1
|
Carrizo MC, Zenuto RR, Luna F, Cutrera AP. Ambient temperature leads to differential immune strategies in the subterranean rodent Ctenomys talarum. J Exp Biol 2025; 228:JEB249634. [PMID: 39882663 DOI: 10.1242/jeb.249634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Animal thermoregulation may have significant costs and compete directly or indirectly with other energetically demanding processes, such as immune function. Although the subterranean environment is characterized by thermally stable conditions, small changes in ambient temperature could be critical in shaping immunity. However, little is known about the effects of ambient temperature, in naturally varying ranges, on immunity of wild species. Therefore, to evaluate the effect of short-term exposure to ambient temperatures on energy metabolism and body temperature during the acute phase immune response (APR) in the subterranean rodent Ctenomys talarum, 70 adult animals were divided into three experimental groups and exposed twice for 1 h to 15, 25 or 32°C (below, at or near the upper limit of the thermoneutral zone, respectively) before and after injection with saline (control) or lipopolysaccharide (LPS, which induces the APR). Animals exposed to 25 and 32°C showed a similar APR pattern, characterized by fever (average: 37.1 and 37.7°C, respectively), a 16% increase in O2 consumption and an increase in the neutrophil/lymphocyte ratio (N/L). Body mass loss and symptoms of sickness behavior were detected from 3 and 1 h post-injection, respectively. Individuals exposed to 15°C increased their metabolic rate by 60%, showed frequent hypothermia (34.3°C on average) and the characteristic N/L increase was attenuated. Body mass loss and sickness behavior were mostly detected 24 h post-injection. Our results suggest that the thermoregulation costs in C. talarum may limit the energy available for immunity, leading to different strategies to cope with infection.
Collapse
Affiliation(s)
- María Celina Carrizo
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Roxana Rita Zenuto
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Facundo Luna
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Ana Paula Cutrera
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Ogundeyi KJ, Ajayi AM, Oduyomi OJ, Adeyemo SA, Ologe MO, Ademowo OG. Vitamin C co-administration with artemether-lumefantrine abrogates chronic stress exacerbated Plasmodium berghei-induced sickness behaviour, inflammatory and oxidative stress responses in mice. J Neuroimmunol 2025; 399:578518. [PMID: 39733552 DOI: 10.1016/j.jneuroim.2024.578518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
This study evaluated the effects of vitamin C and artemether-lumefantrine (AL) on sickness behaviour and oxido-inflammatory response in chronically stressed mice infected with Plasmodium berghei. Sickness behaviour severity was examined with weight and assessment of mice behaviours. Results showed that stress increased parasitaemia in infected mice. Vitamin C co-administration with AL increased parasite clearance over AL alone, and modulated inflammatory cytokines (TNF-α, IL-1β, IL-10, IL-12) and antioxidant parameters in plasma and brain tissue. Conclusively, stress worsens malaria-induced sickness behaviour and up-regulates the inflammatory and oxidative stress response. Co-administration of vitamin C with AL appears to counteract these detrimental effects.
Collapse
Affiliation(s)
- Kehinde Joshua Ogundeyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Ololade Justina Oduyomi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Stella Afolakemi Adeyemo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Mary O Ologe
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Kwara-State, Nigeria
| | - Olusegun George Ademowo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria; Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
| |
Collapse
|
3
|
Abavisani M, Faraji N, Ebadpour N, Kesharwani P, Sahebkar A. Beyond digestion: Exploring how the gut microbiota modulates human social behaviors. Neuroscience 2025; 565:52-62. [PMID: 39615647 DOI: 10.1016/j.neuroscience.2024.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
For a long time, traditional medicine has acknowledged the gut's impact on general health. Contemporary science substantiates this association through investigations of the gut microbiota, the extensive community of microorganisms inhabiting our gastrointestinal system. These microscopic residents considerably improve digestive processes, nutritional absorption, immunological function, and pathogen defense. Nevertheless, a variety of gastrointestinal and extra-intestinal disorders can result from dysbiosis, an imbalance of the microbial composition of the gut microbiota. A groundbreaking discovery is the gut-brain axis, a complex communication network that links the enteric and central nervous system (CNS). This bidirectional communication allows the brain to influence gut activities and vice versa, impacting mental health and mood disorders like anxiety and depression. The gut microbiota can influence this communication by creating neurotransmitters and short-chain fatty acids, among other biochemical processes. These factors may affect our mental state, our ability to regulate our emotions, and the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to explore the complex interrelationships between the brain and the gut microbiota. We also conducted a thorough examination of the existing understanding in the area of how microbiota affects social behaviors, including emotions, stress responses, and cognitive functions. We also explored the potential of interventions that focus on the connection between the gut and the brain, such as using probiotics to treat diseases of the CNS. This research opens up new possibilities for addressing mental health and neurological conditions in an innovative manner.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Faraji
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| |
Collapse
|
4
|
Padalkar T, Perrotte J, Lynn CD, Lee A, Nuttall A, Shattuck EC. Using Latent Class Analysis to Characterize Sickness Signaling in Relation to Familism and Public and Private Religiosity in a Stratified US Sample. Am J Hum Biol 2024; 36:e24192. [PMID: 39605184 DOI: 10.1002/ajhb.24192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND In response to contracting an infection, individuals usually display a suite of external signs (including sickness behavior) as an outward indication of illness. This context-dependent phenomenon seems to weigh the benefits and costs of eliciting sympathy by indicating sickness versus hiding signs of illness to avoid exposing others to potential infection. In a dynamically social species like humans, non-kin may be as likely to respond to these signs with care as family members, particularly fellow church members. We explore the relative contributions of religiosity and familism in shaping self-reported sickness signaling styles as two dimensions central to human altruism using latent class analysis (LCA). METHODS LCA was used to characterize the signaling styles of the study participants. Data come from a large 2018 survey (n = 1259) of sickness and health behaviors among US adults. We used denomination public (church attendance) and private religiosity (time spent in prayer, meditation, etc.) and the God Locus of Health Control scale to assess the impact of God on health. Sickness signaling style was assessed with the SicknessQ and three additional items. Covariates included age, gender, education, and income. RESULTS We identified four classes (Familiar, Moderate, Gregarious, and Stoic) tied to signaling styles. The Familiar Signaling class displayed sickness verbally to familiar others, were the oldest, and were least guided by an internal sense of religion. The Moderate Signaling class was younger and had lower public and private religiosity (except regarding health issues) than the Stoic and Gregarious Signaling classes. The Gregarious class signaled to both close others and strangers and scored highest in familism and religiosity. The Stoic class did not verbally signal but indicated sickness worsening when around both close others and strangers, were less likely to be married or endorse private religiosity, and were least likely to recall recent illness as severe. CONCLUSION The signaling classes strongly resembled aspects of the introvert-ambivert-extrovert spectrum. We conclude that variation is important at multiple levels, including personality types, and potentially prevents the loss of immunological diversity.
Collapse
Affiliation(s)
- Tanvi Padalkar
- Department of Anthropology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Jessica Perrotte
- Department of Psychology, Texas State University, San Marcos, Texas, USA
| | | | - Austin Lee
- Department of Anthropology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Aidan Nuttall
- Department of Religious Studies, University of Alabama, Tuscaloosa, Alabama, USA
| | - Eric C Shattuck
- Department of Anthropology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Martínez-Flores A, Montoya B, Torres R. An immune challenge induces a decline in parental effort and compensation by the mate. Behav Ecol 2024; 35:arae086. [PMID: 39539571 PMCID: PMC11558233 DOI: 10.1093/beheco/arae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune defense is fundamental to diminish the negative effects of the attack of infectious agents, yet the activation of the immune system entails costs and may compromise other life-history traits such as reproduction. In reproductive brown booby pairs (Sula leucogaster), we experimentally imposed an immune challenge during incubation, by intraperitoneally injecting Escherichia coli lipopolysaccharide (LPS), in either the male or the female. We aimed to test whether activation of the immune response results in (1) an increase in oxidative stress parameters, (2) a decline in post-hatching parental care in the treated individual, and (3) a compensation of the post-hatching parental effort by the nontreated mate. We found that activation of the immune response during incubation did not increase oxidative damage to lipids or total antioxidant capacity. However, mounting an immune response compromised parental effort during the chick-rearing period: compared to controls, LPS-treated parents showed roughly a 50% decline in the rate of preening and offspring feeding in response to begging. Interestingly, mates of LPS-treated parents increased their feeding rate suggesting parental care compensation. According to a scenario of full compensation, the decline in parental effort of LPS-treated parents did not result in poorer offspring growth or immune response, or increased levels of oxidative stress parameters. These findings suggest that in a long-lived species with long-lasting biparental care, an immune challenge compromises parental care, favoring parental compensation as a strategy to mitigate costs in terms of offspring success.
Collapse
Affiliation(s)
- Alejandro Martínez-Flores
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología Universidad Nacional Autónoma de México, Circuito exterior Jardín Botánico, Ciudad de México, CP 04510, México
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Bibiana Montoya
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, CP 90070, México
| | - Roxana Torres
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología Universidad Nacional Autónoma de México, Circuito exterior Jardín Botánico, Ciudad de México, CP 04510, México
| |
Collapse
|
6
|
Encel SA, Ward AJW. Immune challenge affects risk sensitivity and locomotion in mosquitofish ( Gambusia holbrooki). ROYAL SOCIETY OPEN SCIENCE 2024; 11:241059. [PMID: 39479234 PMCID: PMC11521614 DOI: 10.1098/rsos.241059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
The immune system is crucial in responding to disease-causing pathogens. However, immune responses may also cause stereotypical changes in behaviour known as sickness behaviours, which often include reduced activity. Sickness behaviours are thought to have an important role in conserving energy required to support the immune response; however, little is known about how they manifest over time or in relation to risk, particularly in fishes. Here, we induced an immune response in mosquitofish (Gambusia holbrooki) by inoculating them with Escherichia coli lipopolysaccharide (LPS). We subsequently tested batches of fish at 24 h intervals and examined: locomotory behaviour, tendency to use a refuge and fast-start response immediately following a threat stimulus (measured as peak acceleration). Control and LPS-treated fish behaved similarly on days 1, 3 and 4. However, 2 days post-inoculation, LPS fish swam more slowly and spent more time in the refuge than control fish, although no difference in post-threat peak acceleration was found. Our findings suggest that sickness behaviours peak roughly 2 days following exposure to LPS and are relatively short-lived. Specifically, immune-challenged individuals exhibit reduced locomotion and exploratory behaviour, becoming more risk averse overall while still retaining the ability to respond acutely to a threat stimulus.
Collapse
Affiliation(s)
- Stella A. Encel
- School of Life and Environmental Sciences, University of Sydney, Camperdown2006, Australia
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences, University of Sydney, Camperdown2006, Australia
| |
Collapse
|
7
|
Hansson LS, Tognetti A, Sigurjónsson P, Brück E, Wåhlén K, Jensen K, Olsson MJ, Toll John R, Wilhelms DB, Lekander M, Lasselin J. Perception of unfamiliar caregivers during sickness - Using the new Caregiver Perception Task (CgPT) during experimental endotoxemia. Brain Behav Immun 2024; 119:741-749. [PMID: 38670241 DOI: 10.1016/j.bbi.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Social withdrawal is a well-established part of sickness behavior, but in some contexts sick animals might gain from keeping close instead of keeping away. For instance, sick individuals are more willing to be near known individuals who can provide care and safety (close others) compared to when healthy. Yet, interactions with some strangers might also be beneficial (i.e., healthcare professionals), but it is not known how sickness interplay with social behavior towards such individuals. Here, we assessed if sickness affects perception of caregivers, and developed a new task, the Caregiver Perception Task (CgPT). Twenty-six participants performed the CgPT, once after an injection of lipopolysaccharide (LPS, 0.8 ng/kg body weight, n = 24), and once after an injection of saline (n = 25), one hour and forty-five minutes post-injection. During the task, participants watched short video clips of three types of caregivers: a healthcare professional taking care of a sick individual, a healthcare professional not taking care of a sick individual, and a non-healthcare professional taking care of their sick adult child or partner. After each video clip, the likability, trustworthiness, professionalism, and willingness to interact with and receive care from the caregiver were rated on visual analogue scales. Results showed that participants injected with saline rated healthcare professionals who did not take care of a sick individual less positively on all aspects compared to healthcare professionals who took care of a sick individual. Moreover, compared to saline, LPS increased the participants' willingness to receive care from healthcare professionals and non-healthcare professionals providing care, but not from healthcare professionals not providing care. Thus, our results indicate that sick individuals may approach unknown individuals with potential to provide care and support.
Collapse
Affiliation(s)
- L S Hansson
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Tognetti
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; CEE-M, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | | | - E Brück
- Karolinska University Hospital, Stockholm, Sweden
| | - K Wåhlén
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - K Jensen
- Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Division of Neuro, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R Toll John
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden; Department of Emergency Medicine in Linköping, Local Health Care Services in Central Östergötland, Region Östergötland
| | - D B Wilhelms
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden; Department of Emergency Medicine in Linköping, Local Health Care Services in Central Östergötland, Region Östergötland
| | - M Lekander
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Lasselin
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Walsman JC, Lambe M, Stephenson JF. Associating with kin selects for disease resistance and against tolerance. Proc Biol Sci 2024; 291:20240356. [PMID: 38772422 DOI: 10.1098/rspb.2024.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Behavioural and physiological resistance are key to slowing epidemic spread. We explore the evolutionary and epidemic consequences of their different costs for the evolution of tolerance that trades off with resistance. Behavioural resistance affects social cohesion, with associated group-level costs, while the cost of physiological resistance accrues only to the individual. Further, resistance, and the associated reduction in transmission, benefit susceptible hosts directly, whereas infected hosts only benefit indirectly, by reducing transmission to kin. We therefore model the coevolution of transmission-reducing resistance expressed in susceptible hosts with resistance expressed in infected hosts, as a function of kin association, and analyse the effect on population-level outcomes. Using parameter values for guppies, Poecilia reticulata, and their gyrodactylid parasites, we find that: (1) either susceptible or infected hosts should invest heavily in resistance, but not both; (2) kin association drives investment in physiological resistance more strongly than in behavioural resistance; and (3) even weak levels of kin association can favour altruistic infected hosts that invest heavily in resistance (versus selfish tolerance), eliminating parasites. Overall, our finding that weak kin association affects the coevolution of infected and susceptible investment in both behavioural and physiological resistance suggests that kin selection may affect disease dynamics across systems.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Earth Research Institute, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Madalyn Lambe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Albery GF, Sweeny AR, Webber Q. How behavioural ageing affects infectious disease. Neurosci Biobehav Rev 2023; 155:105426. [PMID: 37839673 PMCID: PMC10842249 DOI: 10.1016/j.neubiorev.2023.105426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ageing is associated with profound changes in behaviour that could influence exposure and susceptibility to infectious disease. As well as determining emergent patterns of infection across individuals of different ages, behavioural ageing could interact with, confound, or counteract age-related changes in other traits. Here, we examine how behavioural ageing can manifest and influence patterns of infection in wild animals. We discuss a range of age-related changes that involve interactions between behaviour and components of exposure and susceptibility to infection, including social ageing and immunosenescence, acquisition of novel parasites and pathogens with age, changes in spatial behaviours, and age-related hygiene and sickness behaviours. Overall, most behavioural changes are expected to result in a reduced exposure rate, but there is relatively little evidence for this phenomenon, emerging largely from a rarity of explicit tests of exposure changes over the lifespan. This review offers a framework for understanding how ageing, behaviour, immunity, and infection interact, providing a series of hypotheses and testable predictions to improve our understanding of health in ageing societies.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland, UK; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Amy R Sweeny
- School of Biosciences, University of Sheffield, Sheffield, England, UK
| | - Quinn Webber
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Tognetti A, Thunell E, Zakrzewska M, Olofsson J, Lekander M, Axelsson J, Olsson MJ. Discriminating between sick and healthy faces based on early sickness cues: an exploratory analysis of sex differences. Evol Med Public Health 2023; 11:386-396. [PMID: 37941735 PMCID: PMC10629974 DOI: 10.1093/emph/eoad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/12/2023] [Indexed: 11/10/2023] Open
Abstract
Background and objectives It has been argued that sex and disease-related traits should influence how observers respond to sensory sickness cues. In fact, there is evidence that humans can detect sensory cues related to infection in others, but lack of power from earlier studies prevents any firm conclusion regarding whether perception of sickness cues is associated with sex and disease-related personality traits. Here, we tested whether women (relative to men), individuals with poorer self-reported health, and who are more sensitive to disgust, vulnerable to disease, and concerned about their health, overestimate the presence of, and/or are better at detecting sickness cues. Methodology In a large online study, 343 women and 340 men were instructed to identify the sick faces from a series of sick and healthy photographs of volunteers with an induced acute experimental inflammation. Participants also completed several disease-related questionnaires. Results While both men and women could discriminate between sick and healthy individuals above chance level, exploratory analyses revealed that women outperformed men in accuracy and speed of discrimination. Furthermore, we demonstrated that higher disgust sensitivity to body odors is associated with a more liberal decision criterion for categorizing faces as sick. Conclusion Our findings give strong support for the human ability to discriminate between sick and healthy individuals based on early facial cues of sickness and suggest that women are significantly, although only slightly, better at this task. If this finding is replicated, future studies should determine whether women's better performance is related to increased avoidance of sick individuals.
Collapse
Affiliation(s)
- Arnaud Tognetti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- CEE-M, CNRS, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Evelina Thunell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marta Zakrzewska
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stress Research Institute, Stockholm University, Stockholm, Sweden
- Osher Center for Integrative Health, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Mats J Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Hu S, Li X, Yang L. Effects of physical activity in child and adolescent depression and anxiety: role of inflammatory cytokines and stress-related peptide hormones. Front Neurosci 2023; 17:1234409. [PMID: 37700748 PMCID: PMC10493323 DOI: 10.3389/fnins.2023.1234409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Depression and anxiety are the most common mental illnesses affecting children and adolescents, significantly harming their well-being. Research has shown that regular physical activity can promote cognitive, emotional, fundamental movement skills, and motor coordination, as a preventative measure for depression while reducing the suicide rate. However, little is known about the potential role of physical activity in adolescent depression and anxiety. The studies reviewed in this paper suggest that exercise can be an effective adjunctive treatment to improve depressive and anxiety symptoms in adolescents, although research on its neurobiological effects remains limited.
Collapse
Affiliation(s)
- Shaojuan Hu
- College of Physical Education and Sports Science, Hengyang Normal University, Hengyang, China
| | - Xinyuan Li
- College of Physical Education and Sports Science, Hengyang Normal University, Hengyang, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Stockmaier S. Bat behavioral immune responses in social contexts: current knowledge and future directions. Front Immunol 2023; 14:1232556. [PMID: 37662931 PMCID: PMC10469833 DOI: 10.3389/fimmu.2023.1232556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Animals often mount complex immune responses to infections. Aside from cellular and molecular defense mechanisms, animals can alter their behavior in response to infection by avoiding, resisting, or tolerating negative effects of pathogens. These behaviors are often connected to cellular and molecular immune responses. For instance, sickness behaviors are a set of behavioral changes triggered by the host inflammatory response (e.g., cytokines) and could aid in resisting or tolerating infection, as well as affect transmission dynamics if sick animals socially withdraw or are being avoided by others. To fully understand the group and population level transmission dynamics and consequences of pathogen infections in bats, it is not only important to consider cellular and molecular defense mechanisms, but also behavioral mechanisms, and how both interact. Although there has been increasing interest in bat immune responses due to their ability to successfully cope with viral infections, few studies have explored behavioral anti-pathogen defense mechanisms. My main objective is to explore the interaction of cellular and molecular defense mechanisms, and behavioral alterations that results from infection in bats, and to outline current knowledge and future research avenues in this field.
Collapse
Affiliation(s)
- Sebastian Stockmaier
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, United States
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
13
|
Metzler S, Kirchner J, Grasse AV, Cremer S. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecol Evol 2023; 23:37. [PMID: 37550612 PMCID: PMC10405452 DOI: 10.1186/s12862-023-02137-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Fighting disease while fighting rivals exposes males to constraints and trade-offs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfere with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony's worker force. RESULTS We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on. CONCLUSIONS Males of the ant C. obscurior have a well-developed immune system that raises a strong immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without compromising their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus reveals a novel social immunity mechanism how social insect workers protect the colony against disease risk.
Collapse
Affiliation(s)
- Sina Metzler
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Jessica Kirchner
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Anna V Grasse
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria.
| |
Collapse
|
14
|
Encel SA, Simpson EK, Schaerf TM, Ward AJW. Immune challenge affects reproductive behaviour in the guppy ( Poecilia reticulata). ROYAL SOCIETY OPEN SCIENCE 2023; 10:230579. [PMID: 37564068 PMCID: PMC10410201 DOI: 10.1098/rsos.230579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Immunocompetence and reproduction are among the most important determinants of fitness. However, energetic and metabolic constraints create conflict between these two life-history traits. While many studies have explored the relationship between immune activity and reproductive fitness in birds and mammals inoculated with bacterial endotoxin, very few have focused on fish. Fish have been neglected in this area due, in part, to the claim that they are largely resistant to the immune effects of endotoxins. However, the present study suggests that they are susceptible to significant effects with respect to reproductive behaviour. Here, we examined the reproductive behaviour of male guppies following exposure to bacterial lipopolysaccharides (LPS) in comparison to that of male guppies in a control treatment. Additionally, we investigated the responses of females to these males. We show that although immune challenge does not suppress general activity in male guppies, it significantly reduces mating effort. While females showed no difference in general activity as a function of male treatments, they did exhibit reduced group cohesion in the presence of LPS-exposed males. We discuss this in the context of sickness behaviours, social avoidance of immune-challenged individuals and the effects of mounting an immune response on reproductive behaviour.
Collapse
Affiliation(s)
- Stella A. Encel
- School of Life and Environmental Sciences, University of Sydney, Camperdown 2006, Australia
| | - Emily K. Simpson
- School of Life and Environmental Sciences, University of Sydney, Camperdown 2006, Australia
| | - Timothy M. Schaerf
- School of Life and Environmental Sciences, University of Sydney, Camperdown 2006, Australia
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences, University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
15
|
Refisch A, Sen ZD, Klassert TE, Busch A, Besteher B, Danyeli LV, Helbing D, Schulze-Späte U, Stallmach A, Bauer M, Panagiotou G, Jacobsen ID, Slevogt H, Opel N, Walter M. Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology 2023; 235:109568. [PMID: 37182790 DOI: 10.1016/j.neuropharm.2023.109568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tilman E Klassert
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Dario Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany, and Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany; Department of Pulmonary Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
16
|
Steinkopf L. The suffering ape hypothesis. Behav Brain Sci 2023; 46:e78. [PMID: 37154368 DOI: 10.1017/s0140525x2200190x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The "fearful ape hypothesis" could be regarded as one aspect of a more general "suffering ape hypothesis": Humans are more likely to experience negative emotions (e.g., fear, sadness), aversive symptoms (e.g., pain, fever), and to engage in self-harming behavior (e.g., cutting, suicide attempts) because these might motivate affiliative, consolatory, and supportive behavior from their prosocial environment thereby enhancing evolutionary fitness.
Collapse
Affiliation(s)
- Leander Steinkopf
- Placebo Lab, Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany ; www.leandersteinkopf.de
| |
Collapse
|
17
|
Carrizo MC, Zenuto RR, Luna F, Cutrera AP. Varying intensity of simulated infection partially affects the magnitude of the acute-phase immune response in the subterranean rodent Ctenomys talarum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:253-268. [PMID: 36479923 DOI: 10.1002/jez.2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
The acute phase response (APR), coordinated by a complex network of components of the immune and neuroendocrine systems, plays a key role in early immune defense. This response can be elicited by a wide variety of pathogens at different intensities (frequencies and doses), hence experimental immune challenges with antigen gradients makes it possible to evaluate sickness progression with a better representation of what occurs in natural systems. However, how infection intensity could shape the APR magnitude in wild species is still poorly understood. Here, the immune response was activated in the subterranean rodent Ctenomys talarum with a gradient of lipopolysaccharide (LPS) doses (0.5, 1, 1.5, and 2 mg/kg of body mass). Changes in body temperature, body mass, and energetic costs were evaluated over time. We also assessed cortisol levels, white blood cells counts and neutrophil: lymphocyte ratios, before and after injection. Results indicated that during the APR, C. talarum shows a hyperthermic response, which is maintained for 6 h, with slight differences among antigen doses in the pattern of thermal response and body mass change. A maximum increase in body temperature of 0.83°C to 1.63°C was observed during the first hour, associated with a metabolic cost that ranged from 1.25 to 1.41 ml O2 /gh. Although no clear effects of treatment were detected on leukocyte abundance, we found increments in neutrophil: lymphocyte ratios and gradual increases in cortisol levels corresponding to the intensity of simulated infection, which may indicate redistribution of immune cells and enhancement of immune function. An evident sickness syndrome was observed even at the lowest LPS dose that was characterized by an increase in body temperature, energy expenditure, and N: L ratio, as well as a dose-dependent increase in cortisol levels. Although in nature, other constraints and challenges could affect the magnitude and costs of immune responses, C. talarum mounts an effective APR with a low increase in their daily energy expenditure, regardless of LPS dose.
Collapse
Affiliation(s)
- María C Carrizo
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Roxana R Zenuto
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Facundo Luna
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Ana P Cutrera
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
18
|
Högberg N, Hessle A, Lidfors L, Höglund J. The effect of weaning age on animal performance in lambs exposed to naturally acquired nematode infections. Vet Parasitol 2023; 316:109900. [PMID: 36863138 DOI: 10.1016/j.vetpar.2023.109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The effects of mixed gastrointestinal nematode (GIN) infections on animal growth and post-weaning activity patterns were investigated in grazing intact ram lambs when naturally exposed to two different infection levels and weaned at different ages. Ewes and their twin-born lambs were turned-out to graze in two permanent pasture enclosures naturally contaminated with GIN the previous year. Ewes and lambs in the low parasite exposure group (LP) were drenched before turn-out and at weaning, respectively, with 0.2 mg ivermectin per kg body weight, whereas those in the high parasite exposure group (HP) were left untreated. Two weaning ages were applied, early weaning (EW) (10 weeks) and late weaning (LW) (14 weeks), respectively. The lambs were then allocated to one out of four groups based on parasite exposure level and weaning age (EW-HP, n = 12; LW-HP, n = 11; EW-LP, n = 13; LW-LP, n = 13). Body weight gain (BWG) and faecal egg counts (FEC) were monitored, in all groups, from the day of early weaning and every four weeks, for 10 weeks. In addition, nematode composition was determined using droplet digital PCR. Activity patterns measured as Motion Index (MI; the absolute value of the 3D acceleration) and lying time were monitored continuously from the day of weaning until four weeks post-weaning using IceQube® sensors. Statistical analyses were performed in RStudio, using mixed models with repeated measures. BWG was 11% lower in EW-HP compared with EW-LP (P = 0.0079) and 12% lower compared with LW-HP (P = 0.018), respectively. In contrast, no difference in BWG was observed between LW-HP and LW-LP (P = 0.97). The average EPG was higher in EW-HP compared with EW-LP (P < 0.001), as well as in EW-HP compared with LW-HP (P = 0.021), and LW-HP compared with LW-LP (P = 0.0022). The molecular investigation showed that animals in LW-HP had a higher proportion of Haemonchus contortus compared with EW-HP. MI was 19% lower in EW-HP compared with EW-LP (P = 0.0004). Daily lying time was 15% shorter in EW-HP compared with EW-LP (P = 0.0070). In contrast, no difference in MI (P = 0.13) and lying time (P = 0.99) between LW-HP and LW-LP was observed. The results suggest that a delayed weaning age may reduce the adverse effects of GIN infection on BWG. Contrarily, an earlier weaning age may reduce the risk of H. contortus infection in lambs. Moreover, the results demonstrates a potential use of automated behaviour recordings as a diagnostic tool for the detection of nematode infections in sheep.
Collapse
Affiliation(s)
- Niclas Högberg
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Sweden.
| | - Anna Hessle
- Swedish University of Agricultural Sciences, Department of Animal Environment and Health, Sweden
| | - Lena Lidfors
- Swedish University of Agricultural Sciences, Department of Animal Environment and Health, Sweden
| | - Johan Höglund
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Sweden
| |
Collapse
|
19
|
Aschman T, Mothes R, Heppner FL, Radbruch H. What SARS-CoV-2 does to our brains. Immunity 2022; 55:1159-1172. [PMID: 35777361 PMCID: PMC9212726 DOI: 10.1016/j.immuni.2022.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Neurological symptoms in SARS-CoV-2-infected patients have been reported, but their cause remains unclear. In theory, the neurological symptoms observed after SARS-CoV-2 infection could be (1) directly caused by the virus infecting brain cells, (2) indirectly by our body’s local or systemic immune response toward the virus, (3) by coincidental phenomena, or (4) a combination of these factors. As indisputable evidence of intact and replicating SARS-CoV-2 particles in the central nervous system (CNS) is currently lacking, we suggest focusing on the host’s immune reaction when trying to understand the neurocognitive symptoms associated with SARS-CoV-2 infection. In this perspective, we discuss the possible immune-mediated mechanisms causing functional or structural CNS alterations during acute infection as well as in the post-infectious context. We also review the available literature on CNS affection in the context of COVID-19 infection, as well as observations from animal studies on the molecular pathways involved in sickness behavior.
Collapse
|
20
|
Amano K, Hopkinson J, Baracos V. Psychological symptoms of illness and emotional distress in advanced cancer cachexia. Curr Opin Clin Nutr Metab Care 2022; 25:167-172. [PMID: 34966115 DOI: 10.1097/mco.0000000000000815] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cachexia induces both physical and psychological symptoms of illness in patients with advanced cancer and may generate emotional distress in patients and families. However, physical symptoms of cachexia received the most emphasis. The aims of this review are to elucidate a link between systemic inflammation underlying cachexia and psychological symptoms and emotional distress, and to advance care strategy for management of psychological symptoms and emotional distress in patients and families. RECENT FINDINGS The main themes in the literature covered by this review are psychological symptoms in patients and emotional distress in patients and families. Studies of the underlying biology of cachexia identify the role of the central nervous system to amplify tumor-induced systemic inflammation. The brain mediates a cluster of symptoms, such as sleep disruption, anxiety, cognitive impairment, and reduction in motivated behavior (notably anorexia). These are distressing to patients as well as to families. SUMMARY There is growing recognition that holistic multimodal interventions are needed to alleviate psychological symptoms and emotional distress and to improve quality of life in patients with cancer cachexia and families. This is an approach that addresses not only physical health but also psychological, emotional, and social well being issues.
Collapse
Affiliation(s)
- Koji Amano
- Department of Palliative Medicine, National Cancer Center Hospital, Tokyo
- Department of Palliative and Supportive Medicine, Graduate School of Medicine, Aichi Medical University, Nagakute city, Aichi, Japan
| | - Jane Hopkinson
- School of Healthcare Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
| | - Vickie Baracos
- Division of Palliative Care Medicine, Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Detrain C, Leclerc JB. Spatial distancing by fungus-exposed Myrmica ants is prompted by sickness rather than contagiousness. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104384. [PMID: 35318040 DOI: 10.1016/j.jinsphys.2022.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The ecological success of ants relies on their high level of sociality and cooperation between genetically related nestmates. However, these group-living insects suffer from elevated risks of disease outbreak in the whole nest. To face this sanitary challenge, social and spatial distancing of pathogen-exposed individuals from susceptible nestmates appear to be simple, although efficient, ways to limit the propagation of contact-transmitted pathogens. Here we question whether spatial distancing in Myrmica rubra ants is an active response of diseased individuals that correlates with their level of infectiousness. We contaminated foragers with spores of Metarhizium brunneum entomopathogenic fungus. We daily tracked the location of these pathogen-exposed individuals and we analyzed their movement patterns until their death on the 5th day post-contamination. Quite unexpectedly, we found that contagious individuals, whose body was covered with infectious spores, did not reduce their mobility nor stayed far away from larvae in order to limit pathogen transmission to healthy nestmates. Spatial distancing occurred later when diseased individuals were no longer contagious because spores had penetrated their body. These sick ants mainly stayed outside the nest, were less mobile and showed a shift from a superdiffusive to subdiffusive walking pattern. Furthermore, these diseased ants did not actively head towards directions that were opposite to the nest entrance. This study found no evidence for early spatial distancing by contaminated M.rubra workers that would fit to the actual risk of colony-wide contagion. Coupled to a lower mobility and area-reduced walking patterns, the late distancing of moribund individuals appears to be a symptom of sickness resulting from fungus-induced physical and physiological dysfunctions. Besides questioning the truly altruistic nature of death in isolation in this system (and potentially others), we discuss about the ecological and physiological constraints that explain the absence of early distancing when some ant species are exposed to pathogens.
Collapse
Affiliation(s)
- Claire Detrain
- Unit of Social Ecology CP 231, Université Libre de Bruxelles, 50 Avenue F Roosevelt, 1050 Brussels, Belgium.
| | - Jean-Baptiste Leclerc
- Unit of Social Ecology CP 231, Université Libre de Bruxelles, 50 Avenue F Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
22
|
Kessler SE, Aunger R. The evolution of the human healthcare system and implications for understanding our responses to COVID-19. Evol Med Public Health 2022; 10:87-107. [PMID: 35284079 PMCID: PMC8908543 DOI: 10.1093/emph/eoac004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has revealed an urgent need for a comprehensive, multidisciplinary understanding of how healthcare systems respond successfully to infectious pathogens-and how they fail. This study contributes a novel perspective that focuses on the selective pressures that shape healthcare systems over evolutionary time. We use a comparative approach to trace the evolution of care-giving and disease control behaviours across species and then map their integration into the contemporary human healthcare system. Self-care and pro-health environmental modification are ubiquitous across animals, while derived behaviours like care for kin, for strangers, and group-level organizational responses have evolved via different selection pressures. We then apply this framework to our behavioural responses to COVID-19 and demonstrate that three types of conflicts are occurring: (1) conflicting selection pressures on individuals, (2) evolutionary mismatches between the context in which our healthcare behaviours evolved and our globalized world of today and (3) evolutionary displacements in which older forms of care are currently dispensed through more derived forms. We discuss the significance of understanding how healthcare systems evolve and change for thinking about the role of healthcare systems in society during and after the time of COVID-19-and for us as a species as we continue to face selection from infectious diseases.
Collapse
Affiliation(s)
- Sharon E Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Robert Aunger
- Environmental Health Group, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
23
|
Petrisko TJ, Konat GW. Peripheral viral challenge increases c-fos level in cerebral neurons. Metab Brain Dis 2021; 36:1995-2002. [PMID: 34406561 DOI: 10.1007/s11011-021-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022]
Abstract
Peripheral viral infection can substantially alter brain function. We have previously shown that intraperitoneal (i.p.) injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC), engenders hyperexcitability of cerebral neurons. Because neuronal activity is invariably associated with their expression of the Cfos gene, the present study was undertaken to determine whether PIC challenge also increases neuronal c-fos protein level. Female C57BL/6 mice were i.p. injected with PIC, and neuronal c-fos was analyzed in the motor cortex by immunohistochemistry. PIC challenge instigated a robust increase in the number of c-fos-positive neurons. This increase reached approximately tenfold over control at 24 h. Also, the c-fos staining intensity of individual neurons increased. AMG-487, a specific inhibitor of the chemokine receptor CXCR3, profoundly attenuated the accumulation of neuronal c-fos, indicating the activation of CXCL10/CXCR3 axis as the trigger of the process. Together, these results show that the accumulation of c-fos is a viable readout to assess the response of cerebral neurons to peripheral PIC challenge, and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Tiffany J Petrisko
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Gregory W Konat
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Biochemistry, West Virginia University School of Medicine, 4052 HSCN, P.O. Box 9128, Morgantown, WV, 26506-9128, USA.
| |
Collapse
|
24
|
Smith CJ. Emerging roles for microglia and microbiota in the development of social circuits. Brain Behav Immun Health 2021; 16:100296. [PMID: 34589789 PMCID: PMC8474572 DOI: 10.1016/j.bbih.2021.100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
Social withdrawal is a core component of the behavioral response to infection. This fact points to a deep evolutionary and biologic relationship between the immune system and the social brain. Indeed, a large body of literature supports such an intimate connection. In particular, immune activation during the perinatal period has been shown to have long-lasting consequences for social behavior, but the neuroimmune mechanisms by which this occurs are only partially understood. Microglia, the resident immune cells of the brain, influence the formation of neural circuits by phagocytosing synaptic and cellular elements, as well as by releasing chemokines and cytokines. Intriguingly, microbiota, especially those that reside within the gut, may also influence brain development via the release of metabolites that travel to the brain, by influencing vagal nerve signaling, or by modulating the host immune system. Here, I will review the work suggesting important roles for microglia and microbiota in social circuit formation during development. I will then highlight avenues for future work in this area, as well as technological advances that extend our capacity to ask mechanistic questions about the relationships between microglia, microbiota, and the social brain.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
25
|
Shattuck EC, Perrotte JK, Daniels CL, Xu X, Sunil TS. Signaling sickness: the role of recalled sickness behavior and psychosocial factors in shaping communication style. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:221-231. [PMID: 34408880 PMCID: PMC8364984 DOI: 10.1093/emph/eoab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022]
Abstract
Background and objectives Active infection results in several outward signs in humans, including visible symptoms, changes in behavior and possible alterations in skin color and gait. A potential adaptive function of these indicators is to signal distress and elicit care from close others. We hypothesized that sickness behavior, a suite of stereotypical changes in mood and behavior, also serves to communicate health status to others. We further hypothesized that such outward signals/cues of health status would vary based on context and sociocultural norms. Methodology We explored self-reported, recalled sickness behavior, communication style, demographics and theoretically relevant cultural factors in a large national US sample (n = 1259) using multinomial probit regressions. Results In accordance with predictions, relatively few participants were willing to talk or complain about sickness to strangers. Self-reported, recalled sickness behavior was associated with some communication styles but attention received from others was more consistently associated with potential signaling. Several cultural factors, including stoicism and traditional machismo, were also associated with different sickness signaling styles. Conclusions and implications These preliminary, self-reported data lend some tentative support to the sickness behavior signaling hypothesis, though experimental or observational support is needed. The role of cultural norms in shaping how such signals are transmitted and received also deserves further attention as they may have important implications for disease transmission. Lay Summary Evolutionary medicine hypothesizes that signs and symptoms of infectious disease—including sickness behavior—have adaptive functions, one of which might be to reliably signal one’s health status to others. Our results suggest that evolved signals like these are likely shaped by cultural factors.
Collapse
Affiliation(s)
- Eric C Shattuck
- Institute for Health Disparities Research, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Jessica K Perrotte
- Department of Psychology, Texas State University, 614 N. Guadalupe St. #253, San Marcos, TX, USA
| | - Colton L Daniels
- Department of Sociology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Xiaohe Xu
- Department of Sociology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Thankam S Sunil
- Department of Public Health, University of Tennessee, Knoxville, 1914 Andy Holt Ave, Knoxville, TN 37996, USA
| |
Collapse
|
26
|
Abstract
BACKGROUND Psychosocial and physical stressors can elicit the stress response, co-ordinated by interactions between neuroendocrine and inflammatory processes. The central role of the immune system, specifically low-grade systemic inflammation, is sometimes overlooked in work-related stress research. OBJECTIVE To review evidence that work-related psychosocial and physical stressors can stimulate a low-grade systemic inflammation which, through interactions with the neurohormonal systems, may impact on the well-being and productivity of workers. METHODS Literature searches were performed by databases and by hand. Databases used included Interface - EBSCOhost Research Databases; PsycINFO; Academic Search Complete; Africa-Wide Information; CINAHL; E-Journals; MEDLINE and PsycARTICLES. RESULTS Psychosocial stressors, infections, poor indoor air quality, musculoskeletal injuries and chemicals can stimulate a low-grade systemic inflammation that may adversely affect workers' mental and physical health, as well as productivity. The psychological and physical effects caused by infection-induced inflammation are generally referred to as sickness behaviour and those caused by poor indoor air quality as sick building syndrome. CONCLUSIONS Stressor-induced low-grade systemic inflammation can be a causal factor in the physical and behavioural symptoms of work-related stress. It is therefore important that those involved with the health of workers be cognisant of inappropriate or chronic low-grade inflammation as a potential health hazard.
Collapse
Affiliation(s)
- Margaretha Viljoen
- Department of Psychiatry, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
27
|
Bouayed J, Hefeng FQ, Desai MS, Zhou B, Rashi T, Soulimani R, Bohn T. Anti-pandemic lessons and altruistic behavior from major world religions at the time of COVID-19. Brain Behav Immun 2021; 95:4-6. [PMID: 33940154 PMCID: PMC9758880 DOI: 10.1016/j.bbi.2021.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jaouad Bouayed
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000 Metz, France.
| | - Feng Q. Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg,Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
| | - Bin Zhou
- Translational Research Center for Medical Innovation, 1-5-4 Minatojima-minamimachi, chuo-ku, Kobe 650-0047, Japan
| | - Tsuriel Rashi
- Ariel University, 65 Ramat Ha'Golan St, Ariel, Israel
| | - Rachid Soulimani
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000 Metz, France
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health (DoPH), Luxembourg Institute of Health (LIH), 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
28
|
Ratz T, Monteith KM, Vale PF, Smiseth PT. Carry on caring: infected females maintain their parental care despite high mortality. Behav Ecol 2021; 32:738-746. [PMID: 35169391 PMCID: PMC8842341 DOI: 10.1093/beheco/arab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 12/04/2022] Open
Abstract
Parental care is a key component of an organism's reproductive strategy that is thought to trade-off with allocation toward immunity. Yet, it is unclear how caring parents respond to pathogens: do infected parents reduce care as a sickness behavior or simply from being ill or do they prioritize their offspring by maintaining high levels of care? To address this issue, we investigated the consequences of infection by the pathogen Serratia marcescens on mortality, time spent providing care, reproductive output, and expression of immune genes of female parents in the burying beetle Nicrophorus vespilloides. We compared untreated control females with infected females that were inoculated with live bacteria, immune-challenged females that were inoculated with heat-killed bacteria, and injured females that were injected with buffer. We found that infected and immune-challenged females changed their immune gene expression and that infected females suffered increased mortality. Nevertheless, infected and immune-challenged females maintained their normal level of care and reproductive output. There was thus no evidence that infection led to either a decrease or an increase in parental care or reproductive output. Our results show that parental care, which is generally highly flexible, can remain remarkably robust and consistent despite the elevated mortality caused by infection by pathogens. Overall, these findings suggest that infected females maintain a high level of parental care, a strategy that may ensure that offspring receive the necessary amount of care but that might be detrimental to the parents' own survival or that may even facilitate disease transmission to offspring.
Collapse
Affiliation(s)
- Tom Ratz
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Per T Smiseth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
29
|
McFarland DC, Walsh LE, Saracino R, Nelson CJ, Breitbart W, Rosenfeld B. The Sickness Behavior Inventory-Revised: Sickness behavior and its associations with depression and inflammation in patients with metastatic lung cancer. Palliat Support Care 2021; 19:312-321. [PMID: 33222717 PMCID: PMC8311665 DOI: 10.1017/s1478951520001169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Inflammation may contribute to the high prevalence of depressive symptoms seen in lung cancer. "Sickness behavior" is a cluster of symptoms induced by inflammation that are similar but distinct from depressive symptoms. The Sickness Behavior Inventory-Revised (SBI-R) was developed to measure sickness behavior. We hypothesized that the SBI-R would demonstrate adequate psychometric properties in association with inflammation. METHOD Participants with stage IV lung cancer (n = 92) were evaluated for sickness behavior using the SBI-R. Concomitant assessments were made of depression (Patient Hospital Questionniare-9, Hospital Anxiety and Depression Scale) and inflammation [C-reactive protein (CRP)]. Classical test theory (CTT) was applied and multivariate models were created to explain SBI-R associations with depression and inflammation. Factor Analysis was also used to identify the underlying factor structure of the hypothesized construct of sickness behavior. A longitudinal analysis was conducted for a subset of participants. RESULTS The sample mean for the 12-item SBI-R was 8.3 (6.7) with a range from 0 to 33. The SBI-R demonstrated adequate internal consistency with a Cronbach's coefficient of 0.85, which did not increase by more than 0.01 with any single-item removal. This analysis examined factor loadings onto a single factor extracted using the principle components method. Eleven items had factor loadings that exceeded 0.40. SBI-R total scores were significantly correlated with depressive symptoms (r = 0.78, p < 0.001) and CRP (r = 0.47, p < 0.001). Multivariate analyses revealed that inflammation and depressive symptoms explained 67% of SBI-R variance. SIGNIFICANCE OF RESULTS The SBI-R demonstrated adequate reliability and construct validity in this patient population with metastatic lung cancer. The observed findings suggest that the SBI-R can meaningfully capture the presence of sickness behavior and may facilitate a greater understanding of inflammatory depression.
Collapse
Affiliation(s)
- Daniel C. McFarland
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Leah E. Walsh
- Department of Psychology, Fordham University, Bronx, NY
| | - Rebecca Saracino
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christian J. Nelson
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William Breitbart
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
30
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
31
|
Lopes PC, French SS, Woodhams DC, Binning SA. Sickness behaviors across vertebrate taxa: proximate and ultimate mechanisms. J Exp Biol 2021; 224:260576. [PMID: 33942101 DOI: 10.1242/jeb.225847] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Susannah S French
- Department of Biology and The Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H3C 3J7
| |
Collapse
|
32
|
Moreno KR, Weinberg M, Harten L, Salinas Ramos VB, Herrera M LG, Czirják GÁ, Yovel Y. Sick bats stay home alone: fruit bats practice social distancing when faced with an immunological challenge. Ann N Y Acad Sci 2021; 1505:178-190. [PMID: 33876431 PMCID: PMC9290741 DOI: 10.1111/nyas.14600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Along with its many advantages, social roosting imposes a major risk of pathogen transmission. How social animals reduce this risk is poorly documented. We used lipopolysaccharide challenge to imitate bacterial infection in both a captive and a free‐living colony of an extremely social, long‐lived mammal—the Egyptian fruit bat. We monitored behavioral and physiological responses using an arsenal of methods, including onboard GPS to track foraging, acceleration sensors to monitor movement, infrared video to record social behavior, and blood samples to measure immune markers. Sick‐like (immune‐challenged) bats exhibited an increased immune response, as well as classic illness symptoms, including fever, weight loss, anorexia, and lethargy. Notably, the bats also exhibited behaviors that would reduce pathogen transfer. They perched alone and appeared to voluntarily isolate themselves from the group by leaving the social cluster, which is extremely atypical for this species. The sick‐like individuals in the open colony ceased foraging outdoors for at least two nights, thus reducing transmission to neighboring colonies. Together, these sickness behaviors demonstrate a strong, integrative immune response that promotes recovery of infected individuals while reducing pathogen transmission inside and outside the roost, including spillover events to other species, such as humans.
Collapse
Affiliation(s)
- Kelsey R Moreno
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Maya Weinberg
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Lee Harten
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Valeria B Salinas Ramos
- Department of Agriculture, University of Naples Federico II, Naples, Italy.,Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yossi Yovel
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Stockmaier S, Stroeymeyt N, Shattuck EC, Hawley DM, Meyers LA, Bolnick DI. Infectious diseases and social distancing in nature. Science 2021; 371:371/6533/eabc8881. [PMID: 33674468 DOI: 10.1126/science.abc8881] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spread of contagious pathogens critically depends on the number and types of contacts between infectious and susceptible hosts. Changes in social behavior by susceptible, exposed, or sick individuals thus have far-reaching downstream consequences for infectious disease spread. Although "social distancing" is now an all too familiar strategy for managing COVID-19, nonhuman animals also exhibit pathogen-induced changes in social interactions. Here, we synthesize the effects of infectious pathogens on social interactions in animals (including humans), review what is known about underlying mechanisms, and consider implications for evolution and epidemiology.
Collapse
Affiliation(s)
- Sebastian Stockmaier
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA.
| | | | - Eric C Shattuck
- Institute for Health Disparities Research, University of Texas at San Antonio, San Antonio, TX, USA
| | - Dana M Hawley
- Virginia Tech, Department of Biological Sciences, Blacksburg, VA, USA
| | - Lauren Ancel Meyers
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA
| | - Daniel I Bolnick
- University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, USA
| |
Collapse
|
34
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
35
|
Langwig KE, White JP, Parise KL, Kaarakka HM, Redell JA, DePue JE, Scullon WH, Foster JT, Kilpatrick AM, Hoyt JR. Mobility and infectiousness in the spatial spread of an emerging fungal pathogen. J Anim Ecol 2021; 90:1134-1141. [PMID: 33550607 PMCID: PMC8248334 DOI: 10.1111/1365-2656.13439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
Abstract
Emerging infectious diseases can have devastating effects on host communities, causing population collapse and species extinctions. The timing of novel pathogen arrival into naïve species communities can have consequential effects that shape the trajectory of epidemics through populations. Pathogen introductions are often presumed to occur when hosts are highly mobile. However, spread patterns can be influenced by a multitude of other factors including host body condition and infectiousness. White-nose syndrome (WNS) is a seasonal emerging infectious disease of bats, which is caused by the fungal pathogen Pseudogymnoascus destructans. Within-site transmission of P. destructans primarily occurs over winter; however, the influence of bat mobility and infectiousness on the seasonal timing of pathogen spread to new populations is unknown. We combined data on host population dynamics and pathogen transmission from 22 bat communities to investigate the timing of pathogen arrival and the consequences of varying pathogen arrival times on disease impacts. We found that midwinter arrival of the fungus predominated spread patterns, suggesting that bats were most likely to spread P. destructans when they are highly infectious, but have reduced mobility. In communities where P. destructans was detected in early winter, one species suffered higher fungal burdens and experienced more severe declines than at sites where the pathogen was detected later in the winter, suggesting that the timing of pathogen introduction had consequential effects for some bat communities. We also found evidence of source-sink population dynamics over winter, suggesting some movement among sites occurs during hibernation, even though bats at northern latitudes were thought to be fairly immobile during this period. Winter emergence behaviour symptomatic of white-nose syndrome may further exacerbate these winter bat movements to uninfected areas. Our results suggest that low infectiousness during host migration may have reduced the rate of expansion of this deadly pathogen, and that elevated infectiousness during winter plays a key role in seasonal transmission. Furthermore, our results highlight the importance of both accurate estimation of the timing of pathogen spread and the consequences of varying arrival times to prevent and mitigate the effects of infectious diseases.
Collapse
Affiliation(s)
- Kate E Langwig
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, USA
| | - J Paul White
- Wisconsin Department of Natural Resources, Madison, WI, USA
| | - Katy L Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | - John E DePue
- Michigan Department of Natural Resources, Baraga, MI, USA
| | | | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, USA
| |
Collapse
|
36
|
Smith CJ, Bilbo SD. Sickness and the Social Brain: Love in the Time of COVID. Front Psychiatry 2021; 12:633664. [PMID: 33692712 PMCID: PMC7937950 DOI: 10.3389/fpsyt.2021.633664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
As a highly social species, inclusion in social networks and the presence of strong social bonds are critical to our health and well-being. Indeed, impaired social functioning is a component of numerous neuropsychiatric disorders including depression, anxiety, and substance use disorder. During the current COVID-19 pandemic, our social networks are at risk of fracture and many are vulnerable to the negative consequences of social isolation. Importantly, infection itself leads to changes in social behavior as a component of "sickness behavior." Furthermore, as in the case of COVID-19, males and females often differ in their immunological response to infection, and, therefore, in their susceptibility to negative outcomes. In this review, we discuss the many ways in which infection changes social behavior-sometimes to the benefit of the host, and in some instances for the sake of the pathogen-in species ranging from eusocial insects to humans. We also explore the neuroimmune mechanisms by which these changes in social behavior occur. Finally, we touch upon the ways in which the social environment (group living, social isolation, etc.) shapes the immune system and its ability to respond to challenge. Throughout we emphasize how males and females differ in their response to immune activation, both behaviorally and physiologically.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
37
|
Wrotek S, LeGrand EK, Dzialuk A, Alcock J. Let fever do its job: The meaning of fever in the pandemic era. Evol Med Public Health 2020; 9:26-35. [PMID: 33738101 PMCID: PMC7717216 DOI: 10.1093/emph/eoaa044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Although fever is one of the main presenting symptoms of COVID-19 infection, little public attention has been given to fever as an evolved defense. Fever, the regulated increase in the body temperature, is part of the evolved systemic reaction to infection known as the acute phase response. The heat of fever augments the performance of immune cells, induces stress on pathogens and infected cells directly, and combines with other stressors to provide a nonspecific immune defense. Observational trials in humans suggest a survival benefit from fever, and randomized trials published before COVID-19 do not support fever reduction in patients with infection. Like public health measures that seem burdensome and excessive, fevers involve costly trade-offs but they can prevent infection from getting out of control. For infections with novel SARS-CoV-2, the precautionary principle applies: unless evidence suggests otherwise, we advise that fever should be allowed to run its course. Lay summary: For COVID-19, many public health organizations have advised treating fever with medicines such as acetaminophen or ibuprofen. Even though this is a common practice, lowering body temperature has not improved survival in laboratory animals or in patients with infections. Blocking fever can be harmful because fever, along with other sickness symptoms, evolved as a defense against infection. Fever works by causing more damage to pathogens and infected cells than it does to healthy cells in the body. During pandemic COVID-19, the benefits of allowing fever to occur probably outweigh its harms, for individuals and for the public at large.
Collapse
Affiliation(s)
- Sylwia Wrotek
- Department of Immunology, Nicolaus Copernicus University, Torun, Poland
| | - Edmund K LeGrand
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee Knoxville, TN, USA
| | - Artur Dzialuk
- Department of Genetics, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, USA
| |
Collapse
|
38
|
Giuliani C, Franceschi C, Luiselli D, Garagnani P, Ulijaszek S. Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biological Anthropological Approach. Adv Nutr 2020; 11:1671-1685. [PMID: 32647890 PMCID: PMC7666896 DOI: 10.1093/advances/nmaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ecological sensing and inflammation have evolved to ensure optima between organism survival and reproductive success in different and changing environments. At the molecular level, ecological sensing consists of many types of receptors located in different tissues that orchestrate integrated responses (immune, neuroendocrine systems) to external and internal stimuli. This review describes emerging data on taste and chemosensory receptors, proposing them as broad ecological sensors and providing evidence that taste perception is shaped not only according to sense epitopes from nutrients but also in response to highly diverse external and internal stimuli. We apply a biological anthropological approach to examine how ecological sensing has been shaped by these stimuli through human evolution for complex interkingdom communication between a host and pathological and symbiotic bacteria, focusing on population-specific genetic diversity. We then focus on how these sensory receptors play a major role in inflammatory processes that form the basis of many modern common metabolic diseases such as obesity, type 2 diabetes, and aging. The impacts of human niche construction and cultural evolution in shaping environments are described with emphasis on consequent biological responsiveness.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Donata Luiselli
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Cultural Heritage (DBC), Laboratory of Ancient DNA (aDNALab), Campus of Ravenna, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Stanley Ulijaszek
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Sarolidou G, Tognetti A, Lasselin J, Regenbogen C, Lundström JN, Kimball BA, Garke M, Lekander M, Axelsson J, Olsson MJ. Olfactory Communication of Sickness Cues in Respiratory Infection. Front Psychol 2020; 11:1004. [PMID: 32581919 PMCID: PMC7296143 DOI: 10.3389/fpsyg.2020.01004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Animals detect sick conspecifics by way of body odor that enables the receiver to avoid potential infectious transmission. Human observational studies also indicate that different types of disease are associated with more or less aversive smells. In addition, body odors from otherwise healthy human individuals smell more aversive as a function of experimentally induced systemic inflammation. To investigate if naturally occurring immune activation also gives rise to perceivable olfactory changes, we collected body odor samples during two nights from individuals with a respiratory infection as well as when they were healthy. We hypothesized that independent raters would rate the body odor originating from sick individuals as smelling more aversive than when the same individuals were healthy. Even though body odor samples from sick individuals nominally smelled more intense, more disgusting, and less pleasant and healthy than the body odor from the same individuals when healthy, these effects were not statistically significant. Moreover, raters filled out three questionnaires, Perceived Vulnerability to Disease, Disgust Scale, and Health Anxiety, to assess potential associations between sickness-related personality traits and body odor perception. No such association was found. Since experimentally induced inflammation have made body odors more aversive in previous studies, we discuss whether this difference between studies is due to the level of sickness or to the type of trigger of the sickness response.
Collapse
Affiliation(s)
- Georgia Sarolidou
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Tognetti
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lasselin
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Christina Regenbogen
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Research Center Jülich, Institute of Neuroscience and Medicine: Jülich Aachen Research Alliance-Institute Brain Structure Function Relationship (Institut für Neurowissenschaften und Medizin-10), Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Rheinisch Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Johan N Lundström
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Monell Chemical Senses Center, Philadelphia, PA, United States.,Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.,Stockholm University Brain Imaging Centre, Stockholm, Sweden
| | - Bruce A Kimball
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Maria Garke
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden.,Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden.,Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Lomb J, von Keyserlingk MAG, Weary DM. Behavioral changes associated with fever in transition dairy cows. J Dairy Sci 2020; 103:7331-7338. [PMID: 32475676 DOI: 10.3168/jds.2018-15969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/31/2020] [Indexed: 11/19/2022]
Abstract
Dairy cows are often diagnosed with fever without showing clinical symptoms of disease. The aim of this study was to investigate changes in feeding, social, and lying behaviors of cows with fever but without clinical disease, as compared with healthy cows. After parturition, dairy cows of mixed parities were housed in a dynamic group of 20. In the freestall pen, cows had access to 12 electronic feed bins, 2 electronic water bins, and 24 lying stalls. Feeding and social behaviors were recorded using the electronic feed bins, and lying behaviors were measured using electronic data loggers attached to the cow. Rectal body temperature was assessed on a daily basis, and fever defined as a body temperature >39.5°C. All cows were examined for metritis every third day after calving, and all other diseases (e.g., mastitis, ketosis) were diagnosed as per farm protocol. Cows with multiple days of fever (n = 8) and cows with 1 d of fever (n = 18) that were not diagnosed with a clinical disease were compared with a matched sample of healthy cows (i.e., cows that were not clinically ill and never had a fever recorded) of the same parity (categorized as primiparous vs. multiparous). Feeding, social, and lying behaviors were compared for the first 2 d of fever in cows with multiple days of fever, and the day of fever in cows with 1 d of fever. Cows of both fever groups spent less time feeding compared with controls (135 vs. 181 ± 7.6 min/d for multiple fever days, and 158 vs. 185 ± 9.7 min/d for 1 d of fever). Cows with 1 d of fever ate at a faster rate (109 vs. 91 ± 5 g/min) and had a lower number of replacements at the feed bunk (actor replacements: 9.7 vs. 14.6 ± 1.7 no./d; reactor replacements: 11.1 vs. 15.9 ± 1.6 no./d) compared with healthy controls. Overall, cows with fever showed behavioral changes such as decreased feeding time that are consistent with sickness responses described in other species.
Collapse
Affiliation(s)
- J Lomb
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Mall, Vancouver, BC, Canada V6T 1Z4
| | - M A G von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Mall, Vancouver, BC, Canada V6T 1Z4
| | - D M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Mall, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
41
|
Mayorga EJ, Ross JW, Keating AF, Rhoads RP, Baumgard LH. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology 2020; 154:73-83. [PMID: 32531658 DOI: 10.1016/j.theriogenology.2020.05.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Unfavorable weather conditions are one of the largest constraints to maximizing farm animal productivity. Heat stress (HS), in particular, compromises almost every metric of profitability and this is especially apparent in the grow-finish and reproductive aspects of the swine industry. Suboptimal production during HS was traditionally thought to result from hypophagia. However, independent of inadequate nutrient consumption, HS affects a plethora of endocrine, physiological, metabolic, circulatory, and immunological variables. Whether these changes are homeorhetic strategies to survive the heat load or are pathological remains unclear, nor is it understood if they temporally occur by coincidence or if they are chronologically causal. However, mounting evidence suggest that the origin of the aforementioned changes lie at the gastrointestinal tract. Heat stress compromises intestinal barrier integrity, and increased appearance of luminal contents in circulation causes local and systemic inflammatory responses. The resulting immune activation is seemingly the epicenter to many, if not most of the negative consequences HS has on reproduction, growth, and lactation. Interestingly, thermoregulatory and production responses to HS are only marginally related. In other words, increased body temperature indices poorly predict decreases in productivity. Further, HS induced malnutrition is also a surprisingly inaccurate predictor of productivity. Thus, selecting animals with a "heat tolerant" phenotype based solely or separately on thermoregulatory capacity or production may not ultimately increase resilience. Describing the physiology and mechanisms that underpin how HS jeopardizes animal performance is critical for developing approaches to ameliorate current production issues and requisite for generating future strategies (genetic, managerial, nutritional, and pharmaceutical) aimed at optimizing animal well-being, and improving the sustainable production of high-quality protein for human consumption.
Collapse
Affiliation(s)
- E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
42
|
Sarolidou G, Axelsson J, Kimball BA, Sundelin T, Regenbogen C, Lundström JN, Lekander M, Olsson MJ. People expressing olfactory and visual cues of disease are less liked. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190272. [PMID: 32306878 DOI: 10.1098/rstb.2019.0272] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For humans, like other social animals, behaviour acts as a first line of defence against pathogens. A key component is the ability to detect subtle perceptual cues of sick conspecifics. The present study assessed the effects of endotoxin-induced olfactory and visual sickness cues on liking, as well as potential involved mechanisms. Seventy-seven participants were exposed to sick and healthy facial pictures and body odours from the same individual in a 2 × 2 factorial design while disgust-related facial electromyography (EMG) was recorded. Following exposure, participants rated their liking of the person presented. In another session, participants also answered questionnaires on perceived vulnerability to disease, disgust sensitivity and health anxiety. Lower ratings of liking were linked to both facial and body odour disease cues as main effects. Disgust, as measured by EMG, did not seem to be the mediating mechanism, but participants who perceived themselves as more prone to disgust, and as more vulnerable to disease, liked presented persons less irrespectively of their health status. Concluding, olfactory and visual sickness cues that appear already a few hours after the experimental induction of systemic inflammation have implications for human sociality and may as such be a part of a behavioural defence against disease. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Georgia Sarolidou
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - John Axelsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden.,Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bruce A Kimball
- USDA-APHIS-WS, National Wildlife Research Center, Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Tina Sundelin
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Christina Regenbogen
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Sweden.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM-3), Research Center Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Johan N Lundström
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Sweden.,Department of Psychology, University of Pennsylvania, Philadelphia, USA.,Stockholm University Brain Imaging Centre, Stockholm, Sweden.,Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Mats Lekander
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden.,Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| |
Collapse
|
43
|
Stockmaier S, Bolnick DI, Page RA, Carter GG. Sickness effects on social interactions depend on the type of behaviour and relationship. J Anim Ecol 2020; 89:1387-1394. [DOI: 10.1111/1365-2656.13193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Stockmaier
- Department of Integrative Biology University of Texas at Austin Austin TX USA
- Smithsonian Tropical Research Institute Balboa Panama
| | - Daniel I. Bolnick
- Department of Integrative Biology University of Texas at Austin Austin TX USA
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| | | | - Gerald G. Carter
- Smithsonian Tropical Research Institute Balboa Panama
- Department of Evolution, Ecology and Organismal Biology The Ohio State University Columbus OH USA
| |
Collapse
|
44
|
Kessler SE. Why Care: Complex Evolutionary History of Human Healthcare Networks. Front Psychol 2020; 11:199. [PMID: 32116974 PMCID: PMC7031495 DOI: 10.3389/fpsyg.2020.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
One of the striking features of human social complexity is that we provide care to sick and contagious individuals, rather than avoiding them. Care-giving is a powerful strategy of disease control in human populations today; however, we are not the only species which provides care for the sick. Widespread reports occurring in distantly related species like cetaceans and insects suggest that the building blocks of care for the sick are older than the human lineage itself. This raises the question of what evolutionary processes drive the evolution of such care in animals, including humans. I synthesize data from the literature to evaluate the diversity of care-giving behaviors and conclude that across the animal kingdom there appear to be two distinct types of care-behaviors, both with separate evolutionary histories: (1) social care behaviors benefitting a sick individual by promoting healing and recovery and (2) community health behaviors that control pathogens in the environment and reduce transmission within the population. By synthesizing literature from psychology, anthropology, and biology, I develop a novel hypothesis (Hominin Pathogen Control Hypothesis) to explain how these two distinct sets of behaviors evolved independently then merged in the human lineage. The hypothesis suggests that social care evolved in association with offspring care systems whereas community health behaviors evolved as a type of niche construction. These two types of behaviors merged in humans to produce complex, multi-level healthcare networks in humans. Moreover, each type of care increases selection for the other, generating feedback loops that selected for increasing healthcare behaviors over time. Interestingly, domestication processes may have contributed to both social care and community health aspects of this process.
Collapse
Affiliation(s)
- Sharon E. Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Department of Anthropology, Durham University, Durham, United Kingdom
| |
Collapse
|
45
|
Troha K, Ayres JS. Metabolic Adaptations to Infections at the Organismal Level. Trends Immunol 2020; 41:113-125. [PMID: 31959515 DOI: 10.1016/j.it.2019.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Metabolic processes occurring during host-microbiota-pathogen interactions can favorably or negatively influence host survival during infection. Defining the metabolic needs of the three players, the mechanisms through which they acquire nutrients, and whether each participant cooperates or competes with each other to meet their own metabolic demands during infection has the potential to reveal new approaches to treat disease. Here, we review topical findings in organismal metabolism and infection and highlight four emerging lines of investigation: how host-microbiota metabolic partnerships protect against infection; competition for glucose between host and pathogen; significance of infection-induced anorexia; and redefinition of the role of iron during infection. We also discuss how these discoveries shape our understanding of infection biology and their likely therapeutic value.
Collapse
Affiliation(s)
- Katia Troha
- Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Williams ACDC. Persistence of pain in humans and other mammals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190276. [PMID: 31544608 PMCID: PMC6790389 DOI: 10.1098/rstb.2019.0276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/23/2022] Open
Abstract
Evolutionary models of chronic pain are relatively undeveloped, but mainly concern dysregulation of an efficient acute defence, or false alarm. Here, a third possibility, mismatch with the modern environment, is examined. In ancestral human and free-living animal environments, survival needs urge a return to activity during recovery, despite pain, but modern environments allow humans and domesticated animals prolonged inactivity after injury. This review uses the research literature to compare humans and other mammals, who share pain neurophysiology, on risk factors for pain persistence, behaviours associated with pain, and responses of conspecifics to behaviours. The mammal populations studied are mainly laboratory rodents in pain research, and farm and companion animals in veterinary research, with observations of captive and free-living primates. Beyond farm animals and rodent models, there is virtually no evidence of chronic pain in other mammals. Since evidence is sparse, it is hard to conclude that it does not occur, but its apparent absence is compatible with the mismatch hypothesis. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Amanda C. de C. Williams
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
47
|
Emotional expressions of the sick face. Brain Behav Immun 2019; 80:286-291. [PMID: 30953768 DOI: 10.1016/j.bbi.2019.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 11/23/2022] Open
Abstract
To handle the substantial threat posed by infectious diseases, behaviors that promote avoidance of contagion are crucial. Based on the fact that sickness depresses mood and that emotional expressions reveal inner states of individuals to others, which in turn affect approach/avoidance behaviors, we hypothesized that facial expressions of emotion may play a role in sickness detection. Using an experimental model of sickness, 22 volunteers were intravenously injected with either endotoxin (lipopolysaccharide; 2 ng/kg body weight) and placebo using a randomized cross-over design. The volunteers were two hours later asked to keep a relaxed expression on their face while their facial photograph was taken. To assess the emotional expression of the sick face, 49 participants were recruited and were asked to rate the emotional expression of the facial photographs of the volunteers when sick and when healthy. Our results indicate that the emotional expression of faces changed two hours after being made temporarily sick by an endotoxin injection. Sick faces were perceived as more sick/less healthy, but also as expressing more negative emotions, such as sadness and disgust, and less happiness and surprise. The emotional expressions mediated 59.1% of the treatment-dependent change in rated health. The inclusion of physical features associated with emotional expressions to the mediation analysis supported these results. We conclude that emotional expressions may contribute to detection and avoidance of infectious individuals and thereby be part of a behavioral defense against disease.
Collapse
|
48
|
Abstract
Although living in social groups offers many advantages, it comes at a cost of increased transmissible disease. The behavioral immune system (BIS) is thought to have evolved as a first line of defense against such infections. It acts by minimizing the contact of yet uninfected hosts with potential pathogens. The BIS has been observed in a wide range of animals including insects, amphibians and mammals, but most research has focused on humans where the BIS is guided by complex cognitive and emotional processing. When researchers discuss the evolutionary origin of the BIS, they assess how it raises individual fitness. What would happen though if we shift our attention to the evolutionary unit of selection – the gene? Success would be measured as the change in the gene’s prevalence in the entire population, and additional behaviors would come to our attention – those that benefit relatives, i.e., behaviors that raise inclusive fitness. One widely-recognized example of the inclusive BIS is social immunity, which is prevalent among eusocial organisms such as bees and ants. Their colonies engage in a collaborative protective behavior such as grooming and the removal of infected members from the nest. Another example may be sickness behavior, which includes the behavioral, cognitive and emotional symptoms that accompany infection, such as fatigue, and loss of appetite and social interest. My colleague and I recently suggested that sickness behavior has evolved because it reduces the direct and indirect contact between an infected host and its healthy kin – improving inclusive fitness. These additional behaviors are not carried out by the healthy individuals, but rather by whole communities in the first case, and by already infected individuals in the second. Since they step beyond the classical definition of BIS, it may be useful to broaden the term to the inclusive behavioral immune system.
Collapse
Affiliation(s)
- Keren Shakhar
- Department of Psychology, College of Management Academic Studies, Rishon LeTsiyon, Israel
| |
Collapse
|
49
|
Martins R, Carlos AR, Braza F, Thompson JA, Bastos-Amador P, Ramos S, Soares MP. Disease Tolerance as an Inherent Component of Immunity. Annu Rev Immunol 2019; 37:405-437. [PMID: 30673535 DOI: 10.1146/annurev-immunol-042718-041739] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.
Collapse
Affiliation(s)
- Rui Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | - Faouzi Braza
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | | | - Susana Ramos
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | |
Collapse
|
50
|
No evidence for kin protection in the expression of sickness behaviors in house mice. Sci Rep 2018; 8:16682. [PMID: 30420741 PMCID: PMC6232183 DOI: 10.1038/s41598-018-35174-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/31/2018] [Indexed: 12/01/2022] Open
Abstract
When infected, animals change their behaviors in several ways, including by decreasing their activity, their food and water intake, and their interest in social interactions. These behavioral alterations are collectively called sickness behaviors and, for several decades, the main hypotheses put forward to explain this phenomenon were that engaging in sickness behaviors facilitated the fever response and improved the likelihood of host survival. However, a new hypothesis was recently proposed suggesting that engaging in sickness behaviors may serve to protect kin. We tested this kin protection hypothesis by combining a field and a laboratory experiment in house mice. In both experiments, we induced sickness behaviors by administration of a pro-inflammatory agent. In the field experiment, we then collected genetic data and assessed whether relatedness affected the intensity of sickness behaviors. In the lab experiment, we manipulated relatedness in small social groups and assessed whether having a closely related individual (a sibling) in the group altered social interactions or visits to common resources (such as food and water containers) once immune-challenged. Our results do not support the kinship protection hypothesis and therefore advance our understanding of why such an apparently costly set of behavioral changes would be evolutionarily maintained.
Collapse
|