1
|
Ducrest A, San‐Jose LM, Neuenschwander S, Schmid‐Siegert E, Simon C, Pagni M, Iseli C, Richter H, Guex N, Cumer T, Beaudoing E, Dupasquier M, Charruau P, Ducouret P, Xenarios I, Goudet J, Roulin A. Melanin and Neurotransmitter Signalling Genes Are Differentially Co-Expressed in Growing Feathers of White and Rufous Barn Owls. Pigment Cell Melanoma Res 2025; 38:e70001. [PMID: 39910963 PMCID: PMC11799826 DOI: 10.1111/pcmr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/04/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025]
Abstract
Regulation of melanin-based pigmentation is complex, involving multiple genes. Because different genes can contribute to the same pigmentation phenotype, the genes identified in model organisms may not necessarily apply to wild species. In the barn owl (Tyto alba), ventral plumage colour ranges from white to rufous, with genetic variation in the melanocortin 1 receptor gene (MC1R) accounting for at least a third of this variation. In the present study, we used transcriptomic data to compare the gene expression profiles of growing feathers from nestlings with different MC1R genotypes. We identified 21 differentially expressed genes, nine of which are involved in melanogenesis, while seven are related to neurotransmitter function or synaptic activity. With the exception of CALB1, all of the differentially expressed genes were upregulated in rufous owls compared to white barn owls. To the best of our knowledge, this study is the first to link melanin production with neurotransmitter-related genes, and we discuss possible evolutionary explanations for this connection.
Collapse
Affiliation(s)
- Anne‐Lyse Ducrest
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Luis M. San‐Jose
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE)Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3)ToulouseFrance
| | - Samuel Neuenschwander
- Vital‐IT, Swiss Institute of BioinformaticLausanneSwitzerland
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | | | - Céline Simon
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Marco Pagni
- Vital‐IT, Swiss Institute of BioinformaticLausanneSwitzerland
| | - Christian Iseli
- Bioinformatics Competence CenterUniversity of LausanneLausanneSwitzerland
- Bioinformatics Competence CenterEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Hannes Richter
- Centre for Integrative Genomics, Genomic Technologies FacilityUniversity of LausanneLausanneSwitzerland
| | - Nicolas Guex
- Bioinformatics Competence CenterUniversity of LausanneLausanneSwitzerland
- Bioinformatics Competence CenterEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Emmanuel Beaudoing
- Centre for Integrative Genomics, Genomic Technologies FacilityUniversity of LausanneLausanneSwitzerland
| | - Mélanie Dupasquier
- Centre for Integrative Genomics, Genomic Technologies FacilityUniversity of LausanneLausanneSwitzerland
| | - Pauline Charruau
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Pauline Ducouret
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Ioannis Xenarios
- Agora CenterLausanneSwitzerland
- Health2030 Genome CenterGenèveSwitzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
2
|
Kim YJ, Park GM, Cho WK, Woo DH. L-DOPA Promotes Functional Proliferation Through GPR143, Specific L-DOPA Receptor of Astrocytes. ACS Chem Neurosci 2024; 15:4132-4142. [PMID: 39509688 DOI: 10.1021/acschemneuro.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
l-3,4-Dihydroxyphenylalanine (levodopa and L-DOPA in this text), alongside dopamine, boasts high biocompatibility, prompting industrial demand for its use as a coating material. Indeed, the effectiveness of L-DOPA is steadily rising as it serves as an oral therapeutic agent for neurodegenerative brain diseases, particularly Parkinson's disease (PD). However, the effects of L-DOPA on the growth and function of astrocytes, the main glial cells, and the most numerous glial cells in the brain, are unknown. Here, we investigated whether L-DOPA is possible as a coating material on cover glass and polystyrene for rat primary astrocytes. The coating state of L-DOPA on the cover glass and polystyrene was characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). Interestingly, L-DOPA coated on the cover glass promoted the proliferation of astrocytes but not neurons. Furthermore, L-DOPA coated on the cover glass, as opposed to polystyrene, facilitated the proliferation of the astrocytes. The astrocytes grown on L-DOPA-coated cover glasses exhibited functional receptor-activated Ca2+ transients through the activation of protease-activated receptor subtype 1 (PAR-1), recognized as an astrocytic functional marker. However, cover glass coated with 0, 500, 1000, 2000, and 4000 μg/mL L-DOPA maintained astrocyte viability, while supplementation with 500 and 1000 μM L-DOPA significantly decreased astrocyte viability. This suggests that treatments with free 500 and 1000 μM L-DOPA significantly reduced the number of astrocytes. Both Pimozide, an inhibitor of G protein-coupled receptor 143 (GPR143), also known as Ocular albinism type 1 (OA1), and CCG2046, an inhibitor of regulator of G protein signaling 4 (RGS4), reduced the viability of astrocytes on cover glass coated with L-DOPA compared to astrocytes on cover glass coated with poly-d-lysine (PDL). This suggests that L-DOPA promotes astrocyte proliferation through activation of the GPR143 signaling pathway. These findings imply that L-DOPA proliferates functional astrocytes through the activation of GPR143. These results are the first report that L-DOPA coating cover glass proliferates rat primary astrocytes with the activation of GPR143. The discovery that levodopa enhances cell adhesion can significantly influence research in multiple ways. It provides insights into cell behavior, disease mechanisms, and potential therapeutic applications in tissue engineering and regenerative medicine. Additionally, it offers opportunities to explore novel approaches for improving cell-based therapies and tissue regeneration. Overall, this finding opens up new avenues for research, with broad implications across various scientific fields.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Daejeon 34114, South Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea
| | - Gyeong Min Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Dong Ho Woo
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Daejeon 34114, South Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea
| |
Collapse
|
3
|
Chan KS, Aggarwal N, Lawson S, Boucher N, MacCumber MW, Lavine JA. Levodopa is associated with reduced development of new-onset geographic atrophy in patients with age-related macular degeneration. EYE AND VISION (LONDON, ENGLAND) 2024; 11:44. [PMID: 39501348 PMCID: PMC11539668 DOI: 10.1186/s40662-024-00412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Geographic atrophy (GA) is a significant cause of vision loss in patients with age-related macular degeneration (AMD). Current treatments are limited to anti-complement drugs, which have limited efficacy to delay progression with significant risk of complications. Levodopa (L-DOPA) is a byproduct of melanin synthesis that is associated with reduced development of neovascular AMD. In this study, we determined if L-DOPA was associated with a reduced likelihood of new-onset GA. METHODS We performed a retrospective analysis in the Vestrum Health Retina Database. We included eyes with non-neovascular AMD without GA and 1-5 years of follow-up. Eyes were divided into two groups. Exposed to L-DOPA before or on the date of non-neovascular AMD without GA diagnosis, and eyes not exposed to L-DOPA. We extracted age, sex, AREDS2 status, dry AMD stage, smoking history, and conversion rate to GA at years 1 through 5. Propensity score matching was used to match L-DOPA and control groups. Cox proportional hazard regression, adjusting for age, sex, AMD severity, AREDS2 use, smoking status, and L-DOPA use was employed to calculate hazard ratios for new-onset GA detection. RESULTS We identified 112,089 control and 844 L-DOPA exposed eyes with non-neovascular AMD without GA. After propensity score matching, 2532 control and 844 L-DOPA exposed eyes remained that were well-matched for age, sex, AMD severity, AREDS2 use, and smoking status. We found that L-DOPA exposure was associated with a significantly reduced likelihood (HR = 0.68, 95% CI: 0.48-0.95, P = 0.025) of new-onset GA detection. CONCLUSION L-DOPA use was associated with reduced detection of new-onset GA.
Collapse
Affiliation(s)
- Kyle S Chan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | - Mathew W MacCumber
- Department of Ophthalmology, Rush University Medical Center, Chicago, IL, USA
- Illinois Retina Associates, Chicago, IL, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Tajika R, Masukawa D, Arai M, Nawa H, Goshima Y. Opposite regulation by L-DOPA receptor GPR143 of the long and short forms of the dopamine D2 receptors. J Pharmacol Sci 2024; 156:77-81. [PMID: 39179337 DOI: 10.1016/j.jphs.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024] Open
Abstract
Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific Gpr143 gene-deficient (Dat-cre;Gpr143flox/y) mice, compared with wild-type (Wt) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in Gpr143-/y mice compared with Wt mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3β(pGSK3β(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.
Collapse
Affiliation(s)
- Rei Tajika
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Masami Arai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
5
|
Sabeti F, Thomson K, Maddess T, Karouta C, Leung M, Anstice N, Jong T, Ashby R. Retinal Function in Young Adults Following Topical Application of Levodopa to the Eye. Transl Vis Sci Technol 2024; 13:12. [PMID: 39374001 PMCID: PMC11463705 DOI: 10.1167/tvst.13.10.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Levodopa has been investigated as a therapeutic solution for ocular disorders involving dysregulation of the dopaminergic system, especially in the context of myopia. However, given the critical role dopamine plays in normal vision, this phase I trial examined whether levodopa/carbidopa eye drops induce any regional changes in retinal structure and function. Methods Twenty-nine healthy male subjects 18 to 30 years of age were randomly assigned to receive either a low (1.4/0.34 µmoles/day, n = 14) or high (2.7/0.68 µmoles/day, n = 15) dose of levodopa/carbidopa eye drops in 1 eye for 28 consecutive days. A placebo solution was applied to all fellow eyes. Measures included visual acuity, regional frequency doubling perimetry, regional multifocal electroretinogram (mfERG) and optical coherence tomography (retinal thickness). Outcome measures were undertaken at baseline, end-of-treatment (4 weeks), and at a follow-up (4 months post-treatment). Results For low dose treated eyes, regional analysis showed a small, statistically significant change in mfERG recordings (increase in ring 5 amplitude in low dose treated eyes, P < 0.05) and the retinal thickness map (localized retinal thinning in low dose treated eyes, P < 0.05). These changes were not clinically significant. No significant changes were observed in high dose treated eyes. Pharmacokinetic analysis (rabbits) demonstrated that levodopa was not detectable within blood and peaked within the eye at 15 to 30 minutes (and eliminated within 4 hours). Conclusions No clinically significant effects of levodopa/carbidopa eye drops were found with regard to normal retinal structure and function following short-term use. Translational Relevance This study further demonstrates the safety of topical levodopa, which may support its use in the treatment of ocular disorders in which the dopamine system is dysregulated.
Collapse
Affiliation(s)
- Faran Sabeti
- Discipline of Optometry, Faculty of Health, University of Canberra, Canberra, Australia
- John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, Australia
| | - Kate Thomson
- Centre for Research into Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Ted Maddess
- John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, Australia
| | - Cindy Karouta
- Centre for Research into Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Myra Leung
- Discipline of Optometry, Faculty of Health, University of Canberra, Canberra, Australia
| | - Nicola Anstice
- Discipline of Optometry, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Tina Jong
- Discipline of Optometry, Faculty of Health, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Centre for Research into Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Inoue M, Masukawa D, Goshima Y. l-DOPA receptor GPR143 inhibits neurite outgrowth via L-type calcium channels in PC12 cells. J Pharmacol Sci 2024; 156:45-48. [PMID: 39068034 DOI: 10.1016/j.jphs.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (l-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).
Collapse
Affiliation(s)
- Miyu Inoue
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
7
|
Wang F, Ma W, Fan D, Hu J, An X, Wang Z. The biochemistry of melanogenesis: an insight into the function and mechanism of melanogenesis-related proteins. Front Mol Biosci 2024; 11:1440187. [PMID: 39228912 PMCID: PMC11368874 DOI: 10.3389/fmolb.2024.1440187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Melanin is an amino acid derivative produced by melanocyte through a series of enzymatic reactions using tyrosinase as substrate. Human skin and hair color is also closely related to melanin, so understanding the mechanisms and proteins that produce melanin is very important. There are many proteins involved in the process of melanin expression, For example, proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1), TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their content to control the production rate of melanin. Others, such as OA1 (ocular albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin), have been found to control the transfer rate of melanosomes from melanocytes to keratinocytes, and regulate the amount of human epidermal melanin to control the depth of human skin color. In addition to the above proteins, there are other protein families also involved in the process of melanin expression, such as BLOC, Rab and Rho. This article reviews the origin of melanocytes, the related proteins affecting melanin and the basic causes of related gene mutations. In addition, we also summarized the active ingredients of 5 popular whitening cosmetics and their mechanisms of action.
Collapse
Affiliation(s)
- Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Wenjing Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Dongjie Fan
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Hu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zuding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
| |
Collapse
|
8
|
Hatzipantelis CJ. Enhancement of Haloperidol-Induced Catalepsy by GPR143, an l-DOPA Receptor, in Striatal Cholinergic Interneurons. J Neurosci 2024; 44:e0953242024. [PMID: 39142836 PMCID: PMC11326860 DOI: 10.1523/jneurosci.0953-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Affiliation(s)
- Cassandra J Hatzipantelis
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California 95616
- Department of Chemistry, University of California, Davis, Davis, California 95616
| |
Collapse
|
9
|
Mathis T, Baudin F, Mariet AS, Augustin S, Bricout M, Przegralek L, Roubeix C, Benzenine É, Blot G, Nous C, Kodjikian L, Mauget-Faÿsse M, Sahel JA, Plevin R, Zeitz C, Delarasse C, Guillonneau X, Creuzot-Garcher C, Quantin C, Hunot S, Sennlaub F. DRD2 activation inhibits choroidal neovascularization in patients with Parkinson's disease and age-related macular degeneration. J Clin Invest 2024; 134:e174199. [PMID: 39012703 PMCID: PMC11364393 DOI: 10.1172/jci174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD) remains a major cause of visual impairment and puts considerable burden on patients and health care systems. l-DOPA-treated Parkinson's disease (PD) patients have been shown to be partially protected from nAMD, but the mechanism remains unknown. Using murine models that combine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced (MPTP-induced) PD and laser-induced nAMD with standard PD treatment of l-DOPA/DOPA-decarboxylase inhibitor or specific dopamine receptor inhibitors, we here demonstrate that l-DOPA treatment-induced increase of dopamine-mediated dopamine receptor D2 (DRD2) signaling inhibits choroidal neovascularization independently of MPTP-associated nigrostriatal pathway lesion. Analyzing a retrospective cohort of more than 200,000 patients with nAMD receiving anti-VEGF treatment from the French nationwide insurance database, we show that DRD2 agonist-treated PD patients have a significantly delayed age of onset of nAMD and reduced need for anti-VEGF therapies, similar to the effects of the l-DOPA treatment. While providing a mechanistic explanation for an intriguing epidemiological observation, our findings suggest that systemic DRD2 agonists might constitute an adjuvant therapy to delay and reduce the need for anti-VEGF therapy in patients with nAMD.
Collapse
Affiliation(s)
- Thibaud Mathis
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Hopital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- UMR-CNRS 5510, MATEIS, Institut National des Sciences Appliquées, Université Lyon 1, Campus de la Doua, Villeurbanne, France
| | - Florian Baudin
- Service d’ophtalmologie, CHU Dijon, Dijon, France
- Ramsaysanté, Clinique d’Argonay, Argonay, France
| | - Anne-Sophie Mariet
- Service de Biostatistiques et D’Information Médicale (DIM), CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
| | | | - Marion Bricout
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Hopital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- UMR-CNRS 5510, MATEIS, Institut National des Sciences Appliquées, Université Lyon 1, Campus de la Doua, Villeurbanne, France
| | | | | | - Éric Benzenine
- Service de Biostatistiques et D’Information Médicale (DIM), CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
| | - Guillaume Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Caroline Nous
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Laurent Kodjikian
- Hopital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- UMR-CNRS 5510, MATEIS, Institut National des Sciences Appliquées, Université Lyon 1, Campus de la Doua, Villeurbanne, France
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Cécile Delarasse
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | - Catherine Quantin
- Service de Biostatistiques et D’Information Médicale (DIM), CHU Dijon Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- Université Paris-Saclay, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), INSERM, Centre for Epidemiology and Population Health (CESP), Villejuif, France
| | - Stéphane Hunot
- Sorbonne Université, Paris Brain Institute–L’Institut du Cerveau, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
10
|
Bjeloš M, Ćurić A, Bušić M, Rak B, Kuzmanović Elabjer B. Genetic Linkage between CAPN5 and TYR Variants in the Context of Albinism and Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy Absence: A Case Report. Int J Mol Sci 2024; 25:6442. [PMID: 38928147 PMCID: PMC11204092 DOI: 10.3390/ijms25126442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
We present a case involving a patient whose clinical phenotype aligns with oculocutaneous albinism (OCA), yet exhibits a complex genotype primarily characterized by variants of unknown significance (VUS). An 11-year-old boy manifested iris hypopigmentation and translucency, pronounced photophobia, diminished visual acuity and stereopsis, nystagmus, reduced pigmentation of the retina, and foveal hypoplasia. Genetic testing was performed. A heterozygous missense VUS CAPN5 c.230A>G, p.(Gln77Arg), a heterozygous missense VUS TYR c.1307G>C, p.(Gly436Ala), and a heterozygous missense variant TYR c.1205G>A, p.(Arg402Gln) which was classified as a risk factor, were identified. We hypothesized that the TYR c.1307G>C, p.(Gly436Ala) variant is in genetic disequilibrium with the TYR c.1205G>A, p.(Arg402Gln) variant leading to deficient expression of melanogenic enzymes in retinal cells, resulting in the manifestation of mild OCA. Additionally, this study represents the case where we did not detect chiasmal misrouting in visual evoked potentials, nor did we observe a shift in the distribution of ganglion cell thickness from a temporal to a central position. Moreover, our patient's case supports the probable benign nature of the CAPN5 c.230A>G, p.(Gln77Arg) variant.
Collapse
Affiliation(s)
- Mirjana Bjeloš
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ana Ćurić
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Mladen Bušić
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Benedict Rak
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
| | - Biljana Kuzmanović Elabjer
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Arai M, Suzuki E, Kitamura S, Otaki M, Kanai K, Yamasaki M, Watanabe M, Kambe Y, Murata K, Takada Y, Arisawa T, Kobayashi K, Tajika R, Miyazaki T, Yamaguchi M, Lazarus M, Hayashi Y, Itohara S, de Kerchove d'Exaerde A, Nawa H, Kim R, Bito H, Momiyama T, Masukawa D, Goshima Y. Enhancement of Haloperidol-Induced Catalepsy by GPR143, an L-Dopa Receptor, in Striatal Cholinergic Interneurons. J Neurosci 2024; 44:e1504232024. [PMID: 38286627 PMCID: PMC10941237 DOI: 10.1523/jneurosci.1504-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.
Collapse
Affiliation(s)
- Masami Arai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Satoshi Kitamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Momoyo Otaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kaori Kanai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima 890-0075, Japan
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui 910-0017, Japan
| | - Yuuki Takada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tetsu Arisawa
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Radioisotope Research Center, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Rei Tajika
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Michael Lazarus
- Institute of Medicine, University of Tsukuba, Tsukuba 305-0005, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-0005, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-0005, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | | | - Hiroyuki Nawa
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University. Wakayama-city, Wakayama 640-8156, Japan
| | - Ryang Kim
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
12
|
Sanchez-Bretano A, Keeling E, Scott JA, Lynn SA, Soundara-Pandi SP, Macdonald SL, Newall T, Griffiths H, Lotery AJ, Ratnayaka JA, Self JE, Lee H. Human equivalent doses of L-DOPA rescues retinal morphology and visual function in a murine model of albinism. Sci Rep 2023; 13:17173. [PMID: 37821525 PMCID: PMC10567794 DOI: 10.1038/s41598-023-44373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
L-DOPA is deficient in the developing albino eye, resulting in abnormalities of retinal development and visual impairment. Ongoing retinal development after birth has also been demonstrated in the developing albino eye offering a potential therapeutic window in humans. To study whether human equivalent doses of L-DOPA/Carbidopa administered during the crucial postnatal period of neuroplasticity can rescue visual function, OCA C57BL/6 J-c2J OCA1 mice were treated with a 28-day course of oral L-DOPA/Carbidopa at 3 different doses from 15 to 43 days postnatal age (PNA) and for 3 different lengths of treatment, to identify optimum dosage and treatment length. Visual electrophysiology, acuity, and retinal morphology were measured at 4, 5, 6, 12 and 16 weeks PNA and compared to untreated C57BL/6 J (WT) and OCA1 mice. Quantification of PEDF, βIII-tubulin and syntaxin-3 expression was also performed. Our data showed impaired retinal morphology, decreased retinal function and lower visual acuity in untreated OCA1 mice compared to WT mice. These changes were diminished or eliminated when treated with higher doses of L-DOPA/Carbidopa. Our results demonstrate that oral L-DOPA/Carbidopa supplementation at human equivalent doses during the postnatal critical period of retinal neuroplasticity can rescue visual retinal morphology and retinal function, via PEDF upregulation and modulation of retinal synaptogenesis, providing a further step towards developing an effective treatment for albinism patients.
Collapse
Affiliation(s)
- Aida Sanchez-Bretano
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Jennifer A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Sudha Priya Soundara-Pandi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Sarah L Macdonald
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Tutte Newall
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Helen Griffiths
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
| | - Jay E Self
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, Southampton University Hospital, South Block Mail Point 806, Level D, Southampton, SO16 6YD, UK.
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
13
|
Ramsay E, Lajunen T, Bhattacharya M, Reinisalo M, Rilla K, Kidron H, Terasaki T, Urtti A. Selective drug delivery to the retinal cells: Biological barriers and avenues. J Control Release 2023; 361:1-19. [PMID: 37481214 DOI: 10.1016/j.jconrel.2023.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, receptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.
Collapse
Affiliation(s)
- Eva Ramsay
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tatu Lajunen
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Madhushree Bhattacharya
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Arto Urtti
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland.
| |
Collapse
|
14
|
Hyman MJ, Skondra D, Aggarwal N, Moir J, Boucher N, McKay BS, MacCumber MW, Lavine JA. Levodopa Is Associated with Reduced Development of Neovascular Age-Related Macular Degeneration. Ophthalmol Retina 2023; 7:745-752. [PMID: 37146684 PMCID: PMC10524303 DOI: 10.1016/j.oret.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE To determine whether levodopa (L-DOPA) is associated with a reduced likelihood of developing neovascular age-related macular degeneration (AMD). DESIGN Three studies were performed: retrospective analyses in the Vestrum Health Retina Database (#1-2) and case-control analysis in the Merative MarketScan Research Databases (#3). PARTICIPANTS Eyes with neovascular AMD and 2 years of follow-up (#1). Eyes with non-neovascular AMD and 1 to 5 years of follow-up (#2). Patients aged ≥ 55 years with newly diagnosed neovascular AMD matched to controls without neovascular AMD (#3). METHODS Eyes were divided into 2 groups (#1-2): exposed to L-DOPA before or on the date of neovascular (#1) or nonneovascular (#2) AMD diagnosis, and eyes not exposed to L-DOPA. We extracted AMD risk factors, number of intravitreal injections (#1), and conversion rate to neovascular AMD (#2). We calculated the percentage of newly diagnosed neovascular AMD cases and matched controls exposed to any L-DOPA and determined the cumulative 2-year dose in grams by tertiles (< 100 mg, approximately 100-300 mg, and approximately > 300 mg per day, #3). MAIN OUTCOME MEASURES Number of intravitreal injections (#1) and detection of new-onset neovascular AMD (#2-3) after adjusting for AMD risk factors. RESULTS In the Vestrum database, eyes with neovascular AMD that were exposed to L-DOPA underwent 1 fewer intravitreal injection over 2 years (N = 84 088 control vs. 530 L-DOPA eyes, P = 0.006). In eyes with nonneovascular AMD (N = 42 081-203 155 control vs. 314-1525 L-DOPA eyes), L-DOPA exposure was associated with a reduced risk of conversion to neovascular AMD by 21% at year 2 (P = 0.029), 35% at years 3 to 4 (P < 0.001), and 28% at year 5 (P = 0.024). In the MarketScan databases (N = 86 900 per group), cumulative 2-year doses of L-DOPA between approximately 100 to 300 mg per day and approximately > 300 mg were associated with decreased odds of developing neovascular AMD by 15% (odds ratio [OR], 0.85; 95% confidence interval [CI], 0.75-0.97) and 23% (OR, 0.77; 95% CI, 0.67-0.87), respectively. CONCLUSIONS Levodopa use was associated with reduced detection of new-onset neovascular AMD. A prospective, randomized clinical trial should be considered to investigate whether low-dose L-DOPA reduces neovascular AMD conversion. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Max J Hyman
- Department of Ophthalmology, the University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology, the University of Chicago, Chicago, Illinois
| | | | - John Moir
- Department of Ophthalmology, the University of Chicago, Chicago, Illinois
| | | | - Brian S McKay
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | - Mathew W MacCumber
- Department of Ophthalmology, Rush University Medical Center, Chicago, Illinois; Illinois Retina Associates, LLC, Chicago, Illinois
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
15
|
Sarkar H, Lahne M, Nair N, Moosajee M. Oxidative and Endoplasmic Reticulum Stress Represent Novel Therapeutic Targets for Choroideremia. Antioxidants (Basel) 2023; 12:1694. [PMID: 37759997 PMCID: PMC10525549 DOI: 10.3390/antiox12091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy, affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, with no approved therapy. CHM is caused by mutations in the CHM gene, which encodes the ubiquitously expressed Rab escort protein 1 (REP1). REP1 is involved in prenylation, a post-translational modification of Rab proteins, and plays an essential role in intracellular trafficking. In this study, we examined oxidative and endoplasmic reticulum (ER) stress pathways in chmru848 zebrafish and CHMY42X patient fibroblasts, and screened a number of neuroprotectants for their ability to reduce stress. The expression of the oxidative stress markers txn, cat and sod3a, and the ER stress markers bip, atf4 and atf6, were dysregulated in chmru848 fish. The expression of SOD2 was also reduced in CHMY42X fibroblasts, along with reduced BIP and increased CHOP expression. The lack of REP1 is associated with defects in vesicular trafficking, photoreceptor outer segment phagocytosis and melanosome transport, leading to increased levels of stress within the retina and RPE. Drugs targeting oxidative and ER stress pathways represent novel therapeutic avenues.
Collapse
Affiliation(s)
- Hajrah Sarkar
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Francis Crick Institute, London NW1 1AT, UK
| | | | - Neelima Nair
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
16
|
Preetam S, Jonnalagadda S, Kumar L, Rath R, Chattopadhyay S, Alghamdi BS, Abuzenadah AM, Jha NK, Gautam A, Malik S, Ashraf GM. Therapeutic potential of lipid nanosystems for the treatment of Parkinson's disease. Ageing Res Rev 2023; 89:101965. [PMID: 37268112 DOI: 10.1016/j.arr.2023.101965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The degeneration of dopaminergic neurons in the midbrain is primarily responsible for the onset of the disease. The major challenge faced in the treatment of PD is the blood-brain barrier (BBB), which impedes the delivery of therapeutics to targeted locations. To address this issue, lipid nanosystems have been used for the precise delivery of therapeutic compounds in anti-PD therapy. In this review, we will discuss the application and clinical significance of lipid nanosystem in delivering therapeutic compounds for anti-PD treatment. These medicinal compounds include ropinirole, apomorphine, bromocriptine, astaxanthin, resveratrol, dopamine, glyceryl monooleate, levodopa, N-3,4-bis(pivaloyloxy)- dopamine and fibroblast growth factor, which have significant potential to treat PD in the early stage. This review, in a nutshell, will pave the way for researchers to develop diagnostic and potential therapeutic approaches using nanomedicine to overcome the challenges posed by the BBB in delivering therapeutic compounds for PD.
Collapse
Affiliation(s)
- Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika, 59053, Sweden; Centre for Biotechnology, Siksha O Anusandhan (SOA-DU), Bhubaneswar 751030, Odisha, India.
| | - Swathi Jonnalagadda
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| | - Rajeswari Rath
- Centre for Biotechnology, Siksha O Anusandhan (SOA-DU), Bhubaneswar 751030, Odisha, India.
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata-700013, West Bengal, India.
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Adel M Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, 834001, India; Guru Nanak College of Pharmaceutical Sciences, Chakrata Road, Jhajra, Dehradun 248007, India.
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences.
| |
Collapse
|
17
|
Uchimura H, Kanai K, Arai M, Inoue M, Hishimoto A, Masukawa D, Goshima Y. Involvement of the L-DOPA receptor GPR143 in acute and chronic actions of methylphenidate. J Pharmacol Sci 2023; 152:178-181. [PMID: 37257945 DOI: 10.1016/j.jphs.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Methylphenidate (MPH) and methamphetamine (METH) are the current treatments of choice for attention deficit/hyperactivity disorder. We previously reported that METH induces the release of dopamine (DA) and of the neurotransmitter candidate L-3,4-dihydroxyphenylalanine (L-DOPA). In contrast, we here found that MPH increased the DA release while it did not affect the L-DOPA release from the dorsolateral striatum. Nevertheless, MPH-induced hyperlocomotion was reduced in Gpr143 (L-DOPA receptor) gene-deficient (Gpr143-/y) mice. The rewarding effect and increased c-fos expression induced by MPH were also attenuated in Gpr143-/y mice. Together, these findings suggest that GPR143 is involved in the acute and chronic actions of MPH.
Collapse
Affiliation(s)
- Hiraku Uchimura
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan; Department of Psychiatry, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kaori Kanai
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masami Arai
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Miyu Inoue
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yoshio Goshima
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
18
|
Zi X, Ge X, Zhu Y, Liu Y, Sun D, Li Z, Liu M, You Z, Wang B, Kang J, Dou T, Ge C, Wang K. Transcriptome Profile Analysis Identifies Candidate Genes for the Melanin Pigmentation of Skin in Tengchong Snow Chickens. Vet Sci 2023; 10:vetsci10050341. [PMID: 37235424 DOI: 10.3390/vetsci10050341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Tengchong Snow chickens are one of the most precious, black-boned chickens in Yunnan province and usually produce black meat. However, we found a small number of white meat traits in the chicken population during feeding. In order to determine the pattern of melanin deposition and the molecular mechanism of formation in the Tengchong Snow chicken, we measured the luminance value (L value) and melanin content in the skin of black meat chickens (Bc) and white meat chickens (Wc) using a color colorimeter, ELISA kit, and enzyme marker. The results showed that the L value of skin tissues in black meat chickens was significantly lower than that of white meat chickens, and the L value of skin tissues gradually increased with an increase in age. The melanin content of skin tissues in black meat chickens was higher than that of white meat chickens, and melanin content in the skin tissues gradually decreased with an increase in age, but this difference was not significant (p > 0.05); the L value of skin tissues in black meat chickens was negatively correlated with melanin content, and the correlation coefficient was mostly above -0.6. In addition, based on the phenotypic results, we chose to perform the comparative transcriptome profiling of skin tissues at 90 days of age. We screened a total of 44 differential genes, of which 32 were upregulated and 12 were downregulated. These DEGs were mainly involved in melanogenesis, tyrosine metabolism and RNA transport. We identified TYR, DCT, and EDNRB2 as possible master effector genes for skin pigmentation in Tengchong Snow black meat chickens through DEGs analysis. Finally, we measured the mRNA of TYR, DCT, MC1R, EDNRB2, GPR143, MITF, and TYRP1 genes through a quantitative real-time polymerase chain reaction (qPCR) and found that the mRNA of all the above seven genes decreased with increasing age. In conclusion, our study initially constructed an evaluation system for the black-boned traits of Tengchong Snow chickens and found key candidate genes regulating melanin deposition, which could provide an important theoretical basis for the selection and breeding of black-boned chickens.
Collapse
Affiliation(s)
- Xiannian Zi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuehai Ge
- Shenzhen Hualong Sunda Information Technology Co., Ltd., Shenzhen 518000, China
| | - Yixuan Zhu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dawei Sun
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Zijian Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengqian Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhengrong You
- Zhaotong Animal Husbandry and Veterinary Technology Extension Station, Zhaotong 657000, China
| | - Bo Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiajia Kang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
19
|
Moir J, Aggarwal S, Skondra D. Repurposing medications for treatment of age-related macular degeneration: Insights from novel approaches to data mining. Exp Biol Med (Maywood) 2023; 248:798-810. [PMID: 37452694 PMCID: PMC10468640 DOI: 10.1177/15353702231181188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The economic and visual burdens associated with age-related macular degeneration (AMD) are expected to significantly increase in the coming years. As of now, interventions to delay or prevent AMD are limited. Hence, there is an urgent and unmet need to expand our therapeutic tools for AMD in a manner, that is, both efficient and cost-effective. In this review, we consider the idea of drug repurposing, in which existing medications with other indications can be re-imagined for treating AMD. We detail the results of several population-level studies that have shown associations between several candidates and decreased risk of AMD development or progression. Such candidates include the more extensively studied metformin and statins, in addition to recently identified candidates fluoxetine and l-DOPA (levodopa) that show promise. We then briefly explore results from an advanced bioinformatics study, which provides further evidence that existing medications are associated with AMD risk genes. Many of these candidates warrant further study in prospective, clinical trials, where their potential causal relationships with AMD can be thoroughly assessed.
Collapse
Affiliation(s)
- John Moir
- Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarthak Aggarwal
- Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Jia X, Sun Y, Wang T, Zhong L, Deng J, Zhu X. Mechanism of circular RNA-mediated regulation of L-DOPA to improve wet age-related macular degeneration. Gene 2023; 861:147247. [PMID: 36736867 DOI: 10.1016/j.gene.2023.147247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
This study aimed to investigate the effect and mechanism of levodopa (L-DOPA) in the treatment of age-related macular degeneration (AMD). A wet AMD cell model was created via CoCl2 treatment of ARPE-19 cells. The cytoprotective effects of L-DOPA in the model were determined using CCK-8, flow cytometry, TUNEL, qPCR, and ELISA assays. Subsequently, circRNA sequencing and bioinformatics analysis were used to screen differentially expressed circRNAs, which were overexpressed in ARPE-19 cells, to explore their role in wet AMD. The findings revealed that 200 μM CoCl2 treatment inhibited the cell viability and the production of tyrosinase, melanin, and pigment epithelium-derived growth factor but promoted apoptosis and the expression of vascular endothelial growth factor in ARPE-19 cells. Moreover, 20 μM L-DOPA exerted the best therapeutic effect on the model. qPCR showed that Hsa_circ_0018401 (circ-SGMS1) was significantly differentially expressed in each experimental group, which was consistent with the sequencing results. The overexpression of circ-SGMS1 in ARPE-19 cells reversed the effects of CoCl2. Fluorescence in situ hybridization showed that circ-SGMS1 was expressed more in the nucleus than in the cytoplasm. qPCR assays indicated that circ-SGMS1 overexpression did not have a significant effect on the expressions of VEGFA and KDR but significantly reduced the expressions of HIF-1a and THBS1. Circ-SGMS1 is of immense significance in the AMD treatment mechanism of L-DOPA. Overexpression of circ-SGMS1 may alleviate wet AMD by inhibiting HIF-1a and THBS1 expression.
Collapse
Affiliation(s)
- Xiuhua Jia
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Sun
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Zhong
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Deng
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Masukawa D, Kitamura S, Tajika R, Uchimura H, Arai M, Takada Y, Arisawa T, Otaki M, Kanai K, Kobayashi K, Miyazaki T, Goshima Y. Coupling between GPR143 and dopamine D2 receptor is required for selective potentiation of dopamine D2 receptor function by L-3,4-dihydroxyphenylalanine in the dorsal striatum. J Neurochem 2023; 165:177-195. [PMID: 36807226 DOI: 10.1111/jnc.15789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Dopamine (DA) is involved in neurological and physiological functions such as motor control. L-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of DA, is conventionally believed to be an inert amino acid precursor of DA, and its major therapeutic effects in Parkinson's disease (PD) are mediated through its conversion to DA. On the contrary, accumulating evidence suggests that L-DOPA itself is a neurotransmitter. We here show that L-DOPA potentiates DA D2 receptor (DRD2) signaling through GPR143, the gene product of X-linked ocular albinism 1, a G-protein-coupled receptor for L-DOPA. In Gpr143-gene-deficient (Gpr143-/y ) mice, quinpirole, a DRD2/DRD3 agonist, -induced hypolocomotion was attenuated compared to wild-type (WT) mice. Administration of non-effective dose of L-DOPA methyl ester augmented the quinpirole-induced hypolocomotion in WT mice but not in Gpr143-/y mice. In cells co-expressing GPR143 and DRD2, L-DOPA enhanced the interaction between GPR143 and DRD2 and augmented quinpirole-induced decrease in cAMP levels. This augmentation by L-DOPA was not observed in cells co-expressing GPR143 and DRD1 or DRD3. Chimeric analysis in which the domain of GPR143 was replaced with GPR37 revealed that GPR143 interacted with DRD2 at the fifth transmembrane domain. Intracerebroventricular administration of a peptide that disrupted the interaction mitigated quinpirole-induced behavioral changes in WT mice but not in Gpr143-/y mice. These findings provide evidence that coupling between GPR143 and DRD2 is required for selective DRD2 modulation by L-DOPA in the dorsal striatum.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Kitamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Rei Tajika
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiraku Uchimura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masami Arai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuuki Takada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsu Arisawa
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Momoyo Otaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaori Kanai
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Grimes KR, Aloney A, Skondra D, Chhablani J. Effects of systemic drugs on the development and progression of age-related macular degeneration. Surv Ophthalmol 2023; 68:332-346. [PMID: 36731638 DOI: 10.1016/j.survophthal.2023.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe loss of central vision among people over 50. The pathophysiology of the disease is multifactorial and can be attributed to genetics, aging, inflammation, environmental factors, and lifestyle factors including smoking, diet, obesity, and alcohol consumption. While there is no treatment for dry AMD, the current standard treatment for wet AMD is an intraocular injection of anti-vascular endothelial growth factor-an effective, yet expensive, therapy that requires ongoing treatment. As the aging population continues to grow, and AMD diagnoses continue to rise, new treatments should be explored to reduce vision complications and decrease treatment burdens. Many systemic conditions have progressive pathological changes that may affect AMD, particularly those affecting systemic vasculature like diabetes and cardiovascular status. Consequently, systemic drugs used to treat coexistent systemic diseases may influence some of the pathogenic mechanisms of AMD and lead its progression or delay. In this review we explore the current literature to summarize the findings of the reported effects of antihypertensive, immunosuppressants, cholesterol lowering agents, nonsteroidal anti-inflammatory drugs, dopamine precursors, hypoglycemic agents, and anticoagulants on AMD.
Collapse
Affiliation(s)
- Kara R Grimes
- School of Medicine, New York Medical College, Valhalla, NY, USA
| | - Abhilasha Aloney
- Eye Care Institute, PBMA'S H.V. Desai Eye Hospital, Pune, Maharashtra, India
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL, USA
| | - Jay Chhablani
- Department of Ophthalmology, The University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Tung D, McKay BS. Decoding Race and Age-Related Macular Degeneration: GPR 143 Activity Is the Key. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:43-47. [PMID: 37440012 DOI: 10.1007/978-3-031-27681-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the developed world. Caucasians are eightfold more likely to develop AMD than any other race, indicating a racial bias in AMD incidence which is unexplained. We hypothesize that pigmentation of the retinal pigment epithelium (RPE) and choroid protects from AMD and underlies this peculiar racial bias. We investigated GPR143, a receptor in the pigmentation pathway, which is activated by a melanin synthesis by-product, l-dopa. In this model, greater pigmentation leads to greater l-dopa production and, in turn, greater GPR143 signaling. GPR143 activity upregulates PEDF and downregulates both VEGF and exosomes; all of which reduce the angiogenic potential in the retina. Moreover, we demonstrate that GPR143 signaling enhances the digestion of shed photoreceptor outer segments. Together, our data suggests a central role for GPR143 signaling in RPE-photoreceptor interaction which is critical to healthy vision.
Collapse
Affiliation(s)
- Dorothy Tung
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, USA
| | - Brian S McKay
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, USA.
- Department of Physiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
24
|
Lee H, Purohit R, Sheth V, Maconachie G, Tu Z, Thomas MG, Pilat A, McLean RJ, Proudlock FA, Gottlob I. Retinal Development in Infants and Young Children With Albinism: Evidence for Plasticity in Early Childhood. Am J Ophthalmol 2023; 245:202-211. [PMID: 36084688 DOI: 10.1016/j.ajo.2022.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
MEETING PRESENTATION Presented at the 2016 Association for Research in Vision and Ophthalmology meeting and at the 2015 British Isles Paediatric, Ophthalmology and Strabismus Association meeting. PURPOSE To investigate the time course of foveal development after birth in infants with albinism. DESIGN Prospective, comparative cohort optical coherence tomography study. METHODS Thirty-six children with albinism were recruited. All participants were between 0 and 6 years of age and were seen at Leicester Royal Infirmary. A total of 181 mixed cross-sectional and longitudinal optical coherence tomography examinations were obtained, which were analyzed for differences in retinal development in comparison to 297 cross-sectional control examinations. RESULTS Normal retinal development involves migration of the inner retinal layers (IRLs) away from the fovea, migration of the cone photoreceptors into the fovea, and elongation of the outer retinal layers (ORLs) over time. In contrast to controls where IRL migration from the fovea was almost completed at birth, a significant degree of IRL migration was taking place after birth in albinism, before arresting prematurely at 40 months postmenstrual age (PMA). This resulted in a significantly thicker central macular thickness in albinism (Δ = 83.8 ± 6.1, P < .0001 at 69 months PMA). There was evidence of ongoing foveal ORL elongation in albinism, although reduced in amplitude compared with control subjects after 21 months PMA (Δ = -17.3 ± 4.3, P < .0001). CONCLUSIONS We have demonstrated evidence of ongoing retinal development in young children with albinism, albeit at a reduced rate and magnitude compared with control subjects. The presence of a period of retinal plasticity in early childhood raises the possibility that treatment modalities, which aim to improve retinal development, could potentially optimize visual function in albinism.
Collapse
Affiliation(s)
- Helena Lee
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom.
| | - Ravi Purohit
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Viral Sheth
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Gail Maconachie
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Zhanhan Tu
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Mervyn G Thomas
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Anastasia Pilat
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Rebecca J McLean
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Frank A Proudlock
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Irene Gottlob
- From the University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
25
|
Masukawa D, Takahagi R, Nakao Y, Goshima Y. L-DOPA Receptor GPR143 Functionally Couples with Adrenergic α 1B Receptor at the Second Transmembrane Interface. Biol Pharm Bull 2023; 46:869-873. [PMID: 37394637 DOI: 10.1248/bpb.b23-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Adrenergic receptors (ADRs) are widely distributed in the peripheral and central nervous systems. We previously reported that L-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of dopamine, sensitizes adrenergic α1 receptor (ADRA1) through a G protein-coupled receptor GPR143. Chimeric analysis, in which the transmembrane (TM) domains of GPR143 were replaced with those of GPR37, revealed that the second TM region was essential for the potentiation of phenylephrine-induced extracellular signal-regulated kinase (ERK) phosphorylation by GPR143. In HEK293T cells expressing ADRA1B, phenylephrine-induced ERK phosphorylation was augmented by the co-expression of GPR143, compared to the mock vector. Immunoprecipitation analysis revealed that a synthetic transactivator of the transcription peptide fused with TM2 of GPR143 (TAT-TM2) disrupts the interaction between GPR143 and ADRA1B. This TAT-TM2 peptide suppressed the augmentation of phenylephrine-induced ERK phosphorylation by GPR143 in HEK293T cells co-expressing ADRA1B and GPR143. These results indicate that the interaction between GPR143 and ADRA1B is required for the potentiation of ADRA1B-mediated signaling by GPR143. The TM2 region of GPR143 is a crucial dimeric interface for the functional coupling between ADRA1B and GPR143.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine
| | - Ryo Takahagi
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine
| | - Yuka Nakao
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine
| | - Yoshio Goshima
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine
| |
Collapse
|
26
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
27
|
Pronina T, Pavlova E, Dil’mukhametova L, Ugrumov M. Development of the Periventricular Nucleus as a Brain Center, Containing Dopaminergic Neurons and Neurons Expressing Individual Enzymes of Dopamine Synthesis. Int J Mol Sci 2022; 23:ijms232314682. [PMID: 36499006 PMCID: PMC9736787 DOI: 10.3390/ijms232314682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
We have recently shown that the periventricular nucleus (PeVN) of adult rats is a "mixed dopaminergic (DAergic) center" containing three thousand neurons: DAergic neurons and those expressing one of the dopamine (DA)-synthesizing enzymes. This study aims to evaluate the development of the PeVN as a mixed DAergic center in rats in the perinatal period, critical for brain morphogenesis. During this period, the PeVN contains DAergic neurons and monoenzymatic neurons expressing individual enzymes of DA synthesis: tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). In the perinatal period, the total number of such neurons triples, mainly due to monoenzymatic neurons; the content of L-DOPA, the end product of monoenzymatic TH neurons, doubles; and the content of DA, the end product of monoenzymatic AADC neurons and DAergic neurons, increases sixfold. Confocal microscopy has shown that, in the PeVN, all types of neurons and their processes are in close relationships, which suggests their mutual regulation by L-DOPA and DA. In addition, monoenzymatic and DAergic fibers are close to the third cerebral ventricle, located in the subependymal zone, between ependymal cells and in the supraependymal zone. These observations suggest that these fibers deliver L-DOPA and DA to the cerebrospinal fluid, participating in the neuroendocrine regulation of the brain.
Collapse
|
28
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
29
|
Doepner M, Lee I, Natale CA, Brathwaite R, Venkat S, Kim SH, Wei Y, Vakoc CR, Capell BC, Katzenellenbogen JA, Katzenellenbogen BS, Feigin ME, Ridky TW. Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. SCIENCE ADVANCES 2022; 8:eabn4007. [PMID: 36054350 PMCID: PMC10848963 DOI: 10.1126/sciadv.abn4007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/14/2022] [Indexed: 05/18/2023]
Abstract
Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Miriam Doepner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roderick Brathwaite
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sung Hoon Kim
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S. Katzenellenbogen
- Departments of Molecular and Integrative Physiology and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Toufeeq S, Gottlob I, Tu Z, Proudlock FA, Pilat A. Abnormal Retinal Vessel Architecture in Albinism and Idiopathic Infantile Nystagmus. Invest Ophthalmol Vis Sci 2022; 63:33. [PMID: 35616929 PMCID: PMC9150830 DOI: 10.1167/iovs.63.5.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Infantile nystagmus syndrome (INS) causes altered visual development and can be associated with abnormal retinal structure, to which vascular development of the retina is closely related. Abnormal retinal vasculature has previously been noted in albinism but not idiopathic infantile nystagmus. We compared the number and diameter of retinal vessels in participants with albinism (PWA) and idiopathic infantile nystagmus (PWIIN) with controls. Methods Fundus photography data from 24 PWA, 10 PWIIN, and 34 controls was analyzed using Automated Retinal Image Analyzer (ARIA) software on a field of analysis centered on the optic disc, the annulus of which extended between 4.2 mm and 8.4 mm in diameter. Results Compared with controls, the mean number of arterial branches was reduced by 24% in PWA (15.5 vs. 20.3, P < 0.001), and venous branches were reduced in both PWA (29%; 12.9 vs. 18.2, P < 0.001) and PWIIN (17%; 15.1 vs. 18.2, P = 0.024). PWA demonstrated 7% thinner "primary" (before branching) arteries (mean diameter: 75.39 µm vs. 80.88 µm, P = 0.043), and 13% thicker (after branching) "secondary" veins (66.72 µm vs. 59.01 µm in controls, P = 0.009). Conclusions PWA and PWIIN demonstrated reduced retinal vessel counts and arterial diameters compared with controls. These changes in the superficial retinal vascular network may be secondary to underdevelopment of the neuronal network, which guides vascular development and is also known to be disrupted in INS.
Collapse
Affiliation(s)
- Shafak Toufeeq
- Oxford Eye Hospital, Level LG1 John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, United Kingdom
| | - Irene Gottlob
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University Of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Zhanhan Tu
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University Of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Frank A. Proudlock
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University Of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Anastasia Pilat
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University Of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
31
|
Bueschbell B, Manga P, Schiedel AC. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front Mol Biosci 2022; 9:873777. [PMID: 35495622 PMCID: PMC9039016 DOI: 10.3389/fmolb.2022.873777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York City, NY, United States
| | - Anke C. Schiedel
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- *Correspondence: Anke C. Schiedel,
| |
Collapse
|
32
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
33
|
Kasahara Y, Masukawa D, Kobayashi K, Yamasaki M, Watanabe M, Goshima Y. L-DOPA-induced Neurogenesis in the Hippocampus is Mediated through GPR143, a Distinct Mechanism of Dopamine. Stem Cells 2022; 40:215-226. [DOI: 10.1093/stmcls/sxab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Neurogenesis occurs in the hippocampus through life and is implicated in various physiological brain functions such as memory encoding and mood regulation. L-3,4-dihydroxyphenylalanine (L-DOPA) has long been believed to be an inert precursor of dopamine. Here, we show that L-DOPA and its receptor, GPR143, the gene product of ocular albinism 1, regulate neurogenesis in the dentate gyrus in a dopamine-independent manner. L-DOPA at concentrations far lower than that of dopamine promoted proliferation of neural stem and progenitor cells in wild-type mice under the inhibition of its conversion to dopamine; this effect was abolished in GPR143-gene-deficient (Gpr143 -/y) mice. Hippocampal neurogenesis decreased during development and adulthood, and exacerbated depression-like behavior was observed in adult Gpr143 -/y mice. Replenishment of GPR143 in the dentate gyrus attenuated the impaired neurogenesis and depression-like behavior. Our findings suggest that L-DOPA through GPR143 modulates hippocampal neurogenesis, thereby playing a role in mood regulation in the hippocampus.
Collapse
Affiliation(s)
- Yuka Kasahara
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
34
|
Huang HM, Kuo HK, Chiang WY, Wu PC, Poon LYC. Combination Therapy with Intravitreal Triamcinolone Acetonide and Oral Levodopa for the Treatment of Nonarteritic Anterior Ischemic Optic Neuropathy: A Pilot Study. J Ocul Pharmacol Ther 2022; 38:167-175. [PMID: 35049379 DOI: 10.1089/jop.2021.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Purpose: To determine the clinical effectiveness of combination therapy with intravitreal injection of triamcinolone acetonide (IVITA) and oral levodopa in eyes affected by nonarteritic anterior ischemic optic neuropathy (NAION). Methods: Longitudinal study involving 45 eyes of 45 patients with NAION who were evaluated within 14 days of NAION onset. The treatment group received an IVITA 4 mg/0.1 mL followed by 25 mg carbidopa/100 mg levodopa (Sinemet 25-100) 3 times daily for 12 weeks and the control group was untreated. Best-corrected visual acuity (BCVA) converted to logarithmic minimum angle of resolution (logMAR), visual field (VF) grades based on automated or Goldman perimetry, and mean retinal nerve fiber layer (RNFL) thickness measured on optical coherence tomography were assessed at the initial visit, 1, 3, and 6 months after NAION attack. Results: At the first visit and 6 months after NAION onset, the mean logMAR BCVA in the treatment group was significantly better than the control group (P < 0.05). BCVA was not significantly different between onset and the 6-month visit for both the control and the treatment group; however, the change in BCVA after 6 months was significantly greater in the treatment group compared with the control group (P = 0.007). Concomitant systemic disease, the changes in VF grades, and RNFL thickness from initial to 6 months after NAION onset were not significantly different between 2 groups. Conclusions: Combination therapy with IVITA and oral levodopa/carbidopa appears to be effective in the treatment of recent-onset NAION.
Collapse
Affiliation(s)
- Hsiu-Mei Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Hsi-Kung Kuo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Wei-Yu Chiang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| | - Linda Yi-Chieh Poon
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan (R.O.C.)
| |
Collapse
|
35
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Park K. The use of real-world data in drug repurposing. Transl Clin Pharmacol 2021; 29:117-124. [PMID: 34621704 PMCID: PMC8492393 DOI: 10.12793/tcp.2021.29.e18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/02/2023] Open
Abstract
Drug repurposing, or repositioning, is to identify new uses for existing drugs. Significantly reducing the costs and time-to-market of a medication, drug repurposing has been an alternative tool to accelerate drug development process. On the other hand, 'real world data (RWD)' has been also increasingly used to support drug development process owing to its better representing actual pattern of drug treatment and outcome in real world. In the healthcare domain, RWD refers to data collected from sources other than traditional clinical trials; for example, in electronic health records or claims and billing data. With the enactment of the 21st Century Cures Act, which encourages the use of RWD in drug development and repurposing as well, such increasing trend in RWD use will be expedited. In this context, this review provides an overview of recent progresses in the area of drug repurposing where RWD was used by firstly introducing the increasing trend and regulatory change in the use of RWD in drug development, secondly reviewing published works using RWD in drug repurposing, classifying them in the repurposing strategy, and lastly addressing limitations and advantages of RWDs.
Collapse
Affiliation(s)
- Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
37
|
Sarkar A, Junnuthula V, Dyawanapelly S. Ocular Therapeutics and Molecular Delivery Strategies for Neovascular Age-Related Macular Degeneration (nAMD). Int J Mol Sci 2021; 22:10594. [PMID: 34638935 PMCID: PMC8508687 DOI: 10.3390/ijms221910594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in geriatric population. Intravitreal (IVT) injections are popular clinical option. Biologics and small molecules offer efficacy but relatively shorter half-life after intravitreal injections. To address these challenges, numerous technologies and therapies are under development. Most of these strategies aim to reduce the frequency of injections, thereby increasing patient compliance and reducing patient-associated burden. Unlike IVT frequent injections, molecular therapies such as cell therapy and gene therapy offer restoration ability hence gained a lot of traction. The recent approval of ocular gene therapy for inherited disease offers new hope in this direction. However, until such breakthrough therapies are available to the majority of patients, antibody therapeutics will be on the shelf, continuing to provide therapeutic benefits. The present review aims to highlight the status of pre-clinical and clinical studies of neovascular AMD treatment modalities including Anti-VEGF therapy, upcoming bispecific antibodies, small molecules, port delivery systems, photodynamic therapy, radiation therapy, gene therapy, cell therapy, and combination therapies.
Collapse
Affiliation(s)
- Aira Sarkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| |
Collapse
|
38
|
Bueschbell B, Manga P, Penner E, Schiedel AC. Evidence for Protein-Protein Interaction between Dopamine Receptors and the G Protein-Coupled Receptor 143. Int J Mol Sci 2021; 22:ijms22158328. [PMID: 34361094 PMCID: PMC8348196 DOI: 10.3390/ijms22158328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions between G protein-coupled receptors (GPCRs) can augment their functionality and increase the repertoire of signaling pathways they regulate. New therapeutics designed to modulate such interactions may allow for targeting of a specific GPCR activity, thus reducing potential for side effects. Dopamine receptor (DR) heteromers are promising candidates for targeted therapy of neurological conditions such as Parkinson's disease since current treatments can have severe side effects. To facilitate development of such therapies, it is necessary to identify the various DR binding partners. We report here a new interaction partner for DRD2 and DRD3, the orphan receptor G protein-coupled receptor 143 (GPR143), an atypical GPCR that plays multiple roles in pigment cells and is expressed in several regions of the brain. We previously demonstrated that the DRD2/ DRD3 antagonist pimozide also modulates GPR143 activity. Using confocal microscopy and two FRET methods, we observed that the DRs and GPR143 colocalize and interact at intracellular membranes. Furthermore, co-expression of wildtype GPR143 resulted in a 57% and 67% decrease in DRD2 and DRD3 activity, respectively, as determined by β-Arrestin recruitment assay. GPR143-DR dimerization may negatively modulate DR activity by changing affinity for dopamine or delaying delivery of the DRs to the plasma membrane.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Erika Penner
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
- Correspondence:
| |
Collapse
|
39
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
40
|
Evident hypopigmentation without other ocular deficits in Dutch patients with oculocutaneous albinism type 4. Sci Rep 2021; 11:11572. [PMID: 34078970 PMCID: PMC8172864 DOI: 10.1038/s41598-021-90896-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
To describe the phenotype of Dutch patients with oculocutaneous albinism type 4 (OCA4), we collected data on pigmentation (skin, hair, and eyes), visual acuity (VA), nystagmus, foveal hypoplasia, chiasmal misrouting, and molecular analyses of nine Dutch OCA4 patients from the Bartiméus Diagnostic Center for complex visual disorders. All patients had severely reduced pigmentation of skin, hair, and eyes with iris transillumination over 360 degrees. Three unrelated OCA4 patients had normal VA, no nystagmus, no foveal hypoplasia, and no misrouting of the visual pathways. Six patients had poor visual acuity (0.6 to 1.0 logMAR), nystagmus, severe foveal hypoplasia and misrouting. We found two novel variants in the SLC45A2 gene, c.310C > T; (p.Pro104Ser), and c.1368 + 3_1368 + 9del; (p.?). OCA4 patients of this Dutch cohort all had hypopigmentation of skin, hair, and iris translucency. However, patients were either severely affected with regard to visual acuity, foveal hypoplasia, and misrouting, or visually not affected at all. We describe for the first time OCA4 patients with an evident lack of pigmentation, but normal visual acuity, normal foveal development and absence of misrouting. This implies that absence of melanin does not invariably lead to foveal hypoplasia and abnormal routing of the visual pathways.
Collapse
|
41
|
Identification of a novel GPR143 mutation in a large Chinese family with isolated foveal hypoplasia. BMC Ophthalmol 2021; 21:156. [PMID: 33785018 PMCID: PMC8011130 DOI: 10.1186/s12886-021-01905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pathogenic variants of G-protein coupled receptor 143 (GPR143) gene often leads to ocular albinism type I (OA1) characterized by nystagmus, iris and fundus hypopigmentation, and foveal hypoplasia. In this study, we identified a novel hemizygous nonsense mutation in GPR143 that caused an atypical manifestation of OA1. Case presentation We reported a large Chinese family in which all affected individuals are afflicted with poor visual acuity and foveal hypoplasia without signs of nystagmus. Fundus examination of patients showed an absent foveal reflex and mild hypopigmentation. The fourth grade of foveal hypoplasia and the reduced area of blocked fluorescence at foveal region was detected in OCT. OCTA imaging showed the absence of foveal avascular zone. In addition, the amplitude of multifocal ERG was reduced in the central ring. Gene sequencing results revealed a novel hemizygous mutation (c.939G > A) in GPR143 gene, which triggered p.W313X. However, no iris depigmentation and nystagmus were observed among both patients and carriers. Conclusions In this study, we reported a novel nonsense mutation of GPR143 in a large family with poor visual acuity and isolated foveal hypoplasia without nystagmus, which further expanded the genetic mutation spectrum of GPR143.
Collapse
|
42
|
Figueroa AG, Boyd BM, Christensen CA, Javid CG, McKay BS, Fagan TC, Snyder RW. Levodopa Positively Affects Neovascular Age-Related Macular Degeneration. Am J Med 2021; 134:122-128.e3. [PMID: 32628915 PMCID: PMC7864558 DOI: 10.1016/j.amjmed.2020.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common cause of blindness worldwide. Neovascular AMD (nAMD) is an advanced form of the disease, in which excess vascular endothelial growth factor (VEGF) induces growth of new blood vessels that leak fluid, accounting for 90% of vision loss in AMD. Dysfunction of the retinal pigment epithelium likely initiates AMD. Retinal pigment epithelial cells express a G protein-coupled receptor, GPR143, which downregulates VEGF in response to levodopa. Anti-VEGF therapy effectively treats nAMD, suggesting that excessive VEGF activity drives the pathology. METHODS In an open-label pilot study, in patients with newly diagnosed nAMD and naïve to anti-VEGF injections (Cohort-1), the effects of carbidopa-levodopa on vision and anatomic outcomes were evaluated for 4 weeks. Then patients were followed 5 months further with ascending levodopa doses. Patients previously treated with anti-VEGF injection therapy (Cohort-2) were also treated with ascending levodopa doses and evaluated for 6 months. RESULTS Levodopa was safe, well tolerated, and delayed anti-VEGF injection therapy while improving visual outcomes. In the first month, retinal fluid decreased by 29% (P = .02, n = 12) without anti-VEGF treatment. Through 6 months the decrease in retinal fluid was sustained, with a mean frequency of 0.38 injections/month. At month 6, mean visual acuity improved by 4.7 letters in Cohort-1 (P = .004, n = 15) and by 4.8 letters in Cohort-2 (P = .02, n = 11). Additionally, there was a 52% reduction in the need for anti-VEGF injections in Cohort-2 (P = .002). CONCLUSIONS Our findings suggest efficacy and support the pharmacological targeting of GPR143 with levodopa for the treatment of nAMD in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy C Fagan
- College of Medicine; Snyder Biomedical Corporation, Tucson, Ariz.
| | - Robert W Snyder
- Snyder Biomedical Corporation, Tucson, Ariz; Department of Biomedical Engineering, The University of Arizona, Tucson
| |
Collapse
|
43
|
Self JE, Lee H. Novel therapeutics in nystagmus: what has the genetics taught us so far? THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021998714. [PMID: 37181109 PMCID: PMC10032456 DOI: 10.1177/2633004021998714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 05/16/2023]
Abstract
Nystagmus is a disorder characterised by uncontrolled, repetitive, to-and-fro movement of the eyes. It can occur as a seemingly isolated disorder but is most commonly the first, or most obvious, feature in a host of ophthalmic and systemic disorders. The number of underlying causes is vast, and recent improvements in the provision of genetic testing have shown that many conditions can include nystagmus as a feature, but that phenotypes overlap significantly. Therefore, an increase in the understanding of the genetic causes of nystagmus has shown that successful novel therapeutics for 'nystagmus' can target either specific underlying disorders and mechanisms (aiming to treat the underlying condition as a whole), or a final common pathway (aiming to treat the nystagmus directly). Plain language summary Novel treatments for a disorder of eye movement (nystagmus): what has the genetics taught us so far? Nystagmus is a disorder of eye movement characterised by uncontrolled, to-and-fro movements. It can occur as an isolated disorder, in conditions affecting other parts of the eye, in conditions affecting multiple other parts of the body or secondary to neurological diseases (brain diseases). In recent years, advances in genetic testing methods and increase in genetic testing in healthcare systems have provided a greater understanding of the underlying causes of nystagmus. They have highlighted the bewildering number of genetic causes that can result in what looks like a very similar eye movement disorder.In recent years, new classes of drugs have been developed for some of the causes of nystagmus, and some new drugs have been developed for other conditions which have the potential to work in certain types of nystagmus. For these reasons, genetics has taught us that identifying new possible treatments for nystagmus can either be dependent on identifying the underlying genetic cause and aiming to treat that, or aiming to treat the nystagmus per se by targeting a final common pathway. A toolkit based on specific treatments for specific conditions is more to have meaningful impact on 'nystagmus' than pursuing a panacea based on a 'one size fits all' approach.
Collapse
Affiliation(s)
- Jay E Self
- Clinical and Experimental Sciences, Faculty of
Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD,
UK
- University Hospital Southampton, Southampton,
UK
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of
Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton, Southampton,
UK
| |
Collapse
|
44
|
Current and emerging treatments for albinism. Surv Ophthalmol 2020; 66:362-377. [PMID: 33129801 DOI: 10.1016/j.survophthal.2020.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Albinism is a group of rare inherited disorders arising from impairment of melanin biosynthesis. The reduction of melanin synthesis leads to hypopigmentation of the skin and eyes. A wide range of ophthalmic manifestations arise from albinism, including reduction of visual acuity, nystagmus, strabismus, iris translucency, foveal hypoplasia, fundus hypopigmentation, and abnormal decussation of retinal ganglion cell axons at the optic chiasm. Currently, albinism is incurable, and treatment aims either surgically or pharmacologically to optimize vision and protect the skin; however, novel therapies that aim to directly address the molecular errors of albinism, such as l-dihydroxyphenylalanine and nitisinone, are being developed and have entered human trials though with limited success. Experimental gene-based strategies for editing the genetic errors in albinism have also met early success in animal models. The emergence of these new therapeutic modalities represents a new era in the management of albinism. We focus on the known genetic subtypes, clinical assessment, and existing and emerging therapeutic options for the nonsyndromic forms of albinism.
Collapse
|
45
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Kasahara Y, Masukawa D, Nakamura Y, Murata K, Hashimoto T, Takizawa K, Koga M, Nakamura F, Fukazawa Y, Funakoshi K, Goshima Y. Distribution of mRNA for GPR143, a receptor of 3,4-L-dihydroxyphenylalanine, and of immunoreactivities for nicotinic acetylcholine receptors in the nigrostriatal and mesolimbic regions. Neurosci Res 2020; 170:370-375. [PMID: 32896531 DOI: 10.1016/j.neures.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/15/2022]
Abstract
Nicotine exerts its reinforcing actions by activating nicotinic acetylcholine receptors (nAChRs), but the detailed mechanisms remain unclear. Nicotine releases 3, 4-dihydroxyphenylalanine (DOPA), a neurotransmitter candidate in the central nervous system. Here, we investigated the distribution of GPR143, a receptor of DOPA, and nAChR subunits in the nigrostriatal and mesolimbic regions. We found GPR143 mRNA-positive cells in the striatum and nucleus accumbens. Some of them were surrounded by tyrosine hydroxylase (TH)-immunoreactive fibers. There were some GPR143 mRNA-positive cells coexpressing TH, and nAChR subunit α4 or α7 in the substantia nigra and ventral tegmental area. These findings suggest that DOPA-GPR143 signaling may be involved in the nicotine action in the nigrostriatal and mesolimbic dopaminergic systems.
Collapse
Affiliation(s)
- Yuka Kasahara
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshie Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan; Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, 910-1193, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Critical Care Medicine and Dentistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Kohtaro Takizawa
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan; Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, 910-1193, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
47
|
Storm T, Burgoyne T, Futter CE. Membrane trafficking in the retinal pigment epithelium at a glance. J Cell Sci 2020; 133:133/16/jcs238279. [PMID: 32855284 DOI: 10.1242/jcs.238279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a highly specialised pigmented monolayer sandwiched between the choroid and the photoreceptors in the retina. Key functions of the RPE include transport of nutrients to the neural retina, removal of waste products and water from the retina to the blood, recycling of retinal chromophores, absorption of scattered light and phagocytosis of the tips of the photoreceptor outer segments. These functions place a considerable membrane trafficking burden on the RPE. In this Cell Science at a Glance article and the accompanying poster, we focus on RPE-specific adaptations of trafficking pathways. We outline mechanisms underlying the polarised expression of membrane proteins, melanosome biogenesis and movement, and endocytic trafficking, as well as photoreceptor outer segment phagocytosis and degradation. We also briefly discuss theories of how dysfunction in trafficking pathways contributes to retinal disease.
Collapse
Affiliation(s)
- Tina Storm
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E Futter
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
48
|
Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, Jimbow K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci 2020; 21:ijms21176129. [PMID: 32854423 PMCID: PMC7503925 DOI: 10.3390/ijms21176129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Melanogenesis is the biological and biochemical process of melanin and melanosome biosynthesis. Melanin is formed by enzymic reactions of tyrosinase family proteins that convert tyrosine to form brown-black eumelanin and yellow-red pheomelanin within melanosomal compartments in melanocytes, following the cascades of events interacting with a series of autocrine and paracrine signals. Fully melanized melanosomes are delivered to keratinocytes of the skin and hair. The symbiotic relation of a melanocyte and an associated pool of keratinocytes is called epidermal melanin unit (EMU). Microphthalmia-associated transcription factor (MITF) plays a vital role in melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes for promoting melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis. Diseases involving alterations of EMU show various forms of pigmentation phenotypes. This review introduces four major topics of melanogenesis cascade that include (1) melanocyte development and differentiation, (2) melanogenesis and intracellular trafficking for melanosome biosynthesis, (3) melanin pigmentation and pigment-type switching, and (4) development of a novel therapeutic approach for malignant melanoma by elucidation of melanogenesis cascade.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
| | - Jiro Ogino
- Department of Pathology, JR Sapporo Hospital, Sapporo 060-0033, Hokkaido, Japan;
| | - Hitoshi Sohma
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan;
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Kowichi Jimbow
- Institute of Dermatology & Cutaneous Sciences, Sapporo 060-0042, Hokkaido, Japan
- Correspondence: ; Tel.: +81-11-887-8266
| |
Collapse
|
49
|
Genetic associations of single nucleotide polymorphisms in the l-DOPA receptor (GPR143) gene with severity of nicotine dependence in Japanese individuals, and attenuation of nicotine reinforcement in Gpr143 gene-deficient mice. J Pharmacol Sci 2020; 144:89-93. [PMID: 32763057 DOI: 10.1016/j.jphs.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022] Open
Abstract
l-3,4-dihydroxyphenylalanine (l-DOPA) is a candidate neurotransmitter. l-DOPA is released by nicotine through nicotinic receptors. Recently, G-protein coupled receptor GPR143, was identified as a receptor for l-DOPA. In this study, genetic association studies between GPR143 genetic polymorphisms and smoking behaviors revealed that the single-nucleotide polymorphism rs6640499, in the GPR143 gene, was associated with traits of smoking behaviors in Japanese individuals. In Gpr143 gene-deficient mice, nicotine-induced hypolocomotion and rewarding effect were attenuated compared to those in wild-type mice. Our findings suggest the involvement of GPR143 in the smoking behaviors.
Collapse
|
50
|
Figueroa AG, McKay BS. A G-Protein Coupled Receptor and Macular Degeneration. Cells 2020; 9:cells9040910. [PMID: 32276449 PMCID: PMC7226737 DOI: 10.3390/cells9040910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. The risk of AMD increases with age and is most common among the white population. Here, we discuss the convergence of factors related to race, pigmentation, and susceptibility to AMD, where the primary defect occurs in retinal support cells, the retinal pigment epithelium (RPE). We explore whether the observed racial bias in AMD incidence is related to innate differences in the basal level of pigmentation between races, and whether the pigmentation pathway activity in the RPE might protect from retinal degeneration. More specifically, we explore whether the downstream signaling activity of GPR143, a G-protein coupled receptor in the pigmentation pathway, might underly the racial bias of AMD and be a target to prevent the disease. Lastly, we summarize the past findings of a large retrospective study that investigated the relationship between the stimulation of GPR143 with L-DOPA, the pigmentation pathway, and AMD, to potentially help develop new ways to prevent or treat AMD. The reader of this review will come to understand the racial bias of AMD, which is related to the function of the RPE.
Collapse
|