1
|
Li X, Gu W, Li S, Fiorito F, Ding X, Zhu L. PGK1 enhances productive bovine herpesvirus 1 infection by stimulating β-catenin-dependent transcription. Vet Res 2025; 56:50. [PMID: 40055833 PMCID: PMC11887390 DOI: 10.1186/s13567-025-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/29/2024] [Indexed: 05/13/2025] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) productive infection stimulates β-catenin-dependent transcription to facilitate virus replication. Phosphoglycerate kinase 1 (PGK1), which catalyses the initial step of ATP production during glycolysis, also has a mitochondrial form that is implicated in tissue injury across various diseases. However, the relationship between BoHV-1 replication and the PGK1 signalling pathway is not yet fully understood. In this study, we discovered that PGK1 signalling significantly influences BoHV-1 replication, with the virus infection leading to a marked increase in the accumulation of PGK1 proteins in mitochondria. Overexpression of β-catenin reduces PGK1 steady-state protein levels while overexpressing PGK1 boosts β-catenin protein expression-a phenomenon that reverses upon virus infection. Importantly, consistent with PGK1's vital role in virus replication, PGK1 stimulates β-catenin-dependent transcriptional activity, partly by promoting the nuclear accumulation of transcriptionally active β-catenin and phospho-β-catenin (S552) in virus-infected cells. In summary, our findings suggest for the first time that PGK1 signalling may be involved in BoHV-1 replication and contribute to virus pathogenicity.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Wenyuan Gu
- Center for Animal Diseases Control and Prevention of Hebei Province, Shijiazhuang, 050035, China
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70118, USA
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137, Naples, Italy
| | - Xiuyan Ding
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Liqian Zhu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Wang C, Ma X. The role of acetylation and deacetylation in cancer metabolism. Clin Transl Med 2025; 15:e70145. [PMID: 39778006 PMCID: PMC11706801 DOI: 10.1002/ctm2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
As a hallmark of cancer, metabolic reprogramming adjusts macromolecular synthesis, energy metabolism and redox homeostasis processes to adapt to and promote the complex biological processes of abnormal growth and proliferation. The complexity of metabolic reprogramming lies in its precise regulation by multiple levels and factors, including the interplay of multiple signalling pathways, precise regulation of transcription factors and dynamic adjustments in metabolic enzyme activity. In this complex regulatory network, acetylation and deacetylation, which are important post-translational modifications, regulate key molecules and processes related to metabolic reprogramming by affecting protein function and stability. Dysregulation of acetylation and deacetylation may alter cancer cell metabolic patterns by affecting signalling pathways, transcription factors and metabolic enzyme activity related to metabolic reprogramming, increasing the susceptibility to rapid proliferation and survival. In this review, we focus on discussing how acetylation and deacetylation regulate cancer metabolism, thereby highlighting the central role of these post-translational modifications in metabolic reprogramming, and hoping to provide strong support for the development of novel cancer treatment strategies. KEY POINTS: Protein acetylation and deacetylation are key regulators of metabolic reprogramming in tumour cells. These modifications influence signalling pathways critical for tumour metabolism. They modulate the activity of transcription factors that drive gene expression changes. Metabolic enzymes are also affected, altering cellular metabolism to support tumour growth.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaoxin Ma
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
3
|
Gao S, Yang Z, Li D, Wang B, Zheng X, Li C, Fan G. Intervention of Tanshinone IIA on the PGK1-PDHK1 Pathway to Reprogram Macrophage Phenotype After Myocardial Infarction. Cardiovasc Drugs Ther 2024; 38:1359-1373. [PMID: 37991600 DOI: 10.1007/s10557-023-07520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Myocardial infarction remains a disease with high morbidity and death rate among cardiovascular diseases. Macrophages are abundant immune cells in the heart. Under different stimulatory factors, macrophages can differentiate into different phenotypes and play a dual pro-inflammatory and anti-inflammatory role. Therefore, a potential strategy for the treatment of myocardial infarction is to regulate the energy metabolism of macrophages and thereby regulate the polarization of macrophages. Tan IIA is an effective liposolubility component extracted from the root of Salvia miltiorrhiza and plays an important role in the treatment of cardiovascular diseases. On this basis, this study proposed whether Tan IIA could affect phenotype changes by regulating energy metabolism of macrophages, and thus exert its potential in the treatment of MI. METHODS Establishing a myocardial infarction model, Tan IIA was given for 3 days and 7 days for intervention. Cardiac function was detected by echocardiography, and cardiac pathological sections of each group were stained with HE and Masson to observe the inflammatory cell infiltration and fibrosis area after administration. The expression and secretion of inflammatory factors in heart tissue and serum of each group, as well as the proportion of macrophages at the myocardial infarction site, were detected using RT-PCR, ELISA, and immunofluorescence. The mitochondrial function of macrophages was evaluated using JC-1, calcium ion concentration detection, reactive oxygen species detection, and mitochondrial electron microscopic analysis. Mechanically, single-cell transcriptome data mining, cell transcriptome sequencing, and molecular docking technology were used to anchor the target of Tan IIA and enrich the pathways to explore the mechanism of Tan IIA regulating macrophage energy metabolism and phenotype. The target of Tan IIA was further determined by gene knockdown and overexpression assay. RESULTS The intervention of Tan IIA can improve the cardiac function, inflammatory cell infiltration and fibrosis after MI, reduce the expression of inflammatory factors in the heart, enhance the secretion of anti-inflammatory factors, increase the proportion of M2-type macrophages, reduce the proportion of M1-type macrophages, and promote tissue repair, suggesting that Tan IIA has pharmacological effects in the treatment of MI. In terms of mechanism, RNA-seq results suggest that the phenotype of macrophages is strongly correlated with energy metabolism, and Tan IIA can regulate the PGK1-PDHK1 signaling pathway, change the energy metabolism mode of macrophages, and then affect its phenotype. CONCLUSION Tan IIA regulates the energy metabolism of macrophages and changes its phenotype through the PGK1-PDHK1 signaling pathway, thus playing a role in improving MI.
Collapse
Affiliation(s)
- Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Bingkai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Xu Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Chong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Tianjin, 300193, Nan Kai District, China.
| |
Collapse
|
4
|
Alqudah A, Qnais E, Alqudah M, Gammoh O, Wedyan M, Abdalla SS. Isorhamnetin as a potential therapeutic agent for diabetes mellitus through PGK1/AKT activation. Arch Physiol Biochem 2024; 130:866-876. [PMID: 38445617 DOI: 10.1080/13813455.2024.2323947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
CONTEXT Type 2 Diabetes Mellitus (T2D) is a significant health concern worldwide, necessitating novel therapeutic approaches beyond conventional treatments. OBJECTIVE To assess isorhamnetin's potential in improving insulin sensitivity and mitigating T2D characteristics through oxidative and glycative stress modulation. MATERIALS AND METHODS T2D was induced in mice with a high-fat diet and streptozotocin injections. Isorhamnetin was administered at 10 mg/kg for 12 weeks. HepG2 cells were used to examine in vitro effects on stress markers and insulin sensitivity. Molecular effects on the PGK1 and AKT signalling pathway were also analyzed. RESULTS The administration of isorhamnetin significantly impacted both in vivo and in vitro models. In HepG2 cells, oxidative and glycative stresses were markedly reduced, indicating a direct effect of isorhamnetin on cellular stress pathways, which are implicated in the deterioration of insulin sensitivity. Specifically, treated cells showed a notable decrease in markers of oxidative stress, such as malondialdehyde, and advanced glycation end products, highlighting isorhamnetin's antioxidant and antiglycative properties. In vivo, isorhamnetin-treated mice exhibited substantially lower fasting glucose levels compared to untreated T2D mice, suggesting a strong hypoglycemic effect. Moreover, these mice showed improved insulin responsiveness, evidenced by enhanced glucose tolerance and insulin tolerance tests. The molecular investigation revealed that isorhamnetin activated PGK1, leading to the activation of the AKT signalling pathway, crucial for promoting glucose uptake and reducing insulin resistance. This molecular action underscores the potential mechanism through which isorhamnetin exerts its beneficial effects in T2D management. DISCUSSION The study underscores isorhamnetin's multifaceted role in T2D management, emphasizing its impact on oxidative and glycative stress reduction and molecular pathways critical for insulin sensitivity. CONCLUSION Isorhamnetin presents a promising avenue for T2D treatment, offering a novel approach to enhancing insulin sensitivity and managing glucose levels through the modulation of key molecular pathways. Further research is needed to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Shtaywy S Abdalla
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Meng X, Liu J, Kang J, Wang M, Guan Z, Tian D, Chen X. Lamivudine protects mice from gastric ulcer by activating PGK1 to suppress ferroptosis. Biochem Pharmacol 2024; 227:116440. [PMID: 39029631 DOI: 10.1016/j.bcp.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Gastric ulcer is a highly prevalent digestive tract disease across the world, which is recurrent and hard to cure, sometimes transforming into gastric cancer if left untreated, posing great threat to human health. To develop new medicines for gastric ulcer, we ran a series of screens with ethanol stress model in GES-1 cells, and we uncovered that lamivudine rescued cells from ethanol toxicity. Then, we confirmed this discovery using the well-established ethanol-induced gastric ulcer model in mice and our findings suggest that lamivudine can directly activate phosphoglycerate kinase 1 (PGK1, EC 2.7.2.3), which binds and stimulates superoxide dismutase 1 (SOD1, EC 1.15.1.1) to inhibit ferroptosis and ultimately improve gastric ulcer. Moreover, AAV-PGK1 exhibited comparable gastroprotective effects to lamivudine. The findings are expected to offer novel therapeutic strategies for gastric ulcer, encompassing both lamivudine and AAV-PGK1.
Collapse
Affiliation(s)
- Xinrui Meng
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jingjing Liu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jia Kang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Menghan Wang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Zhanghui Guan
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Dong Tian
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Xinping Chen
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China.
| |
Collapse
|
6
|
Gao X, Pan T, Gao Y, Zhu W, Liu L, Duan W, Han C, Feng B, Yan W, Song Q, Liu Y, Yue L. Acetylation of PGK1 at lysine 323 promotes glycolysis, cell proliferation, and metastasis in luminal A breast cancer cells. BMC Cancer 2024; 24:1054. [PMID: 39192221 PMCID: PMC11348675 DOI: 10.1186/s12885-024-12792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND In prior research employing iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) technology, we identified a range of proteins in breast cancer tissues exhibiting high levels of acetylation. Despite this advancement, the specific functions and implications of these acetylated proteins in the context of cancer biology have yet to be elucidated. This study aims to systematically investigate the functional roles of these acetylated proteins with the objective of identifying potential therapeutic targets within breast cancer pathophysiology. METHODS Acetylated targets were identified through bioinformatics, with their expression and acetylation subsequently confirmed. Proteomic analysis and validation studies identified potential acetyltransferases and deacetylases. We evaluated metabolic functions via assays for catalytic activity, glucose consumption, ATP levels, and lactate production. Cell proliferation and metastasis were assessed through viability, cycle analysis, clonogenic assays, PCNA uptake, wound healing, Transwell assays, and MMP/EMT marker detection. RESULTS Acetylated proteins in breast cancer were primarily involved in metabolism, significantly impacting glycolysis and the tricarboxylic acid cycle. Notably, PGK1 showed the highest acetylation at lysine 323 and exhibited increased expression and acetylation across breast cancer tissues, particularly in T47D and MCF-7 cells. Notably, 18 varieties acetyltransferases or deacetylases were identified in T47D cells, among which p300 and Sirtuin3 were validated for their interaction with PGK1. Acetylation at 323 K enhanced PGK1's metabolic role by boosting its activity, glucose uptake, ATP production, and lactate output. This modification also promoted cell proliferation, as evidenced by increased viability, S phase ratio, clonality, and PCNA levels. Furthermore, PGK1-323 K acetylation facilitated metastasis, improving wound healing, cell invasion, and upregulating MMP2, MMP9, N-cadherin, and Vimentin while downregulating E-cadherin. CONCLUSION PGK1-323 K acetylation was significantly elevated in T47D and MCF-7 luminal A breast cancer cells and this acetylation could be regulated by p300 and Sirtuin3. PGK1-323 K acetylation promoted cell glycolysis, proliferation, and metastasis, highlighting novel epigenetic targets for breast cancer therapy.
Collapse
Affiliation(s)
- Xiuli Gao
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ting Pan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Gao
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbin Zhu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Likun Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbo Duan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bo Feng
- Dean's Office, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenjing Yan
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qiuhang Song
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunlong Liu
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Liling Yue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
7
|
Guo Z, Zhang Y, Wang H, Liao L, Ma L, Zhao Y, Yang R, Li X, Niu J, Chu Q, Fu Y, Li B, Yang C. Hypoxia-induced downregulation of PGK1 crotonylation promotes tumorigenesis by coordinating glycolysis and the TCA cycle. Nat Commun 2024; 15:6915. [PMID: 39134530 PMCID: PMC11319824 DOI: 10.1038/s41467-024-51232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Protein post-translational modifications (PTMs) are crucial for cancer cells to adapt to hypoxia; however, the functional significance of lysine crotonylation (Kcr) in hypoxia remains unclear. Herein we report a quantitative proteomics analysis of global crotonylome under normoxia and hypoxia, and demonstrate 128 Kcr site alterations across 101 proteins in MDA-MB231 cells. Specifically, we observe a significant decrease in K131cr, K156cr and K220cr of phosphoglycerate kinase 1 (PGK1) upon hypoxia. Enoyl-CoA hydratase 1 (ECHS1) is upregulated and interacts with PGK1, leading to the downregulation of PGK1 Kcr under hypoxia. Abolishment of PGK1 Kcr promotes glycolysis and suppresses mitochondrial pyruvate metabolism by activating pyruvate dehydrogenase kinase 1 (PDHK1). A low PGK1 K131cr level is correlated with malignancy and poor prognosis of breast cancer. Our findings show that PGK1 Kcr is a signal in coordinating glycolysis and the tricarboxylic acid (TCA) cycle and may serve as a diagnostic indicator for breast cancer.
Collapse
Affiliation(s)
- Zihao Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Haoyue Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Liming Liao
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Lingdi Ma
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yiliang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ronghui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xuexue Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jing Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yanxia Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Binghui Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Chuanzhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Liu Y, Lu S, Yang J, Yang Y, Jiao L, Hu J, Li Y, Yang F, Pang Y, Zhao Y, Gao Y, Liu W, Shu P, Ge W, He Z, Peng X. Analysis of the aging-related biomarker in a nonhuman primate model using multilayer omics. BMC Genomics 2024; 25:639. [PMID: 38926642 PMCID: PMC11209966 DOI: 10.1186/s12864-024-10556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Aging is a prominent risk factor for diverse diseases; therefore, an in-depth understanding of its physiological mechanisms is required. Nonhuman primates, which share the closest genetic relationship with humans, serve as an ideal model for exploring the complex aging process. However, the potential of the nonhuman primate animal model in the screening of human aging markers is still not fully exploited. Multiomics analysis of nonhuman primate peripheral blood offers a promising approach to evaluate new therapies and biomarkers. This study explores aging-related biomarker through multilayer omics, including transcriptomics (mRNA, lncRNA, and circRNA) and proteomics (serum and serum-derived exosomes) in rhesus monkeys (Macaca mulatta). RESULTS Our findings reveal that, unlike mRNAs and circRNAs, highly expressed lncRNAs are abundant during the key aging period and are associated with cancer pathways. Comparative analysis highlighted exosomal proteins contain more types of proteins than serum proteins, indicating that serum-derived exosomes primarily regulate aging through metabolic pathways. Finally, eight candidate aging biomarkers were identified, which may serve as blood-based indicators for detecting age-related brain changes. CONCLUSIONS Our results provide a comprehensive understanding of nonhuman primate blood transcriptomes and proteomes, offering novel insights into the aging mechanisms for preventing or treating age-related diseases.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jingwen Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yunli Pang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanpan Gao
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Ge
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China.
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China.
| |
Collapse
|
10
|
Li X, Hu S, Cai Y, Liu X, Luo J, Wu T. Revving the engine: PKB/AKT as a key regulator of cellular glucose metabolism. Front Physiol 2024; 14:1320964. [PMID: 38264327 PMCID: PMC10804622 DOI: 10.3389/fphys.2023.1320964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Glucose metabolism is of critical importance for cell growth and proliferation, the disorders of which have been widely implicated in cancer progression. Glucose uptake is achieved differently by normal cells and cancer cells. Even in an aerobic environment, cancer cells tend to undergo metabolism through glycolysis rather than the oxidative phosphorylation pathway. Disordered metabolic syndrome is characterized by elevated levels of metabolites that can cause changes in the tumor microenvironment, thereby promoting tumor recurrence and metastasis. The activation of glycolysis-related proteins and transcription factors is involved in the regulation of cellular glucose metabolism. Changes in glucose metabolism activity are closely related to activation of protein kinase B (PKB/AKT). This review discusses recent findings on the regulation of glucose metabolism by AKT in tumors. Furthermore, the review summarizes the potential importance of AKT in the regulation of each process throughout glucose metabolism to provide a theoretical basis for AKT as a target for cancers.
Collapse
Affiliation(s)
- Xia Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuying Hu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoting Cai
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Luo Y, Yang J, Zhang L, Tai Z, Huang H, Xu Z, Zhang H. Phosphoglycerate kinase (PGK) 1 succinylation modulates epileptic seizures and the blood-brain barrier. Exp Anim 2023; 72:475-489. [PMID: 37258131 PMCID: PMC10658094 DOI: 10.1538/expanim.23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Epilepsy is the most common chronic disorder in the nervous system, mainly characterized by recurrent, periodic, unpredictable seizures. Post-translational modifications (PTMs) are important protein functional regulators that regulate various physiological and pathological processes. It is significant for cell activity, stability, protein folding, and localization. Phosphoglycerate kinase (PGK) 1 has traditionally been studied as an important adenosine triphosphate (ATP)-generating enzyme of the glycolytic pathway. PGK1 catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. In addition to cell metabolism regulation, PGK1 is involved in multiple biological activities, including angiogenesis, autophagy, and DNA repair. However, the exact role of PGK1 succinylation in epilepsy has not been thoroughly investigated. The expression of PGK1 succinylation was analyzed by Immunoprecipitation. Western blots were used to assess the expression of PGK1, angiostatin, and vascular endothelial growth factor (VEGF) in a rat model of lithium-pilocarpine-induced acute epilepsy. Behavioral experiments were performed in a rat model of lithium-pilocarpine-induced acute epilepsy. ELISA method was used to measure the level of S100β in serum brain biomarkers' integrity of the blood-brain barrier. The expression of the succinylation of PGK1 was decreased in a rat model of lithium-pilocarpine-induced acute epilepsy compared with the normal rats in the hippocampus. Interestingly, the lysine 15 (K15), and the arginine (R) variants of lentivirus increased the susceptibility in a rat model of lithium-pilocarpine-induced acute epilepsy, and the K15 the glutamate (E) variants, had the opposite effect. In addition, the succinylation of PGK1 at K15 affected the expression of PGK1 succinylation but not the expression of PGK1total protein. Furthermore, the study found that the succinylation of PGK1 at K15 may affect the level of angiostatin and VEGF in the hippocampus, which also affects the level of S100β in serum. In conclusion, the mutation of the K15 site of PGK1 may alter the expression of the succinylation of PGK1 and then affect the integrity of the blood-brain barrier through the angiostatin / VEGF pathway altering the activity of epilepsy, which may be one of the new mechanisms of treatment strategies.
Collapse
Affiliation(s)
- Yuemei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
13
|
Liu Y, Li Y, Wu S, Li G, Chu H. Synergistic effect of conformational changes in phosphoglycerate kinase 1 product release. J Biomol Struct Dyn 2023; 41:10059-10069. [PMID: 36455998 DOI: 10.1080/07391102.2022.2152870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
In the glycolysis pathway, phosphoglycerate kinase 1 (PGK1) transfers one phosphoryl-group from 1,3-diphosphoglycerate (1,3BPG) to ADP to product 3-phosphoglycerate (3PG) and ATP. The catalytic process is accompanied with the conversion between the open conformation and the closed conformation of PGK1. However, the dynamic collaboration mechanism between the PGK1 conformation transition and the products releasing process remains poorly understood. Here using molecular dynamics simulations combined with molecular mechanics generalized born surface area (MM/GBSA) analysis, we demonstrated that PGK1 in the closed conformation first releases the product ATP to reach a semi-open conformation, and releases the product 3PG to achieve the full open conformation, which could accept new substrates ADP and 1,3BPG for the next cycle. It is noteworthy that the phosphorylation of PGK1 at T243 causes the loop region (residues L248-E260) flip outside the protein, and the phosphorylation of Y324 leads PGK1 become looser. Both modifications cause the exposure of the ADP/ATP binding site, which was beneficial for the substrates/products binding/releasing of PGK1. In addition, the other post translational modifications (PTMs) were also able to regulate the ligands binding/releasing with different effects. Our results revealed the dynamic cooperative molecular mechanism of PGK1 conformational transition with products releasing, as well as the influence of PTMs, which would contribute to the understanding of PGK1 substrates/products conversion process and the development of small molecule drugs targeting PGK1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Sijin Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
14
|
Chen S, Li D, Zeng Z, Zhang W, Xie H, Tang J, Liao S, Cai W, Liu F, Tang D, Dai Y. Analysis of proteome and post-translational modifications of 2-hydroxyisobutyrylation reveals the glycolysis pathway in oral adenoid cystic carcinoma. World J Surg Oncol 2023; 21:301. [PMID: 37741973 PMCID: PMC10517466 DOI: 10.1186/s12957-023-03155-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/19/2023] [Indexed: 09/25/2023] Open
Abstract
PURPOSE Oral adenoid cystic carcinoma (OACC) has high rates of both local-regional recurrence and distant metastasis. The objective of this study is to investigate the impact of Khib on OACC and its potential as a targeted therapeutic intervention. EXPERIMENTAL DESIGN: We investigated the DEPs (differentially expressed proteins) and DHMPs between OACC-T and OACC-N using LC-MS/MS-based quantitative proteomics and using several bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, subcellular localization prediction, MEA (motif enrichment analysis), and PPI (protein-protein interaction networks) to illustrate how Khib modification interfere with OACC evolution. RESULTS Compared OACC-tumor samples (OACC-T) with the adjacent normal samples (OACC-N), there were 3243 of the DEPs and 2011 Khib sites were identified on 764 proteins (DHMPs). DEPs and DHMPs were strongly associated to glycolysis pathway. GAPDH of K254, ENO of K228, and PGK1 of K323 were modified by Khib in OACC-T. Khib may increase the catalytic efficiency to promote glycolysis pathway and favor OACC progression. CONCLUSIONS AND CLINICAL RELEVANCE Khib may play a significant role in the mechanism of OACC progression by influencing the enzyme activity of the glycolysis pathway. These findings may provide new therapeutic options of OACC.
Collapse
Affiliation(s)
- Sining Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Dandan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong, 518118, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Hongliang Xie
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Jianming Tang
- Department of Oral and Maxillofacial Surgery, Stomatological Medical Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Shengyou Liao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China
| | - Fanna Liu
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, Guangdong, China.
- Comprehensive health Industry Research Center, Taizhou Research Institute, Southern University of Science and Technology, Taizhou, 318000, China.
- Department of Organ Transplantation, No.924 Hospital of PLA Joint Logistic Support Force, Medical quality specialty of the Joint Logistic Support Force, Guilin, 541002, China.
- The first affiliated hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| |
Collapse
|
15
|
Zhang K, Sun L, Kang Y. Regulation of phosphoglycerate kinase 1 and its critical role in cancer. Cell Commun Signal 2023; 21:240. [PMID: 37723547 PMCID: PMC10506215 DOI: 10.1186/s12964-023-01256-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Cells that undergo normal differentiation mainly rely on mitochondrial oxidative phosphorylation to provide energy, but most tumour cells rely on aerobic glycolysis. This phenomenon is called the "Warburg effect". Phosphoglycerate kinase 1 (PGK1) is a key enzyme in aerobic glycolysis. PGK1 is involved in glucose metabolism as well as a variety of biological activities, including angiogenesis, EMT, mediated autophagy initiation, mitochondrial metabolism, DNA replication and repair, and other processes related to tumorigenesis and development. Recently, an increasing number of studies have proven that PGK1 plays an important role in cancer. In this manuscript, we discussed the effects of the structure, function, molecular mechanisms underlying PGK1 regulation on the initiation and progression of cancer. Additionally, PGK1 is associated with chemotherapy resistance and prognosis in tumour patients. This review presents an overview of the different roles played by PGK1 during tumorigenesis, which will help in the design of experimental studies involving PGK1 and enhance the potential for the use of PGK1 as a therapeutic target in cancer. Video Abstract.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 North Nanjing Street, Heping Area, Shenyang, 110002, People's Republic of China
| | - Lixue Sun
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 North Nanjing Street, Heping Area, Shenyang, 110002, People's Republic of China
| | - Yuanyuan Kang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 North Nanjing Street, Heping Area, Shenyang, 110002, People's Republic of China.
| |
Collapse
|
16
|
Schild Y, Bosserhoff J, Droege F, Littwitz-Salomon E, Fandrey J, Wrobeln A. Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia. Life (Basel) 2023; 13:1708. [PMID: 37629565 PMCID: PMC10456096 DOI: 10.3390/life13081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The interplay between hypoxia-inducible factors (HIFs) and transforming growth factor beta (TGF-β) is critical for both inflammation and angiogenesis. In hereditary hemorrhagic telangiectasia (HHT), we have previously observed that impairment of the TGF-β pathway is associated with downregulation of HIF-1α. HIF-1α accumulation is mandatory in situations of altered energy demand, such as during infection or hypoxia, by adjusting cell metabolism. Leukocytes undergo a HIF-1α-dependent switch from aerobic mitochondrial respiration to anaerobic glycolysis (glycolytic switch) after stimulation and during differentiation. We postulate that the decreased HIF-1α accumulation in HHT leads to a clinically observed immunodeficiency in these patients. Examination of HIF-1α and its target genes in freshly isolated peripheral blood mononuclear cells (PBMCs) from HHT patients revealed decreased gene expression and protein levels of HIF-1α and HIF-1α-regulated glycolytic enzymes. Treatment of these cells with the HIF-prolyl hydroxylase inhibitor, Roxadustat, rescued their ability to accumulate HIF-1α protein. Functional analysis of metabolic flux using a Seahorse FX extracellular flux analyzer showed that the extracellular acidification rate (indicator of glycolytic turnover) after Roxadustat treatment was comparable to non-HHT controls, while oxygen consumption (indicator of mitochondrial respiration) was slightly reduced. HIF stabilization may be a potential therapeutic target in HHT patients suffering from infections.
Collapse
Affiliation(s)
- Yves Schild
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| | - Jonah Bosserhoff
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| | - Freya Droege
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| | - Anna Wrobeln
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| |
Collapse
|
17
|
Zheng Y, Zhu L, Qin ZY, Guo Y, Wang S, Xue M, Shen KY, Hu BY, Wang XF, Wang CQ, Qin LX, Dong QZ. Modulation of cellular metabolism by protein crotonylation regulates pancreatic cancer progression. Cell Rep 2023; 42:112666. [PMID: 37347667 DOI: 10.1016/j.celrep.2023.112666] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/10/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Protein lysine crotonylation has been recently identified as a vital posttranslational modification in cellular processes, particularly through the modification of histones. We show that lysine crotonylation is an important modification of the cytoplastic and mitochondria proteins. Enzymes in glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid metabolism, glutamine metabolism, glutathione metabolism, the urea cycle, one-carbon metabolism, and mitochondrial fusion/fission dynamics are found to be extensively crotonylated in pancreatic cancer cells. This modulation is mainly controlled by a pair of crotonylation writers and erasers including CBP/p300, HDAC1, and HDAC3. The dynamic crotonylation of metabolic enzymes is involved in metabolism regulation, which is linked with tumor progression. Interestingly, the activation of MTHFD1 by decrotonylation at Lys354 and Lys553 promotes the development of pancreatic cancer by increasing resistance to ferroptosis. Our study suggests that crotonylation represents a metabolic regulatory mechanism in pancreatic cancer progression.
Collapse
Affiliation(s)
- Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhao-Yu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Yu Guo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Min Xue
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Ke-Yu Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Xu-Feng Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China; Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Sun Y, Zhang Y, Zhao T, Luan Y, Wang Y, Yang C, Shen B, Huang X, Li G, Zhao S, Zhao G, Wang Q. Acetylation coordinates the crosstalk between carbon metabolism and ammonium assimilation in Salmonella enterica. EMBO J 2023; 42:e112333. [PMID: 37183585 PMCID: PMC10308350 DOI: 10.15252/embj.2022112333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/21/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Enteric bacteria use up to 15% of their cellular energy for ammonium assimilation via glutamine synthetase (GS)/glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) in response to varying ammonium availability. However, the sensory mechanisms for effective and appropriate coordination between carbon metabolism and ammonium assimilation have not been fully elucidated. Here, we report that in Salmonella enterica, carbon metabolism coordinates the activities of GS/GDH via functionally reversible protein lysine acetylation. Glucose promotes Pat acetyltransferase-mediated acetylation and activation of adenylylated GS. Simultaneously, glucose induces GDH acetylation to inactivate the enzyme by impeding its catalytic centre, which is reversed upon GDH deacetylation by deacetylase CobB. Molecular dynamics (MD) simulations indicate that adenylylation is required for acetylation-dependent activation of GS. We show that acetylation and deacetylation occur within minutes of "glucose shock" to promptly adapt to ammonium/carbon variation and finely balance glutamine/glutamate synthesis. Finally, in a mouse infection model, reduced S. enterica growth caused by the expression of adenylylation-mimetic GS is rescued by acetylation-mimicking mutations. Thus, glucose-driven acetylation integrates signals from ammonium assimilation and carbon metabolism to fine-tune bacterial growth control.
Collapse
Affiliation(s)
- Yunwei Sun
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Tingting Zhao
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Luan
- Department of Pharmacology, Vascular Biology and Therapeutic ProgramYale University School of MedicineNew HavenCTUSA
| | - Ying Wang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Yang
- CAS‐Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Bo Shen
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xi Huang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Shimin Zhao
- State Key Lab of Genetic Engineering & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Collaborative Innovation Center for Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Guo‐ping Zhao
- CAS‐Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- State Key Lab of Genetic Engineering & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai‐MOST Key Laboratory of Disease and Health GenomicsChinese National Human Genome Center at ShanghaiShanghaiChina
- Department of Microbiology and Li KaShing Institute of Health SciencesThe Chinese University of Hong Kong, Prince of Wales HospitalShatin, New Territories, Hong Kong SARChina
| | - Qijun Wang
- Department of Gastroenterology of Ruijin Hospital, Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Pharmacology, Vascular Biology and Therapeutic ProgramYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
19
|
Long J, Li W, Chen M, Ding Y, Chen X, Tong C, Li N, Liu X, He J, Peng C, Geng Y, Liu T, Mu X, Li F, Wang Y, Gao R. Uterine deficiency of Dnmt3b impairs decidualization and causes consequent embryo implantation defects. Cell Biol Toxicol 2023; 39:1077-1098. [PMID: 34773530 DOI: 10.1007/s10565-021-09664-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022]
Abstract
Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.
Collapse
Affiliation(s)
- Jing Long
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Weike Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Mengyue Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Na Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Taihang Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Kang XL, Li YX, Dong DJ, Wang JX, Zhao XF. 20-Hydroxyecdysone counteracts insulin to promote programmed cell death by modifying phosphoglycerate kinase 1. BMC Biol 2023; 21:119. [PMID: 37226192 DOI: 10.1186/s12915-023-01621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.
Collapse
Affiliation(s)
- Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
21
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
22
|
Yang H, Zhao X, Liu J, Jin M, Liu X, Yan J, Yao X, Mao X, Li N, Liang B, Xie W, Zhang K, Zhao J, Liu L, Huang G. TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity. Oncogene 2023; 42:35-48. [PMID: 36352097 DOI: 10.1038/s41388-022-02528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The aim of this study was to elucidate the mechanism underlying the involvement of IDH1 acetylation in the development of CRC drug resistance under induction of TNFα. We found TNFα disrupted the interaction between SIRT1 and IDH1 and increased the level of acetylation at K115 of IDH1. Hyperacetylation of K115 was accompanied by protein ubiquitination, which increased its susceptibility to degradation compared to IDH1 K115R. TNFα-mediated hyperacetylation of K115 sensitized the CRC cells to 5FU and reduced the NADPH/NADP ratio to that of intracellular ROS. Furthermore, TNFα and 5FU inhibited CRC tumor growth in vivo, while the K115R-expressing tumor tissues developed 5FU resistance. In human CRC tissues, K115 acetylation was positively correlated with TNFα infiltration, and K115 hyperacetylation was associated with favorable prognosis compared to chemotherapy-induced deacetylation. Therefore, TNFα-induced hyperacetylation at the K115 site of IDH1 promotes antitumor redox homeostasis in CRC cells, and can be used as a marker to predict the response of CRC patients to chemotherapy.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiyu Liu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
| | - Xufeng Yao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinyi Mao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Nan Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wei Xie
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China. .,Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
23
|
Yang Y, Cui H, Li D, Gao Y, Chen L, Zhou C, Feng M, Tu W, Li S, Chen X, Hao B, Li L, Cao Y. Prognosis and Immunological Characteristics of PGK1 in Lung Adenocarcinoma: A Systematic Analysis. Cancers (Basel) 2022; 14:5228. [PMID: 36358653 PMCID: PMC9653683 DOI: 10.3390/cancers14215228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 01/30/2024] Open
Abstract
Background: Aerobic glycolysis plays a key role in tumor metabolic reprogramming to reshape the immune microenvironment. The phosphoglycerate kinase 1 (PGK1) gene codes a glycolytic enzyme that converts 1,3-diphosphoglycerate to 3-phosphoglycerate. However, in lung adenocarcinoma (LUAD), the role of PGK1 in altering the tumor microenvironment (TME) has not yet been determined. Methods: Raw data, including bulk DNA and mRNA-seq data, methylation modification data, single-cell RNA-seq data, proteomics data, clinical case characteristics survival, immunotherapy data, and so on, were obtained from multiple independent public data sets. These data were reanalyzed to uncover the prognosis and immunological characteristics of PGK1 in LUAD. Results: We found that PGK1 mRNA and protein were considerably over-expressed in LUAD compared to normal tissue and that high PGK1 expression is associated with poorer prognostic outcomes in LUAD. The enrichment analysis of PGK1 co-expressed genes in lung adenocarcinoma revealed that PGK1 may be involved in hypoxia, metabolism, DNA synthesis, cell cycle, PI3K/AKT, and various immune and inflammatory signaling pathways. Furthermore, PGK1 is also linked to the recruitment of numerous immune cells, including aDC (dendritic cells), macrophages, and neutrophils. More importantly, PGK1 was highly expressed in immunosuppressive cells, including M2 macrophages, Tregs, and exhausted T cells, among others. Finally, higher PGK1 expression indicated significant correlations to immune checkpoints, TMB (tumor mutation burden), and high response to immunotherapy. Conclusions: The presented findings imply that PGK1, as a glycolysis core gene, may be important for the modification of the immune microenvironment by interacting with the tumor metabolism. The results of this study provide clues for a potential immunometabolic combination therapy strategy in LUAD, for which more experimental and clinical translational research is needed.
Collapse
Affiliation(s)
- Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenjing Tu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Zhang X, Luo F, Luo S, Li L, Ren X, Lin J, Liang Y, Ma C, Ding L, Zhang D, Ye T, Lin Y, Jin B, Gao S, Ye Q. Transcriptional Repression of Aerobic Glycolysis by OVOL2 in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200705. [PMID: 35896951 PMCID: PMC9507357 DOI: 10.1002/advs.202200705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Aerobic glycolysis (Warburg effect), a hallmark of cancer, plays a critical role in cancer cell growth and metastasis; however, direct inhibition of the Warburg effect remains largely unknown. Herein, the transcription factor OVO-like zinc finger 2 (OVOL2) is demonstrated to directly repress the expression of several glycolytic genes, blocking the Warburg effect and breast tumor growth and metastasis in vitro and in vivo. OVOL2 inhibits glycolysis by recruiting the nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3). The tumor suppressor p53, a key regulator of cancer metabolism, activates OVOL2 by binding to the oncoprotein mouse double minute 2 homolog (MDM2) and inhibiting MDM2-mediated ubiquitination and degradation of OVOL2. OVOL2 expression is negatively correlated with glycolytic gene expression and can be a good predictor of prognosis in patients with breast cancer. Therefore, targeting the p53/MDM2/OVOL2 axis provides a potential avenue for cancer treatment, especially breast cancer.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Fei Luo
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Medical School of Guizhou UniversityGuiyang550025China
| | - Shaliu Luo
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Medical School of Guizhou UniversityGuiyang550025China
| | - Ling Li
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Xinxin Ren
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
- Shanxi Medical UniversityTaiyuan030000China
| | - Jing Lin
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
| | - Yingchun Liang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Chao Ma
- Institute of Cancer Stem CellDalian Medical UniversityDalian116000China
| | - Lihua Ding
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Deyu Zhang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Tianxing Ye
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Yanni Lin
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Shanxi Medical UniversityTaiyuan030000China
| | - Bilian Jin
- Institute of Cancer Stem CellDalian Medical UniversityDalian116000China
| | - Shan Gao
- Zhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthSoutheast UniversityNanjing210096China
| | - Qinong Ye
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| |
Collapse
|
25
|
Navarro-Ruiz MDC, López-Alcalá J, Díaz-Ruiz A, Moral SDD, Tercero-Alcázar C, Nieto-Calonge A, López-Miranda J, Tinahones FJ, Malagón MM, Guzmán-Ruiz R. Understanding the adipose tissue acetylome in obesity and insulin resistance. Transl Res 2022; 246:15-32. [PMID: 35259527 DOI: 10.1016/j.trsl.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
Abstract
Obesity is a widely prevalent pathology with a high exponential growth worldwide. Altered lipid accumulation by adipose tissue is one of the main causes of obesity and exploring lipid homeostasis in this tissue may represent a source for the identification of possible therapeutic targets. The study of the proteome and the post-translational modifications of proteins, specifically acetylation due to its involvement in energy metabolism, may be of great interest to understand the molecular mechanisms involved in adipose tissue dysfunction in obesity. The objective of this study was to characterize the subcutaneous and omental adipose tissue acetylome in conditions of obesity and insulin resistance and to describe the importance of acetylation of key molecules in adipose tissue to use them as therapeutic targets. The results describe for the first time the acetylome of subcutaneous and omental adipose tissue under physiological and physiopathological conditions such as obesity and insulin resistance. New evidence showed different acetylation patterns between two main depots and highlight the molecular complexity of adipose tissue. Results showed changes in FABP4 acetylation in subcutaneous fat in relation to insulin resistance, thus unveiling a potential marker of depot-specific dysfunctional expansion in obesity-associated metabolic disease. Furthermore, it is shown that the acetylation of FABP4 affects its function, modulating the capacity of differentiation in adipocytes. In conclusion, this study demonstrates a profound, depot-specific alteration of adipose tissue acetylome, wherein the acetylation of FABP4 may play a key role in adipocyte differentiation and lipid accumulation.
Collapse
Affiliation(s)
- Maria Del Carmen Navarro-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Alberto Díaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Sandra Díaz Del Moral
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain
| | - Andrea Nieto-Calonge
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain; Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain; Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), University of Málaga, Málaga, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
26
|
Zhang T, Wang Y, Yu H, Zhang T, Guo L, Xu J, Wei X, Wang N, Wu Y, Wang X, Huang L. PGK1 represses autophagy-mediated cell death to promote the proliferation of liver cancer cells by phosphorylating PRAS40. Cell Death Dis 2022; 13:68. [PMID: 35058442 PMCID: PMC8776853 DOI: 10.1038/s41419-022-04499-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
Autophagy predominantly promotes cell survival by recycling cell components, while it kills cells in specific contexts. Cell death related to autophagy plays important roles in multiple physiological and pathological situations including tumorigenesis, and the mechanism needs to be defined further. PRAS40 was found to be crucial in various cancers, and phosphorylation was reported to be involved in autophagy inhibition in monocytes. However, the detailed role of PRAS40 in autophagy and the relationship to tumorigenesis remain largely unknown. Herein we screened the binding partners of PRAS40, and found that PRAS40 interacted with Phosphoglycerate kinase 1 (PGK1). PGK1 phosphorylated PRAS40 at Threonine 246, which could be inhibited by blocking the interaction. Both in vitro and in vivo results revealed that PRAS40 mediated PGK1-induced cell growth. By tracing the mechanism, we found that PGK1 suppressed autophagy-mediated cell death, in which PRAS40 was crucial. Thus PGK1 phosphorylates PRAS40 to repress autophagy-mediated cell death under normoxia, promoting cellular proliferation. The binding of PGK1 to PRAS40 was transferred to Beclin1 under hypoxia, resulting in the increase of Beclin1 phosphorylation. These results suggest a novel model of tumorigenesis, in which PGK1 switches between repressing autophagy-mediated cell death via PRAS40 and inducing autophagy through Beclin1 according to the environmental oxygen level. Our study is anticipated to be able to offer novel insights in understanding PGK1/PRAS40 signaling hyperactivated cancers.
Collapse
|
27
|
Abstract
Phosphoglycerate kinase 1 (PGK1) is the first enzyme in glycolysis to generate a molecule of ATP in the conversion of 1,3-bisphosphoglycerate (1,3-BPG) to 3-phosphoglycerate (3-PG). In addition to the role of glycolysis, PGK-1 acts as a polymerase alpha cofactor protein, with effects on the tricarboxylic acid cycle, DNA replication and repair. Posttranslational modifications such as methylation, phosphorylation, and acetylation have been seen to activate PGK1 in cancer. High levels of intracellular PGK1 are associated with tumorigenesis and progression, and chemoradiotherapy resistance. However, high levels of extracellular PGK1 suppress angiogenesis and subsequently counteract cancer malignancy. Here we have summarized the current knowledge on the mechanisms and effects of PGK1 in various tumor types and evaluated its potential prognostic and therapeutic value in cancer. The data summarized here aims at providing molecular information and new ideas of employing natural products to combat cancer associated with PGK1.
Collapse
|
28
|
Marín-Hernández Á, Rodríguez-Zavala JS, Jasso-Chávez R, Saavedra E, Moreno-Sánchez R. Protein acetylation effects on enzyme activity and metabolic pathway fluxes. J Cell Biochem 2021; 123:701-718. [PMID: 34931340 DOI: 10.1002/jcb.30197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.
Collapse
Affiliation(s)
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | |
Collapse
|
29
|
Wan J, Hu M, Jiang Z, Liu D, Pan S, Zhou S, Liu Z. Lysine Acetylation in the Proteome of Renal Tubular Epithelial Cells in Diabetic Nephropathy. Front Genet 2021; 12:767135. [PMID: 34899851 PMCID: PMC8657754 DOI: 10.3389/fgene.2021.767135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy is considered one of the most common microvascular complications of diabetes and the pathophysiology involves multiple factors. Progressive diabetic nephropathy is believed to be related to the structure and function of the tubular epithelial cells in the kidney. However, the role of lysine acetylation in lesions of the renal tubular epithelial cells arising from hyperglycemia is poorly understood. Consequently, in this study, we cultured mouse renal tubular epithelial cells in vitro under high glucose conditions and analyzed the acetylation levels of proteins by liquid chromatography-high-resolution mass spectrometry. We identified 48 upregulated proteins and downregulated 86 proteins. In addition, we identified 113 sites with higher acetylation levels and 374 sites with lower acetylation levels. Subcellular localization analysis showed that the majority of the acetylated proteins were located in the mitochondria (43.17%), nucleus (28.57%) and cytoplasm (16.19%). Enrichment analysis indicated that these acetylated proteins are primarily associated with oxidative phosphorylation, the citrate cycle (TCA cycle), metabolic pathways and carbon metabolism. In addition, we used the MCODE plug-in and the cytoHubba plug-in in Cytoscape software to analyze the PPI network and displayed the first four most compact MOCDEs and the top 10 hub genes from the differentially expressed proteins between global and acetylated proteomes. Finally, we extracted 37 conserved motifs from 4915 acetylated peptides. Collectively, this comprehensive analysis of the proteome reveals novel insights into the role of lysine acetylation in tubular epithelial cells and may make a valuable contribution towards the identification of the pathological mechanisms of diabetic nephropathy.
Collapse
Affiliation(s)
- Jiayi Wan
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Mingyang Hu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Ziming Jiang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
30
|
Liu S, Song L, Yao H, Zhang L. HPV16 E6/E7 stabilize PGK1 protein by reducing its poly-ubiquitination in cervical cancer. Cell Biol Int 2021; 46:370-380. [PMID: 34882921 DOI: 10.1002/cbin.11744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to explore the expression profile, prognostic value, regulatory effect, and the underlying mechanism of dysregulation of phosphoglycerate kinase 1 (PGK1) in high-risk human papillomavirus (HPV)-positive cervical epithelial squamous cell carcinoma (CESC). Bioinformatic analysis was performed using the CESC subset of The Cancer Genome Atlas (TCGA)-Cervical Cancer (CESC) and normal cervix in The Genotype-Tissue Expression (GTEx) project. HPV-16 positive CaSki and SiHa cells were used as in vitro cell models. Results showed that compared to the normal cervix, CESC tissues had significantly higher expression of PGK1. CESC patients with the higher 50% expression of PGK1 had substantially shorter disease-specific survival (DSS), and progression-free survival (PFS) compared to the cases with the lower 50% expression of PGK1. PGK1 knockdown impaired, but PGK1 overexpression enhanced the proliferation, colony formation, aerobic glycolytic activities (lactate production, intracellular ATP levels, glucose uptake, and extracellular acidification rate), migration, and invasion of CaSki and SiHa cells. HPV-16 E6/E7 knockdown in CaSki and SiHa cells had limited influence on PGK1 transcription but significantly decreased the half-life of PGK1 protein. E6/E7 knockdown mediated PGK1 downregulation could be blocked by adding MG-132. PGK1 poly-ubiquitination was significantly enhanced after E6/E7 knockdown. In conclusion, this study showed that PGK1 expression might serve as a prognostic biomarker in cervical cancer. Its upregulation contributes to enhanced aerobic glycolysis, migration, and invasion of CESC cells. HPV16 E6/E7 stabilizes PGK1 protein by reducing its poly-ubiquitination.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Lili Song
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Hairong Yao
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Zhang
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
31
|
Neumann-Staubitz P, Lammers M, Neumann H. Genetic Code Expansion Tools to Study Lysine Acylation. Adv Biol (Weinh) 2021; 5:e2100926. [PMID: 34713630 DOI: 10.1002/adbi.202100926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Lysine acylation is a ubiquitous protein modification that controls various aspects of protein function, such as the activity, localization, and stability of enzymes. Mass spectrometric identification of lysine acylations has witnessed tremendous improvements in sensitivity over the last decade, facilitating the discovery of thousands of lysine acylation sites in proteins involved in all essential cellular functions across organisms of all domains of life. However, the vast majority of currently known acylation sites are of unknown function. Semi-synthetic methods for installing lysine derivatives are ideally suited for in vitro experiments, while genetic code expansion (GCE) allows the installation and study of such lysine modifications, especially their dynamic properties, in vivo. An overview of the current state of the art is provided, and its potential is illustrated with case studies from recent literature. These include the application of engineered enzymes and GCE to install lysine modifications or photoactivatable crosslinker amino acids. Their use in the context of central metabolism, bacterial and viral pathogenicity, the cytoskeleton and chromatin dynamics, is investigated.
Collapse
Affiliation(s)
- Petra Neumann-Staubitz
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| | - Michael Lammers
- Institute for Biochemistry, Department Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Heinz Neumann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| |
Collapse
|
32
|
Jin Y, Wang Z, He D, Zhu Y, Chen X, Cao K. Identification of novel subtypes based on ssGSEA in immune-related prognostic signature for tongue squamous cell carcinoma. Cancer Med 2021; 10:8693-8707. [PMID: 34668665 PMCID: PMC8633230 DOI: 10.1002/cam4.4341] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) is characterized by aggressive invasion and poor prognosis. Currently, immune checkpoint inhibitors may prolong overall survival compared with conventional treatments. However, PD1/PDL1 remain inapplicable in predicting the prognosis of TSCC; thus, it is urgent to explore the genetic characteristics of TSCC. Materials and methods We utilized single‐sample gene set enrichment analysis (ssGSEA) to classify TSCC patients from the TCGA database into clusters with different immune cell infiltrations. ESTIMATE (immune‐related scores) and CIBERSORT (immune cell distribution) analyses were used to evaluate the immune landscape among clusters. GO, KEGG, and GSEA analyses were performed to analyze the different underlying molecular mechanisms in the clusters. Based on the immune characteristics, we applied the LASSO Cox regression to select hub genes and construct a prognostic risk model. Finally, we established an interactive network among these hub genes by using Cytoscape, and a pan‐cancer analysis to further verify and decipher the innate function of these genes. Results Using ssGSEA, we constructed three functional clusters with different overall survival and immune‐cell infiltration. ESTIMATE and CIBERSORT analyses revealed the different distributions of immune cells (T cells, B cells, and macrophages) with diverse immune‐related scores (ESTIMATE, immune, stromal, and tumor purity scores). Moreover, pathways including those of the interferon‐gamma response, hypoxia, and glycolysis of the different subtypes were investigated to elucidate their involvement in mediating the heterogeneous immune characteristics. Subsequently, after LASSO Cox regression, a signature of 15 immune‐related genes was established that is more prognostically effective than the TNM stage. Furthermore, three hub genes—PGK1, GPI, and RPE—were selected using Cytoscape evaluation and verified by immunohistochemistry. PGK1, the foremost regulator, was a comprehensively profiled pan‐cancer, and a PGK1‐based interactive network was established. Conclusion Our results suggest that immune‐related genes and clusters in TSCC have the potential to guide individualized treatments.
Collapse
Affiliation(s)
- Yi Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China.,Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
33
|
Vinaixa M, Canelles S, González-Murillo Á, Ferreira V, Grajales D, Guerra-Cantera S, Campillo-Calatayud A, Ramírez-Orellana M, Yanes Ó, Frago LM, Valverde ÁM, Barrios V. Increased Hypothalamic Anti-Inflammatory Mediators in Non-Diabetic Insulin Receptor Substrate 2-Deficient Mice. Cells 2021; 10:cells10082085. [PMID: 34440853 PMCID: PMC8391514 DOI: 10.3390/cells10082085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Insulin receptor substrate (IRS) 2 is a key mediator of insulin signaling and IRS-2 knockout (IRS2−/−) mice are a preclinical model to study the development of diabetes, as they develop peripheral insulin resistance and beta-cell failure. The differential inflammatory profile and insulin signaling in the hypothalamus of non-diabetic (ND) and diabetic (D) IRS2−/− mice might be implicated in the onset of diabetes. Because the lipid profile is related to changes in inflammation and insulin sensitivity, we analyzed whether ND IRS2−/− mice presented a different hypothalamic fatty acid metabolism and lipid pattern than D IRS2−/− mice and the relationship with inflammation and markers of insulin sensitivity. ND IRS2−/− mice showed elevated hypothalamic anti-inflammatory cytokines, while D IRS2−/− mice displayed a proinflammatory profile. The increased activity of enzymes related to the pentose-phosphate route and lipid anabolism and elevated polyunsaturated fatty acid levels were found in the hypothalamus of ND IRS2−/− mice. Conversely, D IRS2−/− mice have no changes in fatty acid composition, but hypothalamic energy balance and markers related to anti-inflammatory and insulin-sensitizing properties were reduced. The data suggest that the concurrence of an anti-inflammatory profile, increased insulin sensitivity and polyunsaturated fatty acids content in the hypothalamus may slow down or delay the onset of diabetes.
Collapse
Affiliation(s)
- María Vinaixa
- Metabolomics Platform, IISPV, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, E-43002 Tarragona, Spain; (M.V.); (Ó.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (Á.G.-M.); (M.R.-O.)
| | - Vítor Ferreira
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
| | - Diana Grajales
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
| | - Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ana Campillo-Calatayud
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
| | - Manuel Ramírez-Orellana
- Unidad de Terapias Avanzadas, Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (Á.G.-M.); (M.R.-O.)
| | - Óscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, E-43002 Tarragona, Spain; (M.V.); (Ó.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ángela M. Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
- Correspondence: (Á.M.V.); (V.B.)
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Correspondence: (Á.M.V.); (V.B.)
| |
Collapse
|
34
|
Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, Dou Y, Reva B, Kane MH, Avanessian SC, Vasaikar SV, Krek A, Lei JT, Jaehnig EJ, Omelchenko T, Geffen Y, Bergstrom EJ, Stathias V, Christianson KE, Heiman DI, Cieslik MP, Cao S, Song X, Ji J, Liu W, Li K, Wen B, Li Y, Gümüş ZH, Selvan ME, Soundararajan R, Visal TH, Raso MG, Parra ER, Babur Ö, Vats P, Anand S, Schraink T, Cornwell M, Rodrigues FM, Zhu H, Mo CK, Zhang Y, da Veiga Leprevost F, Huang C, Chinnaiyan AM, Wyczalkowski MA, Omenn GS, Newton CJ, Schurer S, Ruggles KV, Fenyö D, Jewell SD, Thiagarajan M, Mesri M, Rodriguez H, Mani SA, Udeshi ND, Getz G, Suh J, Li QK, Hostetter G, Paik PK, Dhanasekaran SM, Govindan R, Ding L, Robles AI, Clauser KR, Nesvizhskii AI, Wang P, Carr SA, Zhang B, Mani DR, Gillette MA. A proteogenomic portrait of lung squamous cell carcinoma. Cell 2021; 184:4348-4371.e40. [PMID: 34358469 PMCID: PMC8475722 DOI: 10.1016/j.cell.2021.07.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.
Collapse
Affiliation(s)
- Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pierre M Jean Beltran
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Yongchao Dou
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vasileios Stathias
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karen E Christianson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Song Cao
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yize Li
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Özgün Babur
- Computer Science Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Tobias Schraink
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Houxiang Zhu
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chia-Kuei Mo
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chen Huang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stephan Schurer
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - James Suh
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | | - Paul K Paik
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ramaswamy Govindan
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Li Ding
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Schmitt HM, Fehrman RL, Maes ME, Yang H, Guo LW, Schlamp CL, Pelzel HR, Nickells RW. Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34398198 PMCID: PMC8375002 DOI: 10.1167/iovs.62.10.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology. Methods Induced expression of an HDAC3-mCherry fusion protein in mouse RGCs was accomplished by transduction with AAV2/2-Pgk-HDAC3-mCherry. Increased susceptibility to optic nerve damage in HDAC3-mCherry expressing RGCs was evaluated in transduced mice that received acute optic nerve crush surgery. Expression of HDAC3-FLAG or HDAC3-mCherry was induced by nucleofection or transfection of plasmids into differentiated or undifferentiated 661W tissue culture cells. Immunostaining for cleaved caspase 3, localization of a GFP-BAX fusion protein, and quantitative RT-PCR was used to evaluate HDAC3-induced damage. Results Induced expression of exogenous HDAC3 in RGCs by viral-mediated gene transfer resulted in modest levels of cell death but significantly increased the sensitivity of these neurons to axonal damage. Undifferentiated 661W retinal precursor cells were resilient to induced HDAC3 expression, but after differentiation, HDAC3 induced GFP-BAX recruitment to the mitochondria and BAX/BAK dependent activation of caspase 3. This was accompanied by an increase in accumulation of transcripts for the JNK2/3 kinases and the p53-regulated BH3-only gene Bbc3/Puma. Cell cycle arrest of undifferentiated 661W cells did not increase their sensitivity to HDAC3 expression. Conclusions Collectively, these results indicate that HDAC3-induced toxicity to neurons is mediated by the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Heather M. Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Rachel L. Fehrman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
| | - Margaret E. Maes
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Huan Yang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Lian-Wang Guo
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Cassandra L. Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Heather R. Pelzel
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
36
|
Gou R, Hu Y, Liu O, Dong H, Gao L, Wang S, Zheng M, Li X, Lin B. PGK1 Is a Key Target for Anti-Glycolytic Therapy of Ovarian Cancer: Based on the Comprehensive Analysis of Glycolysis-Related Genes. Front Oncol 2021; 11:682461. [PMID: 34277429 PMCID: PMC8281930 DOI: 10.3389/fonc.2021.682461] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Reprogramming of energy metabolism is a key hallmark of cancer, which provides a new research perspective for exploring the development of cancer. However, the most critical target of anti-glycolytic therapy for ovarian cancer remains unclear. Therefore, in the present study, Oncomine, GEPIA, and HPA databases, combined with clinical specimens of different histological types of ovarian cancer were used to comprehensively evaluate the expression levels of glycolysis-related metabolite transporters and enzymes in ovarian cancer. We selected phosphoglycerate kinase 1 (PGK1), which showed the greatest prognostic value in the Kaplan-Meier Plotter database, for subsequent validation. Immunochemistry assays confirmed that PGK1 was highly expressed in ovarian cancer. The PGK1 expression level was an independent risk factor for the survival and prognosis of patients with ovarian cancer. Functional analysis showed that the PGK1 expression level was positively correlated with the infiltration of neutrophils. Cell experiments confirmed that inhibiting PGK1 expression in ovarian cancer cells could reduce the epithelial-mesenchymal transition (EMT) process, resulting in loss of cell migration and invasion ability. The small molecule NG52 dose-dependently inhibited the proliferation of ovarian cancer cells. In addition, NG52 reduced the EMT process and reversed the Warburg effect by inhibiting PGK1 activity. Therefore, PGK1 is an attractive molecular target for anti-glycolytic therapy of ovarian cancer.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Lingling Gao
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Shuang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
37
|
Metabolic protein phosphoglycerate kinase 1 confers lung cancer migration by directly binding HIV Tat specific factor 1. Cell Death Discov 2021; 7:135. [PMID: 34091600 PMCID: PMC8179927 DOI: 10.1038/s41420-021-00520-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is involved in glycolytic and various metabolic events. Dysfunction of PGK may induce metabolic reprogramming and the Warburg effect. In this study, we demonstrated that PGK1, but not PGK2, may play a key role in tumorigenesis and is associated with metastasis. We observed an inverse correlation between PGK1 and the survival rate in several clinical cohorts through bioinformatics statistical and immunohistochemical staining analyses. Surprisingly, we found that PGK1 was significantly increased in adenocarcinoma compared with other subtypes. Thus, we established a PGK1-based proteomics dataset by a pull-down assay. We further investigated HIV-1 Tat Specific Factor 1 (HTATSF1), a potential binding partner, through protein–protein interactions. Then, we confirmed that PGK1 indeed bound to HTATSF1 by two-way immunoprecipitation experiments. In addition, we generated several mutant clones of PGK1 through site-directed mutagenesis, including mutagenesis of the N-terminal region, the enzyme catalytic domain, and the C-terminal region. We observed that even though the phosphoglycerate kinase activity had been inhibited, the migration ability induced by PGK1 was maintained. Moreover, our immunofluorescence staining also indicated the translocation of PGK1 from the cytoplasm to the nucleus and its colocalization with HTATSF1. From the results presented in this study, we propose a novel model in which the PGK1 binds to HTATSF1 and exerts functional control of cancer metastasis. In addition, we also showed a nonenzymatic function of PGK1.
Collapse
|
38
|
Kong S, Ding L, Fan C, Li Y, Wang C, Wang K, Xu W, Shi X, Wu Q, Wang F. Global analysis of lysine acetylome reveals the potential role of CCL18 in non-small cell lung cancer. Proteomics 2021; 21:e2000144. [PMID: 33570763 DOI: 10.1002/pmic.202000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
C-C motif chemokine 18 (CCL18) belongs to the chemokine CC family and is predominantly secreted by M2-tumor-associated macrophages. It has been reported to be associated with various diseases and malignancies. Previous studies showed that CCL18 promotes metastasis by activating downstream kinases. However, it remains unknown whether CCL18 regulates post-translational modifications, other than phosphorylation, during tumorigenesis. Here, we demonstrate that CCL18 is up-regulated in non-small cell lung cancer (NSCLC) and is involved in regulating the lysine acetylome in A549 cells. Using the combination of SILAC labeling and high-efficiency acetylation enrichment methods, we identified 1372 lysine acetylation (Kac) sites on 796 proteins in CCL18-treated A549 cells. Among the identified Kac sites, 147 from 126 proteins were down-regulated and seven from five proteins were up-regulated with fold changes more than two and the p-value less than 0.05. Bioinformatics analysis further showed that the proteins with down-regulated acetylation play critical roles in glycolysis, oxidative phosphorylation, tricarboxylic acid cycle, and pentose phosphate pathway in A549 cells. These results suggest that CCL18 may be involved in the development of NSCLC by regulating acetylation of the proteins in many fundamental cellular processes, especially the metabolic reprogramming of tumor cells.
Collapse
Affiliation(s)
- Shuai Kong
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lu Ding
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Chenkun Fan
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yun Li
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, 23001, China
| | - Chi Wang
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, 23001, China
| | - Ke Wang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Weilong Xu
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xuanming Shi
- Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Quan Wu
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, 23001, China
| | - Fengsong Wang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
39
|
Wen S, Li J, Yang J, Li B, Li N, Zhan X. Quantitative Acetylomics Revealed Acetylation-Mediated Molecular Pathway Network Changes in Human Nonfunctional Pituitary Neuroendocrine Tumors. Front Endocrinol (Lausanne) 2021; 12:753606. [PMID: 34712204 PMCID: PMC8546192 DOI: 10.3389/fendo.2021.753606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acetylation at lysine residue in a protein mediates multiple cellular biological processes, including tumorigenesis. This study aimed to investigate the acetylated protein profile alterations and acetylation-mediated molecular pathway changes in human nonfunctional pituitary neuroendocrine tumors (NF-PitNETs). The anti-acetyl antibody-based label-free quantitative proteomics was used to analyze the acetylomes between NF-PitNETs (n = 4) and control pituitaries (n = 4). A total of 296 acetylated proteins with 517 acetylation sites was identified, and the majority of which were significantly down-acetylated in NF-PitNETs (p<0.05 or only be quantified in NF-PitNETs/controls). These acetylated proteins widely functioned in cellular biological processes and signaling pathways, including metabolism, translation, cell adhesion, and oxidative stress. The randomly selected acetylated phosphoglycerate kinase 1 (PGK1), which is involved in glycolysis and amino acid biosynthesis, was further confirmed with immunoprecipitation and western blot in NF-PitNETs and control pituitaries. Among these acetylated proteins, 15 lysine residues within 14 proteins were down-acetylated and simultaneously up-ubiquitinated in NF-PitNETs to demonstrate a direct competition relationship between acetylation and ubiquitination. Moreover, the potential effect of protein acetylation alterations on NF-PitNETs invasiveness was investigated. Overlapping analysis between acetylomics data in NF-PitNETs and transcriptomics data in invasive NF-PitNETs identified 26 overlapped molecules. These overlapped molecules were mainly involved in metabolism-associated pathways, which means that acetylation-mediated metabolic reprogramming might be the molecular mechanism to affect NF-PitNET invasiveness. This study provided the first acetylomic profiling and acetylation-mediated molecular pathways in human NF-PitNETs, and offered new clues to elucidate the biological functions of protein acetylation in NF-PitNETs and discover novel biomarkers for early diagnosis and targeted therapy of NF-PitNETs.
Collapse
Affiliation(s)
- Siqi Wen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiajia Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
- *Correspondence: Xianquan Zhan,
| |
Collapse
|
40
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
41
|
Yu S, Hu C, Cai L, Du X, Lin F, Yu Q, Liu L, Zhang C, Liu X, Li W, Zhan Y. Seven-Gene Signature Based on Glycolysis Is Closely Related to the Prognosis and Tumor Immune Infiltration of Patients With Gastric Cancer. Front Oncol 2020; 10:1778. [PMID: 33072557 PMCID: PMC7531434 DOI: 10.3389/fonc.2020.01778] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Gastric cancer (GC) is one of the most common malignancies worldwide, exhibiting a high morbidity, and mortality. As the various treatment methods for gastric cancer are limited by disadvantages, many efforts to improve the efficacy of these treatments are being taken. Metabolic recombination is an important characteristic of cancer and has gradually caused a recent upsurge in research. However, systematic analysis of the interaction between glycolysis and GC patient prognosis and its potential associations with immune infiltration is lacking but urgently needed. Methods: We obtained the gene expression data and clinical materials of GC derived from The Cancer Genome Atlas (TCGA) dataset. Univariate and multivariate Cox proportional regression analyses were performed to select the optimal prognosis-related genes for subsequent modeling. We then validated our data in the GEO database and further verified the gene expression using the Oncomine database and PCR experiments. Besides, Gene set variation analysis (GSVA) analysis was employed to further explore the differences in activation status of biological pathways between the high and low risk groups. Furthermore, a nomogram was adopted to predict the individualized survival rate of GC patients. Finally, a violin plot and a TIMMER analysis were performed to analyse the characteristics of immune infiltration in the microenvironment. Results: A seven-gene signature, including STC1, CLDN9, EFNA3, ZBTB7A, NT5E, NUP50, and CXCR4, was established. Based on this seven-gene signature, the patients in the training set and testing sets could be divided into high-risk and low-risk groups. In addition, a nomogram based on risk and age showed good calibration and moderate discrimination. The results proved that the seven-gene signature had a strong capacity to predict the GC patient prognosis. Collectively, the violin plot and TIMMER analysis demonstrated that an immunosuppressive tumor microenvironment caused by hyperglycolysis led to poor prognosis. Conclusion: Taken together, these results established a genetic signature for gastric cancer based on glycolysis, which has reference significance for the in-depth study of the metabolic mechanism of gastric cancer and the exploration of new clinical treatment strategies.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuan Hu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Lin
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiongjie Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng Zhang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhan
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Hołda MK, Stachowicz A, Suski M, Wojtysiak D, Sowińska N, Arent Z, Palka N, Podolec P, Kopeć G. Myocardial proteomic profile in pulmonary arterial hypertension. Sci Rep 2020; 10:14351. [PMID: 32873862 PMCID: PMC7462861 DOI: 10.1038/s41598-020-71264-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, fatal, and incurable disorder. Although advances in the understanding of the PAH pathobiology have been seen in recent years, molecular processes underlying heart remodelling over the course of PAH are still insufficiently understood. Therefore, the aim of this study was to investigate myocardial proteomic profile of rats at different stages of monocrotaline-induced PAH. Samples of left and right ventricle (LV and RV) free wall collected from 32 Wistar rats were subjected to proteomic analysis using an isobaric tag for relative quantitation method. Hemodynamic parameters indicated development of mild elevation of pulmonary artery pressure in the early PAH group (27.00 ± 4.93 mmHg) and severe elevation in the end-stage PAH group (50.50 ± 11.56 mmHg). In early PAH LV myocardium proteins that may be linked to an increase in inflammatory response, apoptosis, glycolytic process and decrease in myocardial structural proteins were differentially expressed compared to controls. During end-stage PAH an increase in proteins associated with apoptosis, fibrosis and cardiomyocyte Ca2+ currents as well as decrease in myocardial structural proteins were observed in LV. In RV during early PAH, especially proteins associated with myocardial structural components and fatty acid beta-oxidation pathway were upregulated. During end-stage PAH significant changes in RV proteins abundance related to the increased myocardial structural components, intensified fibrosis and glycolytic processes as well as decreased proteins related to cardiomyocyte Ca2+ currents were observed. At both PAH stages changes in RV proteins linked to apoptosis inhibition were observed. In conclusion, we identified changes of the levels of several proteins and thus of the metabolic pathways linked to the early and late remodelling of the left and right ventricle over the course of monocrotaline-induced PAH to delineate potential therapeutic targets for the treatment of this severe disease.
Collapse
Affiliation(s)
- Mateusz K Hołda
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Kopernika 12, 31-034, Kraków, Poland.
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland.
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK.
| | - Aneta Stachowicz
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Cracow, Kraków, Poland
| | - Natalia Sowińska
- Center of Experimental and Innovative Medicine, University Center of Veterinary Medicine JU-AU, University of Agriculture in Cracow, Kraków, Poland
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University Center of Veterinary Medicine JU-AU, University of Agriculture in Cracow, Kraków, Poland
| | - Natalia Palka
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kopeć
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
43
|
Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 2020; 78:427-445. [PMID: 32683534 DOI: 10.1007/s00018-020-03599-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.
Collapse
|
44
|
Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I, Consiglio A, Raya A, Polgreen PM, Narayanan NS, Yuan Y, Chen Z, Su W, Han Y, Zhao C, Gao L, Ji X, Welsh MJ, Liu L. Enhancing glycolysis attenuates Parkinson's disease progression in models and clinical databases. J Clin Invest 2020; 129:4539-4549. [PMID: 31524631 DOI: 10.1172/jci129987] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that lacks therapies to prevent progressive neurodegeneration. Impaired energy metabolism and reduced ATP levels are common features of PD. Previous studies revealed that terazosin (TZ) enhances the activity of phosphoglycerate kinase 1 (PGK1), thereby stimulating glycolysis and increasing cellular ATP levels. Therefore, we asked whether enhancement of PGK1 activity would change the course of PD. In toxin-induced and genetic PD models in mice, rats, flies, and induced pluripotent stem cells, TZ increased brain ATP levels and slowed or prevented neuron loss. The drug increased dopamine levels and partially restored motor function. Because TZ is prescribed clinically, we also interrogated 2 distinct human databases. We found slower disease progression, decreased PD-related complications, and a reduced frequency of PD diagnoses in individuals taking TZ and related drugs. These findings suggest that enhancing PGK1 activity and increasing glycolysis may slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Rong Cai
- Institute of Hypoxia Medicine, Xuanwu Hospital and Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, and.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | | | - Jordan L Schultz
- Departments of Pharmaceutical Care and Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yuhong Li
- Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Irene Fernandez-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat and Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat and Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB) and Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yanpeng Yuan
- Institute of Hypoxia Medicine, Xuanwu Hospital and Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, and
| | - Zhiguo Chen
- Institute of Hypoxia Medicine, Xuanwu Hospital and Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, and
| | - Wenting Su
- Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yanping Han
- Institute of Hypoxia Medicine, Xuanwu Hospital and Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, and
| | - Chunyue Zhao
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lifang Gao
- Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xunming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital and Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, and.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Michael J Welsh
- Howard Hughes Medical Institute, Departments of Internal Medicine, Neurology, and Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lei Liu
- Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| |
Collapse
|
45
|
Fu Q, Yu Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci 2020; 256:117863. [PMID: 32479953 DOI: 10.1016/j.lfs.2020.117863] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Phosphoglycerate kinase 1 (PGK1) is the first critical enzyme to produce ATP in the glycolytic pathway. PGK1 is not only a metabolic enzyme but also a protein kinase, which mediates the tumor growth, migration and invasion through phosphorylation some important substrates. Moreover, PGK1 is associated with poor treatment and prognosis of cancers. This manuscript reviews the structure, functions, post-translational modifications (PTMs) of PGK1 and its relationship with tumors, which demonstrates that PGK1 has indispensable value in the tumor progression. The current review highlights the important role of PGK1 in anticancer treatments.
Collapse
Affiliation(s)
- Qi Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.; College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China..
| |
Collapse
|
46
|
Zheng Y, Wu C, Yang J, Zhao Y, Jia H, Xue M, Xu D, Yang F, Fu D, Wang C, Hu B, Zhang Z, Li T, Yan S, Wang X, Nelson PJ, Bruns C, Qin L, Dong Q. Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduct Target Ther 2020; 5:53. [PMID: 32398667 PMCID: PMC7217878 DOI: 10.1038/s41392-020-0146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Enolase 2 (ENO2) is a key glycolytic enzyme in the metabolic process of glycolysis, but its potential function in pancreatic ductal adenocarcinoma (PDAC) is unclear. In this study, we observed a significant overexpression of ENO2 in PDAC tissues, and its expression was correlated with metastasis and poor prognosis in PDAC patients. K394 was identified as a major acetylation site in ENO2 that regulates its enzymatic activity, cell metabolism and PDAC progression. Knockdown of ENO2 suppressed tumor growth and liver metastasis in PDAC. Re-expression of wild-type (WT) ENO2, but not the K394 acetylation mimetic mutant, could reverse the decreased tumor malignancy. We further characterized histone deacetylase 3 (HDAC3) and P300/CBP-associated factor (PCAF) as the potential deacetylase and acetyltransferase for ENO2, respectively. HDAC3-mediated deacetylation was shown to lead to ENO2 activation and enhancement of glycolysis. Importantly, insulin-like growth factor-1 (IGF-1) was found to decrease K394 acetylation and stimulate ENO2 activity in a dose- and time-dependent manner. The PI3K/AKT/mTOR pathway facilitated the phosphorylation of HDAC3 on S424, which promoted K394 deacetylation and activation of ENO2. Linsitinib, an oral small-molecule inhibitor of IGF-1R, could inhibit IGF-1-induced ENO2 deacetylation by HDAC3 and the PI3K/AKT/mTOR pathway. Furthermore, linsitinib showed a different effect on the growth and metastasis of PDAC depending on the overexpression of WT versus K394-mutant ENO2. Our results reveal a novel mechanism by which acetylation negatively regulates ENO2 activity in the metastasis of PDAC by modulating glycolysis. Blockade of IGF-1-induced ENO2 deacetylation represents a promising strategy to prevent the development of PDAC.
Collapse
Affiliation(s)
- Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Chao Wu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, 50937, Germany
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Min Xue
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Da Xu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaoqun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Beiyuan Hu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Ze Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Tianen Li
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Shican Yan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Xuan Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Peter J Nelson
- Medical Clinic and Policlinic IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, 50937, Germany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
47
|
Li W, Xu M, Li Y, Huang Z, Zhou J, Zhao Q, Le K, Dong F, Wan C, Yi P. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J Transl Med 2020; 18:92. [PMID: 32070368 PMCID: PMC7029444 DOI: 10.1186/s12967-020-02267-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Metabolic reprogramming, immune evasion and tumor-promoting inflammation are three hallmarks of cancer that provide new perspectives for understanding the biology of cancer. We aimed to figure out the relationship of tumor glycolysis and immune/inflammation function in the context of breast cancer, which is significant for deeper understanding of the biology, treatment and prognosis of breast cancer. Methods Using mRNA transcriptome data, tumor-infiltrating lymphocytes (TILs) maps based on digitized H&E-stained images and clinical information of breast cancer from The Cancer Genome Atlas projects (TCGA), we explored the expression and prognostic implications of glycolysis-related genes, as well as the enrichment scores and dual role of different immune/inflammation cells in the tumor microenvironment. The relationship between glycolysis activity and immune/inflammation function was studied by using the differential genes expression analysis, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analyses (GSEA) and correlation analysis. Results Most glycolysis-related genes had higher expression in breast cancer compared to normal tissue. Higher phosphoglycerate kinase 1 (PGK1) expression was associated with poor prognosis. High glycolysis group had upregulated immune/inflammation-related genes expression, upregulated immune/inflammation pathways especially IL-17 signaling pathway, higher enrichment of multiple immune/inflammation cells such as Th2 cells and macrophages. However, high glycolysis group was associated with lower infiltration of tumor-killing immune cells such as NKT cells and higher immune checkpoints expression such as PD-L1, CTLA4, FOXP3 and IDO1. Conclusions In conclusion, the enhanced glycolysis activity of breast cancer was associated with pro-tumor immunity. The interaction between tumor glycolysis and immune/inflammation function may be mediated through IL-17 signaling pathway.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwei Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiuyang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kehao Le
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pengfei Yi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
48
|
Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, Zheng Z, Duan X, Yi W. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun 2020; 11:36. [PMID: 31911580 PMCID: PMC6946671 DOI: 10.1038/s41467-019-13601-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Many cancer cells display enhanced glycolysis and suppressed mitochondrial metabolism. This phenomenon, known as the Warburg effect, is critical for tumor development. However, how cancer cells coordinate glucose metabolism through glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle is largely unknown. We demonstrate here that phosphoglycerate kinase 1 (PGK1), the first ATP-producing enzyme in glycolysis, is reversibly and dynamically modified with O-linked N-acetylglucosamine (O-GlcNAc) at threonine 255 (T255). O-GlcNAcylation activates PGK1 activity to enhance lactate production, and simultaneously induces PGK1 translocation into mitochondria. Inside mitochondria, PGK1 acts as a kinase to inhibit pyruvate dehydrogenase (PDH) complex to reduce oxidative phosphorylation. Blocking T255 O-GlcNAcylation of PGK1 decreases colon cancer cell proliferation, suppresses glycolysis, enhances the TCA cycle, and inhibits tumor growth in xenograft models. Furthermore, PGK1 O-GlcNAcylation levels are elevated in human colon cancers. This study highlights O-GlcNAcylation as an important signal for coordinating glycolysis and the TCA cycle to promote tumorigenesis.
Collapse
Affiliation(s)
- Hao Nie
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China
| | - Jiayi Fan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoliu Shi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Yaxian Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Zhiguo Zheng
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences; The First Affiliated Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
49
|
He Y, Luo Y, Zhang D, Wang X, Zhang P, Li H, Ejaz S, Liang S. PGK1-mediated cancer progression and drug resistance. Am J Cancer Res 2019; 9:2280-2302. [PMID: 31815035 PMCID: PMC6895440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023] Open
Abstract
Phosphoglycerate kinase 1 (PGK1) is an essential enzyme in the aerobic glycolysis pathway. PGK1 catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate to ADP and produces 3-phosphoglycerate and ATP. In addition to cell metabolism regulation, PGK1 is involved in multiple biological activities, including angiogenesis, autophagy and DNA repair. Because of its multi-faceted functions, PGK1's involvement in cancer development is complicated. High intracellular expression of PGK1 leads to tumor cell proliferation. However, high extracellular expression of PGK1 suppresses cancer malignancy through a suppression of angiogenesis. PGK1 is also associated with chemoradiotherapy resistance and poor prognosis of cancer patients. In this manuscript, we summarize the influence of PGK1 and its post-translational modifications on cancer initiation and progression. PGK1-mediated drug resistance and potential small molecule inhibitors targeting PGK1 are discussed for their future clinical applications.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for BiotherapyChengdu 610041, P. R. China
| | - Yang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for BiotherapyChengdu 610041, P. R. China
| | - Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for BiotherapyChengdu 610041, P. R. China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for BiotherapyChengdu 610041, P. R. China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan UniversityChengdu 610041, P. R. China
| | - Haocheng Li
- Department of Mathematics and Statistics, University of CalgaryCalgary, AB T2N 1N4, Canada
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, The Islamia University of BahawalpurBahawalpur, Pakistan
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for BiotherapyChengdu 610041, P. R. China
| |
Collapse
|
50
|
Shao F, Yang X, Wang W, Wang J, Guo W, Feng X, Shi S, Xue Q, Gao S, Gao Y, Lu Z, He J. Associations of PGK1 promoter hypomethylation and PGK1-mediated PDHK1 phosphorylation with cancer stage and prognosis: a TCGA pan-cancer analysis. Cancer Commun (Lond) 2019; 39:54. [PMID: 31578148 PMCID: PMC6775656 DOI: 10.1186/s40880-019-0401-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background Cancer cells reprogram metabolism for proliferation. Phosphoglycerate kinase 1 (PGK1), as a glycolytic enzyme and newly identified protein kinase, coordinates glycolysis and mitochondrial metabolism. However, the clinical significance of PGK1 expression and function in cancer progression is unclear. Here, we investigated the relationship between the progression and prognosis of multiple cancer types and PGK1 expression and its function in the mitochondrial metabolism regulation. Methods We performed pan-cancer analyses of PGK1 mRNA level and DNA methylation in 11,908 tumor tissues and 1582 paired normal tissues across 34 cancer types in The Cancer Genome Atlas datasets. Using specific antibodies against PGK1 S203 and PDHK1 T338 phosphorylation, we performed immunohistochemistry with tissue microarray assay in additional 818 cancer cases with 619 paired normal tissues from five cancer types. Results The PGK1 mRNA level was significantly elevated with hypomethylation in promotor regions and associated with advanced TNM stage in 15 and four cancer types, respectively. In breast carcinoma, elevated PGK1 mRNA level and promoter hypomethylation were associated with poor prognosis. Positively correlated PGK1 S203 and PDHK1 T338 phosphorylation levels were significantly associated with short overall survival (OS) in cancers of the breast, liver, lung, stomach, and esophagus and with advanced TNM stage in breast and esophageal cancers. PGK1 pS203 and PDHK1 pT338 were also independent predictors of short OS in liver, lung, and stomach cancer. Conclusions The elevated expression, promoter hypomethylation, and phosphorylation of PGK1 and PDHK1 were related with disease progression and short OS in diverse types of cancer. PGK1 and PDHK1 phosphorylation may be potential prognostic biomarkers.
Collapse
Affiliation(s)
- Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China.,Qingdao Cancer Institute, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, P. R. China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, P. R. China
| | - Xueying Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Wei Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Juhong Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Susheng Shi
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, P. R. China. .,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuannanli, Chaoyang District, Beijing, 100021, P. R. China. .,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| |
Collapse
|