.642-fold (RQ min: 0.266; RQ max: 1.55)], miR-194-5p [0.527-fold (RQ min: 0.37; RQ max: 0.752)], and miR-122*_1 [0.595-fold (RQ min: 0.332; RQ max: 1.066)] levels were lower in HIV-infected females. In conclusion, HIV-infected women with gallstone disease displayed higher LDL-c levels and increased bile acid synthesis, which was evidenced by the elevated expression of CYP7A1, HNF1α, and LXRb. This could have been further influenced by cART and aging.
Collapse
Affiliation(s)
- Suman Mewa Kinoo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Glenwood, Durban 4041, South Africa
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban 4001, South Africa
| | - Pragalathan Naidoo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Glenwood, Durban 4041, South Africa
| | - Bhugwan Singh
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban 4001, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Glenwood, Durban 4041, South Africa
- Correspondence: (A.C.); (S.N.)
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Glenwood, Durban 4041, South Africa
- Department of Human Biology, Medical School, Faculty of Health Sciences, Nelson Mandela University, Missionvale, Port Elizabeth 6065, South Africa
- Correspondence: (A.C.); (S.N.)
| |
Collapse
|
24
|
Zou X, Yang Y, Lin F, Chen J, Zhang H, Li L, Ouyang H, Pang D, Ren L, Tang X. Lactate facilitates classical swine fever virus replication by enhancing cholesterol biosynthesis. iScience 2022; 25:105353. [PMID: 36339254 PMCID: PMC9626675 DOI: 10.1016/j.isci.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
An emerging topic in virology is that viral replication is closely linked with the metabolic reprogramming of host cells. Understanding the effects of reprogramming host cell metabolism due to classical swine fever virus (CSFV) infection and the underling mechanisms would facilitate controlling the spread of classical swine fever (CSF). In the current study, we found that CSFV infection enhanced aerobic glycolysis in PK-15 cells. Blocking glycolysis with 2-deoxy-d-glycose or disrupting the enzymes PFKL and LDHA decreased CSFV replication. Lactate was identified as an important molecule in CSFV replication, independent of the pentose phosphate pathway and tricarboxylic acid cycle. Further analysis demonstrated that the accumulated lactate in cells promoted cholesterol biosynthesis, which facilitated CSFV replication and disrupted the type I interferon response during CSFV replication, and the disruption of cholesterol synthesis abolished the lactate effects on CSFV replication. The results provided more insights into the complex pathological mechanisms of CSFV.
Collapse
Affiliation(s)
- Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yang Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Feng Lin
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| |
Collapse
|
25
|
Brunet MA, Gorman BL, Kraft ML. Depth Correction of 3D NanoSIMS Images Shows Intracellular Lipid and Cholesterol Distributions while Capturing the Effects of Differential Sputter Rate. ACS NANO 2022; 16:16221-16233. [PMID: 36218061 DOI: 10.1021/acsnano.2c05148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Knowledge of the distributions of drugs, metabolites, and drug carriers within cells is a prerequisite for the development of effective disease treatments. Intracellular component distribution may be imaged with high sensitivity and spatial resolution by using a NanoSIMS in the depth profiling mode. Depth correction strategies that capture the effects of differential sputtering without requiring additional measurements could enable producing accurate 3D NanoSIMS depth profiling images of intracellular component distributions. Here we describe an approach for depth correcting 3D NanoSIMS depth profiling images of cells that accounts for differential sputter rates. Our approach uses the secondary ion and secondary electron depth profiling images to reconstruct the cell's morphology at every raster plane. These cell morphology reconstructions are used to adjust the z-positions and heights of the voxels in the component-specific 3D NanoSIMS images. We validated this strategy using AFM topography data and reconstructions created from depth profiling images acquired with focused ion beam-secondary electron microscopy. Good agreement was found for the shapes and relative heights of the reconstructed morphologies. Application of this depth correction strategy to 3D NanoSIMS depth profiling images of a metabolically labeled cell better resolved the transport vesicles, organelles, and organellar membranes containing 18O-cholesterol and 15N-sphingolipids. Accurate 3D NanoSIMS images of intracellular component distributions may now be produced without requiring correlated analyses with separate instruments or the assumption of a constant sputter rate. This will allow visualization of the subcellular distributions of lipids, metabolites, drugs, and nanoparticles in 3D, information pivotal to understanding and treating disease.
Collapse
|
26
|
P Karagodin V, I Summerhill V, Yet SF, N Orekhov A. The anti-atherosclerotic effects of natural polysaccharides: from phenomena to the main mechanisms of action. Curr Pharm Des 2022; 28:1823-1832. [PMID: 35585810 DOI: 10.2174/1381612828666220518095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Polysaccharides (PSs) of plant origin have a variety of biological activities, anti-atherosclerotic including, but their use in atherosclerosis therapy is hindered by insufficient knowledge on the cellular and molecular mechanisms of action. In this review, the influence of several natural PSs on the function of macrophages, viral activity, and macrophage cholesterol metabolism has been discussed considering the tight interplay between these aspects in the pathogenesis of atherosclerosis. The anti-atherosclerotic activities of natural PSs related to other mechanisms have been also explored. Directions for further research of anti-atherosclerotic effects of natural PSs have been outlined, the most promising of which can be nutrigenomic studies.
Collapse
Affiliation(s)
- Vasily P Karagodin
- Department of Commodity Research and Expertise, Plekhanov Russian University of Economics, 36 Stremyanny Pereulok, 117997 Moscow, Russia
| | - Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan R.O.C
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia.,Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
27
|
Jiménez-Osorio AS, Jaen-Vega S, Fernández-Martínez E, Ortíz-Rodríguez MA, Martínez-Salazar MF, Jiménez-Sánchez RC, Flores-Chávez OR, Ramírez-Moreno E, Arias-Rico J, Arteaga-García F, Estrada-Luna D. Antiretroviral Therapy-Induced Dysregulation of Gene Expression and Lipid Metabolism in HIV+ Patients: Beneficial Role of Antioxidant Phytochemicals. Int J Mol Sci 2022; 23:5592. [PMID: 35628408 PMCID: PMC9146859 DOI: 10.3390/ijms23105592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection has continued to be the subject of study since its discovery nearly 40 years ago. Significant advances in research and intake of antiretroviral therapy (ART) have slowed the progression and appearance of the disease symptoms and the incidence of concomitant diseases, which are the leading cause of death in HIV+ persons. However, the prolongation of ART is closely related to chronic degenerative diseases and pathologies caused by oxidative stress (OS) and alterations in lipid metabolism (increased cholesterol levels), both of which are conditions of ART. Therefore, recent research focuses on using natural therapies to diminish the effects of ART and HIV infection: regulating lipid metabolism and reducing OS status. The present review summarizes current information on OS and cholesterol metabolism in HIV+ persons and how the consumption of certain phytochemicals can modulate these. For this purpose, MEDLINE and SCOPUS databases were consulted to identify publications investigating HIV disease and natural therapies and their associated effects.
Collapse
Affiliation(s)
- Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Sinaí Jaen-Vega
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Eduardo Fernández-Martínez
- Laboratorio de Química Medicinal y Farmacología, Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Calle Dr. Eliseo Ramírez Ulloa no. 400, Col. Doctores, Pachuca Hidalgo 42090, Mexico;
| | - María Araceli Ortíz-Rodríguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Iztaccíhuatl 100 Col. Los Volcanes, Cuernavaca 62350, Mexico;
| | - María Fernanda Martínez-Salazar
- Facultad de Ciencias del Deporte, Facultad de Farmacia Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001 Col. Chamilpa, Cuernavaca 62209, Mexico;
| | - Reyna Cristina Jiménez-Sánchez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico;
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| | - Felipe Arteaga-García
- Coordinación de Enseñanza e Investigación, Hospital del Niño DIF Hidalgo, Carretera México-Pachuca km 82, Pachuca de Soto 42080, Mexico;
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico; (A.S.J.-O.); (S.J.-V.); (R.C.J.-S.); (O.R.F.-C.); (J.A.-R.)
| |
Collapse
|
28
|
Proulx J, Ghaly M, Park IW, Borgmann K. HIV-1-Mediated Acceleration of Oncovirus-Related Non-AIDS-Defining Cancers. Biomedicines 2022; 10:biomedicines10040768. [PMID: 35453518 PMCID: PMC9024568 DOI: 10.3390/biomedicines10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
With the advent of combination antiretroviral therapy (cART), overall survival has been improved, and the incidence of acquired immunodeficiency syndrome (AIDS)-defining cancers has also been remarkably reduced. However, non-AIDS-defining cancers among human immunodeficiency virus-1 (HIV-1)-associated malignancies have increased significantly so that cancer is the leading cause of death in people living with HIV in certain highly developed countries, such as France. However, it is currently unknown how HIV-1 infection raises oncogenic virus-mediated cancer risks in the HIV-1 and oncogenic virus co-infected patients, and thus elucidation of the molecular mechanisms for how HIV-1 expedites the oncogenic viruses-triggered tumorigenesis in the co-infected hosts is imperative for developing therapeutics to cure or impede the carcinogenesis. Hence, this review is focused on HIV-1 and oncogenic virus co-infection-mediated molecular processes in the acceleration of non-AIDS-defining cancers.
Collapse
|
29
|
Diggins CE, Russo SC, Lo J. Metabolic Consequences of Antiretroviral Therapy. Curr HIV/AIDS Rep 2022; 19:141-153. [PMID: 35299263 DOI: 10.1007/s11904-022-00600-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review reports on published studies describing metabolic changes associated with antiretroviral therapy (ART) to treat HIV disease including a historical perspective of earlier ART agents, but with the main focus on newer ART agents currently in use. RECENT FINDINGS Studies from different countries around the world have shown that integrase inhibitor (INSTI)-based regimens as well as tenofovir alafenamide (TAF) are associated with weight gain, with women and people of black race at especially high risk. Some studies preliminarily suggest worsened metabolic outcomes associated with this weight gain including adverse effects on glucose homeostasis. Antiretroviral therapy can affect weight, adipose tissue, glucose, and lipids. As obesity is prevalent and increasing among people with HIV, awareness of risk factors for weight gain, including the ART medications associated with greater weight gain, are needed in order to inform prevention efforts. Further research is needed to better understand the long-term health consequences of INSTI- and TAF-associated weight increases.
Collapse
Affiliation(s)
- Caroline E Diggins
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA
| | - Samuel C Russo
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA
| | - Janet Lo
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
30
|
Gauthier T, Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol 2022; 13:780839. [PMID: 35154105 PMCID: PMC8825490 DOI: 10.3389/fimmu.2022.780839] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
31
|
Cardiovascular computed tomography and HIV: The evolving role of imaging biomarkers in enhanced risk prediction. IMAGING 2021. [DOI: 10.1556/1647.2021.00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The treatment of human immunodeficiency virus (HIV) with antiretroviral (ARV) medications has revolutionised the care for these patients. The dramatic increase in life expectancy has brought new challenges in treating diseases of aging in this cohort. Cardiovascular disease (CVD) is now a leading cause of morbidity and mortality with risk matched HIV-positive patients having double the risk of MI compared to HIV-negative patients. This enhanced risk is secondary to the interplay the virus (and accessory proteins), ARV medications and traditional risk factors. The culmination of these factors can lead to a hybrid metabolic syndrome characterised by heightened ectopic fat. Cardiovascular computed tomography (CT) is ideal for quantifying epicardial adipose tissue volumes, hepatosteatosis and cardiovascular disease burden. The CVD risk attributed to disease burden and plaque morphology is well established in general populations but is less clear in HIV populations. The purpose of this review article is to appraise the latest data on CVD development in HIV-positive patients and how the use of cardiovascular CT may be used to enhance risk prediction in this population. This may have important implications on individualised treatment decisions and risk reduction strategies which will improve the care of these patients.
Collapse
|
32
|
Pushkarsky T, Ward A, Ivanov A, Lin X, Sviridov D, Nekhai S, Bukrinsky MI. Abundance of Nef and p-Tau217 in Brains of Individuals Diagnosed with HIV-Associated Neurocognitive Disorders Correlate with Disease Severance. Mol Neurobiol 2021; 59:1088-1097. [PMID: 34843091 PMCID: PMC8857174 DOI: 10.1007/s12035-021-02608-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term used to describe a variety of neurological impairments observed in HIV-infected individuals. The pathogenic mechanisms of HAND and of its connection to HIV infection remain unknown, but one of the considered hypotheses suggests that HIV infection accelerates the development of Alzheimer’s disease. Previous studies suggested that HIV-1 Nef may contribute to HAND by inhibiting cholesterol efflux, increasing the abundance of lipid rafts, and affecting their functionality. Our comparative analysis of postmortem brain samples demonstrated a trend toward the decreased abundance of cholesterol transporter ABCA1 in samples from HIV-infected ART-treated individuals relative to samples from uninfected controls, and a reverse correlation between ABCA1 and flotillin 1, a marker for lipid rafts, in all analyzed samples. The brain samples from HIV-infected individuals, both with and without HAND, were characterized by the increased abundance of p-Tau217 peptide, which correlated with the abundance of flotillin 1. HIV-1 Nef was analyzed in samples from HAND-affected individuals by Western blot with 4 different antibodies and by LC–MS/MS, producing a Nef-positivity score. A significant correlation was found between this score and the abundance of flotillin 1, the abundance of p-Tau217, and the severity of HAND. These results highlight the contribution of Nef and Nef-dependent impairment of cholesterol efflux to HAND pathogenesis and support a connection between the pathogenesis of HAND and Alzheimer’s disease.
Collapse
Affiliation(s)
- Tatiana Pushkarsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam Ward
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- The George Washington University Milken Institute School of Public Health, Washington, DC, USA
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Andrey Ivanov
- College of Medicine, Howard University, Washington, DC, USA
| | - Xionghao Lin
- College of Medicine, Howard University, Washington, DC, USA
- College of Dentistry, Howard University, Washington, DC, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sergei Nekhai
- College of Medicine, Howard University, Washington, DC, USA
| | - Michael I Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
33
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
34
|
Mahat RK, Rathore V, Singh N, Singh N, Singh SK, Shah RK, Garg C. Lipid profile as an indicator of COVID-19 severity: A systematic review and meta-analysis. Clin Nutr ESPEN 2021; 45:91-101. [PMID: 34620375 PMCID: PMC8325550 DOI: 10.1016/j.clnesp.2021.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023]
Abstract
Background Coronavirus disease-2019 (COVID-19) is a global pandemic. Studies reported dyslipidemia in patients with COVID-19. Herein, we conducted a systematic review and meta-analysis of published articles to evaluate the association of the lipid profile with the severity and mortality in COVID-19 patients. Methods PubMed/Medline, Europe PMC, and Google Scholar were searched for studies published between January 1, 2020 and January 13, 2021. Random or Fixed effects models were used to calculate the mean difference (MD) and 95% confidence intervals (CIs). Statistical heterogeneity was assessed using Cochran's Q test and I2 statistics. Results This meta-analysis included 19 studies. Of which, 12 studies were categorized by severity, 04 studies by mortality, and 03 studies by both severity and mortality. Our findings revealed significantly decreased levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in the severe group when compared with the non-severe group in a random effect model. Similarly, random effect model results demonstrated significantly lower levels of HDL-C and LDL-C in the non-survivor group when compared with the survivor group. The level of TC was also found to be decreased in the non-survivor group when compared to the survivor group in a fixed-effect model. Conclusion In conclusion, the lipid profile is associated with both the severity and mortality in COVID-19 patients. Hence, the lipid profile may be used for assessing the severity and prognosis of COVID-19. Prospero registration number CRD42021216316.
Collapse
Affiliation(s)
- Roshan Kumar Mahat
- Department of Biochemistry, Pandit Raghunath Murmu Medical College and Hospital, Baripada, Mayurbhanj, Odisha, 757107, India.
| | - Vedika Rathore
- Department of Biochemistry, Shyam Shah Medical College, Rewa, Madhya Pradesh, 486001, India.
| | | | - Nivedita Singh
- Department of Biochemistry, Gajra Raja Medical College, Gwalior, Madhya Pradesh, 474009, India
| | - Sanjeev Kumar Singh
- Department of Biochemistry, Gajra Raja Medical College, Gwalior, Madhya Pradesh, 474009, India
| | - Rakesh Kumar Shah
- Department of Biochemistry, Gajra Raja Medical College, Gwalior, Madhya Pradesh, 474009, India
| | - Chanchal Garg
- Department of Biochemistry, Gajra Raja Medical College, Gwalior, Madhya Pradesh, 474009, India
| |
Collapse
|
35
|
Zinellu A, Paliogiannis P, Fois AG, Solidoro P, Carru C, Mangoni AA. Cholesterol and Triglyceride Concentrations, COVID-19 Severity, and Mortality: A Systematic Review and Meta-Analysis With Meta-Regression. Front Public Health 2021; 9:705916. [PMID: 34490188 PMCID: PMC8417431 DOI: 10.3389/fpubh.2021.705916] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid profile alterations have been observed in patients with coronavirus disease 2019 (COVID-19) in relation to disease severity and mortality. We conducted a systematic review and meta-analysis with meta-regression of studies reporting total, HDL, and LDL-cholesterol, and triglyceride concentrations in hospitalized patients with COVID-19. We searched PubMed, Web of Science and Scopus, between January 2020 and January 2021, for studies describing lipid concentrations, COVID-19 severity, and survival status (PROSPERO registration number: CRD42021253401). Twenty-two studies in 10,122 COVID-19 patients were included in the meta-analysis. Pooled results showed that hospitalized patients with severe disease or non-survivor status had significantly lower total cholesterol (standardized mean difference, SMD = −0.29, 95% CI −0.41 to −0.16, p < 0.001), LDL-cholesterol (SMD = −0.30, 95% CI −0.41 to −0.18, p < 0.001), and HDL-cholesterol (SMD = −0.44, 95% CI −0.62 to −0.26, p < 0.001), but not triglyceride (SMD = 0.04, 95% CI −0.10 to −0.19, p = 0.57), concentrations compared to patients with milder disease or survivor status during follow up. Between-study heterogeneity was large-to-extreme. In sensitivity analysis, the effect size of different lipid fractions was not affected when each study was in turn removed. The Begg's and Egger's t-tests did not show evidence of publication bias, except for studies investigating LDL-cholesterol. In meta-regression, significant associations were observed between the SMD of LDL-cholesterol and age and hypertension, and between the SMD of triglycerides and study endpoint and aspartate aminotransferase. In our systematic review and meta-analysis, lower total, HDL, and LDL-cholesterol, but not triglyceride, concentrations were significantly associated with COVID-19 severity and mortality. Cholesterol concentrations might be useful, in combination with other clinical and demographic variables, for risk stratification and monitoring in this group. Systematic Review Registration: PROSPERO registration number: CRD42021253401.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Quality Control Unit, University Hospital of Sassari (Azienda Ospedaliero-Universitaria di Sassari), Sassari, Italy
| | - Alessandro G Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Paolo Solidoro
- Division of Respiratory Medicine, Cardiovascular and Thoracic Department, AOU Città Della Salute e della Scienza, Torino, Italy.,Medical Sciences Department, University of Turin, Torino, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Quality Control Unit, University Hospital of Sassari (Azienda Ospedaliero-Universitaria di Sassari), Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University Adelaide, Adelaide, SA, Australia.,Department of Clinical Pharmacology, Southern Adelaide Local Health Network, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
36
|
Alzheimer's-Like Pathology at the Crossroads of HIV-Associated Neurological Disorders. Vaccines (Basel) 2021; 9:vaccines9080930. [PMID: 34452054 PMCID: PMC8402792 DOI: 10.3390/vaccines9080930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread success of combined antiretroviral therapy (cART) in suppressing viremia, the prevalence of human immunodeficiency virus (HIV)-associated neurological disorders (HAND) and associated comorbidities such as Alzheimer’s disease (AD)-like symptomatology is higher among people living with HIV. The pathophysiology of observed deficits in HAND is well understood. However, it has been suggested that it is exacerbated by aging. Epidemiological studies have suggested comparable concentrations of the toxic amyloid protein, amyloid-β42 (Aβ42), in the cerebrospinal fluid (CSF) of HAND patients and in the brains of patients with dementia of the Alzheimer’s type. Apart from abnormal amyloid-β (Aβ) metabolism in AD, a better understanding of the role of similar pathophysiologic processes in HAND could be of substantial value. The pathogenesis of HAND involves either the direct effects of the virus or the effect of viral proteins, such as Tat, Gp120, or Nef, as well as the effects of antiretrovirals on amyloid metabolism and tauopathy, leading, in turn, to synaptodendritic alterations and neuroinflammatory milieu in the brain. Additionally, there is a lack of knowledge regarding the causative or bystander role of Alzheimer’s-like pathology in HAND, which is a barrier to the development of therapeutics for HAND. This review attempts to highlight the cause–effect relationship of Alzheimer’s-like pathology with HAND, attempting to dissect the role of HIV-1, HIV viral proteins, and antiretrovirals in patient samples, animal models, and cell culture model systems. Biomarkers associated with Alzheimer’s-like pathology can serve as a tool to assess the neuronal injury in the brain and the associated cognitive deficits. Understanding the factors contributing to the AD-like pathology associated with HAND could set the stage for the future development of therapeutics aimed at abrogating the disease process.
Collapse
|
37
|
Tavares LA, Januário YC, daSilva LLP. HIV-1 Hijacking of Host ATPases and GTPases That Control Protein Trafficking. Front Cell Dev Biol 2021; 9:622610. [PMID: 34307340 PMCID: PMC8295591 DOI: 10.3389/fcell.2021.622610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) modifies the host cell environment to ensure efficient and sustained viral replication. Key to these processes is the capacity of the virus to hijack ATPases, GTPases and the associated proteins that control intracellular protein trafficking. The functions of these energy-harnessing enzymes can be seized by HIV-1 to allow the intracellular transport of viral components within the host cell or to change the subcellular distribution of antiviral factors, leading to immune evasion. Here, we summarize how energy-related proteins deviate from their normal functions in host protein trafficking to aid the virus in different phases of its replicative cycle. Recent discoveries regarding the interplay among HIV-1 and host ATPases and GTPases may shed light on potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Lucas A Tavares
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yunan C Januário
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
38
|
Masip J, Gasca-Capote C, Jimenez-Leon MR, Peraire J, Perez-Gomez A, Alba V, Malo AI, Leal L, Martín CR, Rallón N, Viladés C, Olona M, Vidal F, Ruiz-Mateos E, Rull A. Differential miRNA plasma profiles associated with the spontaneous loss of HIV-1 control: miR-199a-3p and its potential role as a biomarker for quick screening of elite controllers. Clin Transl Med 2021; 11:e474. [PMID: 34323411 PMCID: PMC8255061 DOI: 10.1002/ctm2.474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jenifer Masip
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Carmen Gasca-Capote
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - María Reyes Jimenez-Leon
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Joaquim Peraire
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Alberto Perez-Gomez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Verónica Alba
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Ana-Irene Malo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Lorna Leal
- Infectious Diseases Department - HIV Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Carmen Rodríguez Martín
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Consuelo Viladés
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Montserrat Olona
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Francesc Vidal
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Anna Rull
- Universitat Rovira i Virgili, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | | |
Collapse
|
39
|
Adzhubei AA, Kulkarni A, Tolstova AP, Anashkina AA, Sviridov D, Makarov AA, Bukrinsky MI. Direct interaction between ABCA1 and HIV-1 Nef: Molecular modeling and virtual screening for inhibitors. Comput Struct Biotechnol J 2021; 19:3876-3884. [PMID: 34584633 PMCID: PMC8440812 DOI: 10.1016/j.csbj.2021.06.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 infection impairs cellular cholesterol efflux by downmodulating the cholesterol transporter ABCA1, leading to metabolic co-morbidities like cardio-vascular disease. The main mechanism of this effect is impairment by the HIV-1 protein Nef of the ABCA1 interaction with the endoplasmic reticulum chaperone calnexin, which leads to a block in ABCA1 maturation followed by its degradation. However, ABCA1 is also downmodulated by Nef delivered with the extracellular vesicles, suggesting involvement of a direct Nef:ABCA1 interaction at the plasma membrane. Here, we present an optimized model of the Nef:ABCA1 interaction, which identifies interaction sites and provides an opportunity to perform a virtual screening for potential inhibitors. Interestingly, the predicted sites on Nef involved in the ABCA1 interaction overlap with those involved in the interaction with calnexin. The compounds previously shown to block Nef:calnexin interaction were among the top ranking ligands in docking simulations with ABCA1-interacting sites on Nef, suggesting the possibility that both interactions can be inhibited by the same chemical compounds. This study identifies a series of compounds for potential development as inhibitors of Nef-mediated co-morbidities of HIV infection.
Collapse
Affiliation(s)
- Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Amol Kulkarni
- Howard University College of Pharmacy, Washington, District of Columbia, USA
| | - Anna P. Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michael I. Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
40
|
Non-linear optical imaging of atherosclerotic plaques in the context of SIV and HIV infection prominently detects crystalline cholesterol esters. PLoS One 2021; 16:e0251599. [PMID: 33984028 PMCID: PMC8118308 DOI: 10.1371/journal.pone.0251599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Chronic HIV infection may exacerbate atherosclerotic vascular disease, which at advanced stages presents as necrotic plaques rich in crystalline cholesterol. Such lesions can catastrophically rupture precipitating myocardial infarct and stroke, now important causes of mortality in those living with HIV. However, in this population little is known about plaque structure relative to crystalline content and its chemical composition. Here, we first interrogated plaque crystal structure and composition in atherosclerotic SIV-infected macaques using non-linear optical microscopy. By stimulated Raman scattering and second harmonic generation approaches both amorphous and crystalline plaque lipid was detected and the crystal spectral profile indicated a cholesterol ester (CE) dominated composition. Versus controls, SIV+ samples had a greater number of cholesterol crystals (CCs), with the difference, in part, accounted for by crystals of a smaller length. Given the ester finding, we profiled HIV+ plaques and also observed a CE crystalline spectral signature. We further profiled plaques from Ldlr-/- mice fed a high fat diet, and likewise, found CE-dominate crystals. Finally, macrophage exposure to CCs or AcLDL induced auto-fluorescent puncta that co-stained with the LC3B autophagy sensor. In aggregate, we show that atheromatous plaques from mice, macaques and humans, display necrotic cores dominated by esterified CCs, and that plaque macrophages may induce autophagic vesicle formation upon encountering CCs. These findings help inform our knowledge of plaque core lipid evolution and how the process may incite systemic inflammation.
Collapse
|
41
|
Exercise ECG for coronary artery disease screening in people living with HIV. AIDS 2021; 35:933-938. [PMID: 33534202 DOI: 10.1097/qad.0000000000002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is one of the leading causes of death among people living with HIV (PLWH). We evaluated ECG stress testing (EST) for detecting CAD in PLWH with multiple cardiovascular risk factors. METHODS CORDIS was a cross-sectional study conducted in PLWH. Inclusion criteria were men at least 50 years or postmenopausal women, HIV-1 RNA less than 50 copies/ml and at least one of the following cardiovascular risk factor: familial history of CAD, smoking, hypertension, hypercholesterolemia or diabetes. Patients with a previous diagnosis of CAD or with cardiac symptoms were excluded. EST was performed concomitantly with bilateral carotid color-Doppler ultrasonography (CDU) and evaluated by a cardiologist. Results were described by median (interquartile range) or frequency (%). Logistic regression was applied to evaluate predictive factors of inducible myocardial ischemia (IMI). RESULTS EST and CDU were performed in 309 individuals; IMI prevalence was 7.4% [95% confidence interval (CI): 5.0-11.0%]. Among patients with a normal CDU, no cases of IMI were observed. In people with abnormal CDU, IMI prevalence increased accordingly with the atherosclerotic cardiovascular disease (ASCVD) risk score: 10.2%, 16.9%, 19.7%, 27.8% and 30.4% among individuals with ASCVD score 7.5% or less, more than 7.5%, more than 10%, more than 15% and more than 20%, respectively (P for trend: 0.02). At multivariate analysis, ASCVD risk score was associated with EST suggestive of IMI (adjusted odds ratio for 1% increase = 1.08; 95% CI: 1.02-1.13, P = 0.005) and with confirmed IMI (adjusted odds ratio for 1% increase = 1.11; 95% CI: 1.04-1.19, P = 0.003). CONCLUSION Prevalence of IMI was 7.4% in the CORDIS study. We suggest EST as first-line screening for CAD in PLWH without cardiac symptoms, with an abnormal CDU and a high ASCVD risk score.
Collapse
|
42
|
Younas M, Psomas C, Reynes C, Cezar R, Kundura L, Portalès P, Merle C, Atoui N, Fernandez C, Le Moing V, Barbuat C, Sotto A, Sabatier R, Winter A, Fabbro P, Vincent T, Reynes J, Corbeau P. Residual Viremia Is Linked to a Specific Immune Activation Profile in HIV-1-Infected Adults Under Efficient Antiretroviral Therapy. Front Immunol 2021; 12:663843. [PMID: 33859653 PMCID: PMC8042152 DOI: 10.3389/fimmu.2021.663843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic immune activation persists in persons living with HIV-1 even though they are aviremic under antiretroviral therapy, and fuels comorbidities. In previous studies, we have revealed that virologic responders present distinct profiles of immune activation, and that one of these profiles is related to microbial translocation. In the present work, we tested in 140 HIV-1-infected adults under efficient treatment for a mean duration of eight years whether low-level viremia might be another cause of immune activation. We observed that the frequency of viremia between 1 and 20 HIV-1 RNA copies/mL (39.5 ± 24.7% versus 21.1 ± 22.5%, p = 0.033) and transient viremia above 20 HIV-1 RNA copies/mL (15.1 ± 16.9% versus 3.3 ± 7.2%, p = 0.005) over the 2 last years was higher in patients with one profile of immune activation, Profile E, than in the other patients. Profile E, which is different from the profile related to microbial translocation with frequent CD38+ CD8+ T cells, is characterized by a high level of CD4+ T cell (cell surface expression of CD38), monocyte (plasma concentration of soluble CD14), and endothelium (plasma concentration of soluble Endothelial Protein C Receptor) activation, whereas the other profiles presented low CD4:CD8 ratio, elevated proportions of central memory CD8+ T cells or HLA-DR+ CD4+ T cells, respectively. Our data reinforce the hypothesis that various etiological factors shape the form of the immune activation in virologic responders, resulting in specific profiles. Given the type of immune activation of Profile E, a potential causal link between low-level viremia and atherosclerosis should be investigated.
Collapse
Affiliation(s)
| | - Christina Psomas
- Institute for Human Genetics, CNRS, Montpellier, France.,Infectious Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Christelle Reynes
- Institute for Functional Genomics, Montpellier University, Montpellier, France
| | - Renaud Cezar
- Immunology Department, University Hospital, Nîmes, France
| | - Lucy Kundura
- Institute for Human Genetics, CNRS, Montpellier, France
| | - Pierre Portalès
- Immunology Department, University Hospital, Montpellier, France
| | - Corinne Merle
- Infectious Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Nadine Atoui
- Infectious Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Céline Fernandez
- Infectious Diseases Department, Montpellier University Hospital, Montpellier, France
| | - Vincent Le Moing
- Infectious Diseases Department, Montpellier University Hospital, Montpellier, France.,IRD UMI 233, INSERM U1175, Montpellier University, Montpellier, France.,Faculty of Medicine, Montpellier University, Montpellier, France
| | - Claudine Barbuat
- Infectious Diseases Department, University Hospital, Nîmes, France
| | - Albert Sotto
- Faculty of Medicine, Montpellier University, Montpellier, France.,Infectious Diseases Department, University Hospital, Nîmes, France
| | - Robert Sabatier
- Institute for Functional Genomics, Montpellier University, Montpellier, France
| | - Audrey Winter
- Institute for Human Genetics, CNRS, Montpellier, France
| | - Pascale Fabbro
- Medical Informatics Department, University Hospital, Nîmes, France
| | - Thierry Vincent
- Immunology Department, University Hospital, Montpellier, France.,Faculty of Medicine, Montpellier University, Montpellier, France
| | - Jacques Reynes
- Infectious Diseases Department, Montpellier University Hospital, Montpellier, France.,IRD UMI 233, INSERM U1175, Montpellier University, Montpellier, France.,Faculty of Medicine, Montpellier University, Montpellier, France
| | - Pierre Corbeau
- Institute for Human Genetics, CNRS, Montpellier, France.,Immunology Department, University Hospital, Nîmes, France.,Faculty of Medicine, Montpellier University, Montpellier, France
| |
Collapse
|
43
|
Kinoo SM, Chuturgoon AA, Singh B, Nagiah S. Hepatic expression of cholesterol regulating genes favour increased circulating low-density lipoprotein in HIV infected patients with gallstone disease: a preliminary study. BMC Infect Dis 2021; 21:294. [PMID: 33757439 PMCID: PMC7986270 DOI: 10.1186/s12879-021-05977-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV endemic populations are displaying higher incidence of metabolic disorders. HIV and the standard treatment are both associated with altered lipid and cholesterol metabolism, however gallstone disease (a cholesterol related disorder) in Sub-Saharan African populations is rarely investigated. METHODS This study sought to evaluate hepatic expression of key genes in cholesterol metabolism (LDLr, HMGCR, ABCA1) and transcriptional regulators of these genes (microRNA-148a, SREBP2) in HIV positive patients on antiretroviral therapy presenting with gallstones. Liver biopsies from HIV positive patients (cases: n = 5) and HIV negative patients (controls: n = 5) were analysed for miR-148a and mRNA expression using quantitative PCR. RESULTS Circulating total cholesterol was elevated in the HIV positive group with significantly elevated LDL-c levels(3.16 ± 0.64 mmol/L) relative to uninfected controls (2.10 ± 0.74 mmol/L; p = 0.04). A scavenging receptor for LDL-c, LDLr was significantly decreased (0.18-fold) in this group, possibly contributing to higher LDL-c levels. Transcriptional regulator of LDLr, SREBP2 was also significantly lower (0.13-fold) in HIV positive patients. Regulatory microRNA, miR-148a-3p, was reduced in HIV positive patients (0.39-fold) with a concomitant increase in target ABCA1 (1.5-fold), which regulates cholesterol efflux. CONCLUSIONS Collectively these results show that HIV patients on antiretroviral therapy display altered hepatic regulation of cholesterol metabolizing genes, reducing cholesterol scavenging, and increasing cholesterol efflux.
Collapse
Affiliation(s)
- Suman Mewa Kinoo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban, 4001 South Africa
| | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
| | - Bugwan Singh
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban, 4001 South Africa
| | - Savania Nagiah
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
- Present address: Department of Human Biology, Medical Programme, Faculty of Health Sciences, Nelson Mandela University Missionvale Campus, Room 113, 2nd floor, Road, Salt Pan, Bethelsdorp, Port Elizabeth, 6059 South Africa
| |
Collapse
|
44
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
45
|
Vanpouille C, Margolis L. Immune subversion by HIV: part B. EMBO J 2020; 39:e107167. [PMID: 33438774 PMCID: PMC7737603 DOI: 10.15252/embj.2020107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022] Open
Abstract
While HIV-1 infects T but not B cells, it nevertheless impairs the function of B cells and thereby contribute to the failure to produce neutralizing antibodies. In this issue, Kaw et al describe the mechanisms leading to this failure and report a key role for the HIV-1 protein NEF in preventing B-cell maturation into antibody-producing plasma cells.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Section on Intercellular InteractionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Leonid Margolis
- Section on Intercellular InteractionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
46
|
Torkzaban B, Mohseni Ahooyi T, Duggan M, Amini S, Khalili K. Cross-talk between lipid homeostasis and endoplasmic reticulum stress in neurodegeneration: Insights for HIV-1 associated neurocognitive disorders (HAND). Neurochem Int 2020; 141:104880. [PMID: 33065212 PMCID: PMC8208232 DOI: 10.1016/j.neuint.2020.104880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
The dysregulation of lipid homeostasis is emerging as a hallmark of many CNS diseases. As aberrant protein regulation is suggested to be a shared pathological feature amongst many neurodegenerative conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), disruptions in neuronal lipid processing may contribute to disease progression in the CNS. Specifically, given the endoplasmic reticulum (ER) dual role in lipid homeostasis as well as protein quality control (PQC) via unfolded protein response (UPR), lipid dysregulation in the CNS may converge on ER functioning and constitute a crucial mechanism underlying aberrant protein aggregation. In the current review, we discuss the diverse roles of lipid species as essential components of the CNS. Moreover, given the importance of both lipid dysregulation and protein aggregation in pathology of CNS diseases, we attempt to assess the potential downstream cross-talk between lipid dysregulation and ER dependent PQC mechanisms, with special focus on HIV-associated neurodegenerative disorders (HAND).
Collapse
Affiliation(s)
- Bahareh Torkzaban
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Michael Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Hudson P, Woudberg NJ, Kamau F, Strijdom H, Frias MA, Lecour S. HIV-related cardiovascular disease: any role for high-density lipoproteins? Am J Physiol Heart Circ Physiol 2020; 319:H1221-H1226. [PMID: 33006917 DOI: 10.1152/ajpheart.00445.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The introduction of antiretroviral therapy (ART) has improved the life expectancy of patients infected with human immunodeficiency virus (HIV). However, this population is at an increased risk for noncommunicable diseases, including atherosclerotic cardiovascular disease (CVD). Both ART and viral infection may be potential contributors to the pathophysiology of HIV-related CVD. The mechanisms behind this remain unclear, but it is critical to delineate early biomarkers of cardiovascular risk in the HIV population. In this review, we postulate that potential biomarkers could include alterations to high-density lipoprotein (HDL). Indeed, recent data suggest that HIV and ART may induce structural changes of HDL, thus resulting in shifts in HDL subclass distribution and HDL functionality.
Collapse
Affiliation(s)
- Peter Hudson
- Department of Medicine, Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Nicholas J Woudberg
- Department of Medicine, Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Festus Kamau
- Faculty of Medicine and Health Sciences, Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Hans Strijdom
- Faculty of Medicine and Health Sciences, Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Miguel A Frias
- Department of Diagnostics, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sandrine Lecour
- Department of Medicine, Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Ditiatkovski M, Mukhamedova N, Dragoljevic D, Hoang A, Low H, Pushkarsky T, Fu Y, Carmichael I, Hill AF, Murphy AJ, Bukrinsky M, Sviridov D. Modification of lipid rafts by extracellular vesicles carrying HIV-1 protein Nef induces redistribution of amyloid precursor protein and Tau, causing neuronal dysfunction. J Biol Chem 2020; 295:13377-13392. [PMID: 32732283 DOI: 10.1074/jbc.ra120.014642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HANDs) are a frequent outcome of HIV infection. Effective treatment of HIV infection has reduced the rate of progression and severity but not the overall prevalence of HANDs, suggesting ongoing pathological process even when viral replication is suppressed. In this study, we investigated how HIV-1 protein Nef secreted in extracellular vesicles (exNef) impairs neuronal functionality. ExNef were rapidly taken up by neural cells in vitro, reducing the abundance of ABC transporter A1 (ABCA1) and thus cholesterol efflux and increasing the abundance and modifying lipid rafts in neuronal plasma membranes. ExNef caused a redistribution of amyloid precursor protein (APP) and Tau to lipid rafts and increased the abundance of these proteins, as well as of Aβ42 ExNef further potentiated phosphorylation of Tau and activation of inflammatory pathways. These changes were accompanied by neuronal functional impairment. Disruption of lipid rafts with cyclodextrin reversed the phenotype. Short-term treatment of C57BL/6 mice with either purified recombinant Nef or exNef similarly resulted in reduced abundance of ABCA1 and elevated abundance of APP in brain tissue. The abundance of ABCA1 in brain tissue of HIV-infected human subjects diagnosed with HAND was lower, and the abundance of lipid rafts was higher compared with HIV-negative individuals. Levels of APP and Tau in brain tissue correlated with the abundance of Nef. Thus, modification of neuronal cholesterol trafficking and of lipid rafts by Nef may contribute to early stages of neurodegeneration and pathogenesis in HAND.
Collapse
Affiliation(s)
| | | | | | - Anh Hoang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Department of Micro Imaging, Monash University, Melbourne, Victoria, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, Louisiana Trobe Institute for Molecular Science, Louisiana Trobe University, Bundoora, Victoria, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
49
|
Hu X, Chen D, Wu L, He G, Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin Chim Acta 2020; 510:105-110. [PMID: 32653486 PMCID: PMC7350883 DOI: 10.1016/j.cca.2020.07.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Serum HDL-cholesterol decreased in severe COVID-19-infected patients. HDL-cholesterol is negatively correlated with C-reactive protein. HDL-cholesterol is positively correlated with lymphocyte counts. HDL-cholesterol level changes with the progression of COVID-19 infection.
Background COVID-19 infection is epidemic worldwide. We describe the serum lipid profile of the patients with COVID-19 infection. Methods In this retrospective study, we collected the first clinical laboratory data of 114 patients on admission, and 80 healthy controls. Meanwhile, we monitored the serum lipid profile, COVID-19 nucleic acid and chest CT scan of a severe patient from the early stage of infection to the recovery period for a total of 80 days. Results Compared with the healthy controls, the patients had sharply decreased concentrations of total cholesterol, HDL-cholesterol and LDL-cholesterol (P < 0.001). Among the patients, HDL-cholesterol concentration in severe groups was significantly lower than the common groups [1.01 (0.88–1.20) vs 1.21 (1.02–1.48) mmol/l, P < 0.001]. The lipid profile of a severe patient showed that serum cholesterol concentration significantly decreased in the early stage and returned to be normal in the recovery period. Moreover, the change of HDL-cholesterol in this patient was consistent with the results of nucleic acid tests and chest CT scans. In correlation analysis, HDL-cholesterol concentration was negatively correlated with C-reactive protein (CRP, r = −0.396, P < 0.001) and positively correlated with lymphocytes (r = 0.336, P < 0.001). The area under curve (AUC) in receiver operating characteristic (ROC) of HDL-cholesterol was 0.732 (P < 0.001), and, the adjusted odd ratio (OR) of HDL-cholesterol was 0.023 (95% CI 0.002–0.227). Conclusions Decreased serum HDL-cholesterol is associated with the severity of COVID-19 infection.
Collapse
Affiliation(s)
- Xingzhong Hu
- Wenzhou Central Hospital, Wenzhou, Zhejiang 32035 China
| | - Dong Chen
- Wenzhou Central Hospital, Wenzhou, Zhejiang 32035 China
| | - Lianpeng Wu
- Wenzhou Central Hospital, Wenzhou, Zhejiang 32035 China
| | - Guiqing He
- Wenzhou Central Hospital, Wenzhou, Zhejiang 32035 China
| | - Wei Ye
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
50
|
Gorabi AM, Kiaie N, Bianconi V, Jamialahmadi T, Al-Rasadi K, Johnston TP, Pirro M, Sahebkar A. Antiviral effects of statins. Prog Lipid Res 2020; 79:101054. [PMID: 32777243 DOI: 10.1016/j.plipres.2020.101054] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Introducing statins as possible widely-available drugs for the treatment of viral infections requires an in depth review of their antiviral properties. Despite some inconsistency, a large body of literature data from experimental and clinical studies suggest that statins may have a role in the treatment of viral infections due to their immunomodulatory properties as well as their ability to inhibit viral replication. In the present review, the role that statins may play while interacting with the immune system during viral infections and the possible inhibitory effects of statins on different stages of virus cell cycle (i.e., from fusion with host cell membranes to extracellular release) and subsequent virus transmission are described. Specifically, cholesterol-dependent and cholesterol-independent mechanisms of the antiviral effects of statins are reported.
Collapse
Affiliation(s)
- Armita M Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalid Al-Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|