1
|
Ni M, Fan Y, Liu Y, Li Y, Qiao W, Davey LE, Zhang XS, Ksiezarek M, Mead EA, Tourancheau A, Jiang W, Blaser MJ, Valdivia RH, Fang G. Epigenetic phase variation in the gut microbiome enhances bacterial adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632565. [PMID: 39829898 PMCID: PMC11741434 DOI: 10.1101/2025.01.11.632565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A strategy for bacterial genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePVs have been characterized in human pathogens' antigenic variation and virulence factor production. However, the role of ePV in facilitating adaptation within the human microbiome remains poorly understood. Here, we comprehensively cataloged genome-wide and site-specific ePV in human infant and adult gut microbiomes. First, using long-read metagenomic sequencing, we detected genome-wide ePV mediated by complex structural variations of DNA methyltransferases, highlighting those associated with antibiotics or fecal microbiota transplantation. Second, we analyzed a collection of public short-read metagenomic sequencing datasets, uncovering a great prevalence of genome-wide ePV in the human gut microbiome. Third, we quantitatively detected site-specific ePVs using single-molecule methylation analysis to identify dynamic variation associated with antibiotic treatment or probiotic engraftment. Finally, we performed an in-depth assessment of an Akkermansia muciniphila isolate from an infant, highlighting that ePVs can regulate gene expression and enhance the bacterial adaptive capacity by employing a bet-hedging strategy to increase tolerance to differing antibiotics. Our findings indicate that epigenetic modifications are a common strategy used by gut bacteria to adapt to the fluctuating environment.
Collapse
Affiliation(s)
- Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Fan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yujie Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangmei Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wanjin Qiao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E. Davey
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Magdalena Ksiezarek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A. Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan Tourancheau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenyan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Li Y, Li C, Zhang N, Liu Y, Kang H, Wang M, Zhao L, Li D, Tian H. Mitigation of oxidative stress-induced aging by extracellular polysaccharides from Lactiplantibacillus plantarum R6-1 from Sayram ketteki. Int J Biol Macromol 2025; 308:142392. [PMID: 40120913 DOI: 10.1016/j.ijbiomac.2025.142392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Oxidative stress within the body is associated with aging, playing a crucial role in its progression. Polysaccharides from lactic acid bacteria are well recognized for their antioxidant effects, potentially improving the aging process. This study investigated the characterization and antioxidant activities of extracellular polysaccharides (EPS-1: 59,978 Da, 40.9 % mannose, 4.5 % ribose, 5.8 % glucuronic acid, 44.1 % glucose, 2.9 % galactose; EPS-2: 25,686 Da, 22.9 % mannose, 5.4 % ribose, 5.5 % glucuronic acid, 59.6 % glucose, 5.4 % galactose) produced by Lactiplantibacillus plantarum R6-1. The results showed that EPS could increase the survival rates of Caco-2 cells exposed to hydrogen peroxide and mitigate the D-galactose (D-Gal)-induced oxidative stress in mice. Administration of EPS activated the hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in mice. Subsequently, this pathway activated various oxidation-related enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. Meanwhile, EPS regulated mouse intestinal microbiota by increasing the relative abundance of beneficial bacteria secreting anti-inflammatory factors, such as Norank_f_Muribaculaceae and Dubosiella, and restoring the imbalance of Firmicutes to Bacteroidetes caused by oxidative stress. This study shows that L. plantarum R6-1's EPS exhibited the ability to concurrently influence both the liver and intestinal microbiota of mice, thereby achieving an anti-oxidative effect through their interconnected interactions.
Collapse
Affiliation(s)
- Yuwei Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Yajing Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Hongyan Kang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Lina Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan 657000, China.
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
3
|
Wu F, Lin S, Luo H, Wang C, Liu J, Zhu X, Pang Y. Noncontact microbiota transplantation by core-shell microgel-enabled nonleakage envelopment. SCIENCE ADVANCES 2025; 11:eadr7373. [PMID: 39908366 DOI: 10.1126/sciadv.adr7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Transplantation of beneficial bacteria to specific microbiota has been widely exploited to treat diseases by reshaping a healthy microbial structure. However, direct exposure of exogenous bacteria in vivo suffers from low bioavailability and infection risk. Here, we describe a noncontact microbiota transplantation system (NMTS) by core-shell microgel-enabled nonleakage envelopment. Bacteria are encapsulated into the core of core-shell microgels via two-step light-initiated emulsion polymerization of gelatin methacrylate. NMTS is versatile for biocontainment of diverse strains, showing near complete encapsulation and negligible influence on bacterial activity. As a proof-of-concept study on probiotic transplantation to the gut microbiota, NMTS demonstrates the shielding effect to protect sealed bacteria from intraluminal insults of low pH and bile acid, the toughness to prevent bacterial leakage during entire gastrointestinal passage and reduce infection risk, and the permeability to release beneficial metabolites and reconstruct a balanced intestinal microbial structure, proposing a contactless fashion for advanced microbiota transplantation.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huilong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinyao Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2025; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
5
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
6
|
Hori S, Okazaki F. Identification, heterologous expression, and characterisation of β-1,3-xylanase BcXyn26B from human gut bacterium Bacteroides cellulosilyticus WH2. Biotechnol Lett 2024; 47:10. [PMID: 39621179 PMCID: PMC11611983 DOI: 10.1007/s10529-024-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 12/06/2024]
Abstract
The cell walls of red and green algae contain β-1,3-xylan, which is hydrolysed by the endo-type enzyme β-1,3-xylanase. Notably, only marine-bacteria-derived β-1,3-xylanases have been functionally characterised to date. In this study, we characterised the enzymatic properties of a potential β-1,3-xylanase (BcXyn26B) derived from the human gut bacterium, Bacteroides cellulosilyticus WH2. The codon optimized BcXyn26B gene was synthesised and expressed in Escherichia coli BL21(DE3). The recombinant protein was purified by a two-step purification process using Ni-affinity chromatography followed by anion exchange chromatography, and its enzymatic properties were characterised. The recombinant BcXyn26B exhibited specific hydrolytic activity against β-1,3-xylan and released various β-1,3-xylooligosaccharides, with β-1,3-xylobiose as the primary product. The optimum reaction temperature was 50 °C, higher than that for other enzymes derived from marine bacteria. This study represents the first report on the identification, heterologous expression, and characterisation of β-1,3-xylanase from human gut microbes. Notably, the substrate specificity of BcXyn26B indicates that human gut Bacteroides species possess an unknown β-1,3-xylan utilisation system.
Collapse
Affiliation(s)
- Sanae Hori
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| | - Fumiyoshi Okazaki
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
7
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
8
|
Zhang ZJ, Cole CG, Coyne MJ, Lin H, Dylla N, Smith RC, Pappas TE, Townson SA, Laliwala N, Waligurski E, Ramaswamy R, Woodson C, Burgo V, Little JC, Moran D, Rose A, McMillin M, McSpadden E, Sundararajan A, Sidebottom AM, Pamer EG, Comstock LE. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species- and strain-level diversity and evolution. Cell Host Microbe 2024; 32:1853-1867.e5. [PMID: 39293438 PMCID: PMC11466702 DOI: 10.1016/j.chom.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome, with diverse impacts on human health. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, metabolomic, and horizontal gene transfer analyses. Families, genera, and species could be grouped based on many distinctive features. We also observed extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-species diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses represents a valuable resource to facilitate informed selection of strains for microbiome reconstitution.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Cody G Cole
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Michael J Coyne
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Rita C Smith
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Téa E Pappas
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Shannon A Townson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Nina Laliwala
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emily Waligurski
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Jessica C Little
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - David Moran
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Amber Rose
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Mary McMillin
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| | - Laurie E Comstock
- Duchossois Family Institute (DFI), University of Chicago, 900 E. 57th St., Chicago, IL 60637, USA; Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Yüksel E, Voragen AGJ, Kort R. The pectin metabolizing capacity of the human gut microbiota. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264366 DOI: 10.1080/10408398.2024.2400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Keep Food Simple, Driebergen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Singh S, Olayinka OT, Fr J, Nisar MR, Kotha R, Saad-Omer SI, Nath TS. Food Additives' Impact on Gut Microbiota and Metabolic Syndrome: A Systematic Review. Cureus 2024; 16:e66822. [PMID: 39280570 PMCID: PMC11398613 DOI: 10.7759/cureus.66822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The human gut microbiota (GM) might play a significant role in the development or remission of metabolic syndrome (MetS) and associated disorders. Contributing factors include diets rich in unhealthy, processed foods that contain preservatives, emulsifiers, and stabilizers. Diet influences the GM's composition, diversity, and species richness in a time-dependent manner. Food additives can alter the GM and contribute to the pathophysiology of MetS by disrupting the intestinal barrier and inducing low-grade systemic inflammation. Our systematic review aims to clarify the relationships among food additives, GM, and MetS. We summarize current knowledge on how food additives interact with GM and the pathogenic role of the microbiota in the development of MetS, including obesity and type 2 diabetes. This review also discusses how disturbances in GM caused by stabilizers and emulsifiers may link to MetS, highlighting the impact of this condition on the development of diabetes and obesity. Furthermore, this review seeks a detailed explanation of how dietary choices related to GM dysbiosis may contribute to MetS. However, more comprehensive and well-designed in vitro, animal, and clinical studies are needed for a better understanding, as research on the role of GM in MetS is still emerging.
Collapse
Affiliation(s)
- Shivani Singh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Oluwatoba T Olayinka
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jaslin Fr
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mah Rukh Nisar
- Neurology/Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rudrani Kotha
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sabaa I Saad-Omer
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | |
Collapse
|
11
|
Ma J, Fu Z, Yang X, Ming W, Song X, Du C. Gut microbial changes in a specialist blister beetle larvae and their nutritional metabolic characteristics. Ecol Evol 2024; 14:e70184. [PMID: 39184568 PMCID: PMC11341433 DOI: 10.1002/ece3.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Insect gut microbiota and their metabolites play a significant role in the shaping of hosts' diets and feeding habits. We conducted 16S rDNA amplicon sequencing on the gut microbiota of specialist blister beetle larvae that feed on locust eggs and artificial food at different instars, to explore the relationship between gut microbiota and the specialized feeding habit of the blister beetle larvae. There is no significant difference in the gut microbial structure among the second to the fourth instar larvae under the same rearing conditions, but the gut microbial structure of the first instar larvae was significantly different from the second to the fourth instar larvae fed by different diets. Bacteria associated with polysaccharide utilization are relatively barren in first instar larvae. Compared to the carbohydrate content between the artificial diet and locust eggs, we speculate that an excessive amount of polysaccharides in the artificial diet may be detrimental to the growth and development of first instar larvae. Gut microbiota of the second to the fourth instar larvae fed with different diets significantly differ in microbial community structure. The different bacteria, especially the metabolism-related intestinal bacteria in locust eggs-fed larvae, may help the hosts adapt to the environment and contribute to the production of active ingredients. The relative abundance of polysaccharide utilization-related bacteria was significantly higher in the artificial diet-fed larvae compared to the locust eggs-fed larvae, which showed the same result when compared to the first instar larvae. Changes in gut microbes of blister beetle larvae and their metabolic inferences could enrich our understanding of the nutritional requirements of the specialist and help optimize the artificial diet of medicinal cantharides.
Collapse
Affiliation(s)
- Jinnan Ma
- Yunnan Normal UniversityKunmingChina
| | | | - Xin Yang
- Baotou Teachers' CollegeBaotouChina
| | | | - Xuhao Song
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| | - Chao Du
- Baotou Teachers' CollegeBaotouChina
| |
Collapse
|
12
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
13
|
Chai X, Chen X, Yan T, Zhao Q, Hu B, Jiang Z, Guo W, Zhang Y. Intestinal Barrier Impairment Induced by Gut Microbiome and Its Metabolites in School-Age Children with Zinc Deficiency. Nutrients 2024; 16:1289. [PMID: 38732540 PMCID: PMC11085614 DOI: 10.3390/nu16091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Zinc deficiency affects the physical and intellectual development of school-age children, while studies on the effects on intestinal microbes and metabolites in school-age children have not been reported. School-age children were enrolled to conduct anthropometric measurements and serum zinc and serum inflammatory factors detection, and children were divided into a zinc deficiency group (ZD) and control group (CK) based on the results of serum zinc. Stool samples were collected to conduct metagenome, metabolome, and diversity analysis, and species composition analysis, functional annotation, and correlation analysis were conducted to further explore the function and composition of the gut flora and metabolites of children with zinc deficiency. Beta-diversity analysis revealed a significantly different gut microbial community composition between ZD and CK groups. For instance, the relative abundances of Phocaeicola vulgatus, Alistipes putredinis, Bacteroides uniformis, Phocaeicola sp000434735, and Coprococcus eutactus were more enriched in the ZD group, while probiotic bacteria Bifidobacterium kashiwanohense showed the reverse trend. The functional profile of intestinal flora was also under the influence of zinc deficiency, as reflected by higher levels of various glycoside hydrolases in the ZD group. In addition, saccharin, the pro-inflammatory metabolites, and taurocholic acid, the potential factor inducing intestinal leakage, were higher in the ZD group. In conclusion, zinc deficiency may disturb the gut microbiome community and metabolic function profile of school-age children, potentially affecting human health.
Collapse
Affiliation(s)
- Xiaoqi Chai
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Xiaohui Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Tenglong Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Binshuo Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Zhongquan Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| |
Collapse
|
14
|
Sun H, Shin J, Kim MJ, Bae S, Lee ND, Yoo B. Efficacy and Safety of WCFA19 ( Weissella confusa WIKIM51) in Reducing Body Fat in Overweight and Obese Adults. J Clin Med 2024; 13:2559. [PMID: 38731087 PMCID: PMC11084377 DOI: 10.3390/jcm13092559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Background: WCFA19 (Weissella confusa WIKIM51), found during the fermentation of kimchi, is known for its inhibitory effects on body weight and body fat. This study looked at the impact of WCFA19 isolated from dandelion kimchi on weight loss in overweight and obese adults that are otherwise healthy. Methods: This study was conducted as a multicenter, double-blind, randomized, placebo-controlled study with 104 overweight and obese subjects. Subjects were randomized evenly into the test group (WCFA19, 500 mg, n = 40) or control group (n = 34) for 12 weeks from 14 June 2021 to 24 December 2021. Effects were based on DEXA to measure changes in body fat mass and percentage. Results: Among the 74 subjects analyzed, WCFA19 oral supplementation for 12 weeks resulted in a significant decrease in body fat mass of 633.38 ± 1396.17 g (p = 0.0066) in overweight and obese individuals in the experimental group. The control group showed an increase of 59.10 ± 1120.57 g (p = 0.7604), indicating a statistically significant difference between the two groups. There was also a statistically significant difference (p = 0.0448) in the change in body fat percentage, with a decrease of 0.41 ± 1.22% (p = 0.0424) in the experimental group and an increase of 0.17 ± 1.21% (p = 0.4078) in the control group. No significant adverse events were reported. Conclusions: Oral supplementation of 500 mg of WCFA19 for 12 weeks is associated with a decrease in body weight, particularly in body fat mass and percentage.
Collapse
Affiliation(s)
- Hwayeon Sun
- Department of Family Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea; (H.S.)
| | - Jinyoung Shin
- Department of Family Medicine, Konkuk University Medical Center, Seoul 05030, Republic of Korea;
| | - Min-ji Kim
- Department of Family Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea; (H.S.)
| | - Sunghwan Bae
- Department of Radiology, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Nicole Dain Lee
- School of Medicine, Georgetown University, Washington, DC 20007, USA;
| | - Byungwook Yoo
- Department of Family Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea; (H.S.)
| |
Collapse
|
15
|
Zhang ZJ, Cole CG, Coyne MJ, Lin H, Dylla N, Smith RC, Waligurski E, Ramaswamy R, Woodson C, Burgo V, Little JC, Moran D, Rose A, McMillin M, McSpadden E, Sundararajan A, Sidebottom AM, Pamer EG, Comstock LE. Comprehensive analyses of a large human gut Bacteroidales culture collection reveal species and strain level diversity and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584156. [PMID: 38496653 PMCID: PMC10942478 DOI: 10.1101/2024.03.08.584156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome with diverse impacts on human health. While Bacteroidales strains and species are genomically and functionally diverse, order-wide comparative analyses are lacking. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, mobile gene, and metabolomic analyses. Families, genera, and species could be grouped based on many distinctive features. However, we also show extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-specific diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses can serve as a resource to facilitate informed selection of strains for microbiome reconstitution.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Cody G Cole
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Michael J Coyne
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Jessica C Little
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Amber Rose
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Emma McSpadden
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL, 60637, USA
- Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| | - Laurie E Comstock
- Duchossois Family Institute, University of Chicago, 900 E. 57th St, Chicago, IL, 60637, USA
- Department of Microbiology, Biological Sciences Division, University of Chicago, 5841 South Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Do HE, Ha YB, Kim JS, Suh MK, Kim HS, Eom MK, Lee JH, Park SH, Kang SW, Lee DH, Yoon H, Lee JH, Lee JS. Phocaeicola acetigenes sp. nov., producing acetic acid and iso-butyric acid, isolated faeces from a healthy human. Antonie Van Leeuwenhoek 2024; 117:30. [PMID: 38302626 DOI: 10.1007/s10482-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
An obligately anaerobic, non-motile, Gram-stain-negative, and rod-shaped strain KGMB11183T was isolated from the feces of healthy Koreans. The growth of strain KGMB11183T occurred at 30-45 °C (optimum 37 °C), at pH 6-9 (optimum pH 7), and in the presence of 0-0.5% NaCl (optimum 0%). Strain KGMB11183T showed 16S rRNA gene sequence similarities of 95.4% and 94.2% to the closest recognized species, Phocaeicola plebeius M12T, and Phocaeicola faecicola AGMB03916T. Phylogenetic analysis showed that strain KGMB11183T is a member of the genus Phocaeiocla. The major end products of fermentation are acetic acid and isobutyric acid. The major cellular fatty acids (> 10%) of this isolate were C18:1 cis 9, anteiso-C15:0, and summed feature 11 (iso-C17:0 3-OH and/or C18:2 DMA). The assembled draft genome sequences of strain KGMB11183T consisted of 3,215,271 bp with a DNA G + C content of 41.4%. According to genomic analysis, strain KGMB11183T has a number of genes that produce acetic acid. The genome of strain KGMB11183T encoded the starch utilization system (Sus) operon, SusCDEF suggesting that strain uses many complex polysaccharides that cannot be digested by humans. Based on the physiological, chemotaxonomic, phenotypic, and phylogenetic data, strain KGMB11183T is regarded a novel species of the genus Phocaeicola. The type strain is KGMB11183T (= KCTC 25284T = JCM 35696T).
Collapse
Affiliation(s)
- Hyo Eun Do
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Young Bong Ha
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Min Kuk Suh
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Han Sol Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Dong Ho Lee
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyuk Yoon
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Je Hee Lee
- CJ Bioscience, Inc., 14 Sejong-Daero, Jung-gu, Seoul, 04527, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
17
|
Driscoll C. Can human nature be saved? STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 103:39-45. [PMID: 38039603 DOI: 10.1016/j.shpsa.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
This paper argues that the best interpretation of the human nature concept used in evolutionary social science (ESS) is as the human adaptive complex. This understanding of the concept enables us to make sense of the features of human nature that are described in that literature as symptomatic of traits which are part of human nature, rather than being constitutive of human nature itself. This enables this proposal to make better sense of how the human nature concept is used than other current proposals for how to understand that concept.
Collapse
Affiliation(s)
- Catherine Driscoll
- Dept. of Philosophy and Religious Studies, North Carolina State University, USA.
| |
Collapse
|
18
|
Clausen U, Vital ST, Lambertus P, Gehler M, Scheve S, Wöhlbrand L, Rabus R. Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective. Microb Physiol 2024; 34:88-107. [PMID: 38262373 DOI: 10.1159/000536327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology. METHODS P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics. RESULTS The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (mMATP/mMC) from 0.21 (rhamnose) to 0.60 (glucuronate/xylan). Furthermore, fermentation product spectra were determined, ranging from broad and balanced (with xylan: acetate, succinate, formate, and propanoate) to rather one sided (with rhamnose or fucose: mainly propane-1,2-diol). The fermentation network serving all tested compounds is composed of 56 proteins (all identified), with several peripheral reaction sequences formed with high substrate specificity (e.g., conversion of arabinose to d-xylulose-3-phosphate) implicating a fine-tuned regulation. By contrast, central modules (e.g., glycolysis or the reaction sequence from PEP to succinate) were constitutively formed. Extensive formation of propane-1,2-diol from rhamnose and fucose involves rhamnulokinase (RhaB), rhamnulose-1-phosphate kinase (RhaD), and lactaldehyde reductase (FucO). Furthermore, Sus-like systems are apparently the most relevant uptake systems and a complex array of transmembrane electron-transfer systems (e.g., Na+-pumping Rnf and Nqr complexes, fumarate reductase) as well as F- and V-type ATP-synthases were detected. CONCLUSIONS The present study provides insights into the potential contribution of P. vulgatus to the gut metabolome and into the strain's biotechnological potential for sustainable production of short-chain fatty acids and alcohols.
Collapse
Affiliation(s)
- Urte Clausen
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sören-Tobias Vital
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Pia Lambertus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Martina Gehler
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
19
|
Singh V, West G, Fiocchi C, Good CE, Katz J, Jacobs MR, Dichosa AEK, Flask C, Wesolowski M, McColl C, Grubb B, Ahmed S, Bank NC, Thamma K, Bederman I, Erokwu B, Yang X, Sundrud MS, Menghini P, Basson AR, Ezeji J, Viswanath SE, Veloo A, Sykes DB, Cominelli F, Rodriguez-Palacios A. Clonal Parabacteroides from Gut Microfistulous Tracts as Transmissible Cytotoxic Succinate-Commensal Model of Crohn's Disease Complications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574896. [PMID: 38260564 PMCID: PMC10802508 DOI: 10.1101/2024.01.09.574896] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Crohn's disease (CD) has been traditionally viewed as a chronic inflammatory disease that cause gut wall thickening and complications, including fistulas, by mechanisms not understood. By focusing on Parabacteroides distasonis (presumed modern succinate-producing commensal probiotic), recovered from intestinal microfistulous tracts (cavernous fistulous micropathologies CavFT proposed as intermediate between 'mucosal fissures' and 'fistulas') in two patients that required surgery to remove CD-damaged ilea, we demonstrate that such isolates exert pathogenic/pathobiont roles in mouse models of CD. Our isolates are clonally-related; potentially emerging as transmissible in the community and mice; proinflammatory and adapted to the ileum of germ-free mice prone to CD-like ileitis (SAMP1/YitFc) but not healthy mice (C57BL/6J), and cytotoxic/ATP-depleting to HoxB8-immortalized bone marrow derived myeloid cells from SAMP1/YitFc mice when concurrently exposed to succinate and extracts from CavFT-derived E. coli , but not to cells from healthy mice. With unique genomic features supporting recent genetic exchange with Bacteroides fragilis -BGF539, evidence of international presence in primarily human metagenome databases, these CavFT Pdis isolates could represent to a new opportunistic Parabacteroides species, or subspecies (' cavitamuralis' ) adapted to microfistulous niches in CD.
Collapse
|
20
|
Xiong M, Zhang Z, Cui J, Du X, Chen Y, Zhang T. Dengyinnaotong attenuates atherosclerotic lesions, gut dysbiosis and intestinal epithelial barrier impairment in the high fat diet-fed ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116916. [PMID: 37453620 DOI: 10.1016/j.jep.2023.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengyinnaotong (DYNT) is a traditional Chinese medicine-based patent drug officially approved for the treatment of ischemic stroke primarily based on its indigenous application for the treatment of cardiovascular and cerebrovascular diseases in Southwest China. Atherosclerosis is the principal pathology underlying the pathogenesis of ischemic stroke and coronary artery disease. However, whether DYNT is effective at mitigating atherosclerosis remains unknown. AIMS OF THE STUDY The purpose of the current study is to evaluate the potential impact of DYNT treatment on the atherosclerotic lesions and associated pathological mechanisms. MATERIALS AND METHODS Histological, immunohistochemical, molecular biological approaches were adopted to investigate the pharmacological impact of DYNT treatment on atherosclerosis and associated pathophysiological alterations in the high fat diet (HFD)-fed ApoE gene deficient (ApoE-/-) mice. RESULTS DYNT treatment reduced the size of the atherosclerotic plaques, alleviated the necrotic core, lowered the lipid retention, mitigated the macrophagic burden and decreased the expression of proatherogenic chemokine Ccl2 in the atherosclerotic lesions. DYNT treatment also offered partial protection against atherogenic dyslipidemia and mitigated hepatic lipid content as well as fatty liver pathologies in the HFD-fed ApoE-/- mice. Furthermore, DYNT treatment protected against atherosclerosis-associated gut dysbiosis and impairment in the intestinal epithelial barrier. CONCLUSIONS Our work provides novel preclinical evidence that underpins the multifaceted effects of DYNT in the control of atherosclerosis.
Collapse
Affiliation(s)
- Minqi Xiong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Zilong Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China; Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
21
|
Wang S, Mu L, Yu C, He Y, Hu X, Jiao Y, Xu Z, You S, Liu SL, Bao H. Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem. Gut Microbes 2024; 16:2296603. [PMID: 38149632 PMCID: PMC10761165 DOI: 10.1080/19490976.2023.2296603] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.
Collapse
Affiliation(s)
- Shuang Wang
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyi Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Koo H, Morrow CD. Identification of donor Bacteroides vulgatus genes encoding proteins that correlate with early colonization following fecal transplant of patients with recurrent Clostridium difficile. Sci Rep 2023; 13:14112. [PMID: 37644161 PMCID: PMC10465488 DOI: 10.1038/s41598-023-41128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Due to suppressive antibiotics, patients with recurrent Clostridium difficile have gut microbial communities that are devoid of most commensal microbes. Studies have shown that most of the failures using fecal microbe transplantation (FMT) for recurrent C. difficile occur during the first 4 weeks following transplantation. To identify features of donor Bacteroides vulgatus that lead to early colonization, we used two data sets that collected fecal samples from recipients at early times points post FMT. The first analysis used the shotgun metagenomic DNA sequencing data set from Aggarwala et al. consisting of 7 FMT donors and 13 patients with recurrent C. difficile with fecal samples taken as early as 24 h post FMT. We identified 2 FMT donors in which colonization of recipients by donor B. vulgatus was detected as early as 24 h post FMT. We examined a second data set from Hourigan et al. that collected fecal samples from C. difficile infected children and identified 1 of 3 FMT that also had early colonization of the donor B. vulgatus. We found 19 genes out of 4911 encoding proteins were unique to the 3 donors that had early colonization. A gene encoding a putative chitobiase was identified that was in a gene complex that had been previously identified to enhance colonization in mice. A gene encoding a unique fimbrillin (i.e., pili) family protein and 17 genes encoding hypothetical proteins were also specific for early colonizing donors. Most of the genes encoding hypothetical proteins had neighboring genes that encoded proteins involved in mobilization or transposition. Finally, analysis of 42 paired fecal samples from the human microbiome project (HMP) found no individuals had all 19 genes while 2 individuals had none of the 19 genes. Based on the results from our study, consideration should be given to the screening of FMT donors for these B. vulgatus genes found to enhance early colonization that would be of benefit to promote colonization following FMT.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Sheahan ML, Coyne MJ, Flores K, Garcia-Bayona L, Chatzidaki-Livanis M, Sundararajan A, Holst AQ, Barquera B, Comstock LE. A ubiquitous mobile genetic element disarms a bacterial antagonist of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.553775. [PMID: 37662397 PMCID: PMC10473720 DOI: 10.1101/2023.08.25.553775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA transfer is ubiquitous in the gut microbiota, especially among species of Bacteroidales. In silico analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. Here, we show that acquisition of a ubiquitous integrative and conjugative element encoding an antagonistic system shuts down the native contact-dependent antagonistic system of Bacteroides fragilis . Despite inactivating the native antagonism system, mobile element acquisition increases fitness of the B. fragilis transconjugant over its progenitor by arming it with a new weapon. This DNA transfer causes the strain to change allegiances so that it no longer targets ecosystem members containing the same element yet is armed for communal defense.
Collapse
|
25
|
Singh RP, Niharika J, Thakur R, Wagstaff BA, Kumar G, Kurata R, Patel D, Levy CW, Miyazaki T, Field RA. Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta. J Biol Chem 2023; 299:104806. [PMID: 37172725 PMCID: PMC10318527 DOI: 10.1016/j.jbc.2023.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The β-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - β-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of β-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and β-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley β-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the β-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India.
| | - Jayashree Niharika
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Raksha Thakur
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Gulshan Kumar
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Dhaval Patel
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Colin W Levy
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
26
|
Cao C, Wang L, Zhang X, Ai C, Wang Z, Huang L, Song S, Zhu B. Interaction between Bacteroidetes species in the fermentation of Lycium barbarum arabinogalactan. Food Chem 2023; 409:135288. [PMID: 36584527 DOI: 10.1016/j.foodchem.2022.135288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The present study investigated the utilization of an arabinogalactan from Lycium barbarum (LBP-3) by intestinal Bacteroidetes species. The mixed-culture assay showed 58.4 % LBP-3 was utilized, and Bacteroides caccae and Phocaeicola vulgatus utilized more LBP-3 in single-culture compared to others. During in vitro fermentation of LBP-3, P. vulgatus favored arabinose while B. caccae preferred galactose. Moreover, 9 and 25 oligosaccharides were identified by HPLC-MSn in conditioned media (CM) derived from B. caccae and P. vulgatus, respectively. All of 3 tested Parabacteroides species (P. distasonis, P. goldsteinii, and P. johnsonii) markedly proliferated in CM of B. caccae and P. vulgatus, and proliferations of B. uniformis, B. finegoldii, B. ovatus and B. thetaiotaomicron also increased significantly in CM of B. caccae. The study suggests that the ability of Bacteroidetes species to degrade LBP-3 and sheds light on cooperative interactions of Bacteroides, Phocaeicola, and Parabacteroides species in the presence of LBP-3.
Collapse
Affiliation(s)
- Cui Cao
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China; Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Lilong Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xueqian Zhang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China; Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Chunqing Ai
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, PR China.
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
27
|
Cuciniello R, Di Meo F, Filosa S, Crispi S, Bergamo P. The Antioxidant Effect of Dietary Bioactives Arises from the Interplay between the Physiology of the Host and the Gut Microbiota: Involvement of Short-Chain Fatty Acids. Antioxidants (Basel) 2023; 12:antiox12051073. [PMID: 37237938 DOI: 10.3390/antiox12051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of redox homeostasis is associated with a healthy status while the disruption of this mechanism leads to the development of various pathological conditions. Bioactive molecules such as carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsaturated fatty acids (PUFAs) are food components best characterized for their beneficial effect on human health. In particular, increasing evidence suggests that their antioxidant ability is involved in the prevention of several human diseases. Some experimental data indicate that the activation of the nuclear factor 2-related erythroid 2 (Nrf2) pathway-the key mechanism in the maintenance of redox homeostasis-is involved in the beneficial effects exerted by the intake of PUFAs and polyphenols. However, it is known that the latter must be metabolized before becoming active and that the intestinal microbiota play a key role in the biotransformation of some ingested food components. In addition, recent studies, indicating the efficacy of the MACs, polyphenols, and PUFAs in increasing the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol metabolites, short-chain fatty acids (SCFAs)), support the hypothesis that these factors are responsible for the antioxidant action on the physiology of the host. The underlying mechanisms through which MACs, polyphenols, and PUFAs might influence the redox status have not been fully elucidated, but based on the efficacy of SCFAs as Nrf2 activators, their contribution to the antioxidant efficacy of dietary bioactives cannot be excluded. In this review, we aimed to summarize the main mechanisms through which MACs, polyphenols, and PUFAs can modulate the host's redox homeostasis through their ability to directly or indirectly activate the Nrf2 pathway. We discuss their probiotic effects and the role played by the alteration of the metabolism/composition of the gut microbiota in the generation of potential Nrf2-ligands (e.g., SCFAs) in the host's redox homeostasis.
Collapse
Affiliation(s)
- Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| | - Paolo Bergamo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| |
Collapse
|
28
|
Coelho MC, Costa C, Roupar D, Silva S, Rodrigues AS, Teixeira JA, Pintado ME. Modulation of the Gut Microbiota by Tomato Flours Obtained after Conventional and Ohmic Heating Extraction and Its Prebiotic Properties. Foods 2023; 12:foods12091920. [PMID: 37174457 PMCID: PMC10178612 DOI: 10.3390/foods12091920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Several studies have supported the positive functional health effects of both prebiotics and probiotics on gut microbiota. Among these, the selective growth of beneficial bacteria due to the use of prebiotics and bioactive compounds as an energy and carbon source is critical to promote the development of healthy microbiota within the human gut. The present work aimed to assess the fermentability of tomato flour obtained after ohmic (SFOH) and conventional (SFCONV) extraction of phenolic compounds and carotenoids as well as their potential impact upon specific microbiota groups. To accomplish this, the attained bagasse flour was submitted to an in vitro simulation of gastrointestinal digestion before its potential fermentability and impact upon gut microbiota (using an in vitro fecal fermentation model). Different impacts on the probiotic strains studied were observed for SFCONV promoting the B. animalis growth, while SFOH promoted the B. longum, probably based on the different carbohydrate profiles of the flours. Overall, the flours used were capable of functioning as a direct substrate to support potential prebiotic growth for Bifidus longum. The fecal fermentation model results showed the highest Bacteroidetes growth with SFOH and the highest values of Bacteroides with SFCONV. A correlation between microorganisms' growth and short-chain fatty acids was also found. This by-product seems to promote beneficial effects on microbiota flora and could be a potential prebiotic ingredient, although more extensive in vivo trials would be necessary to confirm this.
Collapse
Affiliation(s)
- Marta C Coelho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Célia Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Dalila Roupar
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sara Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - A Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
29
|
Chen S, Xi M, Gao F, Li M, Dong T, Geng Z, Liu C, Huang F, Wang J, Li X, Wei P, Miao F. Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms. Front Pharmacol 2023; 14:1045309. [PMID: 37089923 PMCID: PMC10117911 DOI: 10.3389/fphar.2023.1045309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The effectiveness of herbal medicine in treating diabetes has grown in recent years, but the precise mechanism by which it does so is still unclear to both medical professionals and diabetics. In traditional Chinese medicine, mulberry leaf is used to treat inflammation, colds, and antiviral illnesses. Mulberry leaves are one of the herbs with many medicinal applications, and as mulberry leaf study grows, there is mounting evidence that these leaves also have potent anti-diabetic properties. The direct role of mulberry leaf as a natural remedy in the treatment of diabetes has been proven in several studies and clinical trials. However, because mulberry leaf is a more potent remedy for diabetes, a deeper understanding of how it works is required. The bioactive compounds flavonoids, alkaloids, polysaccharides, polyphenols, volatile oils, sterols, amino acids, and a variety of inorganic trace elements and vitamins, among others, have been found to be abundant in mulberry leaves. Among these compounds, flavonoids, alkaloids, polysaccharides, and polyphenols have a stronger link to diabetes. Of course, trace minerals and vitamins also contribute to blood sugar regulation. Inhibiting alpha glucosidase activity in the intestine, regulating lipid metabolism in the body, protecting pancreatic -cells, lowering insulin resistance, accelerating glucose uptake by target tissues, and improving oxidative stress levels in the body are some of the main therapeutic properties mentioned above. These mechanisms can effectively regulate blood glucose levels. The therapeutic effects of the bioactive compounds found in mulberry leaves on diabetes mellitus and their associated molecular mechanisms are the main topics of this paper’s overview of the state of the art in mulberry leaf research for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sikai Chen
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miaomiao Xi
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an TANK Medicinal Biology Institute, Xi’an, China
| | - Feng Gao
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - TaiWei Dong
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhixin Geng
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chunyu Liu
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fengyu Huang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xingyu Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- Shaanxi University of Chinese Medicine, Xianyang, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| | - Feng Miao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| |
Collapse
|
30
|
Zhang Q, Gu S, Wang Y, Hu S, Yue S, Wang C. Stereoselective metabolic disruption of cypermethrin by remolding gut homeostasis in rat. J Environ Sci (China) 2023; 126:761-771. [PMID: 36503801 DOI: 10.1016/j.jes.2022.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/17/2023]
Abstract
Cypermethrin (CYP), a prototypical synthetic pyrethroid, reportedly causes metabolic disruption, while its stereoselective impact remains elusive. This study initially revealed that only α-CYP caused significant weight loss at 8.5 mg/(kg•day) in rats. All three CYP isomers caused the accumulation of hepatic glycogen, and hyperlipemia phenotype as the increment of total triglyceride. Rats treated with α-CYP had markedly high blood glucose levels and homeostasis model assessment of insulin resistance index. The systematic inflammation of θ-CYP group rats was evidenced by high lipopolysaccharide-binding protein levels and abnormalities of leukocytes indices. By examining the gut microbiome, we found that α-CYP-treated rats had low contents of Firmicutes and high levels of Verrucomicrobia while Elusimicrobia was enriched in the β-CYP group. The increasing alpha diversity in the θ-CYP group may be due to the dominance of pathogenic bacteria and the increase of probiotics to counteract adverse effects. Exclusively, the α-CYP group enriched total short-chain fatty acids (SCFAs), whereas most SCFAs depleted in the θ-CYP group. The correlation analysis further found Firmicutes, an energy storage modulator, was positive to body weight (BW), while SCFAs exerted the opposite, confirming the low BW in α-CYP. Blood glucose that correlated well with SCFAs and Verrucomicrobia can be accounted for the discrepancy between α-CYP and θ-CYP. Overall, the three isomers exerted stereoselective glycolipid disruption in rats, and gut homeostasis acted as vital indicators.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shitao Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
31
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
32
|
Han S, Zhou Y, Wang D, Qin Q, Song P, He Y. Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797). INSECTS 2023; 14:264. [PMID: 36975949 PMCID: PMC10053068 DOI: 10.3390/insects14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Intestinal symbiotic bacteria have formed an interdependent symbiotic relationship with many insect species after long-term coevolution, which plays a critical role in host growth and adaptation. Spodoptera frugiperda (J. E. Smith) is a worldwide significant migratory invasive pest. As a polyphagous pest, S. frugiperda can harm more than 350 plants and poses a severe threat to food security and agricultural production. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and structure of the gut bacteria of this pest feeding on six diets (maize, wheat, rice, honeysuckle flowers, honeysuckle leaves, and Chinese yam). The results showed that the S. frugiperda fed on rice had the highest bacterial richness and diversity, whereas the larvae fed on honeysuckle flowers had the lowest abundance and diversity of gut bacterial communities. Firmicutes, Actinobacteriota, and Proteobacteria were the most dominant bacterial phyla. PICRUSt2 analysis indicated that most of the functional prediction categories were concentrated in metabolic bacteria. Our results confirmed that the gut bacterial diversity and community composition of S. frugiperda were affected significantly by host diets. This study provided a theoretical basis for clarifying the host adaptation mechanism of S. frugiperda, which also provided a new direction to improve polyphagous pest management strategies.
Collapse
|
33
|
A Novel Symbiotic Formulation Reduces Obesity and Concomitant Metabolic Syndrome in Rats by Raising the Relative Abundance of Blautia. Nutrients 2023; 15:nu15040956. [PMID: 36839314 PMCID: PMC9960556 DOI: 10.3390/nu15040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Obesity is regarded as an abnormal or excessive buildup of fat that may be bad for health and is influenced by a combination of intestinal flora, genetic background, physical activity level and environment. Symbiotic supplementation may be a realistic and easy therapy for the reversal of obesity and associated metabolic problems. In this study, we chose two Bifidobacterium species, three Lactobacilli species and four prebiotics to make a new symbiotic formulation. High or low doses of the symbiotic were administered to rats, and biochemical indicators were recorded to assess the biological effects in a high-fat-diet-induced rat model. The underlying mechanisms were explored by integrating 16S rRNA sequencing with an extensively targeted metabolome. High-dose symbiotic supplementation was effective in reducing obesity and concomitant metabolic syndrome. The high-dose symbiotic also significantly increased the abundance of Blautia, which was negatively correlated with taurocholic acid and the main differential metabolites involved in amino acid and bile acid metabolism. While the low-dose symbiotic had some therapeutic effects, they were not as strong as those at the high dose, demonstrating that the effects were dose-dependent. Overall, our novel symbiotic combination improved plasma glucose and lipid levels, shrunk adipocyte size, restored liver function, increased the abundance of Blautia and adjusted bile acid and amino acid metabolism.
Collapse
|
34
|
Insulin Resistance in Mitochondrial Diabetes. Biomolecules 2023; 13:biom13010126. [PMID: 36671511 PMCID: PMC9855690 DOI: 10.3390/biom13010126] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial diabetes (MD) is generally classified as a genetic defect of β-cells. The main pathophysiology is insulin secretion failure in pancreatic β-cells due to impaired mitochondrial ATP production. However, several reports have mentioned the presence of insulin resistance (IR) as a clinical feature of MD. As mitochondrial dysfunction is one of the important factors causing IR, we need to focus on IR as another pathophysiology of MD. In this special issue, we first briefly summarized the insulin signaling and molecular mechanisms of IR. Second, we overviewed currently confirmed pathogenic mitochondrial DNA (mtDNA) mutations from the MITOMAP database. The variants causing diabetes were mostly point mutations in the transfer RNA (tRNA) of the mitochondrial genome. Third, we focused on these variants leading to the recently described "tRNA modopathies" and reviewed the clinical features of patients with diabetes. Finally, we discussed the pathophysiology of MD caused by mtDNA mutations and explored the possible mechanism underlying the development of IR. This review should be beneficial to all clinicians involved in diagnostics and therapeutics related to diabetes and mitochondrial diseases.
Collapse
|
35
|
Saggese A, Giglio R, D’Anzi N, Baccigalupi L, Ricca E. Comparative Genomics and Physiological Characterization of Two Aerobic Spore Formers Isolated from Human Ileal Samples. Int J Mol Sci 2022; 23:14946. [PMID: 36499272 PMCID: PMC9739757 DOI: 10.3390/ijms232314946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| |
Collapse
|
36
|
Serrano M, Srivastava A, Buck G, Zhu B, Edupuganti L, Adegbulugbe E, Shankaranarayanan D, Kopp JB, Raj DS. Dietary Protein and Fiber Affect Gut Microbiome and Treg/Th17 Commitment in Chronic Kidney Disease Mice. Am J Nephrol 2022; 53:646-651. [PMID: 36349783 PMCID: PMC10367184 DOI: 10.1159/000526957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) have dysbiosis, dysmetabolism, and immune dysregulation. Gut microbiome plays an important role shaping the immune system which is an important modulator of CKD progression. METHODS We compared the effect of a diet low in protein and high in fiber (LP-HF; n = 7) to that of diet rich in protein, but low in fiber (HP-LF; n = 7) on gut microbiome and T-cell commitment in male CKD (Alb/TGF-β1) mice. The gut microbiomes of these mice were subjected to 16S rRNA taxonomic profiling at baseline, 6 weeks and 12 weeks of the study. RESULTS The LP-HF diet was associated with an increase in Butyricicoccus pullicaecorum BT, a taxon whose functions include those closely related to butyric acid synthesis (Kendall's W statistic = 180 in analysis of microbiome composition). HP-LF diet was associated with increased abundance of two predominantly proteolytic bacterial strains related to Parabacteroides distasonis (W statistic = 173), Mucispirillum schaedleri, and Bacteroides dorei (W statistic = 192). Pathway analysis suggested that the LP-HF diet induced carbohydrate, lipid, and butyrate metabolism. As compared with HP-LF mice, LP-HF mice had 1.7-fold increase in CD4+Foxp3+Treg cells in spleen and 2.4-fold increase of these cells in peripheral blood. There was an 87% decrease in percentage of CD4+ Th17 + cells in spleen and an 85% decrease in peripheral blood, respectively, in LP-HF mice compared to the HP-LF mice. CONCLUSION The LP-HF diet promotes the proliferation of saccharolytic bacteria and favors T-cell commitment toward Treg cells in a CKD mouse of model. Clinical significance of the finding needs to be further investigated.
Collapse
Affiliation(s)
- Myrna Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anvesha Srivastava
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA,
| | - Gregory Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bin Zhu
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laahirie Edupuganti
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Esther Adegbulugbe
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Divya Shankaranarayanan
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, Maryland, USA
| | - Dominic S Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
37
|
Wassie T, Cheng B, Zhou T, Gao L, Lu Z, Xie C, Wu X. Microbiome-metabolome analysis reveals alterations in the composition and metabolism of caecal microbiota and metabolites with dietary Enteromorpha polysaccharide and Yeast glycoprotein in chickens. Front Immunol 2022; 13:996897. [PMID: 36311785 PMCID: PMC9614668 DOI: 10.3389/fimmu.2022.996897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The intestinal microbiome is responsible for the fermentation of complex carbohydrates and orchestrates the immune system through gut microbiota-derived metabolites. In our previous study, we reported that supplementation of Enteromorpha polysaccharide (EP) and yeast glycoprotein (YG) in combination synergistically improved antioxidant activities, serum lipid profile, and fatty acid metabolism in chicken. However, the mechanism of action of these polysaccharides remains elusive. The present study used an integrated 16S-rRNA sequencing technology and untargeted metabolomics technique to reveal the mechanism of action of EP+YG supplementation in broiler chickens fed basal diet or diets supplemented with EP+YG (200mg/kg EP + 200mg/kg YG). The results showed that EP+YG supplementation altered the overall structure of caecal microbiota as evidenced by β diversities analysis. Besides, EP+YG supplementation changed the microbiota composition by altering the community profile at the phylum and genus levels. Furthermore, Spearman correlation analysis indicated a significant correlation between altered microbiota genera vs serum cytokine levels and microbiota genera vs volatile fatty acids production. Predicted functional analysis showed that EP+YG supplementation significantly enriched amino acid metabolism, nucleotide metabolism, glycan biosynthesis and metabolism, energy metabolism, and carbohydrate metabolism. Metabolomics analysis confirmed that EP+YG supplementation modulates a myriad of caecal metabolites by increasing some metabolites, including pyruvic acid, pyridoxine, spermidine, spermine, and dopamine, and decreasing metabolites related to lipid metabolisms such as malonic acid, oleic acid, and docosahexaenoic acid. The quantitative enrichment analysis results further showed that glycolysis/gluconeogenesis, citric acid cycle, tyrosine metabolism, glycine, serine, and threonine metabolism, and cysteine and methionine metabolism were the most important enriched pathways identified with enrichment ratio >11, whereas, fatty acid biosynthesis and biosynthesis of unsaturated fatty acids pathways were suppressed. Together, the 16S-rRNA and untargeted metabolomics results uncovered that EP+YG supplementation modulates intestinal microbiota and their metabolites, thereby influencing the important metabolism pathways, suggesting a potential feed additive.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Bei Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Tiantian Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Lumin Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Chunyan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- *Correspondence: Xin Wu,
| |
Collapse
|
38
|
Parabacteroides distasonis Properties Linked to the Selection of New Biotherapeutics. Nutrients 2022; 14:nu14194176. [PMID: 36235828 PMCID: PMC9572384 DOI: 10.3390/nu14194176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
Dysbiotic microbiota is often associated with health issues including inflammatory bowel disease or ulcerative colitis. In order to counterbalance host disorder caused by an alteration in the gut composition, numerous studies have focused on identifying new biotherapeutic products (NBPs). Among the promising NBPs is Parabacteroides distasonis, a gut microbiota member part of the core microbiome that recently has received much attention due to the numerous beneficial properties it brings to its host. In this study, the properties linked to the selection of NBPs were screened in 14 unrelated P. distasonis strains, including resistance to gastric conditions, adherence (Caco-2 model), transepithelial resistance (Caco-2 model), and immunomodulation, on nontreated and LPS-stimulated cells (HT-29 and peripheral blood mononuclear cells (PBMCs)). This approach allowed for the identification of five strains that combined almost all the in vitro biotherapeutic properties tested. However, all the P. distasonis strains induced the overproduction of proinflammatory cytokines on PBMCs, which was counteracted by the overproduction of the anti-inflammatory cytokines. Among these five strains, two particularly retained our attention as a potential NBP, by showing strong health-promoting function, the lowest overproduction of proinflammatory cytokines on PBMCs, and no detrimental effect on the host.
Collapse
|
39
|
In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintenance within the Gut Microbiota. Int J Mol Sci 2022; 23:ijms23169411. [PMID: 36012685 PMCID: PMC9409006 DOI: 10.3390/ijms23169411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and potential as a new biotherapeutic product. However, no study has yet investigated the cell surface molecules and structures of P. distasonis that allow its maintenance within the gut microbiota. Moreover, although P. distasonis is strongly recognized as an intestinal commensal species with benefits for its host, several works displayed controversial results, showing it as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-typing classification in order to better understand and characterize the beneficial/pathogenic behavior related to P. distasonis strains. Two different types of fimbriae, three different types of pilus and up to fourteen capsular polysaccharide loci were identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed of P. distasonis adhesion capacities and its potential pathogenicity, but no specific structure related to P. distasonis beneficial or detrimental activity was identified.
Collapse
|
40
|
Yuan Y, Liu Y, He Y, Zhang B, Zhao L, Tian S, Wang Q, Chen S, Li Z, Liang S, Hou G, Liu B, Li Y. Intestinal-targeted nanotubes-in-microgels composite carriers for capsaicin delivery and their effect for alleviation of Salmonella induced enteritis. Biomaterials 2022; 287:121613. [PMID: 35700621 DOI: 10.1016/j.biomaterials.2022.121613] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 02/09/2023]
Abstract
Salmonella is a word-wide food-borne pathogen, which can cause severe enteritis and intestinal microbiota imbalance. Capsaicin (Cap), a food-based bioactive ingredient, has antibacterial and anti-inflammatory properties. However, its low solubility, low bioavailability and the irritation to digestive tract greatly limit its applications. Here, an intestinal responsively "nanotubes-in-microgel" composite carrier was constructed by capturing α-lactalbumin (α-lac) nanotubes in low-methoxy pectin microgels (LMP-NT) (52 μm). Cap was loaded in such system via hydrophobic interaction with a loading capacity of 38.02 mg/g. The LMP microgels remained stable and protected NT/Cap from early releasing in the gastric condition. It showed an excellent mucoadhesive capacity, which can prolong the intestinal retention up to 12 h and control release NT/Cap in intestine. Afterward, NT/Cap could penetrate across the mucus layer deeply and enter the intestinal villi epithelial cells efficiently. LMP-NT microgels achieved a mucoadhesive-to-penetrating transition in response to intestinal pH, improving the epithelium absorption and the in vivo bioavailability of Cap. Oral administration of LMP-NT/Cap could effectively alleviate enteritis caused by Salmonella infection and maintain the homeostasis of gut microbiota. Overall, this work suggested that LMP-NT composite microgels were promising for intestine-targeted and oral delivery of hydrophobic bioactive food compounds.
Collapse
Affiliation(s)
- Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Liang Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Simin Tian
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qimeng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zekun Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Guohua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
41
|
Hou J, Long J, Xiang J, Pan W, Li D, Liu X. Ontogenetic characteristics of the intestinal microbiota of
Quasipaa spinosa
revealed by
16S rRNA
gene sequencing. Lett Appl Microbiol 2022; 75:1182-1192. [DOI: 10.1111/lam.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jingliang Hou
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| | - Jiahang Long
- Hunan Fisheries Science Institute Changsha Hunan China
| | - Jianguo Xiang
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| | | | - Deliang Li
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| | - Xinhua Liu
- College of Animal Science and Technology Hunan Agricultural University Changsha Hunan China
| |
Collapse
|
42
|
Geng J, Sui Z, Dou W, Miao Y, Wang T, Wei X, Chen S, Zhang Z, Xiao J, Huang D. 16S rRNA Gene Sequencing Reveals Specific Gut Microbes Common to Medicinal Insects. Front Microbiol 2022; 13:892767. [PMID: 35651499 PMCID: PMC9149300 DOI: 10.3389/fmicb.2022.892767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Insects have a long history of being used in medicine, with clear primary and secondary functions and less side effects, and the study and exploitation of medicinal insects have received increasing attention. Insects gut microbiota and their metabolites play an important role in protecting the hosts from other potentially harmful microbes, providing nutrients, promoting digestion and degradation, and regulating growth and metabolism of the hosts. However, there are still few studies linking the medicinal values of insects with their gut microbes. In this study, we focused on the specific gut microbiota common to medicinal insects, hoping to trace the potential connection between medicinal values and gut microbes of medicinal insects. Based on 16S rRNA gene sequencing data, we compared the gut microbiota of medicinal insects [Periplaneta americana, Protaetia (Liocola) brevitarsis (Lewis) and Musca domestica], in their medicinal stages, and non-medicinal insects (Hermetia illucens L., Tenebrio molitor, and Drosophila melanogaster), and found that the intestinal microbial richness of medicinal insects was higher, and there were significant differences in the microbial community structure between the two groups. We established a model using a random-forest method to preliminarily screen out several types of gut microbiota common to medicinal insects that may play medicinal values: Parabacteroides goldsteinii, Lactobacillus dextrinicus, Bifidobacterium longum subsp. infantis (B. infantis), and Vagococcus carniphilus. In particular, P. goldsteinii and B. infantis were most probably involved in the anti-inflammatory effects of medicinal insects. Our results revealed an association between medicinal insects and their gut microbes, providing new development directions and possibly potential tools for utilizing microbes to enhance the medicinal efficacy of medicinal insects.
Collapse
Affiliation(s)
- Jin Geng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuoxiao Sui
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihao Dou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunheng Miao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xunfan Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Sicong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zongqi Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dawei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
43
|
Bacteroides humanifaecis sp. nov., isolated from faeces of healthy Korean. Arch Microbiol 2022; 204:357. [DOI: 10.1007/s00203-022-02967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
|
44
|
Xie C, Teng J, Wang X, Xu B, Niu Y, Ma L, Yan X. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. ANIMAL NUTRITION 2022; 9:84-99. [PMID: 35949981 PMCID: PMC9344316 DOI: 10.1016/j.aninu.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022]
Abstract
The gut microbiome has great effects on the digestion, absorption, and metabolism of lipids. However, the microbiota composition that can alter the fat deposition and the meat quality of pigs remains unclear. Here, we used Laiwu (LW) pigs (a native Chinese breed with higher intramuscular fat) compared with commercial crossbreed Duroc × (Landrace × Yorkshire) (DLY) pigs to investigate the effects of microbiota on meat quality, especially in intramuscular fat content. A total of 32 DLY piglets were randomly allotted to 4 groups and transplanted with fecal microbiota from healthy LW pigs. The results indicated that the high dose of fecal microbiota transplantation (HFMT) selectively enhanced fat deposition in longissimus dorsi (P < 0.05) but decreased backfat thickness (P < 0.05) compared with control group. HFMT significantly altered meat color and increased feed conversation ratio (P < 0.05). Furthermore, the multi-omics analysis revealed that Bacteroides uniformis, Sphaerochaeta globosa, Hydrogenoanaerobacterium saccharovorans, and Pyramidobacter piscolens are the core species which can regulate lipid deposition. A total of 140 male SPF C57BL/6j mice were randomly allotted into 7 groups and administrated with these 4 microbes alone or consortium to validate the relationships between microbiota and lipid deposition. Inoculating the bacterial consortium into mice increased intramuscular fat content (P < 0.05) compared with control mice. Increased expressions of lipogenesis-associated genes including cluster of differentiation 36 (Cd36), diacylglycerol O-acyltransferase 2 (Dgat2), and fatty acid synthase (FASN) were observed in skeletal muscle in the mice with mixed bacteria compared with control mice. Together, our results suggest that the gut microbiota may play an important role in regulating the lipid deposition in the muscle of pigs and mice.
Collapse
|
45
|
Ranaivo H, Thirion F, Béra-Maillet C, Guilly S, Simon C, Sothier M, Van Den Berghe L, Feugier-Favier N, Lambert-Porcheron S, Dussous I, Roger L, Roume H, Galleron N, Pons N, Le Chatelier E, Ehrlich SD, Laville M, Doré J, Nazare JA. Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbiota and metabolic profile in subjects at cardiometabolic risk. Gut Microbes 2022; 14:2044722. [PMID: 35311446 PMCID: PMC8942430 DOI: 10.1080/19490976.2022.2044722] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Some cardiometabolic risk factors such as dyslipidemia and insulin resistance are known to be associated with low gut microbiota richness. A link between gut microbiota richness and the diversity of consumed dietary fibers (DF) has also been reported. We introduced a larger diversity of consumed DF by using a daily consumed bread in subjects at cardiometabolic risk and assessed the impacts on the composition and functions of gut microbiota as well as on cardiometabolic profile. Thirty-nine subjects at cardiometabolic risk were included in a double-blind, randomized, cross-over, twice 8-week study, and consumed daily 150 g of standard bread or enriched with a 7-dietary fiber mixture (5.55 g and 16.05 g of fibers, respectively). Before and after intervention, stool samples were collected for gut microbiota analysis from species determination down to gene-level abundance using shotgun metagenomics, and cardiometabolic profile was assessed. Multi-fiber bread consumption significantly decreased Bacteroides vulgatus, whereas it increased Parabacteroides distasonis, Fusicatenibacter saccharivorans, an unclassified Acutalibacteraceae and an unclassified Eisenbergiella (q < 0.1). The fraction of gut microbiota carrying the gene coding for five families/subfamilies of glycoside hydrolases (CAZymes) were also increased and negatively correlated with peaks and total/incremental area under curve (tAUC/iAUC) of postprandial glycemia and insulinemia. Compared to control bread, multi-fiber bread decreased total cholesterol (-0.42 mM; q < 0.01), LDL cholesterol (-0.36 mM; q < 0.01), insulin (-2.77 mIU/l; q < 0.05), and HOMA (-0.78; q < 0.05). In conclusion, increasing the diversity of DF in a daily consumed product modifies gut microbiota composition and function and could be a relevant nutritional tool to improve cardiometabolic profile.
Collapse
Affiliation(s)
- Harimalala Ranaivo
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | | | - Christel Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Susie Guilly
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | - Chantal Simon
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Monique Sothier
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Laurie Van Den Berghe
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Nathalie Feugier-Favier
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Stéphanie Lambert-Porcheron
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | | | | | - Hugo Roume
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | | | - Nicolas Pons
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | | | - Stanislav Dusko Ehrlich
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Martine Laville
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France,Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julie-Anne Nazare
- Univ-Lyon, CarMeN Laboratory, Inserm, Inrae, Université Claude Bernard Lyon-1, Oullins, France,Centre de Recherche En Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Cens, Fcrin/force Network, Pierre-Bénite, France,CONTACT Julie-Anne Nazare CRNH Rhône-Alpes (Centre de recherche en Nutrition Humaine) Centre Hospitalier Lyon Sud – Secteur 2 Bâtiment 2D - CENS ELI 165 chemin du grand Revoyet 69310 – Pierre Bénite France
| |
Collapse
|
46
|
Identification of distinct capsule types associated with Serratia marcescens infection isolates. PLoS Pathog 2022; 18:e1010423. [PMID: 35353877 PMCID: PMC9000132 DOI: 10.1371/journal.ppat.1010423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 03/07/2022] [Indexed: 01/13/2023] Open
Abstract
Serratia marcescens is a versatile opportunistic pathogen that can cause a variety of infections, including bacteremia. Our previous work established that the capsule polysaccharide (CPS) biosynthesis and translocation locus contributes to the survival of S. marcescens in a murine model of bacteremia and in human serum. In this study, we determined the degree of capsule genetic diversity among S. marcescens isolates. Capsule loci (KL) were extracted from >300 S. marcescens genome sequences and compared. A phylogenetic comparison of KL sequences demonstrated a substantial level of KL diversity within S. marcescens as a species and a strong delineation between KL sequences originating from infection isolates versus environmental isolates. Strains from five of the identified KL types were selected for further study and electrophoretic analysis of purified CPS indicated the production of distinct glycans. Polysaccharide composition analysis confirmed this observation and identified the constituent monosaccharides for each strain. Two predominant infection-associated clades, designated KL1 and KL2, emerged from the capsule phylogeny. Bacteremia strains from KL1 and KL2 were determined to produce ketodeoxynonulonic acid and N-acetylneuraminic acid, two sialic acids that were not found in strains from other clades. Further investigation of KL1 and KL2 sequences identified two genes, designated neuA and neuB, that were hypothesized to encode sialic acid biosynthesis functions. Disruption of neuB in a KL1 isolate resulted in the loss of sialic acid and CPS production. The absence of sialic acid and CPS production also led to increased susceptibility to internalization by a human monocytic cell line, demonstrating that S. marcescens phagocytosis resistance requires CPS. Together, these results establish the capsule genetic repertoire of S. marcescens and identify infection-associated clades with sialic acid CPS components.
Collapse
|
47
|
Mohd Salleh MH, Esa Y, Ngalimat MS, Chen PN. Faecal DNA metabarcoding reveals novel bacterial community patterns of critically endangered Southern River Terrapin, Batagur affinis. PeerJ 2022; 10:e12970. [PMID: 35368336 PMCID: PMC8973471 DOI: 10.7717/peerj.12970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/30/2022] [Indexed: 01/11/2023] Open
Abstract
Southern River Terrapin, Batagur affinis, is a freshwater turtle listed as critically endangered on the IUCN Red List since 2000. Many studies suggest that faecal DNA metabarcoding can shield light on the host-associated microbial communities that play important roles in host health. Thus, this study aimed to characterise and compare the faecal bacterial community between captive and wild B. affinis using metabarcoding approaches. A total of seven faeces samples were collected from captive (N = 5) and wild (N = 2) adult B. affinis aseptically, crossing the East and West coast of peninsular Malaysia. The DNA was extracted from the faeces samples, and the 16S rRNA gene (V3-V4 region) was amplified using polymerase chain reaction (PCR). The amplicon was further analysed using SILVA and DADA2 pipelines. In total, 297 bacterial communities taxonomic profile (phylum to genus) were determined. Three phyla were found in high abundance in all faeces samples, namely Firmicutes (38.69%), Bacteroidetes (24.52%), and Fusobacteria (6.95%). Proteobacteria were detected in all faeces samples (39.63%), except the wild sample, KBW3. Under genus level, Cetobacteriumwas found as the most abundant genus (67.79%), followed by Bacteroides (24.56%) and Parabacteroides (21.78%). The uncultured genus had the highest abundance (88.51%) even though not detected in the BK31 and KBW2 samples. The potential probiotic genera (75.00%) were discovered to be more dominant in B. affinis faeces samples. Results demonstrated that the captive B. affinis faeces samples have a greater bacterial variety and richness than wild B. affinis faeces samples. This study has established a starting point for future investigation of the gut microbiota of B. affinis.
Collapse
Affiliation(s)
- Mohd Hairul Mohd Salleh
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Royal Malaysian Customs Department, Presint 2, Putrajaya, Malaysia
| | - Yuzine Esa
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Mohamad Syazwan Ngalimat
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pelf Nyok Chen
- Turtle Conservation Society of Malaysia, Kemaman, Terengganu, Malaysia
| |
Collapse
|
48
|
Petit J, de Bruijn I, Goldman MRG, van den Brink E, Pellikaan WF, Forlenza M, Wiegertjes GF. β-Glucan-Induced Immuno-Modulation: A Role for the Intestinal Microbiota and Short-Chain Fatty Acids in Common Carp. Front Immunol 2022; 12:761820. [PMID: 35069532 PMCID: PMC8770818 DOI: 10.3389/fimmu.2021.761820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Dietary supplementation of fish with β-glucans has been commonly associated with immunomodulation and generally accepted as beneficial for fish health. However, to date the exact mechanisms of immunomodulation by β-glucan supplementation in fish have remained elusive. In mammals, a clear relation between high-fibre diets, such as those including β-glucans, and diet-induced immunomodulation via intestinal microbiota and associated metabolites has been observed. In this study, first we describe by 16S rRNA sequencing the active naive microbiota of common carp intestine. Based on the abundance of the genus Bacteroides, well known for their capacity to degrade and ferment carbohydrates, we hypothesize that common carp intestinal microbiota could ferment dietary β-glucans. Indeed, two different β-glucan preparations (curdlan and MacroGard®) were both fermented in vitro, albeit with distinct fermentation dynamics and distinct production of short-chain fatty acids (SCFA). Second, we describe the potential immunomodulatory effects of the three dominant SCFAs (acetate, butyrate, and propionate) on head kidney leukocytes, showing effects on both nitric oxide production and expression of several cytokines (il-1b, il-6, tnfα, and il-10) in vitro. Interestingly, we also observed a regulation of expression of several gpr40L genes, which were recently described as putative SCFA receptors. Third, we describe how a single in vivo oral gavage of carp with MacroGard® modulated simultaneously, the expression of several pro-inflammatory genes (il-1b, il-6, tnfα), type I IFN-associated genes (tlr3.1, mx3), and three specific gpr40L genes. The in vivo observations provide indirect support to our in vitro data and the possible role of SCFAs in β-glucan-induced immunomodulation. We discuss how β-glucan-induced immunomodulatory effects can be explained, at least in part, by fermentation of MacroGard® by specific bacteria, part of the naive microbiota of common carp intestine, and how a subsequent production of SFCAs could possibly explain immunomodulation by β-glucan via SCFA receptors present on leukocytes.
Collapse
Affiliation(s)
- Jules Petit
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology-The Royal Netherlands Academy of Arts and Sciences, (NIOO-KNAW), Wageningen, Netherlands
| | - Mark R G Goldman
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Erik van den Brink
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wilbert F Pellikaan
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
49
|
Pudlo NA, Urs K, Crawford R, Pirani A, Atherly T, Jimenez R, Terrapon N, Henrissat B, Peterson D, Ziemer C, Snitkin E, Martens EC. Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria. mSystems 2022; 7:e0094721. [PMID: 35166563 PMCID: PMC8845570 DOI: 10.1128/msystems.00947-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Symbiotic bacteria are responsible for the majority of complex carbohydrate digestion in the human colon. Since the identities and amounts of dietary polysaccharides directly impact the gut microbiota, determining which microorganisms consume specific nutrients is central for defining the relationship between diet and gut microbial ecology. Using a custom phenotyping array, we determined carbohydrate utilization profiles for 354 members of the Bacteroidetes, a dominant saccharolytic phylum. There was wide variation in the numbers and types of substrates degraded by individual bacteria, but phenotype-based clustering grouped members of the same species indicating that each species performs characteristic roles. The ability to utilize dietary polysaccharides and endogenous mucin glycans was negatively correlated, suggesting exclusion between these niches. By analyzing related Bacteroides ovatus/Bacteroides xylanisolvens strains that vary in their ability to utilize mucin glycans, we addressed whether gene clusters that confer this complex, multilocus trait are being gained or lost in individual strains. Pangenome reconstruction of these strains revealed a remarkably mosaic architecture in which genes involved in polysaccharide metabolism are highly variable and bioinformatics data provide evidence of interspecies gene transfer that might explain this genomic heterogeneity. Global transcriptomic analyses suggest that the ability to utilize mucin has been lost in some lineages of B. ovatus and B. xylanisolvens, which harbor residual gene clusters that are involved in mucin utilization by strains that still actively express this phenotype. Our data provide insight into the breadth and complexity of carbohydrate metabolism in the microbiome and the underlying genomic events that shape these behaviors. IMPORTANCE Nonharmful bacteria are the primary microbial symbionts that inhabit the human gastrointestinal tract. These bacteria play many beneficial roles and in some cases can modify disease states, making it important to understand which nutrients sustain specific lineages. This knowledge will in turn lead to strategies to intentionally manipulate the gut microbial ecosystem. We designed a scalable, high-throughput platform for measuring the ability of gut bacteria to utilize polysaccharides, of which many are derived from dietary fiber sources that can be manipulated easily. Our results provide paths to expand phenotypic surveys of more diverse gut bacteria to understand their functions and also to leverage dietary fibers to alter the physiology of the gut microbial community.
Collapse
Affiliation(s)
- Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karthik Urs
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ryan Crawford
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Todd Atherly
- Iowa State University, Department of Animal Science, Ames, Iowa, USA
- United States Department of Agriculture Agricultural Research Station, Ames, Iowa, USA
| | - Roberto Jimenez
- University of Nebraska, Department of Food Sciences, Lincoln, Nebraska, USA
| | - Nicolas Terrapon
- Aix Marseille Univ, CNRS, UMR7257 AFMB, Marseille, France
- INRAE, USC1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Aix Marseille Univ, CNRS, UMR7257 AFMB, Marseille, France
- INRAE, USC1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Daniel Peterson
- University of Nebraska, Department of Food Sciences, Lincoln, Nebraska, USA
- Johns Hopkins University, Department of Pathology, Baltimore, Maryland, USA
| | - Cherie Ziemer
- Iowa State University, Department of Animal Science, Ames, Iowa, USA
- United States Department of Agriculture Agricultural Research Station, Ames, Iowa, USA
| | - Evan Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Shehata AA, Yalçın S, Latorre JD, Basiouni S, Attia YA, Abd El-Wahab A, Visscher C, El-Seedi HR, Huber C, Hafez HM, Eisenreich W, Tellez-Isaias G. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms 2022; 10:microorganisms10020395. [PMID: 35208851 PMCID: PMC8877156 DOI: 10.3390/microorganisms10020395] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has been designated as a hidden metabolic ‘organ’ because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This complicated interaction is seen as a determinant of health and disease; thus, intestinal dysbiosis is linked with several metabolic diseases. Therefore, tractable strategies targeting the regulation of intestinal microbiota can control several diseases that are closely related to inflammatory and metabolic disorders. As a result, animal health and performance are improved. One of these strategies is related to dietary supplementation with prebiotics, probiotics, and phytogenic substances. These supplements exert their effects indirectly through manipulation of gut microbiota quality and improvement in intestinal epithelial barrier. Several phytogenic substances, such as berberine, resveratrol, curcumin, carvacrol, thymol, isoflavones and hydrolyzed fibers, have been identified as potential supplements that may also act as welcome means to reduce the usage of antibiotics in feedstock, including poultry farming, through manipulation of the gut microbiome. In addition, these compounds may improve the integrity of tight junctions by controlling tight junction-related proteins and inflammatory signaling pathways in the host animals. In this review, we discuss the role of probiotics, prebiotics, and phytogenic substances in optimizing gut function in poultry.
Collapse
Affiliation(s)
- Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Correspondence: (A.A.S.); (G.T.-I.)
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University (AU), 06110 Ankara, Turkey;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt;
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (A.A.E.-W.); (C.V.)
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (A.A.E.-W.); (C.V.)
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, SE 75124 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
| | - Claudia Huber
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbegstr. 4, 85748 Garching, Germany; (C.H.); (W.E.)
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbegstr. 4, 85748 Garching, Germany; (C.H.); (W.E.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Correspondence: (A.A.S.); (G.T.-I.)
| |
Collapse
|