1
|
Liblova Z, Maurencova D, Salovska B, Kratky M, Mracek T, Korandova Z, Pecinova A, Vasicova P, Rysanek D, Andera L, Fabrik I, Kupcik R, Kashmel P, Sultana P, Tambor V, Bartek J, Novak J, Vajrychova M, Hodny Z. Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence. Mol Oncol 2025. [PMID: 40288905 DOI: 10.1002/1878-0261.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Cellular senescence has recently been recognized as a significant contributor to the poor prognosis of glioblastoma, one of the most aggressive brain tumors. Consequently, effectively eliminating senescent glioblastoma cells could benefit patients. Human ADP/ATP translocases (ANTs) play a role in oxidative phosphorylation in both normal and tumor cells. Previous research has shown that the sensitivity of senescent cells to mitochondria-targeted senolytics depends on the level of ANT2. Here, we systematically mapped the transcript and protein levels of ANT isoforms in various types of senescence and glioblastoma tumorigenesis. We employed bioinformatics analysis, targeted mass spectrometry, RT-PCR, immunoblotting, and assessment of cellular energy state to elucidate how individual ANT isoforms are expressed during the development of senescence in noncancerous and glioblastoma cells. We observed a consistent elevation of ANT1 protein levels across all tested senescence types, while ANT2 and ANT3 exhibited variable changes. Alterations in ANT protein isoform levels correlated with shifts in the cellular oxygen consumption rate. Our findings suggest that ANT isoforms are mutually interchangeable for oxidative phosphorylation and manipulating individual ANT isoforms could have potential for senolytic therapy.
Collapse
Affiliation(s)
- Zuzana Liblova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Salovska
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kratky
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Korandova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Andera
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Rudolf Kupcik
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pinky Sultana
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtech Tambor
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Zhang H, Kafeiti N, Masarik K, Lee S, Yang X, Zheng H, Zhan H. Decoding Endothelial MPL and JAK2V617F Mutation: Insight Into Cardiovascular Dysfunction in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2024; 44:1960-1974. [PMID: 38989576 PMCID: PMC11335084 DOI: 10.1161/atvbaha.124.321008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential face a significantly elevated risk of cardiovascular diseases. Endothelial cells carrying the JAK2V617F mutation have been detected in many patients with MPN. In this study, we investigated the molecular basis for the high incidence of cardiovascular complications in patients with MPN. METHODS We investigated the impact of endothelial JAK2V617F mutation on cardiovascular disease development using both transgenic murine models and MPN patient-derived induced pluripotent stem cell lines. RESULTS Our investigations revealed that JAK2V617F mutant endothelial cells promote cardiovascular diseases under stress, which is associated with endothelial-to-mesenchymal transition and endothelial dysfunction. Importantly, we discovered that inhibiting the endothelial TPO (thrombopoietin) receptor MPL (myeloproliferative leukemia virus oncogene) suppressed JAK2V617F-induced endothelial-to-mesenchymal transition and prevented cardiovascular dysfunction caused by mutant endothelial cells. Notably, the endothelial MPL receptor is not essential for the normal physiological regulation of blood cell counts and cardiac function. CONCLUSIONS JAK2V617F mutant endothelial cells play a critical role in the development of cardiovascular diseases in JAK2V617F-positive MPNs, and endothelial MPL could be a promising therapeutic target for preventing or ameliorating cardiovascular complications in these patients.
Collapse
Affiliation(s)
- Haotian Zhang
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- The Graduate Program in Molecular and Cellular Biology (H. Zhang), Stony Brook University, NY
| | - Nicholas Kafeiti
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
| | - Kyla Masarik
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
| | - Sandy Lee
- Department of Molecular and Cellular Pharmacology (S.L.), Stony Brook University, NY
| | - Xiaoxi Yang
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- Division of Rheumatology, Peking Union Medical College Hospital, Beijing, China (X.Y.)
| | - Haoyi Zheng
- Cardiac Imaging, The Heart Center, Saint Francis Hospital, Roslyn, NY (H. Zheng)
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- Medical Service, Northport VA Medical Center, NY (H. Zhan)
| |
Collapse
|
3
|
Huna A, Massemin A, Makulyte G, Flaman JM, Martin N, Bernard D. Regulation of cell function and identity by cellular senescence. J Cell Biol 2024; 223:e202401112. [PMID: 38865089 PMCID: PMC11169915 DOI: 10.1083/jcb.202401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
During aging and in some contexts, like embryonic development, wound healing, and diseases such as cancer, senescent cells accumulate and play a key role in different pathophysiological functions. A long-held belief was that cellular senescence decreased normal cell functions, given the loss of proliferation of senescent cells. This view radically changed following the discovery of the senescence-associated secretory phenotype (SASP), factors released by senescent cells into their microenvironment. There is now accumulating evidence that cellular senescence also promotes gain-of-function effects by establishing, reinforcing, or changing cell identity, which can have a beneficial or deleterious impact on pathophysiology. These effects may involve both proliferation arrest and autocrine SASP production, although they largely remain to be defined. Here, we provide a historical overview of the first studies on senescence and an insight into emerging trends regarding the effects of senescence on cell identity.
Collapse
Affiliation(s)
- Anda Huna
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Amélie Massemin
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Gabriela Makulyte
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Jean-Michel Flaman
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Nadine Martin
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Bernard
- Equipe Labellisée la Ligue Contre le Cancer, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
4
|
Jiang B, Zhang W, Zhang X, Sun Y. Targeting senescent cells to reshape the tumor microenvironment and improve anticancer efficacy. Semin Cancer Biol 2024; 101:58-73. [PMID: 38810814 DOI: 10.1016/j.semcancer.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Cancer is daunting pathology with remarkable breadth and scope, spanning genetics, epigenetics, proteomics, metalobomics and cell biology. Cellular senescence represents a stress-induced and essentially irreversible cell fate associated with aging and various age-related diseases, including malignancies. Senescent cells are characterized of morphologic alterations and metabolic reprogramming, and develop a highly active secretome termed as the senescence-associated secretory phenotype (SASP). Since the first discovery, senescence has been understood as an important barrier to tumor progression, as its induction in pre-neoplastic cells limits carcinogenesis. Paradoxically, senescent cells arising in the tumor microenvironment (TME) contribute to tumor progression, including augmented therapeutic resistance. In this article, we define typical forms of senescent cells commonly observed within the TME and how senescent cells functionally remodel their surrounding niche, affect immune responses and promote cancer evolution. Furthermore, we highlight the recently emerging pipelines of senotherapies particularly senolytics, which can selectively deplete senescent cells from affected organs in vivo and impede tumor progression by restoring therapeutic responses and securing anticancer efficacies. Together, co-targeting cancer cells and their normal but senescent counterparts in the TME holds the potential to achieve increased therapeutic benefits and restrained disease relapse in future clinical oncology.
Collapse
Affiliation(s)
- Birong Jiang
- School of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Shanghai 200124, China
| | - Yu Sun
- School of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong 264003, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
D'Ambrosio M, Gil J. Reshaping of the tumor microenvironment by cellular senescence: An opportunity for senotherapies. Dev Cell 2023; 58:1007-1021. [PMID: 37339603 DOI: 10.1016/j.devcel.2023.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Cellular senescence is a stress response associated with aging and disease, including cancer. Senescent cells undergo a stable cell cycle arrest, undergo a change in morphology and metabolic reprogramming, and produce a bioactive secretome termed the senescence-associated secretory phenotype (SASP). In cancer, senescence is an important barrier to tumor progression. Induction of senescence in preneoplastic cells limits cancer initiation, and many cancer therapies act in part by inducing senescence in cancer cells. Paradoxically, senescent cells lingering in the tumor microenvironment (TME) can contribute to tumor progression, metastasis, and therapy resistance. In this review, we discuss the different types of senescent cells present in the TME and how these senescent cells and their SASP reshape the TME, affect immune responses, and influence cancer progression. Furthermore, we will highlight the importance of senotherapies, including senolytic drugs that eliminate senescent cells and impede tumor progression and metastasis by restoring anti-tumor immune responses and influencing the TME.
Collapse
Affiliation(s)
- Mariantonietta D'Ambrosio
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
6
|
Romaniello D, Gelfo V, Pagano F, Sgarzi M, Morselli A, Girone C, Filippini DM, D’Uva G, Lauriola M. IL-1 and senescence: Friends and foe of EGFR neutralization and immunotherapy. Front Cell Dev Biol 2023; 10:1083743. [PMID: 36712972 PMCID: PMC9877625 DOI: 10.3389/fcell.2022.1083743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Historically, senescence has been considered a safe program in response to multiple stresses in which cells undergo irreversible growth arrest. This process is characterized by morphological and metabolic changes, heterochromatin formation, and secretion of inflammatory components, known as senescence-associated secretory phenotype (SASP). However, recent reports demonstrated that anti-cancer therapy itself can stimulate a senescence response in tumor cells, the so-called therapy-induced senescence (TIS), which may represent a temporary bypass pathway that promotes drug resistance. In this context, several studies have shown that EGFR blockage, by TKIs or moAbs, promotes TIS by increasing IL-1 cytokine production, thus pushing cells into a "pseudo-senescent" state. Today, senotherapeutic agents are emerging as a potential strategy in cancer treatment thanks to their dual role in annihilating senescent cells and simultaneously preventing their awakening into a resistant and aggressive form. Here, we summarize classic and recent findings about the cellular processes driving senescence and SASP, and we provide a state-of-the-art of the anti-cancer strategies available so far that exploits the activation and/or blockade of senescence-based mechanisms.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy
| | - Federica Pagano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Daria Maria Filippini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele D’Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy,*Correspondence: Mattia Lauriola,
| |
Collapse
|
7
|
Albagli O, Pelczar H. [The accumulation of senescent cells in an organ does not always result in its functional decline]. Med Sci (Paris) 2023; 39:13-17. [PMID: 36692258 DOI: 10.1051/medsci/2022186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Olivier Albagli
- Inserm U1016, CNRS UMR8104, Institut Cochin, Groupe hospitalier Cochin-Port-Royal, bâtiment Cassini, 123 boulevard de Port-Royal, 75014 Paris, France
| | - Hélène Pelczar
- UFR927 Sciences de la vie, Sorbonne université, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
8
|
Chibaya L, Snyder J, Ruscetti M. Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Semin Cancer Biol 2022; 86:827-845. [PMID: 35143990 PMCID: PMC9357237 DOI: 10.1016/j.semcancer.2022.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Cancer therapies, including conventional chemotherapy, radiation, and molecularly targeted agents, can lead to tumor eradication through a variety of mechanisms. In addition to their effects on tumor cell growth and survival, these regimens can also influence the surrounding tumor-immune microenvironment in ways that ultimately impact therapy responses. A unique biological outcome of cancer therapy is induction of cellular senescence. Senescence is a damage-induced stress program that leads to both the durable arrest of tumor cells and remodeling the tumor-immune microenvironment through activation of a collection pleiotropic cytokines, chemokines, growth factors, and proteinases known as the senescence-associated secretory phenotype (SASP). Depending on the cancer context and the mechanism of action of the therapy, the SASP produced following therapy-induced senescence (TIS) can promote anti-tumor immunity that enhances therapeutic efficacy, or alternatively chronic inflammation that leads to therapy failure and tumor relapse. Thus, a deeper understanding of the mechanisms regulating the SASP and components necessary for robust anti-tumor immune surveillance in different cancer and therapy contexts are key to harnessing senescence for tumor control. Here we draw a roadmap to modulate TIS and its immune-stimulating features for cancer immunotherapy.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jarin Snyder
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Rysanek D, Vasicova P, Kolla JN, Sedlak D, Andera L, Bartek J, Hodny Z. Synergism of BCL-2 family inhibitors facilitates selective elimination of senescent cells. Aging (Albany NY) 2022; 14:6381-6414. [PMID: 35951353 PMCID: PMC9467395 DOI: 10.18632/aging.204207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.
Collapse
Affiliation(s)
- David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Andera
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Biocev, Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Zhang Y, Truong B, Fahl SP, Martinez E, Cai KQ, Al-Saleem ED, Gong Y, Liebermann DA, Soboloff J, Dunbrack R, Levine RL, Fletcher S, Kappes D, Sykes SM, Shapiro P, Wiest DL. The ERK2-DBP domain opposes pathogenesis of a mouse JAK2V617F-driven myeloproliferative neoplasm. Blood 2022; 140:359-373. [PMID: 35436326 PMCID: PMC9335498 DOI: 10.1182/blood.2021013068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/30/2022] [Indexed: 01/18/2023] Open
Abstract
Although Ras/mitogen-activated protein kinase (MAPK) signaling is activated in most human cancers, attempts to target this pathway using kinase-active site inhibitors have not typically led to durable clinical benefit. To address this shortcoming, we sought to test the feasibility of an alternative targeting strategy, focused on the ERK2 substrate binding domains, D and DEF binding pocket (DBP). Disabling the ERK2-DBP domain in mice caused baseline erythrocytosis. Consequently, we investigated the role of the ERK2-D and -DBP domains in disease, using a JAK2-dependent model of polycythemia vera (PV). Of note, inactivation of the ERK2-DBP domain promoted the progression of disease from PV to myelofibrosis, suggesting that the ERK2-DBP domain normally opposes progression. ERK2-DBP inactivation also prevented oncogenic JAK2 kinase (JAK2V617F) from promoting oncogene-induced senescence in vitro. The ERK2-DBP mutation attenuated JAK2-mediated oncogene-induced senescence by preventing the physical interaction of ERK2 with the transcription factor Egr1. Because inactivation of the ERK2-DBP created a functional ERK2 kinase limited to binding substrates through its D domain, these data suggested that the D domain substrates were responsible for promoting oncogene-induced progenitor growth and tumor progression and that pharmacologic targeting of the ERK2-D domain may attenuate cancer cell growth. Indeed, pharmacologic agents targeting the ERK2-D domain were effective in attenuating the growth of JAK2-dependent myeloproliferative neoplasm cell lines. Taken together, these data indicate that the ERK-D and -DBP domains can play distinct roles in the progression of neoplasms and that the D domain has the potential to be a potent therapeutic target in Ras/MAPK-dependent cancers.
Collapse
Affiliation(s)
- Yong Zhang
- Blood Cell Development and Function Program
| | | | | | | | | | | | - Yulan Gong
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Dan A Liebermann
- Fels Institute for Personalized Medicine and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jonathan Soboloff
- Fels Institute for Personalized Medicine and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Roland Dunbrack
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Ross L Levine
- Department of Medicine, Leukemia Service, Center for Hematologic Malignancies, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | | | | | - Paul Shapiro
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD
| | | |
Collapse
|
11
|
Shang D, Zhou T, Zhuang X, Wu Y, Liu H, Tu Z. Molecular dissection on inhibition of Ras-induced cellular senescence by small t antigen of SV40. Cell Mol Life Sci 2022; 79:242. [PMID: 35429286 PMCID: PMC11072472 DOI: 10.1007/s00018-022-04275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
Simian virus 40 (SV40) is a potentially oncogenic virus of monkey origin. Transmission, prevalence, and pathogenicity rates of SV40 are unclear, but infection can occur in humans, for example individuals with high contact with rhesus macaques and individuals that received contaminated early batches of polio vaccines in 1950-1963. In addition, several human polyomaviruses, proven carcinogenic, are also highly common in global populations. Cellular senescence is a major mechanism of cancer prevention in vivo. Hyperactivation of Ras usually induces cellular senescence rather than cell transformation. Previous studies suggest small t antigen (ST) of SV40 may interfere with cellular senescence induced by Ras. In the current study, ST was demonstrated to inhibit Ras-induced cellular senescence (RIS) and accumulation of DNA damage in Ras-activated cells. In addition, ST suppressed the signal transmission from BRaf to MEK and thus blocked the downstream transmission of the activated Ras signal. B56γ knockdown mimicked the inhibitory effects of ST overexpression on RIS. Furthermore, KSR1 knockdown inhibited Ras activation and the subsequent cellular senescence. Further mechanism studies indicated that the phosphorylation level of KSR1 rather than the levels of the total protein regulates the activation of Ras signaling pathway. In sum, ST inhibits the continuous hyperactivation of Ras signals by interfering with the normal functions of PP2A-B56γ of dephosphorylating KSR1, thus inhibiting the occurrence of cellular senescence. Although the roles of SV40 in human carcinogenesis are controversial so far, our study has shown that ST of polyomaviruses has tumorigenic potential by inhibiting oncogene-induced senescence (OIS) as a proof of concept.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Tianchu Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xinying Zhuang
- School of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yanfang Wu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
12
|
Wei X, Li M, Zheng Z, Ma J, Gao Y, Chen L, Peng Y, Yu S, Yang L. Senescence in chronic wounds and potential targeted therapies. BURNS & TRAUMA 2022; 10:tkab045. [PMID: 35187179 PMCID: PMC8853744 DOI: 10.1093/burnst/tkab045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.) do not usually heal in a timely and orderly manner but rather last for years and may lead to irreversible adverse events, resulting in a substantial financial burden for patients and society. Recently, a large amount of evidence has proven that cellular senescence has a crucial influence on chronic nonhealing wounds. As a defensive mechanism, cell senescence is a manner of cell-cycle arrest with increased secretory phenotype to resist death, preventing cells from stress-induced damage in cancer and noncancer diseases. A growing amount of research has advanced the perception of cell senescence in various chronic wounds and focuses on pathological and physiological processes and therapies targeting senescent cells. However, previous reviews have failed to sum up novel understandings of senescence in chronic wounds and emerging strategies targeting senescence. Herein, we discuss the characteristics and mechanisms of cellular senescence and the link between senescence and chronic wounds as well as some novel antisenescence strategies targeting other diseases that may be applied for chronic wounds.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
13
|
He Y, Xie W, Li H, Jin H, Zhang Y, Li Y. Cellular Senescence in Sarcopenia: Possible Mechanisms and Therapeutic Potential. Front Cell Dev Biol 2022; 9:793088. [PMID: 35083219 PMCID: PMC8784872 DOI: 10.3389/fcell.2021.793088] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
Aging promotes most degenerative pathologies in mammals, which are characterized by progressive decline of function at molecular, cellular, tissue, and organismal levels and account for a host of health care expenditures in both developing and developed nations. Sarcopenia is a prominent age-related disorder in musculoskeletal system. Defined as gradual and generalized chronic skeletal muscle disorder, sarcopenia involves accelerated loss of muscle mass, strength and function, which is associated with increased adverse functional outcomes and evolutionally refers to muscle wasting accompanied by other geriatric syndromes. More efforts have been made to clarify mechanisms underlying sarcopenia and new findings suggest that it may be feasible to delay age-related sarcopenia by modulating fundamental mechanisms such as cellular senescence. Cellular senescence refers to the essentially irreversible growth arrest mainly regulated by p53/p21CIP1 and p16INK4a/pRB pathways as organism ages, possibly detrimentally contributing to sarcopenia via muscle stem cells (MuSCs) dysfunction and the senescence-associated secretory phenotype (SASP) while cellular senescence may have beneficial functions in counteracting cancer progression, tissue regeneration and wound healing. By now diverse studies in mice and humans have established that targeting cellular senescence is a powerful strategy to alleviating sarcopenia. However, the mechanisms through which senescent cells contribute to sarcopenia progression need to be further researched. We review the possible mechanisms involved in muscle stem cells (MuSCs) dysfunction and the SASP resulting from cellular senescence, their associations with sarcopenia, current emerging therapeutic opportunities based on targeting cellular senescence relevant to sarcopenia, and potential paths to developing clinical interventions genetically or pharmacologically.
Collapse
Affiliation(s)
- Yongyu He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Dagher T, Maslah N, Edmond V, Cassinat B, Vainchenker W, Giraudier S, Pasquier F, Verger E, Niwa-Kawakita M, Lallemand-Breitenbach V, Plo I, Kiladjian JJ, Villeval JL, de Thé H. JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med 2021; 218:211476. [PMID: 33075130 PMCID: PMC7579737 DOI: 10.1084/jem.20201268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Interferon α (IFNα) is used to treat JAK2V617F-driven myeloproliferative neoplasms (MPNs) but rarely clears the disease. We investigated the IFNα mechanism of action focusing on PML, an interferon target and key senescence gene whose targeting by arsenic trioxide (ATO) drives eradication of acute promyelocytic leukemia. ATO sharply potentiated IFNα-induced growth suppression of JAK2V617F patient or mouse hematopoietic progenitors, which required PML and was associated with features of senescence. In a mouse MPN model, combining ATO with IFNα enhanced and accelerated responses, eradicating MPN in most mice by targeting disease-initiating cells. These results predict potent clinical efficacy of the IFNα+ATO combination in patients and identify PML as a major effector of therapy, even in malignancies with an intact PML gene.
Collapse
Affiliation(s)
- Tracy Dagher
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Nabih Maslah
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Valérie Edmond
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Bruno Cassinat
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - William Vainchenker
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stéphane Giraudier
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Florence Pasquier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Emmanuelle Verger
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Michiko Niwa-Kawakita
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Valérie Lallemand-Breitenbach
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Centre d'Investigations Cliniques, APHP, Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Villeval
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Hugues de Thé
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France.,Service de Biochimie, APHP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
15
|
Roy A, Shrivastva S, Naseer S. In and out: Traffic and dynamics of thrombopoietin receptor. J Cell Mol Med 2021; 25:9073-9083. [PMID: 34448528 PMCID: PMC8500957 DOI: 10.1111/jcmm.16878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombopoiesis had long been a challenging area of study due to the rarity of megakaryocyte precursors in the bone marrow and the incomplete understanding of its regulatory cytokines. A breakthrough was achieved in the early 1990s with the discovery of the thrombopoietin receptor (TpoR) and its ligand thrombopoietin (TPO). This accelerated research in thrombopoiesis, including the uncovering of the molecular basis of myeloproliferative neoplasms (MPN) and the advent of drugs to treat thrombocytopenic purpura. TpoR mutations affecting its membrane dynamics or transport were increasingly associated with pathologies such as MPN and thrombocytosis. It also became apparent that TpoR affected hematopoietic stem cell (HSC) quiescence while priming hematopoietic stem cells (HSCs) towards the megakaryocyte lineage. Thorough knowledge of TpoR surface localization, dimerization, dynamics and stability is therefore crucial to understanding thrombopoiesis and related pathologies. In this review, we will discuss the mechanisms of TpoR traffic. We will focus on the recent progress in TpoR membrane dynamics and highlight the areas that remain unexplored.
Collapse
Affiliation(s)
- Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saurabh Shrivastva
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saadia Naseer
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
16
|
Abstract
Autophagy is an evolutionarily conserved process necessary to maintain cell homeostasis in response to various forms of stress such as nutrient deprivation and hypoxia as well as functioning to remove damaged molecules and organelles. The role of autophagy in cancer varies depending on the stage of cancer. Cancer therapeutics can also simultaneously evoke cancer cell senescence and ploidy increase. Both cancer cell senescence and polyploidization are reversible by depolyploidization giving rise to the progeny. Autophagy activation may be indispensable for cancer cell escape from senescence/polyploidy. As cancer cell polyploidy is proposed to be involved in cancer origin, the role of autophagy in polyploidization/depolyploidization of senescent cancer cells seems to be crucial. Accordingly, this review is an attempt to understand the complicated interrelationships between reversible cell senescence/polyploidy and autophagy.
Collapse
|
17
|
Mukaida N, Tanabe Y, Baba T. Cancer non-stem cells as a potent regulator of tumor microenvironment: a lesson from chronic myeloid leukemia. MOLECULAR BIOMEDICINE 2021; 2:7. [PMID: 35006395 PMCID: PMC8607377 DOI: 10.1186/s43556-021-00030-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
A limited subset of human leukemia cells has a self-renewal capacity and can propagate leukemia upon their transplantation into animals, and therefore, are named as leukemia stem cells, in the early 1990's. Subsequently, cell subpopulations with similar characteristics were detected in various kinds of solid cancers and were denoted as cancer stem cells. Cancer stem cells are presently presumed to be crucially involved in malignant progression of solid cancer: chemoresitance, radioresistance, immune evasion, and metastasis. On the contrary, less attention has been paid to cancer non-stem cell population, which comprise most cancer cells in cancer tissues, due to the lack of suitable markers to discriminate cancer non-stem cells from cancer stem cells. Chronic myeloid leukemia stem cells generate a larger number of morphologically distinct non-stem cells. Moreover, accumulating evidence indicates that poor prognosis is associated with the increases in these non-stem cells including basophils and megakaryocytes. We will discuss the potential roles of cancer non-stem cells in fostering tumor microenvironment, by illustrating the roles of chronic myeloid leukemia non-stem cells including basophils and megakaryocytes in the pathogenesis of chronic myeloid leukemia, a typical malignant disorder arising from leukemic stem cells.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
18
|
Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci 2021; 78:3333-3354. [PMID: 33439271 PMCID: PMC8038995 DOI: 10.1007/s00018-020-03746-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
In recent years, cellular senescence has become the focus of attention in multiple areas of biomedical research. Typically defined as an irreversible cell cycle arrest accompanied by increased cellular growth, metabolic activity and by a characteristic messaging secretome, cellular senescence can impact on multiple physiological and pathological processes such as wound healing, fibrosis, cancer and ageing. These unjustly called 'zombie cells' are indeed a rich source of opportunities for innovative therapeutic development. In this review, we collate the current understanding of the process of cellular senescence and its two-faced nature, i.e. beneficial/detrimental, and reason this duality is linked to contextual aspects. We propose the senescence programme as an endogenous pro-resolving mechanism that may lead to sustained inflammation and damage when dysregulated or when senescent cells are not cleared efficiently. This pro-resolving model reconciles the paradoxical two faces of senescence by emphasising that it is the unsuccessful completion of the programme, and not senescence itself, what leads to pathology. Thus, pro-senescence therapies under the right context, may favour inflammation resolution. We also review the evidence for the multiple therapeutic approaches under development based on senescence, including its induction, prevention, clearance and the use of senolytic and senomorphic drugs. In particular, we highlight the importance of the immune system in the favourable outcome of senescence and the implications of an inefficient immune surveillance in completion of the senescent cycle. Finally, we identify and discuss a number of challenges and existing gaps to encourage and stimulate further research in this exciting and unravelled field, with the hope of promoting and accelerating the clinical success of senescence-based therapies.
Collapse
|
19
|
Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ. Cellular Senescence in Liver Disease and Regeneration. Semin Liver Dis 2021; 41:50-66. [PMID: 33764485 DOI: 10.1055/s-0040-1722262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.
Collapse
Affiliation(s)
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Tanabe Y, Kawamoto S, Takaku T, Morishita S, Hirao A, Komatsu N, Hara E, Mukaida N, Baba T. Expansion of senescent megakaryocyte-lineage cells maintains CML cell leukemogenesis. Blood Adv 2020; 4:6175-6188. [PMID: 33351113 PMCID: PMC7757005 DOI: 10.1182/bloodadvances.2020003117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023] Open
Abstract
BCR-ABL, an oncogenic fusion gene, plays a central role in the pathogenesis of chronic myeloid leukemia (CML). Oncogenic signaling induces oncogene-induced senescence and senescence-associated secretory phenotype (SASP), which is characterized by enhanced production of various cytokines. BCR-ABL gene transduction confers senescent phenotype in vitro; however, the in vivo relevance of senescence has not been explored in this context. Transplantation of BCR-ABL-expressing hematopoietic stem/progenitor cells caused CML in mice with an increase in bone marrow BCR-ABL+CD41+CD150+ leukemic megakaryocyte-lineage (MgkL) cells, which exhibited enhanced senescence-associated β-galactosidase staining and increased expression of p16 and p21, key molecules that are crucially involved in senescence. Moreover, knockout of p16 and p21 genes reduced both BCR-ABL-induced abnormal megakaryopoiesis and the maintenance of CML cell leukemogenic capacity, as evidenced by attenuated leukemogenic capacity at secondary transplantation. The expression of transforming growth factor-β1 (TGF-β1), a representative SASP molecule, was enhanced in the leukemic MgkL cells, and TGF-β1 inhibition attenuated CML cell leukemogenic capacity both in vitro and in vivo. Furthermore, BCR-ABL-expressing MgkL cells displayed enhanced autophagic activity, and autophagy inhibition reduced bone marrow MgkL cell number and prolonged the survival of CML mice, which had transiently received the tyrosine kinase inhibitor, imatinib, earlier. Thus, BCR-ABL induced the expansion of senescent leukemic MgkL cells, which supported CML leukemogenesis by providing TGF-β1.
Collapse
Affiliation(s)
- Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shimpei Kawamoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan; and
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Eiji Hara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
21
|
Therapy-induced polyploidization and senescence: Coincidence or interconnection? Semin Cancer Biol 2020; 81:83-95. [DOI: 10.1016/j.semcancer.2020.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
|
22
|
The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin Sci (Lond) 2020; 134:315-330. [PMID: 31998947 DOI: 10.1042/cs20190966] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
Adipose tissue as the largest energy reservoir and endocrine organ is essential for maintenance of systemic glucose, lipid and energy homeostasis, but these metabolic functions decline with ageing and obesity. Adipose tissue senescence is one of the common features in obesity and ageing. Although cellular senescence is a defensive mechanism preventing tumorigenesis, its occurrence in adipose tissue causatively induces defective adipogenesis, inflammation, aberrant adipocytokines production and insulin resistance, leading to adipose tissue dysfunction. In addition to these paracrine effects, adipose tissue senescence also triggers systemic inflammation and senescence as well as insulin resistance in the distal metabolic organs, resulting in Type 2 diabetes and other premature physiological declines. Multiple cell types including mature adipocytes, immune cells, endothelial cells and progenitor cells gradually senesce at different levels in different fat depots with ageing and obesity, highlighting the heterogeneity and complexity of adipose tissue senescence. In this review, we discuss the causes and consequences of adipose tissue senescence, and the major cell types responsible for adipose tissue senescence in ageing and obesity. In addition, we summarize the pharmacological approaches and lifestyle intervention targeting adipose tissue senescence for the treatment of obesity- and ageing-related metabolic diseases.
Collapse
|
23
|
Wang Z, Shi C. Cellular senescence is a promising target for chronic wounds: a comprehensive review. BURNS & TRAUMA 2020; 8:tkaa021. [PMID: 32607375 PMCID: PMC7309580 DOI: 10.1093/burnst/tkaa021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds include, but are not limited to, radiation ulcers, pressure ulcers, vascular ulcers and diabetic foot ulcers. These chronic wounds can persist for years without healing and severe ulcers may lead to amputation. Unfortunately, the underlying pathologies of refractory chronic wounds are not fully characterized, and new treatments are urgently needed. Recently, increasing evidence has indicated that cell senescence plays an important role in the development of chronic wounds, and preventing cell senescence or removing senescent cells holds promise as a new therapeutic strategy. In this review, we aim to probe these latest findings to promote the understanding of cellular senescence in the pathological process and potential management of chronic wounds.
Collapse
Affiliation(s)
- Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| |
Collapse
|
24
|
Carvalho C, L'Hôte V, Courbeyrette R, Kratassiouk G, Pinna G, Cintrat JC, Denby-Wilkes C, Derbois C, Olaso R, Deleuze JF, Mann C, Thuret JY. Glucocorticoids delay RAF-induced senescence promoted by EGR1. J Cell Sci 2019; 132:jcs.230748. [PMID: 31371485 DOI: 10.1242/jcs.230748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Expression of hyperactive RAF kinases, such as the oncogenic B-RAF-V600E mutant, in normal human cells triggers a proliferative arrest that blocks tumor formation. We discovered that glucocorticoids delayed the entry into senescence induced by B-RAF-V600E in human fibroblasts, and allowed senescence bypass when the cells were regularly passaged, but that they did not allow proliferation of cells that were already senescent. Transcriptome and siRNA analyses revealed that the EGR1 gene is one target of glucocorticoid action. Transcription of the EGR1 gene is activated by the RAF-MEK-ERK MAPK pathway and acts as a sensor of hyper-mitogenic pathway activity. The EGR1 transcription factor regulates the expression of p15 and p21 (encoded by CDKN2B and CDKN1A, respectively) that are redundantly required for the proliferative arrest of BJ fibroblasts upon expression of B-RAF-V600E. Our results highlight the need to evaluate the action of glucocorticoid on cancer progression in melanoma, thyroid and colon carcinoma in which B-RAF-V600E is a frequent oncogene, and cancers in which evasion from senescence has been shown.
Collapse
Affiliation(s)
- Cyril Carvalho
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Valentin L'Hôte
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Régis Courbeyrette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Gueorgui Kratassiouk
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Guillaume Pinna
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Christophe Cintrat
- Service de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Cyril Denby-Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Céline Derbois
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, F-91057 Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, F-91057 Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, F-91057 Evry, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Yves Thuret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
25
|
Yan Z, Ohuchida K, Zheng B, Okumura T, Takesue S, Nakayama H, Iwamoto C, Shindo K, Moriyama T, Nakata K, Miyasaka Y, Ohtsuka T, Mizumoto K, Oda Y, Hashizume M, Nakamura M. CD110 promotes pancreatic cancer progression and its expression is correlated with poor prognosis. J Cancer Res Clin Oncol 2019; 145:1147-1164. [PMID: 30770989 DOI: 10.1007/s00432-019-02860-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE This study aimed at investigating the function and significance of CD110 expression in pancreatic cancer. METHODS We performed immunohistochemical staining for CD110 expression in tumor samples from 86 patients with pancreatic cancer. We evaluated clinical outcomes and other clinicopathological factors to determine the significance of CD110 on survival and liver metastasis. We examine thrombopoietin-CD110 signaling in cancer cell extravasation in vitro and in vivo. We investigated the effects of CD110 knockdown on liver metastasis in a splenic xenograft mouse model. RESULTS CD110 expression in cancer cells was associated with low-histological-grade invasive ductal carcinoma, and patients with high CD110 expression had poorer prognosis (P = 0.0003). High CD110 expression was an independent predictor of liver metastasis (P = 0.0422). Knockdown of CD110 expression significantly attenuated cell migration and invasion. Treatment with thrombopoietin promoted pancreatic cancer cell extravasation. In the presence of thrombopoietin, CD110 increased cell viability through the activation of the ERK-MYC signaling pathway. Knockdown of CD110 expression inhibited liver metastases in the mouse model. CONCLUSIONS CD110 promotes pancreatic cancer progression and it may serve as a predictive factor for liver metastasis.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Survival
- Disease Models, Animal
- Disease Progression
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Liver Neoplasms/secondary
- Male
- Mice
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, Thrombopoietin/genetics
- Receptors, Thrombopoietin/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zilong Yan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Biao Zheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Takashi Okumura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Shin Takesue
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Hiromichi Nakayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | | | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
26
|
Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, Flodr P, Hubackova S, Bartek J, Hodny Z, Divoky V. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene 2019; 38:5627-5642. [PMID: 30967632 PMCID: PMC6756199 DOI: 10.1038/s41388-019-0813-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory and oncogenic signaling converge in disease evolution of BCR–ABL-negative myeloproliferative neoplasms, clonal hematopoietic stem cell disorders characterized by gain-of-function mutation in JAK2 kinase (JAK2V617F), with highest prevalence in patients with polycythemia vera (PV). Despite the high risk, DNA-damaging inflammatory microenvironment, PV progenitors tend to preserve their genomic stability over decades until their progression to post-PV myelofibrosis/acute myeloid leukemia. Using induced pluripotent stem cells-derived CD34+ progenitor-enriched cultures from JAK2V617F+ PV patient and from JAK2 wild-type healthy control, CRISPR-modified HEL cells and patients’ bone marrow sections from different disease stages, we demonstrate that JAK2V617F induces an intrinsic IFNγ- and NF-κB-associated inflammatory program, while suppressing inflammation-evoked DNA damage both in vitro and in vivo. We show that cells with JAK2V617F tightly regulate levels of inflammatory cytokines-induced reactive oxygen species, do not fully activate the ATM/p53/p21waf1 checkpoint and p38/JNK MAPK stress pathway signaling when exposed to inflammatory cytokines, suppress DNA single-strand break repair genes’ expression yet overexpress the dual-specificity phosphatase (DUSP) 1. RNAi-mediated knock-down and pharmacological inhibition of DUSP1, involved in p38/JNK deactivation, in HEL cells reveals growth addiction to DUSP1, consistent with enhanced DNA damage response and apoptosis in DUSP1-inhibited parental JAK2V617F+ cells, but not in CRISPR-modified JAK2 wild-type cells. Our results indicate that the JAK2V617F+ PV progenitors utilize DUSP1 activity as a protection mechanism against DNA damage accumulation, promoting their proliferation and survival in the inflammatory microenvironment, identifying DUSP1 as a potential therapeutic target in PV.
Collapse
Affiliation(s)
- J Stetka
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Vyhlidalova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - L Lanikova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - P Koralkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - J Gursky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - A Hlusi
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Flodr
- Department of Clinical and Molecular Pathology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - S Hubackova
- Laboratory of Molecular Therapy, Institute of Biotechnology, BIOCEV, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - J Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark. .,Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic. .,Division of Genome Biology, Department of Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Z Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - V Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
27
|
Abstract
Originally thought of as a stress response end point, the view of cellular senescence has since evolved into one encompassing a wide range of physiological and pathological functions, including both protumorignic and antitumorigenic features. It has also become evident that senescence is a highly dynamic and heterogenous process. Efforts to reconcile the beneficial and detrimental features of senescence suggest that physiological functions require the transient presence of senescent cells in the tissue microenvironment. Here, we propose the concept of a physiological "senescence life cycle," which has pathological consequences if not executed in its entirety.
Collapse
Affiliation(s)
- Adelyne Sue Li Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
28
|
Bertschmann J, Thalappilly S, Riabowol K. The ING1a model of rapid cell senescence. Mech Ageing Dev 2019; 177:109-117. [DOI: 10.1016/j.mad.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022]
|
29
|
von Kobbe C. Cellular senescence: a view throughout organismal life. Cell Mol Life Sci 2018; 75:3553-3567. [PMID: 30030594 PMCID: PMC11105332 DOI: 10.1007/s00018-018-2879-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is the final fate of most cells in response to specific stimuli, but is not the end. Indeed, it is the beginning of a singular life, with multiple side roads leading to diverse effects on the organism. Many studies have been done in the last few years to elucidate the intriguing role of senescent cells in the organism, demonstrating them as the cause of several age-related diseases. However, these cells are also positively implicated in other important pathways, such as embryogenesis and wound healing. It appears that the multiple effects are time-dependent: long-term senescence is mostly implicated in chronic inflammation and disease, whereas in the short term, senescent cells seem to be beneficial, being rapidly targeted by the innate immune system. The influence of senescent cells on their neighbors by paracrine factors, differential activity depending on developmental stage, and duration of the effects make the cellular senescent program a unique spatial-temporal mechanism. During pathological conditions such as progeroid syndromes, this mechanism is deregulated, leading to accelerated onset of some aging-related diseases and a shorter lifespan, among other physiological defects. Here, we review the three primary cell senescence programs described so far (replicative, stress-induced, and developmentally programmed senescence), their onset during development, and their potential roles in diseases with premature aging. Finally, we discuss the role of immune cells in keeping senescence burden below the threshold of disease.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Gorissen B, de Bruin A, Miranda-Bedate A, Korthagen N, Wolschrijn C, de Vries TJ, van Weeren R, Tryfonidou MA. Hypoxia negatively affects senescence in osteoclasts and delays osteoclastogenesis. J Cell Physiol 2018; 234:414-426. [PMID: 29932209 PMCID: PMC6220985 DOI: 10.1002/jcp.26511] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Cellular senescence, that is, the withdrawal from the cell cycle, combined with the acquirement of the senescence associated secretory phenotype has important roles during health and disease and is essential for tissue remodeling during embryonic development. Osteoclasts are multinucleated cells, responsible for bone resorption, and cell cycle arrest during osteoclastogenesis is well recognized. Therefore, the aim of this study was to investigate whether these cells should be considered senescent and to assess the influence of hypoxia on their potential senescence status. Osteoclastogenesis and bone resorption capacity of osteoclasts, cultured from CD14+ monocytes, were evaluated in two oxygen concentrations, normoxia (21% O2) and hypoxia (5% O2). Osteoclasts were profiled by using specific staining for proliferation and senescence markers, qPCR of a number of osteoclast and senescence‐related genes and a bone resorption assay. Results show that during in vitro osteoclastogenesis, osteoclasts heterogeneously obtain a senescent phenotype. Furthermore, osteoclastogenesis was delayed at hypoxic compared to normoxic conditions, without negatively affecting the bone resorption capacity. It is concluded that osteoclasts can be considered senescent, although senescence is not uniformly present in the osteoclast population. Hypoxia negatively affects the expression of some senescence markers. Based on the direct relationship between senescence and osteoclastogenesis, it is tempting to hypothesize that contents of the so‐called senescence associated secretory phenotype (SASP) not only play a functional role in matrix resorption, but also may regulate osteoclastogenesis.
Collapse
Affiliation(s)
- Ben Gorissen
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicoline Korthagen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudia Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Teun J de Vries
- Department of Periodontology,, Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Chong M, Yin T, Chen R, Xiang H, Yuan L, Ding Y, Pan CC, Tang Z, Alexander PB, Li QJ, Wang XF. CD36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Rep 2018; 19:e45274. [PMID: 29777051 PMCID: PMC5989758 DOI: 10.15252/embr.201745274] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is a unique cell fate characterized by stable proliferative arrest and the extensive production and secretion of various inflammatory proteins, a phenomenon known as the senescence-associated secretory phenotype (SASP). The molecular mechanisms responsible for generating a SASP in response to senescent stimuli remain largely obscure. Here, using unbiased gene expression profiling, we discover that the scavenger receptor CD36 is rapidly upregulated in multiple cell types in response to replicative, oncogenic, and chemical senescent stimuli. Moreover, ectopic CD36 expression in dividing mammalian cells is sufficient to initiate the production of a large subset of the known SASP components via activation of canonical Src-p38-NF-κB signaling, resulting in the onset of a full senescent state. The secretome is further shown to be ligand-dependent, as amyloid-beta (Aβ) is sufficient to drive CD36-dependent NF-κB and SASP activation. Finally, loss-of-function experiments revealed a strict requirement for CD36 in secretory molecule production during conventional senescence reprogramming. Taken together, these results uncover the Aβ-CD36-NF-κB signaling axis as an important regulator of the senescent cell fate via induction of the SASP.
Collapse
Affiliation(s)
- Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Rui Chen
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lifeng Yuan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Zhen Tang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
32
|
Xavier-Ferrucio J, Krause DS. Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies. Stem Cells 2018; 36:1138-1145. [PMID: 29658164 DOI: 10.1002/stem.2834] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem and progenitor cells maintain blood formation throughout our lifetime by undergoing long- and short-term self-renewal, respectively. As progenitor cells progress through the hematopoiesis process, their differentiation capabilities narrow, such that the precursors become committed to only one or two lineages. This Review focuses on recent advances in the identification and characterization of bipotent megakaryocytic-erythroid progenitors (MEP), the cells that can further produce two completely different functional outputs: platelets and red blood cells. The existence of MEP has sparked controversy as studies describing the requirement for this intermediate progenitor stage prior to commitment to the erythroid and megakaryocytic lineages have been potentially contradictory. Interpretation of these studies is complicated by the variety of species, cell sources, and analytical approaches used along with inherent challenges in the continuum of hematopoiesis, where hematopoietic progenitors do not stop at discrete steps on single paths as classically drawn in hematopoietic hierarchy models. With the goal of improving our understanding of human hematopoiesis, we discuss findings in both human and murine cells. Based on these data, MEP clearly represent a transitional stage of differentiation in at least one route to the generation of both megakaryocytes and erythroid cells. Stem Cells 2018;36:1138-1145.
Collapse
Affiliation(s)
- Juliana Xavier-Ferrucio
- Yale Stem Cell Center and Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
| | - Diane S Krause
- Yale Stem Cell Center and Department of Laboratory Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Santoro A, Spinelli CC, Martucciello S, Nori SL, Capunzo M, Puca AA, Ciaglia E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J Leukoc Biol 2018; 103:509-524. [PMID: 29389023 DOI: 10.1002/jlb.3mr0118-003r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | | | | | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| |
Collapse
|
34
|
Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2017; 141 Suppl 2:S68-72. [PMID: 27207430 DOI: 10.1016/s0049-3848(16)30370-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The daily production of billions of platelets must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Complex mechanisms control platelet production and clearance in physiological and pathological conditions. This review will focus on the mechanisms of platelet senescence with specific emphasis on the role of post-translational modifications in platelet life-span and thrombopoietin production downstream of the hepatic Ashwell-Morrell receptor.
Collapse
|
35
|
Vagida M, Arakelyan A, Lebedeva A, Grivel JC, Shpektor A, Vasilieva E, Margolis L. Flow analysis of individual blood extracellular vesicles in acute coronary syndrome. Platelets 2017; 28:165-173. [PMID: 27595614 PMCID: PMC5811196 DOI: 10.1080/09537104.2016.1212002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
Abstract
A diverse population of small extracellular vesicles (EVs) that are released by various cells has been characterized predominantly in bulk, a procedure whereby the individual characteristics of EVs are lost. Here, we used a new nanotechnology-based flow cytometric analysis to characterize the antigenic composition of individual EVs in patients with acute coronary syndrome (ACS). Plasma EVs were captured with 15-nm magnetic nanoparticles coupled to antibodies against CD31 (predominantly an endothelial marker), CD41a (a marker for platelets), and CD63 or MHC class I (common EV markers). The total amounts of EVs were higher in the ACS patients than in the controls, predominantly due to the contribution of patients with acute myocardial infarction. For all captured fractions, the differences in the EV amounts were restricted to CD41a+ EVs. The increase in the numbers of EVs in the ACS patients, predominantly of platelet origin, probably reflects platelet activation and may indicate disease progression.
Collapse
Affiliation(s)
- Murad Vagida
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Lebedeva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Jean-Charles Grivel
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Shpektor
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Vagida MS, Arakelyan A, Lebedeva AM, Grivel JC, Shpektor AV, Vasilieva EY, Margolis LB. Analysis of Extracellular Vesicles Using Magnetic Nanoparticles in Blood of Patients with Acute Coronary Syndrome. BIOCHEMISTRY (MOSCOW) 2017; 81:382-391. [PMID: 27293095 DOI: 10.1134/s0006297916040088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are released from various cell types and play an important role in intercellular interactions. In our study, we investigated abundance of individual EVs in patients with acute forms of ischemic heart disease. Previously, we developed an approach for individual analysis of EVs conjugated with magnetic nanoparticles (MNPs), which was applied in the current study for analyzing phenotypic composition of EVs (by staining for markers CD31, CD41a, and CD63). EVs were isolated using fluorescently labeled MNPs containing anti-CD31, CD41a, or CD63 antibodies and analyzed by combining fluorescently labeled anti-CD41a and CD63, CD31 and CD63, or CD41a and CD31 antibodies, respectively. EVs were analyzed in 30 individuals: 17 healthy volunteers and 13 patients with acute coronary syndrome (ACS). Six and seven ACS patients were with acute myocardial infarction and unstable angina, respectively. It was found that patients with ACS and healthy volunteers contained a dominant subset of EVs expressing surface CD41a antigen, suggesting that they originated from platelets. In addition, the total number of EVs isolated using either of the surface markers examined in our study was higher in patients with ACS compared to healthy volunteers. The subgroup of patients with acute myocardial infarction was found to contain significantly higher number of blood EVs compared to the control group. Moreover, increased number of EVs in patients with ACS is mainly due to the increased number of EVs in the subset of EVs bearing CD41a. By analyzing individual EVs, we found that plasma of patients with ACS, particularly upon developing of myocardial infarction, contained dominant platelet-derived EVs fraction, which may reflect activation of platelets in such patients.
Collapse
Affiliation(s)
- M S Vagida
- Moscow State University of Medicine and Dentistry, Laboratory of Atherothrombosis, 109240 Moscow, Russia
| | - A Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 20892, Bethesda, Maryland, USA
| | - A M Lebedeva
- Moscow State University of Medicine and Dentistry, Laboratory of Atherothrombosis, 109240 Moscow, Russia
| | - J-Ch Grivel
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 20892, Bethesda, Maryland, USA
| | - A V Shpektor
- Moscow State University of Medicine and Dentistry, Laboratory of Atherothrombosis, 109240 Moscow, Russia
| | - E Yu Vasilieva
- Moscow State University of Medicine and Dentistry, Laboratory of Atherothrombosis, 109240 Moscow, Russia
| | - L B Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 20892, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Mária J, Ingrid Ž. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro. Food Funct 2017; 8:2394-2418. [DOI: 10.1039/c7fo00161d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Senescence is a permanent cell cycle arrest that is accompanied by changes in cell morphology and physiology occurringin vitroandin vivo.
Collapse
Affiliation(s)
- Janubová Mária
- Institute of Medical Chemistry
- Biochemistry and Clinical Biochemistry
- Medical Faculty
- Comenius University
- 813 72 Bratislava
| | - Žitňanová Ingrid
- Institute of Medical Chemistry
- Biochemistry and Clinical Biochemistry
- Medical Faculty
- Comenius University
- 813 72 Bratislava
| |
Collapse
|
38
|
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell 2016; 15:999-1017. [PMID: 27628712 PMCID: PMC6398529 DOI: 10.1111/acel.12518] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
To date, dozens of stress‐induced cellular senescence phenotypes have been reported. These cellular senescence states may differ substantially from each other, as well as from replicative senescence through the presence of specific senescence features. Here, we attempted to catalog virtually all of the cellular senescence‐like states that can be induced by low molecular weight compounds. We summarized biological markers, molecular pathways involved in senescence establishment, and specific traits of cellular senescence states induced by more than fifty small molecule compounds.
Collapse
Affiliation(s)
| | - Artem K. Velichko
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
| | - Sergey V. Razin
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- Department of Molecular Biology Lomonosov Moscow State University 119991 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| | - Omar L. Kantidze
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| |
Collapse
|
39
|
An incomplete trafficking defect to the cell-surface leads to paradoxical thrombocytosis for human and murine MPL P106L. Blood 2016; 128:3146-3158. [PMID: 28034873 DOI: 10.1182/blood-2016-06-722058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
The mechanisms behind the hereditary thrombocytosis induced by the thrombopoietin (THPO) receptor MPL P106L mutant remain unknown. A complete trafficking defect to the cell surface has been reported, suggesting either weak constitutive activity or nonconventional THPO-dependent mechanisms. Here, we report that the thrombocytosis phenotype induced by MPL P106L belongs to the paradoxical group, where low MPL levels on platelets and mature megakaryocytes (MKs) lead to high serum THPO levels, whereas weak but not absent MPL cell-surface localization in earlier MK progenitors allows response to THPO by signaling and amplification of the platelet lineage. MK progenitors from patients showed no spontaneous growth and responded to THPO, and MKs expressed MPL on their cell surface at low levels, whereas their platelets did not respond to THPO. Transduction of MPL P106L in CD34+ cells showed that this receptor was more efficiently localized at the cell surface on immature than on mature MKs, explaining a proliferative response to THPO of immature cells and a defect in THPO clearance in mature cells. In a retroviral mouse model performed in Mpl-/- mice, MPL P106L could induce a thrombocytosis phenotype with high circulating THPO levels. Furthermore, we could select THPO-dependent cell lines with more cell-surface MPL P106L localization that was detected by flow cytometry and [125I]-THPO binding. Altogether, these results demonstrate that MPL P106L is a receptor with an incomplete defect in trafficking, which induces a low but not absent localization of the receptor on cell surface and a response to THPO in immature MK cells.
Collapse
|
40
|
Sufit A, Lee-Sherick AB, DeRyckere D, Rupji M, Dwivedi B, Varella-Garcia M, Pierce AM, Kowalski J, Wang X, Frye SV, Earp HS, Keating AK, Graham DK. MERTK Inhibition Induces Polyploidy and Promotes Cell Death and Cellular Senescence in Glioblastoma Multiforme. PLoS One 2016; 11:e0165107. [PMID: 27783662 PMCID: PMC5081168 DOI: 10.1371/journal.pone.0165107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MER receptor tyrosine kinase (MERTK) is expressed in a variety of malignancies, including glioblastoma multiforme (GBM). Our previous work demonstrated that inhibition of MERTK using RNA interference induced cell death and chemosensitivity in GBM cells, implicating MERTK as a potential therapeutic target. Here we investigate whether a novel MERTK-selective small molecule tyrosine kinase inhibitor, UNC2025, has similar anti-tumor effects in GBM cell lines. METHODS Correlations between expression of GAS6, a MERTK ligand, and prognosis were determined using data from the TCGA database. GBM cell lines (A172, SF188, U251) were treated in vitro with increasing doses of UNC2025 (50-400nM). Cell count and viability were determined by trypan blue exclusion. Cell cycle profiles and induction of apoptosis were assessed by flow cytometric analysis after BrdU or Po-Pro-1/propidium iodide staining, respectively. Polyploidy was detected by propidium iodide staining and metaphase spread. Cellular senescence was determined by β-galactosidase staining and senescence-associated secretory cytokine analysis. RESULTS Decreased overall survival significantly correlated with high levels of GAS6 expression in GBM, highlighting the importance of TAM kinase signaling in GBM tumorigenesis and/or therapy resistance and providing strong rationale for targeting these pathways in the clinic. All three GBM cell lines exhibited dose dependent reductions in cell number and colony formation (>90% at 200nM) after treatment with UNC2025. Cell cycle analysis demonstrated accumulation of cells in the G2/M phase and development of polyploidy. After extended exposure, 60-80% of cells underwent apoptosis. The majority of surviving cells (65-95%) were senescent and did not recover after drug removal. Thus, UNC2025 mediates anti-tumor activity in GBM by multiple mechanisms. CONCLUSIONS The findings described here provide further evidence of oncogenic roles for MERTK in GBM, demonstrate the importance of kinase activity for MERTK tumorigenicity and validate UNC2025, a novel MERTK inhibitor, as a potential therapeutic agent for treatment of GBM.
Collapse
Affiliation(s)
- Alexandra Sufit
- University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO, 80045, United States of America
| | - Alisa B. Lee-Sherick
- University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO, 80045, United States of America
- Children’s Hospital Colorado, 13123 E. 16th Ave, Aurora, CO, 80045, United States of America
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, 30322, United States of America
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA, 30333, United States of America
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, 30333, United States of America
| | - Marileila Varella-Garcia
- University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO, 80045, United States of America
| | - Angela M. Pierce
- University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO, 80045, United States of America
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA, 30333, United States of America
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30333, United States of America
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States of America
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States of America
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, Unites States of America
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, Unites States of America
| | - Amy K. Keating
- University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO, 80045, United States of America
- Children’s Hospital Colorado, 13123 E. 16th Ave, Aurora, CO, 80045, United States of America
- * E-mail: (AKK); (DKG)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, 30322, United States of America
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States of America
- * E-mail: (AKK); (DKG)
| |
Collapse
|
41
|
Di Buduo CA, Currao M, Pecci A, Kaplan DL, Balduini CL, Balduini A. Revealing eltrombopag's promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica 2016; 101:1479-1488. [PMID: 27515246 DOI: 10.3324/haematol.2016.146746] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Eltrombopag is a small, non-peptide thrombopoietin mimetic that has been approved for increasing platelet count not only in immune thrombocytopenia and Hepatitis C virus-related thrombocytopenia, but also in aplastic anemia. Moreover, this drug is under investigation for increasing platelet counts in myelodysplastic syndromes. Despite current clinical practice, the mechanisms governing eltrombopag's impact on human hematopoiesis are largely unknown, in part due to the impossibility of using traditional in vivo models. To investigate eltrombopag's impact on megakaryocyte functions, we employed our established in vitro model for studying hematopoietic stem cell differentiation combined with our latest 3-dimensional silk-based bone marrow tissue model. Results demonstrated that eltrombopag favors human megakaryocyte differentiation and platelet production in a dose-dependent manner. These effects are accompanied by increased phosphorylation of AKT and ERK1/2 signaling molecules, which have been proven to be crucial in regulating physiologic thrombopoiesis. These data further clarify the different mechanisms of action of eltrombopag when compared to romiplostim, which, as we have shown, induces the proliferation of immature megakaryocytes rather than platelet production, due to the unbalanced activation of AKT and ERK1/2 signaling molecules. In conclusion, our research clarifies the underlying mechanisms that govern the action of eltrombopag on megakaryocyte functions and its relevance in clinical practice.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Italy.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Italy.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Carlo L Balduini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Italy .,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
42
|
Roy A, Lordier L, Pioche-Durieu C, Souquere S, Roy L, Rameau P, Lapierre V, Le Cam E, Plo I, Debili N, Raslova H, Vainchenker W. Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint. Haematologica 2016; 101:1469-1478. [PMID: 27515249 DOI: 10.3324/haematol.2016.149914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Megakaryocytes are naturally polyploid cells that increase their ploidy by endomitosis. However, very little is known regarding the mechanism by which they escape the tetraploid checkpoint to become polyploid. Recently, it has been shown that the tetraploid checkpoint was regulated by the Hippo-p53 pathway in response to a downregulation of Rho activity. We therefore analyzed the role of Hippo-p53 pathway in the regulation of human megakaryocyte polyploidy. Our results revealed that Hippo-p53 signaling pathway proteins are present and are functional in megakaryocytes. Although this pathway responds to the genotoxic stress agent etoposide, it is not activated in tetraploid or polyploid megakaryocytes. Furthermore, Hippo pathway was observed to be uncoupled from Rho activity. Additionally, polyploid megakaryocytes showed increased expression of YAP target genes when compared to diploid and tetraploid megakaryocytes. Although p53 knockdown increased both modal ploidy and proplatelet formation in megakaryocytes, YAP knockdown caused no significant change in ploidy while moderately affecting proplatelet formation. Interestingly, YAP knockdown reduced the mitochondrial mass in polyploid megakaryocytes and decreased expression of PGC1α, an important mitochondrial biogenesis regulator. Thus, the Hippo pathway is functional in megakaryocytes, but is not induced by tetraploidy. Additionally, YAP regulates the mitochondrial mass in polyploid megakaryocytes.
Collapse
Affiliation(s)
- Anita Roy
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Larissa Lordier
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Catherine Pioche-Durieu
- Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France.,Centre Nationale de la Recherche Scientifique (CNRS), UMR 8126, Gustave Roussy, Villejuif, France
| | - Sylvie Souquere
- Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France.,CNRS UMR 8122, Gustave Roussy, Villejuif, France
| | - Lydia Roy
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Hématologie Clinique, Hôpital Henri Mondor, Créteil, France
| | | | | | - Eric Le Cam
- Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France.,Centre Nationale de la Recherche Scientifique (CNRS), UMR 8126, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Najet Debili
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Hana Raslova
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - William Vainchenker
- Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France .,Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| |
Collapse
|
43
|
Yuan S, Wen J, Cheng J, Shen W, Zhou S, Yan W, Shen L, Luo A, Wang S. Age-associated up-regulation of EGR1 promotes granulosa cell apoptosis during follicle atresia in mice through the NF-κB pathway. Cell Cycle 2016; 15:2895-2905. [PMID: 27436181 DOI: 10.1080/15384101.2016.1208873] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Follicular atresia is the main process responsible for the loss of follicles and oocytes from the ovary, and it is the root cause of ovarian aging. Apoptosis of granulosa cells (GCs) is the cellular mechanism responsible for follicular atresia in mammals. Recent advances have highlighted fundamental roles for EGR1 in age-related diseases via the induction of apoptosis. In the present study, we found that the expression of EGR1 was significantly increased in aged mouse ovaries compared with young ovaries. Immunohistochemical analysis revealed strongly positive EGR1 staining in atretic follicles, especially in apoptotic granulosa cells. We further showed that EGR1 up-regulation in mouse primary granulosa cells inhibited cell proliferation and promoted apoptosis. In addition, the promotion of apoptosis in GCs by EGR1 increases over time and with reactive oxygen species (ROS) stimulation. Our mechanistic study suggested that EGR1 regulates GC apoptosis in a mitochondria-dependent manner and that this mainly occurs through the NF-κB signaling pathway. In conclusion, our results suggested that age-related up-regulation of EGR1 promotes GC apoptosis in follicle atresia during ovarian aging.
Collapse
Affiliation(s)
- Suzhen Yuan
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jingyi Wen
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Jing Cheng
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Wei Shen
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Su Zhou
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Wei Yan
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Lu Shen
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Aiyue Luo
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| | - Shixuan Wang
- a Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , China
| |
Collapse
|
44
|
Vicente R, Mausset‐Bonnefont A, Jorgensen C, Louis‐Plence P, Brondello J. Cellular senescence impact on immune cell fate and function. Aging Cell 2016; 15:400-6. [PMID: 26910559 PMCID: PMC4854915 DOI: 10.1111/acel.12455] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T-lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T-helper lymphocyte-dependent tissue homeostatic functions and T-regulatory cell-dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide-reaching role as a homeostatic orchestrator.
Collapse
Affiliation(s)
- Rita Vicente
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Anne‐Laure Mausset‐Bonnefont
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Christian Jorgensen
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Pascale Louis‐Plence
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| | - Jean‐Marc Brondello
- INSERM, U1183, IRMBMontpellier CedexFrance
- University of MontpellierMontpellierFrance
- CHRU de Montpellier, IRMBMontpellier CedexFrance
| |
Collapse
|
45
|
Antkowiak A, Viaud J, Severin S, Zanoun M, Ceccato L, Chicanne G, Strassel C, Eckly A, Leon C, Gachet C, Payrastre B, Gaits-Iacovoni F. Cdc42-dependent F-actin dynamics drive structuration of the demarcation membrane system in megakaryocytes. J Thromb Haemost 2016; 14:1268-84. [PMID: 26991240 DOI: 10.1111/jth.13318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/03/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Essentials Information about the formation of the demarcation membrane system (DMS) is still lacking. We investigated the role of the cytoskeleton in DMS structuration in megakaryocytes. Cdc42/Pak-dependent F-actin remodeling regulates DMS organization for proper megakaryopoiesis. These data highlight the mandatory role of F-actin in platelet biogenesis. SUMMARY Background Blood platelet biogenesis results from the maturation of megakaryocytes (MKs), which involves the development of a complex demarcation membrane system (DMS). Therefore, MK differentiation is an attractive model for studying membrane remodeling. Objectives We sought to investigate the mechanism of DMS structuration in relationship to the cytoskeleton. Results Using three-dimensional (3D) confocal imaging, we have identified consecutive stages of DMS organization that rely on F-actin dynamics to polarize membranes and nuclei territories. Interestingly, microtubules are not involved in this process. We found that the mechanism underlying F-actin-dependent DMS formation required the activation of the guanosine triphosphate hydrolase Cdc42 and its p21-activated kinase effectors (Pak1/2/3). Förster resonance energy transfer demonstrated that active Cdc42 was associated with endomembrane dynamics throughout terminal maturation. Inhibition of Cdc42 or Pak1/2/3 severely destructured the DMS and blocked proplatelet formation. Even though this process does not require containment within the hematopoietic niche, because DMS structuration was observed upon thrombopoietin-treatment in suspension, integrin outside-in signaling was required for Pak activation and probably resulted from secretion of extracellular matrix by MKs. Conclusions These data indicate a functional link, mandatory for MK differentiation, between actin dynamics, regulated by Cdc42/Pak1/2/3, and DMS maturation.
Collapse
Affiliation(s)
- A Antkowiak
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - J Viaud
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - S Severin
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - M Zanoun
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - L Ceccato
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - G Chicanne
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - C Strassel
- INSERM, UMR_S949, Université de Strasbourg, Etablissement Français du Sang-Alsace, Toulouse, France
| | - A Eckly
- INSERM, UMR_S949, Université de Strasbourg, Etablissement Français du Sang-Alsace, Toulouse, France
| | - C Leon
- INSERM, UMR_S949, Université de Strasbourg, Etablissement Français du Sang-Alsace, Toulouse, France
| | - C Gachet
- INSERM, UMR_S949, Université de Strasbourg, Etablissement Français du Sang-Alsace, Toulouse, France
| | - B Payrastre
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
- Laboratoire d'Hématologie, CHU de Toulouse, Toulouse, France
| | - F Gaits-Iacovoni
- INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| |
Collapse
|
46
|
Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 2016; 127:1325-35. [DOI: 10.1182/blood-2015-11-681932] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/07/2015] [Indexed: 02/03/2023] Open
Abstract
Key Points
Calreticulin mutants responsible for myeloproliferative neoplasms specifically activate the thrombopoietin receptor and in turn JAK2. Activation of the thrombopoietin receptor requires the glycan binding site and a novel C-terminal tail of the mutant calreticulin.
Collapse
|
47
|
Bal G, Futschik ME, Hartl D, Ringel F, Kamhieh-Milz J, Sterzer V, Hoheisel JD, Alhamdani MSS, Salama A. Identification of novel biomarkers in chronic immune thrombocytopenia (ITP) by microarray-based serum protein profiling. Br J Haematol 2015; 172:602-15. [PMID: 26628061 DOI: 10.1111/bjh.13861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/06/2015] [Indexed: 01/15/2023]
Abstract
The pathological mechanisms underlying the development of immune thrombocytopenia (ITP) are unclear and its diagnosis remains a process of exclusion. Currently, there are no known specific biomarkers for ITP to support differential diagnosis and treatment decisions. Profiling of serum proteins may be valuable for identifying such biomarkers. Sera from 46 patients with primary chronic ITP and 34 healthy blood donors were analysed using a microarray of 755 antibodies. We identified 161 differentially expressed proteins. In addition to oncoproteins and tumour-suppressor proteins, including apoptosis regulator BCL2, breast cancer type 1 susceptibility protein (BRCA1), Fanconi anaemia complementation group C (FANCC) and vascular endothelial growth factor A (VEGFA), we detected six anti-nuclear autoantibodies in a subset of ITP patients: anti-PCNA, anti-SmD, anti-Ro/SSA60, anti-Ro/SSA52, anti-La/SSB and anti-RNPC antibodies. This finding may provide a rational explanation for the association of ITP with malignancies and other autoimmune diseases. While RUNX1mRNA expression in the peripheral blood mononuclear cells (PBMC) of patients was significantly downregulated, an accumulation of RUNX1 protein was observed in the platelets of ITP patients. This may indicate dysregulation of RUNX1 expression in PBMC and megakaryocytes and may lead to an imbalanced immune response and impaired thrombopoiesis. In conclusion, we provide novel insights into the pathogenic mechanisms of ITP that warrant further exploration.
Collapse
Affiliation(s)
- Gürkan Bal
- Institute for Transfusion Medicine, Charité Universitätsmedizin, Berlin, Germany
| | | | - Daniela Hartl
- Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Berlin, Germany
| | - Frauke Ringel
- Institute for Transfusion Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Julian Kamhieh-Milz
- Institute for Transfusion Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Viktor Sterzer
- Institute for Transfusion Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Mohamed S S Alhamdani
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Abdulgabar Salama
- Institute for Transfusion Medicine, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
48
|
Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126:1877-84. [PMID: 26330242 DOI: 10.1182/blood-2015-01-569129] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.
Collapse
|
49
|
Debeurme F, Lacout C, Moratal C, Bagley RG, Vainchenker W, Adrian F, Villeval JL. JAK2 inhibition has different therapeutic effects according to myeloproliferative neoplasm development in mice. J Cell Mol Med 2015; 19:2564-74. [PMID: 26176817 PMCID: PMC4627562 DOI: 10.1111/jcmm.12608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/03/2015] [Indexed: 11/28/2022] Open
Abstract
JAK2 inhibition therapy is used to treat patients suffering from myeloproliferative neoplasms (MPN). Conflicting data on this therapy are reported possibly linked to the types of inhibitors or disease type. Therefore, we decided to compare in mice the effect of a JAK2 inhibitor, Fedratinib, in MPN models of increasing severity: polycythemia vera (PV), post-PV myelofibrosis (PPMF) and rapid post-essential thrombocythemia MF (PTMF). The models were generated through JAK2 activation by the JAK2(V617F) mutation or MPL constant stimulation. JAK2 inhibition induced a correction of splenomegaly, leucocytosis and microcytosis in all three MPN models. However, the effects on fibrosis, osteosclerosis, granulocytosis, erythropoiesis or platelet counts varied according to the disease severity stage. Strikingly, complete blockade of fibrosis and osteosclerosis was observed in the PPMF model, linked to correction of MK hyper/dysplasia, but not in the PTMF model, suggesting that MF development may also become JAK2-independent. Interestingly, we originally found a decreased in the JAK2(V617F) allele burden in progenitor cells from the spleen but not in other cell types. Overall, this study shows that JAK2 inhibition has different effects according to disease phenotypes and can (i) normalize platelet counts, (ii) prevent the development of marrow fibrosis/osteosclerosis at an early stage and (iii) reduce splenomegaly through blockage of stem cell mobilization in the spleen.
Collapse
Affiliation(s)
- Franck Debeurme
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| | - Catherine Lacout
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| | - Claudine Moratal
- iBV, CNRS UMR7277, INSERM U1091, Université Nice-Sophia Antipolis, Nice, France
| | | | - William Vainchenker
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| | | | - Jean-Luc Villeval
- Inserm, U.1009, Institut Gustave Roussy (IGR), Université Paris XI, Villejuif, France
| |
Collapse
|
50
|
Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2015; 5:27743. [PMID: 25994420 PMCID: PMC4439419 DOI: 10.3402/pba.v5.27743] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging, and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells. Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells may largely contribute to physiological and pathological consequences in organisms. Here I review the molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological settings.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan;
| |
Collapse
|