1
|
Shammas H, Kloster Fog C, Klein P, Koustrup A, Pedersen MT, Bie AS, Mickle T, Petersen NHT, Kirkegaard Jensen T, Guenther S. Mechanistic insights into arimoclomol mediated effects on lysosomal function in Niemann-pick type C disease. Mol Genet Metab 2025; 145:109103. [PMID: 40215728 DOI: 10.1016/j.ymgme.2025.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease type C (NPC) is an ultra-rare, fatal neurodegenerative disease. It is characterized by lysosomal dysfunction with cytotoxic accumulation of unesterified cholesterol and glycosphingolipids in lysosomes, which causes neurodegeneration and peripheral organ dysfunction. Arimoclomol, an orally available small molecule, is the first FDA-approved treatment for NPC when used in combination with miglustat. Here, we present the results of a series of in vitro studies performed to explore the pathways by which arimoclomol targets the fundamentals of NPC etiology. While the precise cellular interactions of arimoclomol remain unclear, the increased translocation of the transcription factors EB and E3 (TFEB and TFE3) from the cytosol to the nucleus is a key initial step for triggering a cascade of downstream events that can rescue cellular functions. Activation of TFEB and TFE3 raises the expression rates of coordinated lysosomal expression and regulation (CLEAR) genes including NPC1 that are essential for the regulation of lysosomal function. The subsequent upregulation of CLEAR network proteins combined with increased unfolded protein response activation was shown to enlarge the pool of matured NPC1 capable of reaching the lysosome to reduce cholesterol accumulation. By also amplifying expression of CLEAR genes associated with autophagy, arimoclomol has the potential to act on different pathways and improve cell viability independent of NPC1 protein levels and functionality. In summary, the findings presented illustrate how arimoclomol improves lysosomal function and potentially autophagy flux to decrease lipid burden in NPC patient fibroblasts.
Collapse
|
2
|
Cheng Y, Wu J, Gao Y, Ang B, Chen Q, Wang Z, Zeng M, Qin F, Chen J, He Z, Wu F. Microbial Fermentation-Derived Dihydroquercetin Derivatives Exhibit Superior Efficacy in Ameliorating Insulin Resistance via JNK/PI3K/AKT Pathway Regulation Compared to Dihydroquercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8323-8337. [PMID: 40152883 DOI: 10.1021/acs.jafc.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Insulin resistance (IR) is a complex metabolic disorder characterized by diminished insulin sensitivity, leading to impaired glucose uptake and a potential progression to hyperglycemia and diabetes. While lifestyle modifications are essential, the limitations of current pharmacological interventions highlight the need for natural products with therapeutic benefits. This study introduces two novel dihydroquercetin (DHQ) derivatives, 8-hydroxy-dihydroquercetin (H-DHQ) and dihydroquercetin-7-O-β-d-(4″-O-methyl)-glucoside (DHQ-MG), developed through microbial fermentation using Beauveria bassiana. Results indicated that H-DHQ and DHQ-MG significantly enhanced the alleviation of IR in a HepG2 cell model compared with DHQ, with no significant differences noticed between DHQ-MG and H-DHQ. Mechanistic analyses revealed that these derivatives effectively reduced inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, thereby activating the JNK/PI3K/AKT signaling pathway to promote glycogen synthesis, suppress gluconeogenesis, and stimulate glucose transport. This research highlights the potential of H-DHQ and DHQ-MG as effective natural alternatives for managing IR, while also providing indirect evidence for the application of microbial fermentation as a strategy to modify natural flavonoids for this purpose.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yueqing Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Beijun Ang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengfeng Wu
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang 313000, China
- The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313000, China
| |
Collapse
|
3
|
Michel JM, Godwin JS, Kerr NR, Childs TE, Booth FW, Mobley CB, Hughes DC, Roberts MD. Skeletal muscle atrophy induced by aging and disuse atrophy are strongly associated with the upregulation of the endoplasmic stress protein CHOP in rats. Mol Biol Rep 2025; 52:322. [PMID: 40100290 PMCID: PMC11919930 DOI: 10.1007/s11033-025-10415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND While canonical anabolic and proteolytic pathways have been well examined in the context of skeletal muscle proteostasis, the roles of endoplasmic reticulum stress (ERS) and the induced unfolded protein response (UPR) are underappreciated. Thus, we aimed to determine whether aging and/or disuse atrophy in rats altered skeletal muscle ERS/UPR markers. METHODS AND RESULTS Soleus (SOL) and plantaris (PLT) muscles of 3-month-old (mo), 6 mo, 12 mo, 18 mo, and 24 mo rats (9-10 per group, 48 in total) were analyzed for UPR proteins with further analysis performed on the protein CHOP. The gastrocnemius muscles of 4 mo rats that had undergone hindlimb immobilization (HLI, n = 12) or sham casting (CTL, n = 12) were analyzed for similar targets as well as more extensive CHOP-related targets. CHOP protein was greater in the PLT and SOL of 18 and 24 mo rats versus other age groups (P < 0.05). Moreover, negative correlations existed between CHOP expression and normalized PLT (R=-0.702, P < 0.001) and SOL (R=-0.658, P < 0.001) muscle weights in all rats analyzed at different ages. CHOP protein expression was also greater in the gastrocnemius of HLI versus CTL rats (P < 0.001), and a negative correlation existed between CHOP protein expression and normalized muscle weights in these rats (R=-0.814, P < 0.001). Nuclear CHOP protein levels (P < 0.010) and genes transcriptionally regulated by CHOP were also greater in HLI versus CTL rats (P < 0.001) implicating transcriptional activity of CHOP is elevated during disuse atrophy. CONCLUSIONS CHOP is operative during aging- and disuse-induced skeletal muscle atrophy in rodents, and more research is needed to determine if CHOP is a key mechanistic driver of these processes.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA.
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA.
- School of Kinesiology Director, Nutrabolt Applied and Molecular Physiology Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA.
| |
Collapse
|
4
|
Cheng Y, Wu J, Gao Y, Ang B, Yin L, Wang T, Chen Q, Wang Z, Zeng M, Chen J, He Z, Wu F. Hydroxylation of dihydromyricetin via Beauveria bassiana fermentation enhances its efficacy in improving insulin signaling: Insights into inflammation, oxidative stress, and endoplasmic reticulum stress. Food Res Int 2025; 204:115940. [PMID: 39986784 DOI: 10.1016/j.foodres.2025.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Chronic metabolic diseases, particularly insulin resistance (IR) and diabetes, pose significant global health challenges. This study introduces a novel hydroxylated dihydromyricetin (DHM) derivative, 8-hydroxy-DHM (H-DHM), produced via microbial fermentation using Beauveria bassiana. Notably, hydroxylation significantly enhances the efficacy of DHM in glucose consumption, glycogen synthesis, and glucose transport, while inhibiting gluconeogenesis in an IR-HepG2 cell model. This indicates that hydroxylation of DHM can enhance its regulation of glucose metabolism. Mechanistic investigations reveal that H-DHM regulates the JNK/PI3K/AKT signaling pathway by reducing inflammation, oxidative stress, and endoplasmic reticulum stress. These findings highlight the potential of hydroxylated DHM as a promising candidate for dietary and clinical interventions in IR management. Furthermore, this research provides new insights into the modification of natural flavonoids through microbial fermentation, presenting an innovative strategy for managing and preventing chronic metabolic diseases.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yueqing Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Beijun Ang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liduan Yin
- Yantai New Era Health Industry Co., Ltd., Yantai, Shandong 264000, China
| | - Tong Wang
- Yantai New Era Health Industry Co., Ltd., Yantai, Shandong 264000, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Fengfeng Wu
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang 313000, China; The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
5
|
Jin M, Shen Y, Monroig Ó, Zhao W, Bao Y, Zhu T, Tocher DR, Zhou Q. Sirt1 Mitigates Hepatic Lipotoxic Injury Induced by High-Fat-Diet in Fish Through Ire1α Deacetylation. J Nutr 2024; 154:3210-3224. [PMID: 39303797 DOI: 10.1016/j.tjnut.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Silent information regulator protein 1 (Sirt1) is crucial in regulating lipid metabolism, but its specific role and mechanism in fish hepatic lipotoxic injury remain undefined. OBJECTIVES This study aimed to elucidate the regulatory role of Sirt1 and the underlying mechanisms in dietary lipid-induced hepatic lipotoxic injury in a marine teleost black seabream. METHODS Black seabream were fed a control diet (12% lipid level), high-fat diet (HFD) [18% lipid level, oleic acid (OA)-rich], or HFD supplemented with 0.25%, 0.50%, or 1.00% resveratrol (RSV) for 8 wk. The cultured hepatocytes were stimulated by OA (200 μM), OA supplemented with RSV (20 μM), or transfection with sirt1-small interfering RNA (sisirt1). Biochemical indices, gene expression (qPCR), histology, transmission electron microscope, immunofluorescence, Western blot, flow cytometry, and immunoprecipitation assays were conducted to evaluate hepatic lipid deposition, lipid metabolism, endoplasmic reticulum stress, inflammation and apoptosis, and determine protein interactions between Sirt1 and Ire1α. RESULTS In vivo, RSV supplementation increased mRNA and protein expression levels of sirt1 (236.2% ± 16.1% and 53.1% ± 14.3%) and downregulated the mRNA and phosphorylated protein expression levels of ire1α/Ire1α (46.0% ± 7.6% and 38.6% ± 7.0%), jnk/Jnk (57.6% ± 7.3% and 122.1%), and nuclear factor κ B (nf-κb/Nf-κb) p65 (41.7% ± 7.1% and 24.6% ± 0.8%) compared with the HFD group. Similar patterns were found in the in vitro experiments; however, after knockdown of sirt1, although the cells were incubated with RSV, the expression levels of ire1α/ Ire1α, jnk/Jnk, and nf-κb/Nf-κb p65 showed no significant differences compared with the OA treatment. Moreover, we found that mutation of K61 to arginine to mimic Ire1α deacetylation confers protection against Ire1α-mediated OA-rich HFD-induced inflammation and apoptosis. CONCLUSIONS The findings revealed that Sirt1 protects against OA-rich HFD-induced hepatic lipotoxic injury via the deacetylation of Ire1α on K61, hence reducing Ire1α autophosphorylation level, and suppressing Jnk and Nf-κb p65 activation. This mechanism is elucidated for the first time in fish.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| |
Collapse
|
6
|
Li Liang F, Fu Tong Y, Chun Zhang X, Feng Ma X. Hsa-circ-ACSL1 Enhances Apoptosis and Autophagy in Myocarditis Cardiomyocytes Through the miR-7-5p/XBP1 Axis. Anatol J Cardiol 2024; 28. [PMID: 39378323 PMCID: PMC11537450 DOI: 10.14744/anatoljcardiol.2024.4472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Viral myocarditis (VMC) is a common cardiovascular disease, and circular RNAs (circRNAs) have been identified to play an important role in the pathophysiology of cardiovascular disease. However, the clinical significance, biological functions, and regulatory mechanisms of circRNAs in VMC remain poorly understood. Therefore, this study explored the biological functions and regulatory mechanisms of circ-ACSL1 in VMC. METHODS The animal and cell models of VMC were established by infecting BABL/C mice and interleukin-2 cells with coxsackievirus B3 (CVB3). Pro-inflammatory factors, markers of myocardial injury, apoptosis, and autophagy were detected to evaluate the degree of myocardial inflammation and myocardial injury after altering circ-ACSL1, microRNA-7-5p (miR-7-5p), and X-box binding protein 1 (XBP1) expression alone or in combination. RESULTS Knocking down circ-ACSL1 could inhibit inflammation, autophagy, and apoptosis in VMC animals and cells. Mechanistically, circ-ACSL1 targeted miR-7-5p to regulate the downstream target XBP1. In addition, depleting miR-7-5p rescued the therapeutic effect of depleting circ-ACSL1. Overexpression of circ-ACSL1 aggravated VMC; however, this effect was saved by knocking down XBP1. CONCLUSION By competitively absorbing miR-7-5p, circ-ACSL1 increases XBP1 expression and aggravates myocardial inflammation. Meaningfully, VMC treatment may benefit from circ-ACSL1 as a potential biomarker for precise diagnosis and as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | - Xiao Chun Zhang
- Department of Coronary Heart Disease II, Qinghai Cardio-Cerebrovascular Specialty Hospital, Qinghai High Altitude Medical Research Institute, Xining City, Qinghai Province, China
| | - Xiao Feng Ma
- Department of Coronary Heart Disease II, Qinghai Cardio-Cerebrovascular Specialty Hospital, Qinghai High Altitude Medical Research Institute, Xining City, Qinghai Province, China
| |
Collapse
|
7
|
Duan C, Zhou D, Feng R, Li X, Yang L, Li X, Li G, Chen H, Liao Y, Tian C. Long-term thermal acclimation enhances heat resistance of Hong Kong catfish (Clarias fuscus) by modulating gill tissue structure, antioxidant capacity and immune metabolic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116930. [PMID: 39205351 DOI: 10.1016/j.ecoenv.2024.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The rapid temperature changes caused by global warming significantly challenge fish survival by affecting various biological processes. Fish generally mitigate stress through physiological plasticity, but when temperature changes exceed their tolerance limits, even adaptable species like Siluriformes can experience internal disruptions. This study investigates the effects of extreme thermal climate on Hong Kong catfish (Clarias fuscus), native to tropical and subtropical regions. C. fuscus were exposed to normal temperature (NT, 26 ℃) or high temperature (HT, 34 ℃) condition for 90 days. Subsequently, histological, biochemical, and transcriptomic changes in gill tissue were observed after exposure to acute high temperatures (34 ℃) and subsequent temperature recovery (26 ℃). Histological analysis revealed that C. fuscus in the HT group exhibited less impact from sudden temperature shifts compared to the NT group, as they adapted by reducing the interlamellar cell mass (ILCM) and lamellae thickness (LT) of gill tissue, thereby mitigating the aftermath of acute heat shock. Biochemical analysis showed that catalase (CAT) activity in the high temperature group continued to increase, while malondialdehyde (MDA) levels decreased, suggesting establishment of a new oxidative balance and enhanced environmental adaptability. Transcriptome analysis identified 520 and 463 differentially expressed genes in the NT and HT groups, respectively, in response to acute temperature changes. Enrichment analysis highlighted that in response to acute temperature changes, the NT group inhibited apoptosis and ferroptosis by regulating the activity of alox12, gclc, and hmox1a, thereby attenuating the adverse effects of heat stress. Conversely, the HT group increased the activity of pfkma and pkma to provide sufficient energy for tissue repair. The higher degree of heat shock protein (Hsp) response in NT group also indicated more severe heat stress injury. These findings demonstrate alterations in gill tissue structure, regulation of oxidative balance, and the response of immune metabolic pathways to acute temperature fluctuations in C. fuscus following thermal exposure, suggesting potential avenues for further exploration into the thermal tolerance plasticity of fish adapting to global warming.
Collapse
Affiliation(s)
- Cunyu Duan
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Ruiqing Feng
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Xiaolong Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Lei Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Xinyi Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yu Liao
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
8
|
Srisawat K, Stead CA, Hesketh K, Pogson M, Strauss JA, Cocks M, Siekmann I, Phillips SM, Lisboa PJ, Shepherd S, Burniston JG. People with obesity exhibit losses in muscle proteostasis that are partly improved by exercise training. Proteomics 2024; 24:e2300395. [PMID: 37963832 DOI: 10.1002/pmic.202300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
This pilot experiment examines if a loss in muscle proteostasis occurs in people with obesity and whether endurance exercise positively influences either the abundance profile or turnover rate of proteins in this population. Men with (n = 3) or without (n = 4) obesity were recruited and underwent a 14-d measurement protocol of daily deuterium oxide (D2O) consumption and serial biopsies of vastus lateralis muscle. Men with obesity then completed 10-weeks of high-intensity interval training (HIIT), encompassing 3 sessions per week of cycle ergometer exercise with 1 min intervals at 100% maximum aerobic power interspersed by 1 min recovery periods. The number of intervals per session progressed from 4 to 8, and during weeks 8-10 the 14-d measurement protocol was repeated. Proteomic analysis detected 352 differences (p < 0.05, false discovery rate < 5%) in protein abundance and 19 (p < 0.05) differences in protein turnover, including components of the ubiquitin-proteasome system. HIIT altered the abundance of 53 proteins and increased the turnover rate of 22 proteins (p < 0.05) and tended to benefit proteostasis by increasing muscle protein turnover rates. Obesity and insulin resistance are associated with compromised muscle proteostasis, which may be partially restored by endurance exercise.
Collapse
Affiliation(s)
| | - Connor A Stead
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Katie Hesketh
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Mark Pogson
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | | | - Matt Cocks
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | - Ivo Siekmann
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Paulo J Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK
| | - Sam Shepherd
- Research Institute for Sport, & Exercise Sciences, Liverpool, UK
| | | |
Collapse
|
9
|
Xing X, Que X, Zheng S, Wang S, Song Q, Yao Y, Zhang P. Emerging roles of FOXK2 in cancers and metabolic disorders. Front Oncol 2024; 14:1376496. [PMID: 38741782 PMCID: PMC11089157 DOI: 10.3389/fonc.2024.1376496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
FOXK2, a member of the Forkhead box K (FOXK) transcription factor family, is widely expressed in various tissues and organs throughout the body. FOXK2 plays crucial roles in cell proliferation, differentiation, autophagy, de novo nucleotide biosynthesis, DNA damage response, and aerobic glycolysis. Although FOXK2 is recognized as an oncogene in colorectal cancer and hepatocellular carcinoma, it acts as a tumor suppressor in breast cancer, cervical cancer, and non-small cell lung cancer (NSCLC). This review provides an overview of the recent progress in understanding the regulatory mechanisms of FOXK2 and its downstream targets, highlights the significant impact of FOXK2 dysregulation on cancer etiology, and discusses the potential of targeting FOXK2 for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Zhang J, Chen S, Hu X, Huang L, Loh P, Yuan X, Liu Z, Lian J, Geng L, Chen Z, Guo Y, Chen B. The role of the peripheral system dysfunction in the pathogenesis of sepsis-associated encephalopathy. Front Microbiol 2024; 15:1337994. [PMID: 38298892 PMCID: PMC10828041 DOI: 10.3389/fmicb.2024.1337994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Sepsis is a condition that greatly impacts the brain, leading to neurological dysfunction and heightened mortality rates, making it one of the primary organs affected. Injury to the central nervous system can be attributed to dysfunction of various organs throughout the entire body and imbalances within the peripheral immune system. Furthermore, central nervous system injury can create a vicious circle with infection-induced peripheral immune disorders. We collate the pathogenesis of septic encephalopathy, which involves microglial activation, programmed cell death, mitochondrial dysfunction, endoplasmic reticulum stress, neurotransmitter imbalance, and blood-brain barrier disruption. We also spotlight the effects of intestinal flora and its metabolites, enterocyte-derived exosomes, cholinergic anti-inflammatory pathway, peripheral T cells and their cytokines on septic encephalopathy.
Collapse
Affiliation(s)
- Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinru Yuan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinyu Lian
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lianqi Geng
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
12
|
Esmaeilzadeh A, Mohammadi V, Elahi R, Rezakhani N. The role of heat shock proteins (HSPs) in type 2 diabetes mellitus pathophysiology. J Diabetes Complications 2023; 37:108564. [PMID: 37852076 DOI: 10.1016/j.jdiacomp.2023.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 10/20/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by sustained hyperglycemia caused by impaired insulin signaling and secretion. Metabolic stress, caused by an inappropriate diet, is one of the major hallmarks provoking inflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Heat shock proteins (HSPs) are a group of highly conserved proteins that have a crucial role in chaperoning damaged and misfolded proteins to avoid disruption of cellular homeostasis under stress conditions. To do this, HSPs interact with diverse intra-and extracellular pathways among which are the insulin signaling, insulin secretion, and apoptosis pathways. Therefore, HSP dysfunction, e.g. HSP70, may lead to disruption of the pathways responsible for insulin secretion and uptake. Consistently, the altered expression of other HSPs and genetic polymorphisms in HSP-producing genes in diabetic subjects has made HSPs hot research in T2DM. This paper provides a comprehensive overview of the role of different HSPs in T2DM pathogenesis, affected cellular pathways, and the potential therapeutic strategies targeting HSPs in T2DM.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Rezakhani
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Neely AE, Zhang Y, Blumensaadt LA, Mao H, Brenner B, Sun C, Zhang HF, Bao X. Nucleoporin downregulation modulates progenitor differentiation independent of nuclear pore numbers. Commun Biol 2023; 6:1033. [PMID: 37853046 PMCID: PMC10584948 DOI: 10.1038/s42003-023-05398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Nucleoporins (NUPs) comprise nuclear pore complexes, gateways for nucleocytoplasmic transport. As primary human keratinocytes switch from the progenitor state towards differentiation, most NUPs are strongly downregulated, with NUP93 being the most downregulated NUP in this process. To determine if this NUP downregulation is accompanied by a reduction in nuclear pore numbers, we leveraged Stochastic Optical Reconstruction Microscopy. No significant changes in nuclear pore numbers were detected using three independent NUP antibodies; however, NUP reduction in other subcellular compartments such as the cytoplasm was identified. To investigate how NUP reduction influences keratinocyte differentiation, we knocked down NUP93 in keratinocytes in the progenitor-state culture condition. NUP93 knockdown diminished keratinocytes' clonogenicity and epidermal regenerative capacity, without drastically affecting nuclear pore numbers or permeability. Using transcriptome profiling, we identified that NUP93 knockdown induces differentiation genes related to both mechanical and immune barrier functions, including the activation of known NF-κB target genes. Consistently, keratinocytes with NUP93 knockdown exhibited increased nuclear localization of the NF-κB p65/p50 transcription factors, and increased NF-κB reporter activity. Taken together, these findings highlight the gene regulatory roles contributed by differential NUP expression levels in keratinocyte differentiation, independent of nuclear pore numbers.
Collapse
Affiliation(s)
- Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Molecular Analytics and Photonics (MAP) Lab, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Hongjing Mao
- Molecular Analytics and Photonics (MAP) Lab, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Benjamin Brenner
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
14
|
de Wet S, Theart R, Loos B. Cogs in the autophagic machine-equipped to combat dementia-prone neurodegenerative diseases. Front Mol Neurosci 2023; 16:1225227. [PMID: 37720551 PMCID: PMC10500130 DOI: 10.3389/fnmol.2023.1225227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Neurodegenerative diseases are often characterized by hydrophobic inclusion bodies, and it may be the case that the aggregate-prone proteins that comprise these inclusion bodies are in fact the cause of neurotoxicity. Indeed, the appearance of protein aggregates leads to a proteostatic imbalance that causes various interruptions in physiological cellular processes, including lysosomal and mitochondrial dysfunction, as well as break down in calcium homeostasis. Oftentimes the approach to counteract proteotoxicity is taken to merely upregulate autophagy, measured by an increase in autophagosomes, without a deeper assessment of contributors toward effective turnover through autophagy. There are various ways in which autophagy is regulated ranging from the mammalian target of rapamycin (mTOR) to acetylation status of proteins. Healthy mitochondria and the intracellular energetic charge they preserve are key for the acidification status of lysosomes and thus ensuring effective clearance of components through the autophagy pathway. Both mitochondria and lysosomes have been shown to bear functional protein complexes that aid in the regulation of autophagy. Indeed, it may be the case that minimizing the proteins associated with the respective neurodegenerative pathology may be of greater importance than addressing molecularly their resulting inclusion bodies. It is in this context that this review will dissect the autophagy signaling pathway, its control and the manner in which it is molecularly and functionally connected with the mitochondrial and lysosomal system, as well as provide a summary of the role of autophagy dysfunction in driving neurodegenerative disease as a means to better position the potential of rapamycin-mediated bioactivities to control autophagy favorably.
Collapse
Affiliation(s)
- Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Rensu Theart
- Department of Electric and Electronic Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
15
|
Yang Y, Zhang M, Li Z, He S, Ren X, Wang L, Wang Z, Shu S. Identification and cross-validation of autophagy-related genes in cardioembolic stroke. Front Neurol 2023; 14:1097623. [PMID: 37305740 PMCID: PMC10248509 DOI: 10.3389/fneur.2023.1097623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.
Collapse
Affiliation(s)
- Yufang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqing Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ren
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linmei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Barua D, Sultana A, Islam MN, Cox F, Gupta A, Gupta S. RRM2 and CDC6 are novel effectors of XBP1-mediated endocrine resistance and predictive markers of tamoxifen sensitivity. BMC Cancer 2023; 23:288. [PMID: 36997866 PMCID: PMC10061897 DOI: 10.1186/s12885-023-10745-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Endocrine-resistant breast cancers have elevated expression of XBP1, where it drives endocrine resistance by controlling the expression of its target genes. Despite the in-depth understanding of the biological functions of XBP1 in ER-positive breast cancer, effectors of endocrine resistance downstream of XBP1 are poorly understood. The aim of this study was to identify the XBP1-regulated genes contributing to endocrine resistance in breast cancer. METHODS XBP1 deficient sub-clones in MCF7 cells were generated using the CRISPR-Cas9 gene knockout strategy and were validated using western blot and RT-PCR. Cell viability and cell proliferation were evaluated using the MTS assay and colony formation assay, respectively. Cell death and cell cycle analysis were determined using flow cytometry. Transcriptomic data was analysed to identify XBP1-regulated targets and differential expression of target genes was evaluated using western blot and qRT-PCR. Lentivirus and retrovirus transfection were used to generate RRM2 and CDC6 overexpressing clones, respectively. The prognostic value of the XBP1-gene signature was analysed using Kaplan-Meier survival analysis. RESULTS Deletion of XBP1 compromised the upregulation of UPR-target genes during conditions of endoplasmic reticulum (EnR) stress and sensitized cells to EnR stress-induced cell death. Loss of XBP1 in MCF7 cells decreased cell growth, attenuated the induction of estrogen-responsive genes and sensitized them to anti-estrogen agents. The expression of cell cycle associated genes RRM2, CDC6, and TOP2A was significantly reduced upon XBP1 deletion/inhibition in several ER-positive breast cancer cells. Expression of RRM2, CDC6, and TOP2A was increased upon estrogen stimulation and in cells harbouring point-mutants (Y537S, D538G) of ESR1 in steroid free conditions. Ectopic expression of RRM2 and CDC6 increased cell growth and reversed the hypersensitivity of XBP1 KO cells towards tamoxifen conferring endocrine resistance. Importantly, increased expression of XBP1-gene signature was associated with poor outcome and reduced efficacy of tamoxifen treatment in ER-positive breast cancer. CONCLUSIONS Our results suggest that RRM2 and CDC6 downstream of XBP1 contribute to endocrine resistance in ER-positive breast cancer. XBP1-gene signature is associated with poor outcome and response to tamoxifen in ER-positive breast cancer.
Collapse
Affiliation(s)
- David Barua
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Afrin Sultana
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Discipline of Biochemistry, School of Medicine, University of Galway, Galway, Ireland
| | - Fergus Cox
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Ananya Gupta
- Discipline of Physiology, Human Biology Building, School of Medicine, University of Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
17
|
Yim HCH, Chakrabarti A, Kessler S, Morimoto H, Wang D, Sooraj D, Ahmed AU, de la Motte C, Silverman RH, Williams BRG, Sadler AJ. The protein kinase R modifies gut physiology to limit colitis. Front Immunol 2023; 14:1106737. [PMID: 36875104 PMCID: PMC9981792 DOI: 10.3389/fimmu.2023.1106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Here we investigate the function of the innate immune molecule protein kinase R (PKR) in intestinal inflammation. To model a colitogenic role of PKR, we determine the physiological response to dextran sulfate sodium (DSS) of wild-type and two transgenic mice strains mutated to express either a kinase-dead PKR or to ablate expression of the kinase. These experiments recognize kinase-dependent and -independent protection from DSS-induced weight loss and inflammation, against a kinase-dependent increase in the susceptibility to DSS-induced injury. We propose these effects arise through PKR-dependent alteration of gut physiology, evidenced as altered goblet cell function and changes to the gut microbiota at homeostasis that suppresses inflammasome activity by controlling autophagy. These findings establish that PKR functions as both a protein kinase and a signaling molecule in instituting immune homeostasis in the gut.
Collapse
Affiliation(s)
- Howard Chi Ho Yim
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Arindam Chakrabarti
- Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, United States
| | - Sean Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, United States
| | - Hiroyuki Morimoto
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy, School of Medicine, the University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Die Wang
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Carol de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH, United States
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland, OH, United States
| | - Bryan RG. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Anthony J. Sadler
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
18
|
Shah A, Huck I, Duncan K, Gansemer ER, Apte U, Stamnes MA, Rutkowski DT. Interference with the HNF4-dependent gene regulatory network diminishes ER stress in hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527889. [PMID: 36798396 PMCID: PMC9934629 DOI: 10.1101/2023.02.09.527889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which is largely unknown. Here, we used unsupervised machine learning to identify a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4 α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. Several pathways potentially link HNF4α to ER stress sensitivity, including control of expression of the tunicamycin transporter MFSD2A; modulation of IRE1/XBP1 signaling; and regulation of Pyruvate Dehydrogenase. Together, these findings suggest that HNF4α activity is linked to hepatic ER homeostasis through multiple mechanisms.
Collapse
Affiliation(s)
- Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Ian Huck
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, KS
| | - Kaylia Duncan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Erica R. Gansemer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, KS
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
19
|
Chen Q, Min J, Zhu M, Shi Z, Chen P, Ren L, Wang X. Protective role of PERK-eIF2α-ATF4 pathway in chronic renal failure induced injury of rat hippocampal neurons. Int J Neurosci 2023; 133:123-132. [PMID: 34102956 DOI: 10.1080/00207454.2021.1896503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Chronic renal failure (CRF) is associated with impairment of hippocampal neurons. This study investigated the effect of PERK-eIF2α-ATF4 pathway in CRF. METHODS Rat CRF model was established and rat hippocampal neurons were separated. Xanthine Oxidase method, fluorescence spectrophotometry and flow cytometry were applied to detect superoxide dismutase (SOD) content, reactive oxygen species (ROS) level and apoptosis in hippocampal neurons, respectively. The levels of phosphorylated (p)-PERK, phosphorylated (p)-eIF2α, CHOP, Bax, C-Caspase-3 and Bcl-2 in rats were measured using Western blot. Then, the neurotoxicity of serum from CRF rats was assessed in rat hippocampal neurons after treatment with rat CRF serum and transfection with or without PERK overexpression or knockdown plasmid. RESULTS SOD activity was reduced, while ROS level and apoptosis rate were increased in hippocampal tissues of CRF rats. PERK-eIF2α-ATF4 and apoptosis pathways were activated in CRF rats. Cells treated with serum from CRF rats showed increases in apoptosis rate and LDH and ROS levels, and decreases in cell viability and SOD activity. However, overexpressed PERK could reverse the cytotoxic effect of serum from CRF rats. PERK overexpression could enhance the activation of PERK-eIF2α-ATF4 pathway in hippocampal neurons induced by serum from CRF rats. Furthermore, PERK overexpression could alleviate the increases in CHOP, Bax, C-Caspase-3 expressions and the reduction of Bcl-2 expression in hippocampal neurons induced by serum from CRF rats. CONCLUSION PERK-eIF2α-ATF4 pathway induced by increased endoplasmic reticulum stress may alleviate CRF-induced hippocampal neuronal damage.
Collapse
Affiliation(s)
- Qi Chen
- Department of Nephrology, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Jingjing Min
- Department of Neurology, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ming Zhu
- Department of Nephrology, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhanqin Shi
- Department of Nephrology, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Pingping Chen
- Department of Nephrology, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Lingyan Ren
- Department of Nephrology, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Xiaoyi Wang
- Department of Nephrology, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| |
Collapse
|
20
|
Enhanced IRE1α Phosphorylation/Oligomerization-Triggered XBP1 Splicing Contributes to Parkin-Mediated Prevention of SH-SY5Y Cell Death under Nitrosative Stress. Int J Mol Sci 2023; 24:ijms24032017. [PMID: 36768338 PMCID: PMC9917145 DOI: 10.3390/ijms24032017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Mutations in parkin, a neuroprotective protein, are the predominant cause of autosomal recessive juvenile Parkinson's disease. Neuroinflammation-derived nitrosative stress has been implicated in the etiology of the chronic neurodegeneration. However, the interactions between genetic predisposition and nitrosative stress contributing to the degeneration of dopaminergic (DA) neurons remain incompletely understood. Here, we used the SH-SY5Y neuroblastoma cells to investigate the function of parkin and its pathogenic mutants in relation to cell survival under nitric oxide (NO) exposure. The results showed that overexpression of wild-type parkin protected SH-SY5Y cells from NO-induced apoptosis in a reactive oxygen species-dependent manner. Under nitrosative stress conditions, parkin selectively upregulated the inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) signaling axis, an unfolded protein response signal through the sensor IRE1α, which controls the splicing of XBP1 mRNA. Inhibition of XBP1 mRNA splicing either by pharmacologically inhibiting IRE1α endoribonuclease activity or by genetically knocking down XBP1 interfered with the protective activity of parkin. Furthermore, pathogenic parkin mutants with a defective protective capacity showed a lower ability to activate the IRE1α/XBP1 signaling. Finally, we demonstrated that IRE1α activity augmented by parkin was possibly mediated through interacting with IRE1α to regulate its phosphorylation/oligomerization processes, whereas mutant parkin diminished its binding to and activation of IRE1α. Thus, these results support a direct link between the protective activity of parkin and the IRE1α/XBP1 pathway in response to nitrosative stress, and mutant parkin disrupts this function.
Collapse
|
21
|
Chen Z, Wang X, Wu H, Fan Y, Yan Z, Lu C, Ouyang H, Zhang S, Zhang M. X-box binding protein 1 as a key modulator in “healing endothelial cells”, a novel EC phenotype promoting angiogenesis after MCAO. Cell Mol Biol Lett 2022; 27:97. [PMID: 36348288 PMCID: PMC9644469 DOI: 10.1186/s11658-022-00399-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background Endothelial cells (ECs) play an important role in angiogenesis and vascular reconstruction in the pathophysiology of ischemic stroke. Previous investigations have provided a profound cerebral vascular atlas under physiological conditions, but have failed to identify new disease-related cell subtypes. We aimed to identify new EC subtypes and determine the key modulator genes. Methods Two datasets GSE174574 and GSE137482 were included in the study. Seurat was utilized as the standard quality-control pipeline. UCell was used to calculate single-cell scores to validate cellular identity. Monocle3 and CytoTRACE were utilized in aid of pseudo-time differentiation analysis. CellChat was utilized to infer the intercellular communication pathways. The angiogenesis ability of ECs was validated by MTS, Transwell, tube formation, flow cytometry, and immunofluorescence assays in vitro and in vivo. A synchrotron radiation-based propagation contrast imaging was introduced to comprehensively portray cerebral vasculature. Results We successfully identified a novel subtype of EC named “healing EC” that highly expressed pan-EC marker and pro-angiogenic genes but lowly expressed all the arteriovenous markers identified in the vascular single-cell atlas. Further analyses showed its high stemness to differentiate into other EC subtypes and potential to modulate inflammation and angiogenesis via excretion of signal molecules. We therefore identified X-box binding protein 1 (Xbp1) as a key modulator in the healing EC phenotype. In vitro and in vivo experiments confirmed its pro-angiogenic roles under both physiological and pathological conditions. Synchrotron radiation-based propagation contrast imaging further proved that Xbp1 could promote angiogenesis and recover normal vasculature conformation, especially in the corpus striatum and prefrontal cortex under middle cerebral artery occlusion (MCAO) condition. Conclusions Our study identified a novel disease-related EC subtype that showed high stemness to differentiate into other EC subtypes. The predicted molecule Xbp1 was thus confirmed as a key modulator that can promote angiogenesis and recover normal vasculature conformation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00399-5.
Collapse
|
22
|
Non-alcoholic fatty liver disease and liver secretome. Arch Pharm Res 2022; 45:938-963. [PMCID: PMC9703441 DOI: 10.1007/s12272-022-01419-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
|
23
|
Machado MV, Chapuis R, Vieira AB. Can Exercise Training Prevent Doxorubicin-induced Cardiomyopathy? INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.36660/ijcs.20220170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
25
|
Li X, Ge M, Zhu W, Wang P, Wang J, Tai T, Wang Y, Sun J, Shi G. Protective Effects of Astilbin Against Cadmium-Induced Apoptosis in Chicken Kidneys via Endoplasmic Reticulum Stress Signaling Pathway. Biol Trace Elem Res 2022; 200:4430-4443. [PMID: 34799836 DOI: 10.1007/s12011-021-03029-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) can cause endoplasmic reticulum stress (ERS) and apoptosis in animals. The kidney is an organ seriously affected by Cd because it can accumulate metal ions. Astilbin (ASB) is a dihydroflavonol rhamnoside, which has an anti-renal injury effect. This study aimed to evaluate the protective effect of ASB on Cd-induced ERS and apoptosis in the chicken kidney. In this study, a total of 120 1-day-old chickens were randomly divided into 4 groups. Chickens were fed with a basic diet (Con group), ASB 40 mg/kg (ASB group), CdCl2 150 mg/kg + ASB 40 mg/kg (ASB/Cd group), and CdCl2 150 mg/kg (Cd group) for 90 days. The results showed that Cd exposure induced pathological and ultrastructural damages and apoptosis in chicken kidneys. Compared with the Con group, metallothionein (MT1/MT2) level, nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, ERS-related genes 78-kDa glucose-regulated protein (Grp78), protein kinase PKR-like endoplasmic reticulum kinase (Perk), activating transcription factor 4 (Atf4) and CAAT/enhancer-binding protein (C/EBP) homologous protein (Chop), and pro-apoptotic gene B-cell lymphoma 2 (Bcl-2)-associated X (Bax), caspase-12, caspase-9, caspase-3 expression levels, and apoptotic rate were significantly increased in the Cd group. The expression level of Bcl-2 was significantly decreased in the Cd group. ASB/Cd combined treatment significantly improves the damage of chicken kidneys by ameliorating Cd-induced kidney ERS and apoptosis. Cd can cause the disorder of the GRP78 signal axis, activate the PERK-ATF4-CHOP pathway, aggravate the structural damage and dysfunction of ER, and promote the apoptosis of chicken kidneys, while the above changes were significantly alleviated in the ASB/Cd group. The results showed that ASB antagonizes the negative effects of Cd and against Cd-induced apoptosis in chicken kidneys via ERS signaling pathway.
Collapse
Affiliation(s)
- Xiuyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Weifeng Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Panpan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jiangfeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Yuxi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jianxu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
26
|
Fu F, Doroudgar S. IRE1/XBP1 and endoplasmic reticulum signaling - from basic to translational research for cardiovascular disease. CURRENT OPINION IN PHYSIOLOGY 2022; 28:100552. [PMID: 37207249 PMCID: PMC10195104 DOI: 10.1016/j.cophys.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most cellular protein synthesis, including synthesis of membrane-targeted and secreted proteins, which are critical for cellular and organ crosstalk, takes place at the endoplasmic reticulum (ER), placing the ER at the nexus of cellular signaling, growth, metabolism, and stress sensing. Ample evidence has established the dysregulation of protein homeostasis and the ER unfolded protein response (UPR) in cardiovascular disease. However, the mechanisms of stress sensing and signaling in the ER are incompletely defined. Recent studies have defined notable functions for the inositol-requiring kinase 1 (IRE1)/X-box- binding protein-1 (XBP1) branch of the UPR in regulation of cardiac function. This review highlights the mechanisms underlying IRE1 activation and the IRE1 interactome, which reveals unexpected functions for the UPR and summarizes our current understanding of the functions of IRE1 in cardiovascular disease.
Collapse
Affiliation(s)
- Fangyi Fu
- Department of Cardiology, Angiology, and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona - College of Medicine - Phoenix, Phoenix, AZ, United States
| |
Collapse
|
27
|
Horseman M, Panahi L, Udeani G, Tenpas AS, Verduzco Jr. R, Patel PH, Bazan DZ, Mora A, Samuel N, Mingle AC, Leon LR, Varon J, Surani S. Drug-Induced Hyperthermia Review. Cureus 2022; 14:e27278. [PMID: 36039261 PMCID: PMC9403255 DOI: 10.7759/cureus.27278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Humans maintain core body temperature via a complicated system of physiologic mechanisms that counteract heat/cold fluctuations from metabolism, exertion, and the environment. Overextension of these mechanisms or disruption of body temperature homeostasis leads to bodily dysfunction, culminating in a syndrome analogous to exertional heat stroke (EHS). The inability of this thermoregulatory process to maintain the body temperature is caused by either thermal stress or certain drugs. EHS is a syndrome characterized by hyperthermia and the activation of systemic inflammation. Several drug-induced hyperthermic syndromes may resemble EHS and share common mechanisms. The purpose of this article is to review the current literature and compare exertional heat stroke (EHS) to three of the most widely studied drug-induced hyperthermic syndromes: malignant hyperthermia (MH), neuroleptic malignant syndrome (NMS), and serotonin syndrome (SS). Drugs and drug classes that have been implicated in these conditions include amphetamines, diuretics, cocaine, antipsychotics, metoclopramide, selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and many more. Observations suggest that severe or fulminant cases of drug-induced hyperthermia may evolve into an inflammatory syndrome best described as heat stroke. Their underlying mechanisms, symptoms, and treatment approaches will be reviewed to assist in accurate diagnosis, which will impact the management of potentially life-threatening complications.
Collapse
|
28
|
Zhang Y, Wang Y, Zhao G, Tanner EJ, Adli M, Matei D. FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J Clin Invest 2022; 132:e151591. [PMID: 35349489 PMCID: PMC9106354 DOI: 10.1172/jci151591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the regulatory programs enabling cancer stem cells (CSCs) to self-renew and drive tumorigenicity could identify new treatments. Through comparative chromatin-state and gene expression analyses in ovarian CSCs versus non-CSCs, we identified FOXK2 as a highly expressed stemness-specific transcription factor in ovarian cancer. Its genetic depletion diminished stemness features and reduced tumor initiation capacity. Our mechanistic studies highlight that FOXK2 directly regulated IRE1α (encoded by ERN1) expression, a key sensor for the unfolded protein response (UPR). Chromatin immunoprecipitation and sequencing revealed that FOXK2 bound to an intronic regulatory element of ERN1. Blocking FOXK2 from binding to this enhancer by using a catalytically inactive CRISPR/Cas9 (dCas9) diminished IRE1α transcription. At the molecular level, FOXK2-driven upregulation of IRE1α led to alternative XBP1 splicing and activation of stemness pathways, while genetic or pharmacological blockade of this sensor of the UPR inhibited ovarian CSCs. Collectively, these data establish what we believe is a new function for FOXK2 as a key transcriptional regulator of CSCs and a mediator of the UPR, providing insight into potentially targetable new pathways in CSCs.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Yinu Wang
- Department of Obstetrics and Gynecology
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Edward J. Tanner
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
29
|
Colares JR, Hartmann RM, Schemitt EG, Fonseca SRB, Brasil MS, Picada JN, Dias AS, Bueno AF, Marroni CA, Marroni NP. Melatonin prevents oxidative stress, inflammatory activity, and DNA damage in cirrhotic rats. World J Gastroenterol 2022; 28:348-364. [PMID: 35110954 PMCID: PMC8771613 DOI: 10.3748/wjg.v28.i3.348] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cirrhosis is an important health problem characterized by a significant change in liver parenchyma. In animals, this can be reproduced by an experimental model of bile duct ligation (BDL). Melatonin (MLT) is a physiological hormone synthesized from serotonin that has been studied for its beneficial properties, including its antioxidant potential.
AIM To evaluate MLT’s effects on oxidative stress, the inflammatory process, and DNA damage in an experimental model of secondary biliary cirrhosis.
METHODS Male Wistar rats were divided into 4 groups: Control (CO), CO + MLT, BDL, and BDL + MLT. MLT was administered (20 mg/kg) daily beginning on day 15 after biliary obstruction. On day 29 the animals were killed. Blood samples, liver tissue, and bone marrow were collected for further analysis.
RESULTS BDL caused changes in biochemical and histological parameters and markers of inflammatory process. Thiobarbituric acid (0.46 ± 0.01) reactive substance levels, superoxide dismutase activity (2.30 ± 0.07) and nitric oxide levels (2.48 ± 0.36) were significantly lower (P < 0.001) n the groups that received MLT. DNA damage was also lower (P < 0.001) in MLT-treated groups (171.6 ± 32.9) than the BDL-only group (295.5 ± 34.8). Tissue damage and the expression of nuclear factor kappa B, interleukin-1β, Nrf2, NQO1 and Hsp70 were significantly lower in animals treated with MLT (P < 0.001).
CONCLUSION When administered to rats with BDL-induced secondary biliary cirrhosis, MLT effectively restored the evaluated parameters.
Collapse
Affiliation(s)
- Josieli R Colares
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Renata M Hartmann
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Elizângela G Schemitt
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Sandielly R B Fonseca
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Marilda S Brasil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Jaqueline N Picada
- Cellular and Molecular Biology Program, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil
| | - Alexandre S Dias
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Aline F Bueno
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Cláudio A Marroni
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Norma P Marroni
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| |
Collapse
|
30
|
Zhou Z, Wang Q, Michalak M. Inositol Requiring Enzyme (IRE), a multiplayer in sensing endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2022; 25:347-357. [PMID: 35059134 PMCID: PMC8765250 DOI: 10.1080/19768354.2021.2020901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Zhixin Zhou
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
31
|
Shivarudrappa AH, Sharan K, Ponesakki G. Lutein activates downstream signaling pathways of unfolded protein response in hyperglycemic ARPE-19 cells. Eur J Pharmacol 2022; 914:174663. [PMID: 34861209 DOI: 10.1016/j.ejphar.2021.174663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
We have earlier demonstrated that lutein effectively prevents hyperglycemia generated sustained oxidative stress in ARPE-19 cells by activating Nrf2 (nuclear factor erythroid 2-related factor 2) signaling. Since evidence portrays an intricate connection between ER (endoplasmic reticulum) stress and hyperglycemia-mediated oxidative stress, we aimed to explore the protective mechanism of lutein on hyperglycemia-induced ER stress in ARPE-19 cells. To determine the effect of lutein, we probed three major downstream branches of unfolded protein response (UPR) signaling pathways using western blot, immunofluorescent and RT-PCR techniques. The data showed a reduction (38%) in protein expression of an imperative ER chaperon, BiP (binding immunoglobulin protein), in glucose-treated ARPE-19 cells. At the same time, lutein pretreatment blocked this glucose-mediated effect, leading to a significant increase in BiP expression. Lutein promoted the phosphorylation of IRE1 (inositol requiring enzyme 1) and subsequent splicing of XBP1 (X-box binding protein 1), leading to enhanced nuclear translocation. Likewise, lutein activated the expression and translocation of transcription factors, ATF6 (activating transcription factor 6) and ATF4 (activating transcription factor 4) suppressed by hyperglycemia. Lutein also increased CHOP (C/EBP-homologous protein) levels in ARPE-19 cultured under high glucose conditions. The mRNA expression study showed that lutein pretreatment upregulates downstream UPR genes HRD1 (ERAD-associated E3 ubiquitin-protein ligase HRD1), p58IPK (protein kinase inhibitor p58) compared to high glucose treatment alone. From our study, it is clear that lutein show protection against hyperglycemia-mediated ER stress in ARPE-19 cells by activating IRE1-XBP1, ATF6, and ATF4 pathways and their downstream activators. Thus, lutein may have the pharmacological potential for protection against widespread disease conditions of ER stress.
Collapse
Affiliation(s)
- Arpitha Haranahalli Shivarudrappa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Chennai, 600 020, India.
| |
Collapse
|
32
|
Role of the mTOR-autophagy-ER stress pathway in high fructose-induced metabolic-associated fatty liver disease. Acta Pharmacol Sin 2022; 43:10-14. [PMID: 33731774 PMCID: PMC8724298 DOI: 10.1038/s41401-021-00629-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common metabolic disease with a global prevalence of 25%. While MAFLD is serious and incurable at the later stage, it can be controlled or reversed at the early stage of hepatosteatosis originating from unhealthy diets. Recent laboratory evidence implicates a critical role of the mammalian target of rapamycin (mTOR)-autophagy signaling pathway in the pathogenesis of MAFLD induced by a high-fructose diet mimicking the overconsumption of sugar in humans. This review discusses the possible molecular mechanisms of mTOR-autophagy-endoplasmic reticulum (ER) stress in MAFLD. Based on careful analysis of recent studies, we suggest possible new therapeutic concepts or targets that can be explored for the discovery of new anti-MAFLD drugs.
Collapse
|
33
|
Temporal Transcript Profiling Identifies a Role for Unfolded Protein Stress in Human Gut Ischemia-Reperfusion Injury. Cell Mol Gastroenterol Hepatol 2021; 13:681-694. [PMID: 34774803 PMCID: PMC8761776 DOI: 10.1016/j.jcmgh.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Intestinal ischemia-reperfusion injury is a serious and life-threatening condition. A better understanding of molecular mechanisms related to intestinal ischemia-reperfusion injury in human beings is imperative to find therapeutic targets and improve patient outcome. METHODS First, the in vivo dynamic modulation of mucosal gene expression of the ischemia-reperfusion-injured human small intestine was studied. Based on functional enrichment analysis of the changing transcriptome, one of the predominantly regulated pathways was selected for further investigation in an in vitro human intestinal organoid model. RESULTS Ischemia-reperfusion massively changed the transcriptional landscape of the human small intestine. Functional enrichment analysis based on gene ontology and pathways pointed to the response to unfolded protein as a predominantly regulated process. In addition, regulatory network analysis identified hypoxia-inducing factor 1A as one of the key mediators of ischemia-reperfusion-induced changes, including the unfolded protein response (UPR). Differential expression of genes involved in the UPR was confirmed using quantitative polymerase chain reaction analysis. Electron microscopy showed signs of endoplasmic reticulum stress. Collectively, these findings point to a critical role for unfolded protein stress in intestinal ischemia-reperfusion injury in human beings. In a human intestinal organoid model exposed to hypoxia-reoxygenation, attenuation of UPR activation with integrated stress response inhibitor strongly reduced pro-apoptotic activating transcription factor 4 (ATF4)-CCAAT/enhancer-binding protein homologous protein (CHOP) signaling. CONCLUSIONS Transcriptome analysis showed a crucial role for unfolded protein stress in the response to ischemia-reperfusion in human small intestine. UPR inhibition during hypoxia-reoxygenation in an intestinal organoid model suggests that downstream protein kinase R-like ER kinase (PERK) signaling may be a promising target to reduce intestinal ischemia-reperfusion injury. Microarray data are available in GEO (https://www.ncbi.nlm.nih.gov/gds, accession number GSE37013).
Collapse
|
34
|
Heat Shock Protein 70 Improves In Vitro Embryo Yield and Quality from Heat Stressed Bovine Oocytes. Animals (Basel) 2021; 11:ani11061794. [PMID: 34208520 PMCID: PMC8235242 DOI: 10.3390/ani11061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein 70 (HSP70) is a chaperon that stabilizes unfolded or partially folded proteins, preventing inappropriate inter- and intramolecular interactions. Here, we examined the developmental competence of in vitro matured oocytes exposed to heat stress with or without HSP70. Bovine oocytes were matured for 24 h at 39 °C without (group C39) or with HSP70 (group H39) and at 41 °C for the first 6 h, followed by 16 h at 39 °C with (group H41) or without HSP70 (group C41). After insemination, zygotes were cultured for 9 days at 39 °C. Cleavage and embryo yield were assessed 48 h post insemination and on days 7, 8, 9, respectively. Gene expression was assessed by RT-PCR in oocytes, cumulus cells and blastocysts. In C41, blastocysts formation rate was lower than in C39 and on day 9 it was lower than in H41. In oocytes, HSP70 enhanced the expression of three HSP genes regardless of incubation temperature. HSP70 at 39 °C led to tight coordination of gene expression in oocytes and blastocysts, but not in cumulus cells. Our results imply that HSP70, by preventing apoptosis, supporting signal transduction, and increasing antioxidant protection of the embryo, protects heat stressed maturing bovine oocyte and restores its developmental competence.
Collapse
|
35
|
Zhang ZK, Zhou Y, Cao J, Liu DY, Wan LH. Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway. J Pharm Pharmacol 2021; 73:916-921. [PMID: 33724397 DOI: 10.1093/jpp/rgaa033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Acute lung injury (ALI) is the major complication of sepsis, and no effective treatment is available now. Recently, rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, exerts a potential role on ALI with anti-inflammation, and antioxidant properties. However, there is still no evidence on its protective effect on cell apoptosis in sepsis. Here, we investigated the protective effect of RA in septic-associated mortality and lung injury based on apoptosis. METHODS Male C57BL/6 mice were administered with lipopolysaccharide (LPS) (15 mg/kg, ip) to establish ALI mice model. Preteatment of RA (20 or 40 mg/kg, ip) was performed once daily for five consecutive days. The mortality was monitored for seven days after injection of LPS. KEY FINDINGS RA (40 mg/kg) significantly decreased mortality and alleviated septic-associated lung injury. Meanwhile, RA significantly reversed LPS induced decrease in serum T-aoc level and superoxide dismutase (SOD) activity, and increase in malondialdehyde (MDA) activity. Furthermore, RA pretreatment significantly inhibited lung cell apoptosis, as well as decreased p53 level in sepsis mice. Finally, the LPS induced activation of GRP78/IRE1α/JNK pathway was suppressed by RA pretreatment. CONCLUSIONS These findings indicated that RA could be beneficial to septic-associated lung injury through anti-apoptosis effect.
Collapse
Affiliation(s)
- Zheng-Kun Zhang
- Grade 2015, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yan Zhou
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jun Cao
- Grade 2015, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Dan-Yang Liu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
36
|
Gómora-García JC, Gerónimo-Olvera C, Pérez-Martínez X, Massieu L. IRE1α RIDD activity induced under ER stress drives neuronal death by the degradation of 14-3-3 θ mRNA in cortical neurons during glucose deprivation. Cell Death Discov 2021; 7:131. [PMID: 34083523 PMCID: PMC8175356 DOI: 10.1038/s41420-021-00518-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Altered protein homeostasis is associated with neurodegenerative diseases and acute brain injury induced under energy depletion conditions such as ischemia. The accumulation of damaged or unfolded proteins triggers the unfolded protein response (UPR), which can act as a homeostatic response or lead to cell death. However, the factors involved in turning and adaptive response into a cell death mechanism are still not well understood. Several mechanisms leading to brain injury induced by severe hypoglycemia have been described but the contribution of the UPR has been poorly studied. Cell responses triggered during both the hypoglycemia and the glucose reinfusion periods can contribute to neuronal death. Therefore, we have investigated the activation dynamics of the PERK and the IRE1α branches of the UPR and their contribution to neuronal death in a model of glucose deprivation (GD) and glucose reintroduction (GR) in cortical neurons. Results show a rapid activation of the PERK/p-eIF2α/ATF4 pathway leading to protein synthesis inhibition during GD, which contributes to neuronal adaptation, however, sustained blockade of protein synthesis during GR promotes neuronal death. On the other hand, IRE1α activation occurs early during GD due to its interaction with BAK/BAX, while ASK1 is recruited to IRE1α activation complex during GR promoting the nuclear translocation of JNK and the upregulation of Chop. Most importantly, results show that IRE1α RNase activity towards its splicing target Xbp1 mRNA occurs late after GR, precluding a homeostatic role. Instead, IRE1α activity during GR drives neuronal death by positively regulating ASK1/JNK activity through the degradation of 14-3-3 θ mRNA, a negative regulator of ASK and an adaptor protein highly expressed in brain, implicated in neuroprotection. Collectively, results describe a novel regulatory mechanism of cell death in neurons, triggered by the downregulation of 14-3-3 θ mRNA induced by the IRE1α branch of the UPR.
Collapse
Affiliation(s)
- Juan Carlos Gómora-García
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México
| | - Cristian Gerónimo-Olvera
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México.,Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, División de Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, Ciudad de México, México.
| |
Collapse
|
37
|
Kondo T, Miyakawa N, Kitano S, Watanabe T, Goto R, Suico MA, Sato M, Takaki Y, Sakaguchi M, Igata M, Kawashima J, Motoshima H, Matsumura T, Kai H, Araki E. Activation of heat shock response improves biomarkers of NAFLD in patients with metabolic diseases. Endocr Connect 2021; 10:521-533. [PMID: 33883285 PMCID: PMC8183630 DOI: 10.1530/ec-21-0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is often accompanied by metabolic disorders such as metabolic syndrome and type 2 diabetes (T2DM). Heat shock response (HSR) is one of the most important homeostatic abilities but is deteriorated by chronic metabolic insults. Heat shock (HS) with an appropriate mild electrical stimulation (MES) activates HSR and improves metabolic abnormalities including insulin resistance, hyperglycemia and inflammation in metabolic disorders. To analyze the effects of HS + MES treatment on NAFLD biomarkers, three cohorts including healthy men (two times/week, n = 10), patients with metabolic syndrome (four times/week, n = 40), and patients with T2DM (n = 100; four times/week (n = 40) and two, four, seven times/week (n = 20 each)) treated with HS + MES were retrospectively analyzed. The healthy subjects showed no significant alterations in NAFLD biomarkers after the treatment. In patients with metabolic syndrome, many of the NAFLD steatosis markers, including fatty liver index, NAFLD-liver fat score, liver/spleen ratio and hepatic steatosis index and NAFLD fibrosis marker, aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, were improved upon the treatment. In patients with T2DM, all investigated NAFLD steatosis markers were improved and NAFLD fibrosis markers such as the AST/ALT ratio, fibrosis-4 index and NAFLD-fibrosis score were improved upon the treatment. Thus, HS + MES, a physical intervention, may become a novel treatment strategy for NAFLD as well as metabolic disorders.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Chuo-Ward, Kumamoto, Japan
- Correspondence should be addressed to T Kondo:
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Sayaka Kitano
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Chuo-Ward, Kumamoto, Japan
| | - Takuro Watanabe
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Rieko Goto
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Miki Sato
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Yuki Takaki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Motoyuki Igata
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Chuo-Ward, Kumamoto, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Chuo-Ward, Kumamoto, Japan
| |
Collapse
|
38
|
Zając A, Sumorek-Wiadro J, Langner E, Wertel I, Maciejczyk A, Pawlikowska-Pawlęga B, Pawelec J, Wasiak M, Hułas-Stasiak M, Bądziul D, Rzeski W, Reichert M, Jakubowicz-Gil J. Involvement of PI3K Pathway in Glioma Cell Resistance to Temozolomide Treatment. Int J Mol Sci 2021; 22:ijms22105155. [PMID: 34068110 PMCID: PMC8152763 DOI: 10.3390/ijms22105155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to investigate the anticancer potential of LY294002 (PI3K inhibitor) and temozolomide using glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cells. Apoptosis, autophagy, necrosis, and granules in the cytoplasm were identified microscopically (fluorescence and electron microscopes). The mitochondrial membrane potential was studied by flow cytometry. The activity of caspases 3, 8, and 9 and Akt was evaluated fluorometrically, while the expression of Beclin 1, PI3K, Akt, mTOR, caspase 12, and Hsp27 was determined by immunoblotting. SiRNA was used to block Hsp27 and PI3K expression. Cell migration and localization of Hsp27 were tested with the wound healing assay and immunocytochemistry, respectively. LY294002 effectively diminished the migratory potential and increased programmed death of T98G and MOGGCCM. Autophagy was dominant in MOGGCCM, while apoptosis was dominant in T98G. LY294002 with temozolomide did not potentiate cell death but redirected autophagy toward apoptosis, which was correlated with ER stress. A similar effect was observed after blocking PI3K expression with siRNA. Transfection with Hsp27 siRNA significantly increased apoptosis related to ER stress. Our results indicate that inhibition of the PI3K/Akt/mTOR pathway sensitizes glioma cells to apoptosis upon temozolomide treatment, which was correlated with ER stress. Hsp27 increases the resistance of glioma cells to cell death upon temozolomide treatment.
Collapse
Affiliation(s)
- Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.Z.); (J.S.-W.); (A.M.); (B.P.-P.); (M.H.-S.); (W.R.)
| | - Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.Z.); (J.S.-W.); (A.M.); (B.P.-P.); (M.H.-S.); (W.R.)
| | - Ewa Langner
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.Z.); (J.S.-W.); (A.M.); (B.P.-P.); (M.H.-S.); (W.R.)
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.Z.); (J.S.-W.); (A.M.); (B.P.-P.); (M.H.-S.); (W.R.)
| | - Jarosław Pawelec
- Institute Microscopy Laboratory, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Magdalena Wasiak
- Department of Pathological Anatomy, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland; (M.W.); (M.R.)
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.Z.); (J.S.-W.); (A.M.); (B.P.-P.); (M.H.-S.); (W.R.)
| | - Dorota Bądziul
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rejtana 16 C, 35-959 Rzeszów, Poland;
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.Z.); (J.S.-W.); (A.M.); (B.P.-P.); (M.H.-S.); (W.R.)
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Michał Reichert
- Department of Pathological Anatomy, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland; (M.W.); (M.R.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.Z.); (J.S.-W.); (A.M.); (B.P.-P.); (M.H.-S.); (W.R.)
- Correspondence:
| |
Collapse
|
39
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
40
|
Xu D, Kong T, Cheng B, Zhang R, Yang C, Chen J, Wang C. Orexin-A alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress-mediated apoptosis. Mol Med Rep 2021; 23:266. [PMID: 33576468 PMCID: PMC7893697 DOI: 10.3892/mmr.2021.11905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Orexin‑A (OXA) protects neurons against cerebral ischemia‑reperfusion injury (CIRI). Endoplasmic reticulum stress (ERS) induces apoptosis after CIRI by activating caspase‑12 and the CHOP pathway. The present study aimed to determine whether OXA mitigates CIRI by inhibiting ERS‑induced neuronal apoptosis. A model of CIRI was established, in which rats were subjected to middle cerebral artery occlusion with ischemic intervention for 2 h, followed by reperfusion for 24 h. Neurological deficit examination and 2,3,5‑triphenyltetrazolium chloride staining were performed to assess the level of CIRI and neuroprotection by OXA. Expression levels of ERS‑related proteins and cleaved caspase‑3 were measured via western blotting, while the rate of neuronal apoptosis in the cortex was determined using a TUNEL assay. OXA treatment decreased the infarct volume of rats after CIRI and attenuated neuron apoptosis. Furthermore, administration of OXA decreased the expression levels of GRP78, phosphorylated (p)‑PERK, p‑eukaryotic initiation factor‑2α, p‑inositol requiring enzyme 1α, p‑JNK, cleaved caspase‑12, CHOP and cleaved caspase‑3, all of which were induced by CIRI. Collectively, these findings suggested that OXA attenuated CIRI by inhibiting ERS‑mediated apoptosis, thus clarifying the mechanism underlying its neuroprotective effect and providing a novel therapeutic direction for the treatment of CIRI.
Collapse
Affiliation(s)
- Dandan Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Tingting Kong
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining, Shandong 272067, P.R. China
| | - Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining, Shandong 272067, P.R. China
| | - Chunqing Yang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining, Shandong 272067, P.R. China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining, Shandong 272067, P.R. China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining, Shandong 272067, P.R. China
| |
Collapse
|
41
|
Persaud AK, Nair S, Rahman MF, Raj R, Weadick B, Nayak D, McElroy C, Shanmugam M, Knoblaugh S, Cheng X, Govindarajan R. Facilitative lysosomal transport of bile acids alleviates ER stress in mouse hematopoietic precursors. Nat Commun 2021; 12:1248. [PMID: 33623001 PMCID: PMC7902824 DOI: 10.1038/s41467-021-21451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Mutations in human equilibrative nucleoside transporter 3 (ENT3) encoded by SLC29A3 results in anemia and erythroid hypoplasia, suggesting that ENT3 may regulate erythropoiesis. Here, we demonstrate that lysosomal ENT3 transport of taurine-conjugated bile acids (TBA) facilitates TBA chemical chaperone function and alleviates endoplasmic reticulum (ER) stress in expanding mouse hematopoietic stem and progenitor cells (HSPCs). Slc29a3−/− HSPCs accumulate less TBA despite elevated levels of TBA in Slc29a3−/− mouse plasma and have elevated basal ER stress, reactive oxygen species (ROS), and radiation-induced apoptosis. Reintroduction of ENT3 allows for increased accumulation of TBA into HSPCs, which results in TBA-mediated alleviation of ER stress and erythroid apoptosis. Transplanting TBA-preconditioned HSPCs expressing ENT3 into Slc29a3−/− mice increase bone marrow repopulation capacity and erythroid pool size and prevent early mortalities. Together, these findings suggest a putative role for a facilitative lysosomal transporter in the bile acid regulation of ER stress in mouse HSPCs which may have implications in erythroid biology, the treatment of anemia observed in ENT3-mutated human genetic disorders, and nucleoside analog drug therapy. Mutations in ENT3, encoded by SLC29A3, result in anaemia and erythroid hypoplasia, suggesting roles in erythropoiesis. Here the authors show that ENT3 acts as a lysosomal bile acid transporter, and mutation compromises taurine conjugated bile acid transport in erythroid progenitors leading to ER stress, and anaemia.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Sreenath Nair
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Md Fazlur Rahman
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Radhika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Craig McElroy
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Muruganandan Shanmugam
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Sue Knoblaugh
- Depatment of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA. .,Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
42
|
Kim P, Scott MR, Meador-Woodruff JH. Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol Psychiatry 2021; 26:1321-1331. [PMID: 31578497 PMCID: PMC7113111 DOI: 10.1038/s41380-019-0537-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Abnormalities in protein localization, function, and posttranslational modifications are targets of schizophrenia (SCZ) research. As a major contributor to the synthesis, folding, trafficking, and modification of proteins, the endoplasmic reticulum (ER) is well-positioned to sense cellular stress. The unfolded protein response (UPR) is an evolutionarily conserved adaptive reaction to environmental and pathological perturbation in ER function. The UPR is a highly orchestrated and complex cellular response, which is mediated through the ER chaperone protein, BiP, three known ER transmembrane stress sensors, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF6), inositol requiring enzyme 1α (IRE1α), and their downstream effectors. In this study, we measured protein expression and phosphorylation states of UPR sensor pathway proteins in the dorsolateral prefrontal cortex (DLPFC) of 22 matched pairs of elderly SCZ and comparison subjects. We observed increased protein expression of BiP, decreased PERK, and decreased phosphorylation of IRE1α. We also observed decreased p-JNK2 and increased sXBP1, downstream targets of the IRE1α arm of the UPR. The disconnect between decreased p-IRE1α and increased sXBP1 protein expression led us to measure sXbp1 mRNA. We observed increased expression of the ratio of sXbp1/uXbp1 transcripts, suggesting that splicing of Xbp1 mRNA by IRE1α is increased and drives upregulation of sXBP1 protein expression. These findings suggest an abnormal pattern of UPR activity in SCZ, with specific dysregulation of the IRE1α arm. Dysfunction of this system may lead to abnormal responses to cellular stressors and contribute to protein processing abnormalities previously observed in SCZ.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Madeline R. Scott
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - James H. Meador-Woodruff
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
43
|
Bashir S, Banday M, Qadri O, Bashir A, Hilal N, Nida-I-Fatima, Rader S, Fazili KM. The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci 2020; 265:118740. [PMID: 33188833 DOI: 10.1016/j.lfs.2020.118740] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.
Collapse
Affiliation(s)
- Samirul Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mariam Banday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ozaira Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nazia Hilal
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nida-I-Fatima
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Stephen Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
44
|
Barnoud T, Leung JC, Leu JIJ, Basu S, Poli ANR, Parris JLD, Indeglia A, Martynyuk T, Good M, Gnanapradeepan K, Sanseviero E, Moeller R, Tang HY, Cassel J, Kossenkov AV, Liu Q, Speicher DW, Gabrilovich DI, Salvino JM, George DL, Murphy ME. A Novel Inhibitor of HSP70 Induces Mitochondrial Toxicity and Immune Cell Recruitment in Tumors. Cancer Res 2020; 80:5270-5281. [PMID: 33023943 DOI: 10.1158/0008-5472.can-20-0397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The protein chaperone HSP70 is overexpressed in many cancers including colorectal cancer, where overexpression is associated with poor survival. We report here the creation of a uniquely acting HSP70 inhibitor (HSP70i) that targets multiple compartments in the cancer cell, including mitochondria. This inhibitor was mitochondria toxic and cytotoxic to colorectal cancer cells, but not to normal colon epithelial cells. Inhibition of HSP70 was efficacious as a single agent in primary and metastatic models of colorectal cancer and enabled identification of novel mitochondrial client proteins for HSP70. In a syngeneic colorectal cancer model, the inhibitor increased immune cell recruitment into tumors. Cells treated with the inhibitor secreted danger-associated molecular patterns (DAMP), including ATP and HMGB1, and functioned effectively as a tumor vaccine. Interestingly, the unique properties of this HSP70i in the disruption of mitochondrial function and the inhibition of proteostasis both contributed to DAMP release. This HSP70i constitutes a promising therapeutic opportunity in colorectal cancer and may exhibit antitumor activity against other tumor types. SIGNIFICANCE: These findings describe a novel HSP70i that disrupts mitochondrial proteostasis, demonstrating single-agent efficacy that induces immunogenic cell death in treated tumors.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessica C Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Narayana Reddy Poli
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L D Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tetyana Martynyuk
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilio Sanseviero
- Program in Immunology, Metastasis and Microenvironment, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rebecca Moeller
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hsin-Yao Tang
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joel Cassel
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V Kossenkov
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dmitry I Gabrilovich
- Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph M Salvino
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Donna L George
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
45
|
Li M, Zhang Y, Wang J. Endoplasmic reticulum stress regulates cell injury in lipopolysaccharide-induced nerve cells. J Int Med Res 2020; 48:300060520949762. [PMID: 32910707 PMCID: PMC7488914 DOI: 10.1177/0300060520949762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, and excessive endoplasmic reticulum (ER) stress is closely correlated with the cell injury caused by sepsis. This study aimed to analyze the possible role of ER stress in SAE cell models. METHODS PC12 and MES23.5 cells were treated with increasing concentrations of lipopolysaccharides (LPS). The Cell Counting Kit-8 assay was used to detect cell viability and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to assess cell apoptosis. In addition, the protein expression levels of ER stress markers [GRP78, CHOP, inositol-requiring enzyme 1 (IRE1), and PKR-like ER kinase (PERK)] and apoptosis-related proteins (Bax, Bcl-2, caspase-3, and cleaved caspase-3) were analyzed using western blotting. RESULTS LPS treatment activated ER stress markers in both the PC12 and MES23.5 cells. The overexpression of GRP78 significantly reduced cell viability and enhanced cell apoptosis in a time-dependent manner. An ER stress inhibitor, 4-PBA, significantly enhanced cell viability and inhibited the cell apoptosis induced by LPS. Therefore, an enhanced unfolded protein response (UPR) and UPR suppression may regulate cell apoptosis. CONCLUSIONS UPR was shown to be involved in regulating LPS-induced neuron injury. UPR could be a potential therapeutic target in SAE.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, People's Hospital of Gaotang County, Liaocheng, Shandong, China
| | - Ying Zhang
- Department of Neurology, People's Hospital of Gaotang County, Liaocheng, Shandong, China
| | - Jixing Wang
- Department of Neurology, Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|
46
|
Urra H, Pihán P, Hetz C. The UPRosome - decoding novel biological outputs of IRE1α function. J Cell Sci 2020; 133:133/15/jcs218107. [PMID: 32788208 DOI: 10.1242/jcs.218107] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Different perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.
Collapse
Affiliation(s)
- Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile.,The Buck Institute for Research in Aging, Novato, CA 94945, USA
| |
Collapse
|
47
|
Harnessing the Proteostasis Network in Alcohol-associated Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Zhu Y, Sun Y, Zhou Y, Zhang Y, Zhang T, Li Y, You W, Chang X, Yuan L, Han X. MicroRNA-24 promotes pancreatic beta cells toward dedifferentiation to avoid endoplasmic reticulum stress-induced apoptosis. J Mol Cell Biol 2020; 11:747-760. [PMID: 30753517 PMCID: PMC6821228 DOI: 10.1093/jmcb/mjz004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/02/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Current research indicates that beta cell loss in type 2 diabetes may be attributed to beta cell dedifferentiation rather than apoptosis; however, the mechanisms by which this occurs remain poorly understood. Our previous study demonstrated that elevation of microRNA-24 (miR-24) in a diabetic setting caused beta cell dysfunction and replicative deficiency. In this study, we focused on the role of miR-24 in beta cell apoptosis and dedifferentiation under endoplasmic reticulum (ER) stress conditions. We found that miR-24 overabundance protected beta cells from thapsigargin-induced apoptosis at the cost of accelerating the impairment of glucose-stimulated insulin secretion (GSIS) and enhancing the presence of dedifferentiation markers. Ingenuity® Pathway Analysis (IPA) revealed that elevation of miR-24 had an inhibitory effect on XBP1 and ATF4, which are downstream effectors of two key branches of ER stress, by inhibiting its direct target, Ire1α. Notably, elevated miR-24 initiated another pathway that targeted Mafa and decreased GSIS function in surviving beta cells, thus guiding their dedifferentiation under ER stress conditions. Our results demonstrated that the elevated miR-24, to the utmost extent, preserves beta cell mass by inhibiting apoptosis and inducing dedifferentiation. This study not only provides a novel mechanism by which miR-24 dominates beta cell turnover under persistent metabolic stress but also offers a therapeutic consideration for treating diabetes by inducing dedifferentiated beta cells to re-differentiation.
Collapse
Affiliation(s)
- Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Yi Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Yuncai Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Weiyan You
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Li Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
49
|
Wu J, Zhang W, Li C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front Genet 2020; 11:653. [PMID: 32733534 PMCID: PMC7358359 DOI: 10.3389/fgene.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Animals have evolved multiple systems, including genetic and epigenetic systems, to respond accordingly to heat exposure and heat acclimation. Heat exposure greatly affects immunity, changes metabolic processes, and poses a serious threat to animals. Heat acclimation is induced by repeated organism exposure to heat stress to dissipate heat. This review focuses on genetic modulation via heat shock transcription factors and calcium as two important factors and compares the changes in HSPs under heat stress and heat acclimation. Epigenetic regulation summarizes the role of HSPs in DNA methylation and histone modifications under heat stress and heat acclimation. These genetic and epigenetic modifications protect cells from thermal damage by mediating the transcriptional levels of heat-responsive genes. This review highlights recent advances in the genetic and epigenetic control of animal thermal responses and their interactions.
Collapse
Affiliation(s)
- Jiong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
50
|
Ji M, Niu S, Guo J, Mi H, Jiang P. Silencing RNF13 Alleviates Parkinson’s Disease – Like Problems in Mouse Models by Regulating the Endoplasmic Reticulum Stress–Mediated IRE1α-TRAF2-ASK1-JNK Pathway. J Mol Neurosci 2020; 70:1977-1986. [DOI: 10.1007/s12031-020-01599-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
|