1
|
Reid RAG, Davies C, Cunningham C. Trabecular Bone Ontogeny of the Human Distal Tibia. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25043. [PMID: 39648413 PMCID: PMC11775436 DOI: 10.1002/ajpa.25043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES There is an increasing understanding of how trabecular bone adapts to biomechanical changes during ontogeny. However, limited research exists regarding the distal tibia, which is important in weight-bearing locomotion as part of the ankle joint. This study aims to document the ontogenetic trabecular patterns of the distal tibia, in addition to changes in its structural heterogeneity. MATERIALS AND METHODS Thirty-eight distal tibiae, ranging in age from 28 intrauterine weeks to 8 postnatal years, from the Scheuer juvenile skeletal collection were examined. Trabecular bone was analyzed using a quantitative volume of interest approach and qualitative whole bone mapping following microcomputed tomography. RESULTS Fetal and perinatal tibia lack mature organization and are associated with high bone volume fraction. During the first year of life, there is a decrease in bone volume fraction and an indication of early re-organization of trabecular struts in the distal tibia. After one year of age, the distal tibia exhibits increased trabecular structural heterogeneity. DISCUSSION The trabecular architecture of the fetal and perinatal distal tibia lacks mature organization and instead reflects ossification patterns. At these stages, there is a rapid accumulation of bone mass associated with gestational overproduction, hypothesized to be in preparation for subsequent postnatal changes. During the first year of life there is a decrease in volume fraction, associated with constructive regression. It is postulated this is related to changing biomechanical forces associated with the bipedal gait, in addition to growth demands. After one year of age, the distal tibia exhibits structural heterogeneity with trabecular adaption to accommodate specific bipedal stresses.
Collapse
Affiliation(s)
- Rebecca A. G. Reid
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeScotland
| | - Catriona Davies
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeScotland
| | - Craig Cunningham
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeScotland
| |
Collapse
|
2
|
Ponssa ML, Fratani J, Barrionuevo JS. Unravelling drivers on the morphological diversification of the terminal phalanx in hyloid frogs. Zool J Linn Soc 2024; 202. [DOI: 10.1093/zoolinnean/zlae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The anuran locomotor system integrates traits that are influenced by phylogenetic, ecological, and development constraints. Given their significance to locomotion, we studied terminal phalange morphology in the Hyloidea group. We aim to deduce if morphological variability stems from phylogenetic, ecological, or life-cycle constraints. We explore the influence of size on variation and assess if evolutionary rates and shape disparities differ among the groups under consideration. Finally, we optimized phalangeal morphology within the phylogenetic framework to delineate evolutionary trends. We included 424 specimens of 128 species representing 17 families of Hyloidea and two of non-hyloid anurans. Configuration of the terminal phalanx was quantified using geometric morphometrics and characterized through qualitative traits. We established four categories based on microhabitats and locomotor abilities. Our life-cycle categorization distinguishes species by their consistent or changing microhabitat across larval and adult stages. The results show a complex scenario, where certain clades occupy distinct regions of morphospace, but there is also a relationship between phalangeal shape, microhabitats, and locomotor abilities. However, both the phylogenetic signal and the relationship with microhabitats and locomotor abilities are not particularly robust. Species inhabiting arboreal microhabitats develop convergent traits to thrive in this niche, such as rounded proximal epiphysis and the claw-shaped phalanx. Morphological disparity was higher in walkers, which also includes arboreal species, prompting further questions on the demands of locomotion in vertical substrates.
Collapse
Affiliation(s)
- M L Ponssa
- Área Herpetología, Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251 , 4000, San Miguel de Tucumán ,
| | - J Fratani
- Área Herpetología, Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251 , 4000, San Miguel de Tucumán ,
| | - J S Barrionuevo
- Área Herpetología, Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251 , 4000, San Miguel de Tucumán ,
- Fundación Miguel Lillo , Miguel Lillo 251, 4000, San Miguel de Tucumán ,
| |
Collapse
|
3
|
Rubin S, Agrawal A, Seewald A, Lian MJ, Gottdenker O, Villoutreix P, Baule A, Stern T, Zelzer E. Limited column formation in the embryonic growth plate implies divergent growth mechanisms during pre- and postnatal bone development. eLife 2024; 13:e95289. [PMID: 39269144 PMCID: PMC11509684 DOI: 10.7554/elife.95289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
- Würzburg Institute of Systems Immunology, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| | - Anne Seewald
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Meng-Jia Lian
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Olivia Gottdenker
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Paul Villoutreix
- Aix Marseille Univ, INSERM, MMG, UMR1251, Turing Center for Living SystemsMarseilleFrance
| | - Adrian Baule
- School of Mathematical Sciences, Queen Mary University of LondonLondonUnited Kingdom
| | - Tomer Stern
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Kantaputra PN, Angkurawaranon S, Intachai W, Ngamphiw C, Olsen B, Tongsima S, Cox TC, Ketudat Cairns JR. A Founder Intronic Variant in P3H1 Likely Results in Aberrant Splicing and Protein Truncation in Patients of Karen Descent with Osteogenesis Imperfecta Type VIII. Genes (Basel) 2023; 14:genes14020322. [PMID: 36833249 PMCID: PMC9956579 DOI: 10.3390/genes14020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
One of the most important steps in post-translational modifications of collagen type I chains is the hydroxylation of carbon-3 of proline residues by prolyl-3-hydroxylase-1 (P3H1). Genetic variants in P3H1 have been reported to cause autosomal recessive osteogenesis imperfecta (OI) type VIII. Clinical and radiographic examinations, whole-exome sequencing (WES), and bioinformatic analysis were performed in 11 Thai children of Karen descent affected by multiple bone fractures. Clinical and radiographic findings in these patients fit OI type VIII. Phenotypic variability is evident. WES identified an intronic homozygous variant (chr1:43212857A > G; NM_022356.4:c.2055 + 86A > G) in P3H1 in all patients, with parents in each patient being heterozygous for the variant. This variant is predicted to generate a new "CAG" splice acceptor sequence, resulting in the incorporation of an extra exon that leads to a frameshift in the final exon and subsequent non-functional P3H1 isoform a. Alternative splicing of P3H1 resulting in the absence of functional P3H1 caused OI type VIII in 11 Thai children of Karen descent. This variant appears to be specific to the Karen population. Our study emphasizes the significance of considering intronic variants.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| | - Salita Angkurawaranon
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - James R. Ketudat Cairns
- Center for Biomolecular Structure, Function and Application and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
5
|
O'Mahoney TG, Lowe T, Chamberlain AT, Sellers WI. Endostructural and periosteal growth of the human humerus. Anat Rec (Hoboken) 2023; 306:60-78. [PMID: 36054304 PMCID: PMC10086792 DOI: 10.1002/ar.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 01/29/2023]
Abstract
The growth and development of long bones are of considerable interests in the fields of comparative anatomy and palaeoanthropology, as evolutionary changes and adaptations to specific physical activity patterns are expected to be revealed during bone ontogeny. Traditionally, the cross-sectional geometry of long bones has been examined at discrete locations usually placed at set intervals or fixed percentage distances along the midline axis of the bone shaft. More recently, the technique of morphometric mapping has enabled the continuous analysis of shape variation along the shaft. Here we extend this technique to the full sequence of late fetal and postnatal development of the humeral shaft in a modern human population sample, with the aim of establishing the shape changes during growth and their relationship with the development of the arm musculature and activity patterns. A sample of modern human humeri from individuals of age ranging from 24 weeks in utero to 18 years was imaged using microtomography at multiple resolutions and custom Matlab scripts. Standard biomechanical properties, cortical thickness, surface curvature, and pseudo-landmarks were extracted along radial vectors spaced at intervals of 1° at each 0.5% longitudinal increment measured along the shaft axis. Heat maps were also generated for cortical thickness and surface curvature. The results demonstrate that a whole bone approach to analysis of cross-sectional geometry is more desirable where possible, as there is a continuous pattern of variation along the shaft. It is also possible to discriminate very young individuals and adolescents from other groups by relative cortical thickness, and also by periosteal surface curvature.
Collapse
Affiliation(s)
- Thomas George O'Mahoney
- School of Life SciencesAnglia Ruskin UniversityCambridgeUK
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Tristan Lowe
- Henry Moseley X‐Ray Imaging FacilityUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
6
|
Watanabe R, Matsugaki A, Ishimoto T, Ozasa R, Matsumoto T, Nakano T. A Novel Ex Vivo Bone Culture Model for Regulation of Collagen/Apatite Preferential Orientation by Mechanical Loading. Int J Mol Sci 2022; 23:ijms23137423. [PMID: 35806427 PMCID: PMC9267238 DOI: 10.3390/ijms23137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The anisotropic microstructure of bone, composed of collagen fibers and biological apatite crystallites, is an important determinant of its mechanical properties. Recent studies have revealed that the preferential orientation of collagen/apatite composites is closely related to the direction and magnitude of in vivo principal stress. However, the mechanism of alteration in the collagen/apatite microstructure to adapt to the mechanical environment remains unclear. In this study, we established a novel ex vivo bone culture system using embryonic mouse femurs, which enabled artificial control of the mechanical environment. The mineralized femur length significantly increased following cultivation; uniaxial mechanical loading promoted chondrocyte hypertrophy in the growth plates of embryonic mouse femurs. Compressive mechanical loading using the ex vivo bone culture system induced a higher anisotropic microstructure than that observed in the unloaded femur. Osteocytes in the anisotropic bone microstructure were elongated and aligned along the long axis of the femur, which corresponded to the principal loading direction. The ex vivo uniaxial mechanical loading successfully induced the formation of an oriented collagen/apatite microstructure via osteocyte mechano-sensation in a manner quite similar to the in vivo environment.
Collapse
Affiliation(s)
- Ryota Watanabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
- Teijin Nakashima Medical Co., Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan; (R.W.); (A.M.); (T.I.); (R.O.)
- Correspondence: ; Tel.: +81-6-6879-7505
| |
Collapse
|
7
|
Dzamukova M, Brunner TM, Miotla-Zarebska J, Heinrich F, Brylka L, Mashreghi MF, Kusumbe A, Kühn R, Schinke T, Vincent TL, Löhning M. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat Commun 2022; 13:3059. [PMID: 35650194 PMCID: PMC9160028 DOI: 10.1038/s41467-022-30618-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.
Collapse
Affiliation(s)
- Maria Dzamukova
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Tobias M Brunner
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jadwiga Miotla-Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Frederik Heinrich
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anjali Kusumbe
- Tissue and Tumour Microenvironments Group, University of Oxford, Oxford, UK
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Montoya-Sanhueza G, Šaffa G, Šumbera R, Chinsamy A, Jarvis JUM, Bennett NC. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats. Commun Biol 2022; 5:526. [PMID: 35650336 PMCID: PMC9159980 DOI: 10.1038/s42003-022-03480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic.
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa.
| | - Gabriel Šaffa
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Jennifer U M Jarvis
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Growth and mechanobiology of the tendon-bone enthesis. Semin Cell Dev Biol 2022; 123:64-73. [PMID: 34362655 PMCID: PMC8810906 DOI: 10.1016/j.semcdb.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone. In this review, we focus on emerging areas in enthesis development related to its structure, function, and mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes that influence the formation and adaptation of this important transitional tissue.
Collapse
|
10
|
Ning B, Londono I, Laporte C, Villemure I. Validation of an in vivo micro-CT-based method to quantify longitudinal bone growth of pubertal rats. Bone 2022; 154:116207. [PMID: 34547522 DOI: 10.1016/j.bone.2021.116207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/02/2022]
Abstract
Bone growth is an essential part of skeletal development during childhood and puberty. Accurately characterizing longitudinal bone growth helps to better understand the determining factors of peak bone mass, which has impacts on bone quality later in life. Animal models were largely used to study longitudinal bone growth. However, the commonly used histology-based method is destructive and unable to follow up the growth curve of live animals in longitudinal experiments. In this study, we validated an in vivo micro-CT-based method against the histology-based method to quantify longitudinal bone growth rates of young rats non-destructively. CD (Sprague Dawley) IGS rats aged 35, 49 and 63 days received the same treatments: two series of repeated in vivo micro-CT scans on their proximal hind limb at a five-day interval, and two calcein injections separated by three days. The longitudinal bone growth rate was quantified by registering time-lapse micro-CT images in 3D, calculating the growth distance on registered images, and dividing the distance by the five-day gap. The growth rate was also evaluated by measuring the 2D distance between consecutive calcein fluorescent bands on microscopic images, divided by the three-day gap. The two methods were both validated independently with reproducible repeated measurements, where the micro-CT-based method showed higher precision. They were also validated against each other with low relative errors and a strong Pearson sample correlation coefficient (0.998), showing a significant (p < 0.0001) linear correlation between paired results. We conclude that the micro-CT-based method can serve as an alternative to the histology-based method for the quantification of longitudinal growth. Thanks to its non-invasive nature and true 3D capability, the micro-CT-based method helps to accommodate in vivo longitudinal animal studies with highly reproducible measurements.
Collapse
Affiliation(s)
- Bohao Ning
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada
| | - Irène Londono
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada
| | - Catherine Laporte
- CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada; Department of Electrical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, QC H3C 1K3, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, QC H3C 3A7, Canada; CHU Sainte-Justine Research Centre, 3175 Côte-Sainte-Catherine Road, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
11
|
Rubin S, Agrawal A, Stegmaier J, Krief S, Felsenthal N, Svorai J, Addadi Y, Villoutreix P, Stern T, Zelzer E. Application of 3D MAPs pipeline identifies the morphological sequence chondrocytes undergo and the regulatory role of GDF5 in this process. Nat Commun 2021; 12:5363. [PMID: 34508093 PMCID: PMC8433335 DOI: 10.1038/s41467-021-25714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Svorai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Villoutreix
- LIS (UMR 7020), IBDM (UMR 7288), Turing Center For Living Systems, Aix-Marseille University, Marseille, France.
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Monzem S, Javaheri B, de Souza RL, Pitsillides AA. Sciatic neurectomy-related cortical bone loss exhibits delayed onset yet stabilises more rapidly than trabecular bone. Bone Rep 2021; 15:101116. [PMID: 34471655 PMCID: PMC8387754 DOI: 10.1016/j.bonr.2021.101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
Disuse osteoporosis occurs after extended periods of bed rest or nerve damage leading to increased risk of fracture. It remains to be established, however, whether the trajectory of bone loss is equivalent in bone's cortical and trabecular compartments following long-term periods of reduced loading. Herein, we evaluate sciatic neurectomy-related cortical and trabecular bone loss in the tibia by microCT. The right hind limb of seventeen 12 week-old female mice was subjected to sciatic neurectomy (right, SN; left, contralateral internal control) and the animals were sacrificed in four groups (n = 3-5/group) at 5, 35, 65 and 95 days thereafter. Cortical bone mass, geometry and mineral density were evaluated along almost the entire tibial length and trabecular bone was examined at the proximal metaphysis. We found that trabecular bone volume (BV/TV) and number were decreased within 5 days, with a trajectory of loss that only plateaued after 65 days post-SN. In contrast, decreases in cortical thickness, cross-sectional area, second moment of inertia along minor and major axes and predicted resistance to torsion were unmodified during the early 5 day period, attaining significance only after 35 days post-SN and, thereafter showed no further deterioration. Only cortical ellipticity and periosteal enclosed area, continued to change in the SN limbs (vs. contralateral) between 35 and 95 days along the tibia length. On the other hand, cortical tissue mineral density was unmodified by SN at any time point. These data indicate that SN-related cortical bone loss extends along almost the entire tibia, exhibits delayed onset and yet stabilises its architecture more rapidly than trabecular bone. These data suggest that the cortical and trabecular compartments behave as distinct modules in response to SN even within an individual bone. Responses to sciatic neurectomy (SN) in tibial trabecular bone are very protracted. Responses to SN in the cortices have delayed onset but stabilize more rapidly. Trabecular and cortical bone behave modularly in response to SN.
Collapse
Affiliation(s)
- Samuel Monzem
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, NW1 0TU London, United Kingdom.,Federal University of Mato Grosso, Veterinary College, Av. Fernando Correa da Costa, n. 2367, 78060-900 Cuiabá-Mato Grosso, Brazil
| | - Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, NW1 0TU London, United Kingdom
| | - Roberto Lopes de Souza
- Federal University of Mato Grosso, Veterinary College, Av. Fernando Correa da Costa, n. 2367, 78060-900 Cuiabá-Mato Grosso, Brazil
| | - Andrew Anthony Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, NW1 0TU London, United Kingdom
| |
Collapse
|
13
|
Perrone RV, Williams JL. The morphogenesis of porcine femoral head mammillary processes: A structural mechanism of biomechanical stability. Anat Rec (Hoboken) 2021; 305:265-283. [PMID: 34240585 DOI: 10.1002/ar.24713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/06/2022]
Abstract
The capital femoral physis is a growth plate located between the head of the femur and femoral neck, which forms a temporary joint where growth plate cartilage is converted to bone by endochondral ossification. The bone-cartilage-bone interface develops a unique radial pattern of interdigitating mammillary processes that interlock the femoral head with the metaphysis, increasing biomechanical stability. The arrangement of these mammillary processes may not be a random occurrence and likely serves to provide mechanical mechanisms to enhance biomechanical stability. In this study, we provide a qualitative and quantitative analysis of porcine femoral head mammillary processes and focus on the analysis of six key points of development: the epiphyseal tubercle, epiphyseal cupping, growth plate slope angles, expansion of the epiphyseal subchondral bone plate, epiphyseal elongation, and the emergence of smaller, radially arranged mammillary processes. We introduce a metric of surface roughness analysis to quantify mammillary processes and apply it to analyze the development of the observed radial pattern of peripheral mammillary processes from birth to adolescence. We hypothesized that these processes develop to form a radial pattern with some degree of periodicity beginning relatively early in development of the joint and increase in prominence with age and weight of the animal. These findings may have important implications in the early diagnosis and treatment of the hip disorder slipped capital femoral epiphysis (SCFE). Underdevelopment of femoral head mammillary processes may reduce joint stability and could be a risk factor in SCFE.
Collapse
|
14
|
Pierantoni M, Le Cann S, Sotiriou V, Ahmed S, Bodey AJ, Jerjen I, Nowlan NC, Isaksson H. Muscular loading affects the 3D structure of both the mineralized rudiment and growth plate at early stages of bone formation. Bone 2021; 145:115849. [PMID: 33454374 DOI: 10.1016/j.bone.2021.115849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Fetal immobilization affects skeletal development and can lead to severe malformations. Still, how mechanical load affects embryonic bone formation is not fully elucidated. This study combines mechanobiology, image analysis and developmental biology, to investigate the structural effects of muscular loading on embryonic long bones. We present a novel approach involving a semi-automatic workflow, to study the spatial and temporal evolutions of both hard and soft tissues in 3D without any contrast agent at micrometrical resolution. Using high-resolution phase-contrast-enhanced X-ray synchrotron microtomography, we compare the humeri of Splotch-delayed embryonic mice lacking skeletal muscles with healthy littermates. The effects of skeletal muscles on bone formation was studied from the first stages of mineral deposition (Theiler Stages 23 and 24) to just before birth (Theiler Stage 27). The results show that muscle activity affects both growth plate and mineralized regions, especially during early embryonic development. When skeletal muscles were absent, there was reduced mineralization, altered tuberosity size and location, and, at early embryonic stages, decreased chondrocyte density, size and elongation compared to littermate controls. The proposed workflow enhances our understanding of mechanobiology of early bone formation and could be implemented for the study of other complex biological tissues.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Sophie Le Cann
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Vivien Sotiriou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | - Iwan Jerjen
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
15
|
Javaheri B, Razi H, Gohin S, Wylie S, Chang YM, Salmon P, Lee PD, Pitsillides AA. Lasting organ-level bone mechanoadaptation is unrelated to local strain. SCIENCE ADVANCES 2020; 6:eaax8301. [PMID: 32181340 PMCID: PMC7060058 DOI: 10.1126/sciadv.aax8301] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/13/2019] [Indexed: 05/23/2023]
Abstract
Bones adapt to mechanical forces according to strict principles predicting straight shape. Most bones are, however, paradoxically curved. To solve this paradox, we used computed tomography-based, four-dimensional imaging methods and computational analysis to monitor acute and chronic whole-bone shape adaptation and remodeling in vivo. We first confirmed that some acute load-induced structural changes are reversible, adhere to the linear strain magnitude regulation of remodeling activities, and are restricted to bone regions in which marked antiresorptive actions are evident. We make the novel observation that loading exerts significant lasting modifications in tibial shape and mass across extensive bone regions, underpinned by (re)modeling independent of local strain magnitude, occurring at sites where the initial response to load is principally osteogenic. This is the first report to demonstrate that bone loading stimulates nonlinear remodeling responses to strain that culminate in greater curvature adjusted for load predictability without sacrificing strength.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Hajar Razi
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, 14424 Potsdam, Germany
- Cluster of Excellence, Humboldt University of Berlin, Berlin, Germany
| | - Stephanie Gohin
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Sebastian Wylie
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Yu-Mei Chang
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Phil Salmon
- Bruker microCT, Kartuizersweg 3B, 2550 Kontich, Belgium
| | - Peter D. Lee
- Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
16
|
Saw S, Aiken A, Fang H, McKee TD, Bregant S, Sanchez O, Chen Y, Weiss A, Dickson BC, Czarny B, Sinha A, Fosang A, Dive V, Waterhouse PD, Kislinger T, Khokha R. Metalloprotease inhibitor TIMP proteins control FGF-2 bioavailability and regulate skeletal growth. J Cell Biol 2019; 218:3134-3152. [PMID: 31371388 PMCID: PMC6719459 DOI: 10.1083/jcb.201906059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Saw et al. show via the combinatorial deletion of Timp family members in mice that metalloprotease regulation of FGF-2 is a crucial event in the chondrocyte maturation program, underlying the growth plate development and bone elongation responsible for attaining proper body stature. Regulated growth plate activity is essential for postnatal bone development and body stature, yet the systems regulating epiphyseal fusion are poorly understood. Here, we show that the tissue inhibitors of metalloprotease (TIMP) gene family is essential for normal bone growth after birth. Whole-body quadruple-knockout mice lacking all four TIMPs have growth plate closure in long bones, precipitating limb shortening, epiphyseal distortion, and widespread chondrodysplasia. We identify TIMP/FGF-2/IHH as a novel nexus underlying bone lengthening where TIMPs negatively regulate the release of FGF-2 from chondrocytes to allow IHH expression. Using a knock-in approach that combines MMP-resistant or ADAMTS-resistant aggrecans with TIMP deficiency, we uncouple growth plate activity in axial and appendicular bones. Thus, natural metalloprotease inhibitors are crucial regulators of chondrocyte maturation program, growth plate integrity, and skeletal proportionality. Furthermore, individual and combinatorial TIMP-deficient mice demonstrate the redundancy of metalloprotease inhibitor function in embryonic and postnatal development.
Collapse
Affiliation(s)
- Sanjay Saw
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Alison Aiken
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Trevor D McKee
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | - Otto Sanchez
- University of Ontario Institute of Technology, Oshawa, Canada
| | - Yan Chen
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Ashley Weiss
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | | | - Ankit Sinha
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Amanda Fosang
- University of Melbourne Department of Paediatrics and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Vincent Dive
- Institute of Biology and Technology, Saclay, France
| | - Paul D Waterhouse
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, Toronto, Canada
| |
Collapse
|
17
|
Postnatal development of the largest subterranean mammal (Bathyergus suillus): Morphology, osteogenesis, and modularity of the appendicular skeleton. Dev Dyn 2019; 248:1101-1128. [DOI: 10.1002/dvdy.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
|
18
|
The people behind the papers – Shai Eyal and Elazar Zelzer. Development 2019; 146:146/14/dev182733. [DOI: 10.1242/dev.182733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Most bones in the vertebrate skeleton are made in the same way – endochondrial ossification – yet they display a variety of shapes and sizes. The question of how these unique bone morphologies, including the superstructures that protrude from their surfaces, arise during development is still unclear, and the subject of a new paper in Development. We caught up with first author Shai Eyal and his supervisor Elazar Zelzer, Professor in the Department of Molecular Genetics at the Weizmann Institute of Science in Rehovot, Israel, to find out more about the story.
Collapse
|
19
|
Felsenthal N, Rubin S, Stern T, Krief S, Pal D, Pryce BA, Schweitzer R, Zelzer E. Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development 2018; 145:dev.165381. [PMID: 30504126 DOI: 10.1242/dev.165381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Tendon-bone attachment sites, called entheses, are essential for musculoskeletal function. They are formed embryonically by Sox9+ progenitors and continue to develop postnatally, utilizing Gli1 lineage cells. Despite their importance, we lack information on the transition from embryonic to mature enthesis and on the relation between Sox9+ progenitors and the Gli1 lineage. Here, by performing a series of lineage tracing experiments in mice, we identify the onset of Gli1 lineage contribution to different entheses. We show that Gli1 expression is regulated embryonically by SHH signaling, whereas postnatally it is maintained by IHH signaling. During bone elongation, some entheses migrate along the bone shaft, whereas others remain stationary. Interestingly, in stationary entheses Sox9 + cells differentiate into the Gli1 lineage, but in migrating entheses this lineage is replaced by Gli1 lineage. These Gli1+ progenitors are defined embryonically to occupy the different domains of the mature enthesis. Overall, these findings demonstrate a developmental strategy whereby one progenitor population establishes a simple embryonic tissue, whereas another population contributes to its maturation. Moreover, they suggest that different cell populations may be considered for cell-based therapy of enthesis injuries.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deepanwita Pal
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Roselló-Díez A, Madisen L, Bastide S, Zeng H, Joyner AL. Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth in developing mice. PLoS Biol 2018; 16:e2005086. [PMID: 29944650 PMCID: PMC6019387 DOI: 10.1371/journal.pbio.2005086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/24/2018] [Indexed: 01/12/2023] Open
Abstract
Catch-up growth after insults to growing organs is paramount to achieving robust body proportions. In fly larvae, injury to individual tissues is followed by local and systemic compensatory mechanisms that allow the damaged tissue to regain normal proportions with other tissues. In vertebrates, local catch-up growth has been described after transient reduction of bone growth, but the underlying cellular responses are controversial. We developed an approach to study catch-up growth in foetal mice in which mosaic expression of the cell cycle suppressor p21 is induced in the cartilage cells (chondrocytes) that drive long-bone elongation. By specifically targeting p21 expression to left hindlimb chondrocytes, the right limb serves as an internal control. Unexpectedly, left-right limb symmetry remained normal, revealing deployment of compensatory mechanisms. Above a certain threshold of insult, an orchestrated response was triggered involving local enhancement of bone growth and systemic growth reduction that ensured that body proportions were maintained. The local response entailed hyperproliferation of spared left limb chondrocytes that was associated with reduced chondrocyte density. The systemic effect involved impaired placental function and IGF signalling, revealing bone-placenta communication. Therefore, vertebrates, like invertebrates, can mount coordinated local and systemic responses to developmental insults that ensure that normal body proportions are maintained.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Sébastien Bastide
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
| |
Collapse
|
21
|
Brimacombe CS. The enigmatic relationship between epiphyseal fusion and bone development in primates. Evol Anthropol 2017; 26:325-335. [PMID: 29265660 DOI: 10.1002/evan.21559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 11/07/2022]
Abstract
Epiphyseal fusion in primates is a process that occurs in a regular sequence spanning a period of years and thus provides biological anthropologists with a useful marker of maturity that can be used to assess age and stage of development. Despite the many studies that have catalogued fusion timing and sequence pattern, comparatively little research has been devoted to understanding why these sequences exist in the first place. Answering this question is not necessarily intuitive; indeed, given that neither taxonomic affinities nor recent adaptations have been clearly defined, it is a challenge to explain this process in evolutionary terms. In all mammals, there is a tendency for the fusion of epiphyses at joints to occur close in sequence, and this has been proposed to relate to locomotor adaptations. Further consideration of the evidence suggests that linking locomotor behavior to sequence data alone is difficult to prove and may require a different type of evidence. Epiphyseal fusion should be considered in the context of other parameters that affect the developing skeleton, including how joint morphology relates to growth in length, as well as other possible morphological constraints. In recent years, developmental biology has been providing a better understanding of the molecular regulators of epiphyseal fusion. At some point in the near future, we may be able to link our understanding of the genetics of fusion timing to the possible selective mechanisms that are responsible for these sequences.
Collapse
Affiliation(s)
- Conrad Stephen Brimacombe
- Human Evolutionary Studies Program and Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
22
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Roselló-Díez A, Stephen D, Joyner AL. Altered paracrine signaling from the injured knee joint impairs postnatal long bone growth. eLife 2017; 6. [PMID: 28741471 PMCID: PMC5526667 DOI: 10.7554/elife.27210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022] Open
Abstract
Regulation of organ growth is a poorly understood process. In the long bones, the growth plates (GPs) drive elongation by generating a scaffold progressively replaced by bone. Although studies have focused on intrinsic GP regulation, classic and recent experiments suggest that local signals also modulate GP function. We devised a genetic mouse model to study extrinsic long bone growth modulation, in which injury is specifically induced in the left hindlimb, such that the right hindlimb serves as an internal control. Remarkably, when only mesenchyme cells surrounding postnatal GPs were killed, left bone growth was nevertheless reduced. GP signaling was impaired by altered paracrine signals from the knee joint, including activation of the injury response and, in neonates, dampened IGF1 production. Importantly, only the combined prevention of both responses rescued neonatal growth. Thus, we identified signals from the knee joint that modulate bone growth and could underlie establishment of body proportions. DOI:http://dx.doi.org/10.7554/eLife.27210.001 As bones grow, their size is carefully controlled and coordinated with the growth of the other organs in the body. The mechanisms that control organ size also help the body to recover from injury, and play a key role in controlling body size and proportions. Over the course of evolution, these mechanisms have likely changed to produce the distinct body sizes and proportions seen in humans and other animals. Despite their importance, it is not well understood how signals from both inside and outside an organ work together to regulate its size. In growth disorders this signaling goes wrong, which can lead to a person having unusual proportions such as a very short stature or having one leg shorter than the other. Currently, most growth disorders that affect leg proportions are treated with painful surgical procedures. Researchers would like to know how bone growth is affected by signals from the surrounding tissues because this could help them to develop new non-invasive treatments for these conditions. Long bones, for example those in the leg, grow from structures near their ends called growth plates. Roselló-Díez et al. have now engineered mice in which an injury shortly after birth caused cells in the knee in the rear left leg to die off. At the same time, the rear right leg of the mice developed as normal, allowing the growth of the two legs to be compared. Roselló-Díez et al. found that the left leg of these mice grew more slowly than the right leg, even though none of the cells in the growth plate of the left leg bone had been damaged. Further investigation revealed that this was because the injury caused an imbalance between the growth-promoting and growth-restricting signals that are produced by the fat pad and articular cartilage in the knee joint. Restoring the lost balance allowed the left leg bone to grow to a more normal length. In the future, boosting bone growth signals might provide a way to treat conditions like dwarfism or leg-length discrepancies. Understanding how different tissues influence body proportions could also help researchers to investigate how different animals evolved different body proportions. DOI:http://dx.doi.org/10.7554/eLife.27210.002
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Daniel Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, United States.,Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate Schoolof Medical Sciences, New York, United States
| |
Collapse
|
24
|
Montoya‐Sanhueza G, Chinsamy A. Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening. J Anat 2017; 230:203-233. [PMID: 27682432 PMCID: PMC5244287 DOI: 10.1111/joa.12547] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 02/01/2023] Open
Abstract
Patterns of bone development in mammals are best known from terrestrial and cursorial groups, but there is a considerable gap in our understanding of how specializations for life underground affect bone growth and development. Likewise, studies of bone microstructure in wild populations are still scarce, and they often include few individuals and tend to be focused on adults. For these reasons, the processes generating bone microstructural variation at intra- and interspecific levels are not fully understood. This study comprehensively examines the bone microstructure of an extant population of Cape dune molerats, Bathyergus suillus (Bathyergidae), the largest subterranean mammal endemic to the Western Cape of South Africa. The aim of this study is to investigate the postnatal bone growth of B. suillus using undecalcified histological sections (n = 197) of the femur, humerus, tibia-fibula, ulna and radius, including males and females belonging to different ontogenetic and reproductive stages (n = 42). Qualitative histological features demonstrate a wide histodiversity with thickening of the cortex mainly resulting from endosteal and periosteal bone depositions, whilst there is scarce endosteal resorption and remodeling throughout ontogeny. This imbalanced bone modeling allows the tissues deposited during ontogeny to remain relatively intact, thus preserving an excellent record of growth. The distribution of the different bone tissues observed in the cortex depends on ontogenetic status, anatomical features (e.g. muscle attachment structures) and location on the bone (e.g. anterior or lateral). The type of bone microstructure and modeling is discussed in relation to digging behavior, reproduction and physiology of this species. This study is the first histological assessment describing the process of cortical thickening in long bones of a fossorial mammal.
Collapse
Affiliation(s)
- Germán Montoya‐Sanhueza
- Department of Biological SciencesPalaeobiological Research GroupUniversity of Cape TownCape TownSouth Africa
| | - Anusuya Chinsamy
- Department of Biological SciencesPalaeobiological Research GroupUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
25
|
Curry Rogers K, Whitney M, DEmic M, Bagley B. Precocity in a tiny titanosaur from the Cretaceous of Madagascar. Science 2016; 352:450-3. [DOI: 10.1126/science.aaf1509] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/25/2016] [Indexed: 11/03/2022]
|
26
|
Sedwick C. Make No Bones about It: Long Bones Scale Isometrically. PLoS Biol 2015; 13:e1002211. [PMID: 26241695 PMCID: PMC4524612 DOI: 10.1371/journal.pbio.1002211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long bones are far from being simple cylinders, so how is the relative positioning of their various features maintained during growth? A new study shows that growth is isometric and that drift from the correct position is minimized. Read the Research Article.
Collapse
Affiliation(s)
- Caitlin Sedwick
- Freelance Science Writer, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|