1
|
Fang CC, Rajakumar A, Kenny A, Mueller UG, Abouheif E, Stein D. Embryogenesis in Myrmicine Ants Combines Features of Short Germ-Band Development With a Progressive Mode of Segmentation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025. [PMID: 40351059 DOI: 10.1002/jez.b.23296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
Ants exhibit complex social organization, morphologically and functionally distinct castes, and the exploitation of diverse ecological niches. How these features have influenced embryonic development relative to other insects remains unclear. Insect embryogenesis has been classified into three modes: In long germ-band development, exemplified by the fruit fly Drosophila melanogaster, segments along the entire anterior-posterior axis of the embryonic primordium are established almost simultaneously, before gastrulation, with the initial embryonic primordium surrounding almost the entire volume of the egg. In short and intermediate germ-band modes, the embryonic primordium occupies a smaller proportion of the egg surface, with anterior segments initially specified, and remaining segments being added sequentially from a posterior growth zone. Here, we examine embryogenesis in three myrmicine ants, the fungus-gardening ants Atta texana and Mycocepurus smithii, and the red imported fire ant Solenopsis invicta. We find that these ant embryos combine features of short germ-band development with a newly characterized progressive pattern of segmentation that has been associated with some long germ-band-developing insects. Despite similarities in the size of ant and Drosophila eggs, embryogenesis in the three ant species is 10- to 20-fold longer than in Drosophila and is also significantly longer than in two other hymenopteran species that have been studied, the honeybee Apis mellifera and the jewel wasp Nasonia vitripennis. Moreover, the embryos produced by A. texana foundress queens develop to first instar larvae 25% faster than embryos produced by mature queens. We discuss these results in the context of the eusocial lifestyle of ants.
Collapse
Affiliation(s)
- Chi-Chun Fang
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA
| | | | - Andrew Kenny
- Department of Molecular Biosciences, The University of Texas at Austin, Texas, USA
| | - Ulrich G Mueller
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA
| | - Ehab Abouheif
- Department of Biology, McGill University, Quebec, Canada
| | - David Stein
- Department of Molecular Biosciences, The University of Texas at Austin, Texas, USA
| |
Collapse
|
2
|
Talross GJS, Carlson JR. New dimensions in the molecular genetics of insect chemoreception. Trends Genet 2025:S0168-9525(25)00078-2. [PMID: 40340097 DOI: 10.1016/j.tig.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
Chemoreception is the foundation of olfaction and taste, which in insects underlie the detection of humans to whom they spread disease and crops that they ravage. Recent advances have provided clear and in some cases surprising new insights into the molecular genetics of chemoreception. We describe mechanisms that govern the choice of a single Odorant receptor gene by an olfactory receptor neuron in Drosophila. We highlight genetic and epigenetic mechanisms by which chemoreceptor expression can be modulated. Exitrons, RNA editing, and pseudo-pseudogenes in chemosensory systems are described. We summarize key insights from the recent structural determinations of odorant and taste receptors. Finally, new molecular components of chemosensory systems, including long noncoding RNAs, are described.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Zhang W, Nie Y, Xu T, Li Y, Xu Y, Chen X, Shi P, Liu F, Zhao H, Ma Q, Xu J. Evolutionary Process Underlying Receptor Gene Expansion and Cellular Divergence of Olfactory Sensory Neurons in Honeybees. Mol Biol Evol 2025; 42:msaf080. [PMID: 40172919 PMCID: PMC12001030 DOI: 10.1093/molbev/msaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Olfaction is crucial for animals' survival and adaptation. Unlike the strict singular expression of odorant receptor (OR) genes in vertebrate olfactory sensory neurons (OSNs), insects exhibit complex OR gene expression patterns. In honeybees (Apis mellifera), a significant expansion of OR genes implies a selection preference for the olfactory demands of social insects. However, the mechanisms underlying receptor expression specificity and their contribution to OSN divergence remain unclear. In this study, we used single-nucleus multiomics profiling to investigate the transcriptional regulation of OR genes and the cellular identity of OSNs in A. mellifera. We identified three distinct OR expression patterns, singular OR expression, co-expression of multiple OR genes with a single active promoter, and co-expression of multiple OR genes with multiple active promoters. Notably, ∼50% of OSNs co-expressed multiple OR genes, driven by polycistronic transcription of tandemly duplicated OR genes via a single active promoter. In these OSNs, their identity was determined by the first transcribed receptor. The divergent activation of the promoter for duplicated OR genes ensures the coordinated increased divergence of OSN population. By integrating multiomics data with genomic architecture, we illustrate how fundamental genetic mechanisms drive OR gene expansion and influence flanking regulatory elements, ultimately contributing to the cellular divergence of OSNs. Our findings highlight the interplay between gene duplication and regulatory evolution in shaping OSN diversity, providing new insights into the evolution and adaptation of olfaction in social insects. This study also sheds light on how genetic innovations contribute to the evolution of complex traits.
Collapse
Affiliation(s)
- Weixing Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yiheng Li
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yicong Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaoyong Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510000, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510000, China
| | - Qing Ma
- Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
5
|
Lee JW, Lee KA, Jang IH, Nam K, Kim SH, Kyung M, Cho KC, Lee JH, You H, Kim EK, Koh YH, Lee H, Park J, Hwang SY, Chung YW, Ryu CM, Kwon Y, Roh SH, Ryu JH, Lee WJ. Microbiome-emitted scents activate olfactory neuron-independent airway-gut-brain axis to promote host growth in Drosophila. Nat Commun 2025; 16:2199. [PMID: 40038269 PMCID: PMC11880416 DOI: 10.1038/s41467-025-57484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
While it is now accepted that the microbiome has strong impacts on animal growth promotion, the exact mechanism has remained elusive. Here we show that microbiome-emitted scents contain volatile somatotrophic factors (VSFs), which promote host growth in an olfaction-independent manner in Drosophila. We found that inhaled VSFs are readily sensed by olfactory receptor 42b non-neuronally expressed in subsets of tracheal airway cells, enteroendocrine cells, and enterocytes. Olfaction-independent sensing of VSFs activates the airway-gut-brain axis by regulating Hippo, FGF and insulin-like growth factor signaling pathways, which are required for airway branching, organ oxygenation and body growth. We found that a mutant microbiome that did not produce (2R,3R)-2,3-butanediol failed to activate the airway-gut-brain axis for host growth. Importantly, forced inhalation of (2R,3R)-2,3-butanediol completely reversed these defects. Our discovery of contact-independent and olfaction-independent airborne interactions between host and microbiome provides a novel perspective on the role of the airway-gut-brain axis in microbiome-controlled host development.
Collapse
Affiliation(s)
- Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Saeloun Bio Inc., Seoul, South Korea
| | - In-Hwan Jang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kibum Nam
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Hee Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Minsoo Kyung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Chan Cho
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyejin You
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Kyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young Hoon Koh
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hansol Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Junsun Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea.
| |
Collapse
|
6
|
Ma B, Chang H, Guo M, Ai D, Wang J, Chen R, Liu X, Ren B, Hansson BS, Wang G. Yeast-derived volatiles orchestrate an insect-yeast mutualism with oriental armyworm moths. Nat Commun 2025; 16:1479. [PMID: 39929802 PMCID: PMC11811291 DOI: 10.1038/s41467-025-56354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Interactions among insects, plants, and microorganisms are fundamental to ecosystem dynamics, with floral nectar and pollen serving as key resources for various organisms. Yeasts, such as Metschnikowia reukaufii, commonly found in nectar, influence nectarial attraction through volatile compounds (VOCs), yet the underlying biological mechanisms remain elusive. Here, we show that isoamyl alcohol, a prominent yeast VOC, attracts oriental armyworm moths (Mythimna separata) to pollen-rich, yeast-fermented nectar. In a series of electrophysiological and behavioral assays, we show that isoamyl alcohol activates a single class of highly specific olfactory sensory neurons expressing the olfactory receptor MsepOR8. In the moth antennal lobe, these neurons target the AM2 glomerulus, which responds to isoamyl alcohol. Genetic disruption of MsepOR8 leads to complete abolition of both physiological and behavioral responses to isoamyl alcohol, resulting in an impaired ability to locate nectar sources. Moreover, we show that isoamyl alcohol-induced foraging behavior fosters a mutualistic relationship between yeast and moths to some extent, enhancing yeast dispersal and increasing moth reproductive success. Our results unveil a highly specific mechanism by which a yeast-derived VOC facilitates insect-yeast mutualism, providing insights into insect-microbe interactions within pollination ecosystems.
Collapse
Affiliation(s)
- Baiwei Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hetan Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengbo Guo
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects; Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Dong Ai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiayu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Run Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolan Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Moreira-Soto RD, Hansson BS, Knaden M. Oviposition Dynamics and Niche Utilization in Two Sympatric Drosophila Species. J Chem Ecol 2025; 51:21. [PMID: 39904815 PMCID: PMC11794365 DOI: 10.1007/s10886-025-01576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Many Drosophila species coexist by sharing their feeding and breeding sites, which may influence their oviposition choices in an interspecies social context. Whether and where to lay eggs is a crucial decision for female flies as it influences the success of their offspring, by minimizing the risk of predation, competition, or cannibalism. Significant gaps exist in our understanding of Drosophila oviposition dynamics in co-occurring species. Here we tested oviposition strategies of Drosophila melanogaster and its close relative Drosophila simulans under different conditions, to assess whether a single female would prefer to oviposit separately or together with another female, be it a conspecific or not. We find that ovipositing females, regardless whether they are conspecifics or not, prefer to oviposit at the same site. This might suggest that the flies regard the benefits of sharing oviposition sites as higher than the potential risks of competition or cannibalism. The willingness to share oviposition sites was lower when the nutritional value of the medium was increased by adding yeast, and was lost when flies were allowed to lay the eggs consecutively, instead of being tested together. The latter might be explained by our additional finding that females become attracted by the presence of other females on oviposition substrates and that this attraction is partly driven by visual cues. Ovipositing in groups might facilitate intra- and interspecific social feeding of same age offspring, as well as enrichment of microbes. However, this cooperation dynamic might change if another female's offspring is already present, as it might be perceived as danger of competition or cannibalism.
Collapse
Affiliation(s)
- Rolando D Moreira-Soto
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Universidad de Costa Rica, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, San José, Costa Rica
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
8
|
Fernández-Chiappe F, Ocker GK, Younger MA. Prospects on non-canonical olfaction in the mosquito and other organisms: why co-express? CURRENT OPINION IN INSECT SCIENCE 2025; 67:101291. [PMID: 39471910 DOI: 10.1016/j.cois.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The Aedes aegypti mosquito utilizes olfaction during the search for humans to bite. The attraction to human body odor is an innate behavior for this disease-vector mosquito. Many well-studied model species have olfactory systems that conform to a particular organization that is sometimes referred to as the 'one-receptor-to-one-neuron' organization because each sensory neuron expresses only a single type of olfactory receptor that imparts the neuron's chemical selectivity. This sensory architecture has become the canon in the field. This review will focus on the recent finding that the olfactory system of Ae. aegypti has a different organization, with multiple olfactory receptors co-expressed in many of its olfactory sensory neurons. We will discuss the canonical organization and how this differs from the non-canonical organization, examine examples of non-canonical olfactory systems in other species, and discuss the possible roles of receptor co-expression in odor coding in the mosquito and other organisms.
Collapse
Affiliation(s)
- Florencia Fernández-Chiappe
- Department of Biology, Boston University, Boston, MA 02143, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA
| | - Gabriel K Ocker
- Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA; Department of Mathematics and Statistics, Boston University, Boston, MA 02143, USA
| | - Meg A Younger
- Department of Biology, Boston University, Boston, MA 02143, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA.
| |
Collapse
|
9
|
Pal Mahadevan V, Galagovsky D, Knaden M, Hansson BS. Preference for and resistance to a toxic sulfur volatile opens up a unique niche in Drosophila busckii. Nat Commun 2025; 16:767. [PMID: 39824833 PMCID: PMC11742422 DOI: 10.1038/s41467-025-55971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The ability to tolerate otherwise toxic compounds can open up unique niches in nature. Among drosophilid flies, few examples of such adaptations are known and those which are known are typically from highly host-specific species. Here we show that the human commensal species Drosophila busckii uses dimethyldisulfide (DMDS) as a key mediator in its host selection. Despite DMDS's neurotoxic properties, D. busckii has evolved tolerance towards high concentrations and uses the compound as an olfactory cue to pinpoint food and oviposition sites. This adaptability is likely linked to insensitivity of the enzyme complex cytochrome c oxidase (COX), which is a DMDS target in other insects. Our findings position D. busckii as a potential model for studying resistance to toxic gases affecting COX and offers insight into evolutionary adaptations within specific ecological contexts.
Collapse
Affiliation(s)
- Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Diego Galagovsky
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
10
|
Sadanandappa MK, Bosco G. Protocol for studying parasitoid-induced long-term effects in Drosophila. STAR Protoc 2024; 5:103438. [PMID: 39499614 PMCID: PMC11568782 DOI: 10.1016/j.xpro.2024.103438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Drosophila and its parasitoids provide an ecologically relevant model for studying host-parasitoid biology, focusing on the behavioral and physiological responses involved in host defensive strategies and parasitoid countermeasures. Here, we outline a protocol for rearing Pachycrepoideus, a pupal parasitoid wasp, and a behavioral assay to assess the long-term impact of parasitoid exposure on adult Drosophila. We detail the steps for preparing and cohabiting Drosophila with the wasps, documenting egg-laying, and analyzing reproductive responses and eclosion in fruit flies. For complete details on the use and execution of this protocol, please refer to Sadanandappa et al.1.
Collapse
Affiliation(s)
- Madhumala K Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
11
|
Tom MT, Brand P, Bucks S, Zhang J, Escobar Huezo ME, Hansson BS, Bisch-Knaden S. Gene expansion in the hawkmoth Manduca sexta drives evolution of food-associated odorant receptors. iScience 2024; 27:111317. [PMID: 39640564 PMCID: PMC11617253 DOI: 10.1016/j.isci.2024.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In insects, odorant receptors (ORs) are required for the detection of most olfactory cues. We investigated the function of a clade of four duplicated ORs in the hawkmoth Manduca sexta and found that these paralogs encode broadly tuned receptors with overlapping but distinct response spectra. Two paralogs, which arose after divergence from a related lineage, show high sensitivity to floral esters released by a nectar-rich plant frequently visited by M. sexta. Functional imaging in mutant moths lacking one of the paralogs suggests that olfactory sensory neurons expressing this OR target a previously identified feeding-associated glomerulus in the primary olfactory center of the brain. However, only the response of this glomerulus to the single ligand unique to the now mutated OR disappeared, suggesting neuronal coexpression of the paralogs. Our results suggest a link between the studied OR expansion and enhanced detection of odors emitted by valuable nectar sources in M. sexta.
Collapse
Affiliation(s)
- Megha Treesa Tom
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Philipp Brand
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Sascha Bucks
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
12
|
Sadanandappa MK, Ahmad S, Mohanraj R, Ratnaparkhi M, Sathyanarayana SH. Defensive tactics: lessons from Drosophila. Biol Open 2024; 13:bio061609. [PMID: 39718046 PMCID: PMC11695572 DOI: 10.1242/bio.061609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation. In response, parasitoid wasps have developed countermeasures, contributing to an ongoing arms race between host and parasite. This article reviews the anti-parasitoid behaviors of Drosophila, focusing on their role in reducing parasitization and enhancing host survival and fitness. It also explores the molecular and neuronal circuit mechanisms that underlie these behaviors, using Drosophila as an ecologically relevant model for studying host-parasitoid interactions. Furthermore, the article discusses the potential applications of these findings in biological pest control and highlights key unresolved questions in the field.
Collapse
Affiliation(s)
- Madhumala K. Sadanandappa
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| | | | - Robinson Mohanraj
- Biomedical Science, Nitte University for Science Education and Research, Mangalore, Karnataka 575018, India
| | | | - Shivaprasad H. Sathyanarayana
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| |
Collapse
|
13
|
Saad MZH, Ryan V WG, Edwards CA, Szymanski BN, Marri AR, Jerow LG, McCullumsmith R, Bamber BA. Olfactory combinatorial coding supports risk-reward decision making in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599745. [PMID: 39484578 PMCID: PMC11526860 DOI: 10.1101/2024.06.19.599745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Olfactory-driven behaviors are essential for animal survival, but mechanisms for decoding olfactory inputs remain poorly understood. We have used whole-network Ca ++ imaging to study olfactory coding in Caenorhabditis elegans. We show that the odorant 1-octanol is encoded combinatorially in the periphery as both an attractant and a repellant. These inputs are integrated centrally, and their relative strengths determine the sensitivity and valence of the behavioral response through modulation of locomotory reversals and speed. The balance of these pathways also dictates the activity of the locomotory command interneurons, which control locomotory reversals. This balance serves as a regulatory node for response modulation, allowing C. elegans to weigh opportunities and hazards in its environment when formulating behavioral responses. Thus, an odorant can be encoded simultaneously as inputs of opposite valence, focusing attention on the integration of these inputs in determining perception, response, and plasticity.
Collapse
|
14
|
Otárola-Jiménez J, Nataraj N, Bisch-Knaden S, Hansson BS, Knaden M. Oviposition experience affects oviposition preference in Drosophila melanogaster. iScience 2024; 27:110472. [PMID: 39129830 PMCID: PMC11315110 DOI: 10.1016/j.isci.2024.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Learning, memorizing, and recalling of potential ovipositing sites can influence oviposition preference. Classical conditioning experiments have shown that vinegar flies can learn the association of olfactory, gustatory, or visual stimuli with either positive or negative unconditioned stimuli. However, less is known about whether similar associations are formed in an ecologically more relevant context like during oviposition. Our experiments reveal that Drosophila melanogaster females increase their preference for substrates they have already experienced. However, this change of preference requires that the flies not only smelled or touched the substrates but also oviposited on them. We furthermore show that such an experience results in long-term memory lasting for at least 4 days, i.e., a duration that so far was shown only for aversive conditioning. Our study thus reveals a different form of associative learning in D. melanogaster that might be highly relevant for settling novel ecological niches.
Collapse
Affiliation(s)
- Julio Otárola-Jiménez
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Chemistry School, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
| | - Nandita Nataraj
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
15
|
Ali MZ, Anushree, Ahsan A, Ola MS, Haque R, Ahsan J. Ionotropic receptors mediate olfactory learning and memory in Drosophila. INSECT SCIENCE 2024; 31:1249-1269. [PMID: 38114448 DOI: 10.1111/1744-7917.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1, Ir84aMI00501, and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
16
|
Fonseca PM, Robe LJ, Carvalho TL, Loreto ELS. Characterization of the chemoreceptor repertoire of a highly specialized fly with comparisons to other Drosophila species. Genet Mol Biol 2024; 47:e20220383. [PMID: 38885260 PMCID: PMC11182316 DOI: 10.1590/1678-4685-gmb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
To explore the diversity of scenarios in nature, animals have evolved tools to interact with different environmental conditions. Chemoreceptors are an important interface component and among them, olfactory receptors (ORs) and gustatory receptors (GRs) can be used to find food and detect healthy resources. Drosophila is a model organism in many scientific fields, in part due to the diversity of species and niches they occupy. The contrast between generalists and specialists Drosophila species provides an important model for studying the evolution of chemoreception. Here, we compare the repertoire of chemoreceptors of different species of Drosophila with that of D. incompta, a highly specialized species whose ecology is restricted to Cestrum flowers, after reporting the preferences of D. incompta to the odor of Cestrum flowers in olfactory tests. We found evidence that the chemoreceptor repertoire in D. incompta is smaller than that presented by species in the Sophophora subgenus. Similar patterns were found in other non-Sophophora species, suggesting the presence of underlying phylogenetic trends. Nevertheless, we also found autapomorphic gene losses and detected some genes that appear to be under positive selection in D. incompta, suggesting that the specific lifestyle of these flies may have shaped the evolution of individual genes in each of these gene families.
Collapse
Affiliation(s)
- Pedro Mesquita Fonseca
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Lizandra Jaqueline Robe
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Tuane Letícia Carvalho
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| |
Collapse
|
17
|
Wang Q, Smid HM, Dicke M, Haverkamp A. The olfactory system of Pieris brassicae caterpillars: from receptors to glomeruli. INSECT SCIENCE 2024; 31:469-488. [PMID: 38105530 DOI: 10.1111/1744-7917.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
18
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
19
|
Dweck HKM, Rutledge CE. The subapical labial sensory organ of spotted lanternfly Lycorma delicatula. Open Biol 2024; 14:230438. [PMID: 38531420 PMCID: PMC10965328 DOI: 10.1098/rsob.230438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Deciphering how spotted lanternfly (SLF), an invasive polyphagous planthopper in North America, engages with its environment is a pressing issue with fundamental biological significance and economic importance. This interaction primarily depends on olfaction. However, the cellular basis of olfaction in SLF remains elusive. Here we investigate the neuronal and functional organization of the subapical labial sensory organ using scanning electron microscopy and electrophysiological recordings. This organ is believed to supply planthoppers with crucial sensory information that influences their subsequent feeding behaviour. We find in SLF that this organ comprises two identical placoid sensilla, each housing two distinct neurons. The A neuron displays a remarkable sensitivity to changes in airflow speed. Importantly, the same neuron also exhibits robust excitatory responses exclusively to three aldehydes out of a diverse pool of 85 tested odorants and inhibitory responses to 62 other odorants. By contrast, the B neuron solely serves as an olfactory detector, showing strong excitatory responses to 17 odorants and inhibitory responses to only three. The results provide a potential cellular basis for the behavioural responses of SLF to its ecologically relevant stimuli. Our study also identifies new odorants that may be useful for managing this serious pest.
Collapse
Affiliation(s)
- Hany K. M. Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire E. Rutledge
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| |
Collapse
|
20
|
Sadanandappa MK, Bosco G. Parasitoid cues modulate Drosophila germline development and stem cell proliferation. Cell Rep 2024; 43:113657. [PMID: 38175752 DOI: 10.1016/j.celrep.2023.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Environmental factors influence an organism's reproductive ability by regulating germline development and physiology. While the reproductive adaptations in response to extrinsic stress cues offer fitness and survival advantages to individuals, the mechanistic understanding of these modifications remains unclear. Here, we find that parasitoid wasps' stress signaling regulates Drosophila melanogaster oogenesis. We show that fruit flies dwelling in the wasp-infested area elevate their fecundity, and the observed reproductive response is specific to Pachycrepoideus sp., a pupal parasitoid wasp. Pachycrepoideus-specific olfactory and visual cues recruit the signaling pathways that promote germline stem cell proliferation and accelerate follicle development, increasing egg production in Drosophila females. Downregulation of signaling engaged in oocyte development by shifting flies to a non-wasp-infested environment increases apoptosis of the developing follicles. Thus, this study establishes host germline responsiveness to parasitoid-specific signals and supports a predator strategy to increase hosts for infection.
Collapse
Affiliation(s)
- Madhumala K Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
21
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
22
|
Couto A, Marty S, Dawson EH, d'Ettorre P, Sandoz JC, Montgomery SH. Evolution of the neuronal substrate for kin recognition in social Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:2226-2242. [PMID: 37528574 DOI: 10.1111/brv.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Simon Marty
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Erika H Dawson
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
- Institut Universitaire de France (IUF), 103 Boulevard Saint-Michel, Paris, 75005, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
23
|
Horn CJ, Robinson S, Tang H, Luong LT. Ectoparasitic mites exert non-consumptive effects on the larvae of a fruit fly host. Parasitology 2023; 150:934-938. [PMID: 37565500 PMCID: PMC10577651 DOI: 10.1017/s0031182023000744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The mere presence of predators or parasites can negatively impact the fitness of prey or hosts. Exposure to predators during an organism's development can have deleterious effects on juvenile survival and the subsequent adult stage. Currently, it is unknown if parasites have analogous impacts on host larval stages and whether these effects carry over into other subsequent life stages. However, parasites may be exerting widespread yet underestimated non-consumptive effects (NCEs). We tested if Drosophila nigrospiracula larvae avoid pupating near mite cues (caged Macrocheles subbadius) in arena experiments, and measured the rate of pupation in arenas with mites and arenas without mites. Larvae disproportionately pupated on the side of arenas that lacked mite cues. Furthermore, fewer larvae successfully pupated in arenas containing mites cues compared to arenas without mite cues. We found that ectoparasitic mites exert NCEs on Drosophila larvae, even though the larval stage is not susceptible to infection. We discuss these results in the context of parasite impacts on host population growth in an infectious world.
Collapse
Affiliation(s)
- Collin J. Horn
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton, AB, Canada
| | - Sarah Robinson
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton, AB, Canada
| | - Holly Tang
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton, AB, Canada
| | - Lien T. Luong
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton, AB, Canada
| |
Collapse
|
24
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
25
|
Mariette J, Noël A, Louis T, Montagné N, Chertemps T, Jacquin-Joly E, Marion-Poll F, Sandoz JC. Transcuticular calcium imaging as a tool for the functional study of insect odorant receptors. Front Mol Neurosci 2023; 16:1182361. [PMID: 37645702 PMCID: PMC10461100 DOI: 10.3389/fnmol.2023.1182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Amélie Noël
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Thierry Louis
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Nicolas Montagné
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| |
Collapse
|
26
|
Benton R, Dahanukar A. Chemosensory Coding in Drosophila Single Sensilla. Cold Spring Harb Protoc 2023; 2023:107803-pdb.top. [PMID: 36446528 DOI: 10.1101/pdb.top107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chemical senses-smell and taste-detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila melanogaster provides an attractive model to study chemosensory coding because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, nearly all peripheral chemosensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs housed in specialized hairs called sensilla. Here, we briefly review anatomical, molecular, and physiological properties of adult Drosophila olfactory and gustatory systems and provide background to methods for electrophysiological recordings of ligand-evoked activity from different types of chemosensory sensilla.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anupama Dahanukar
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
27
|
Walker WB, Mori BA, Cattaneo AM, Gonzalez F, Witzgall P, Becher PG. Comparative transcriptomic assessment of the chemosensory receptor repertoire of Drosophila suzukii adult and larval olfactory organs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101049. [PMID: 36528931 DOI: 10.1016/j.cbd.2022.101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.
Collapse
Affiliation(s)
- William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA.
| | - Boyd A Mori
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Alberto M Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Research and Development, ChemTica Internacional S.A., Apdo. 640-3100, Santo Domingo, Heredia, Costa Rica.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
28
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
29
|
Sadanandappa MK, Sathyanarayana SH, Bosco G. Parasitoid Wasp Culturing and Assay to Study Parasitoid-induced Reproductive Modifications in Drosophila. Bio Protoc 2023; 13:e4582. [PMID: 36789084 PMCID: PMC9901478 DOI: 10.21769/bioprotoc.4582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/15/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023] Open
Abstract
In nature, parasitoid wasp infections are a major cause of insect mortality. Parasitoid wasps attack a vast range of insect species to lay their eggs. As a defense, insects evolved survival strategies to protect themselves from parasitoid infection. While a growing number of studies reported both host defensive tactics and parasitoid counter-offensives, we emphasize that this parasite-host relationship presents a unique ecological and evolutionary relevant model that is often challenging to replicate in a laboratory. Although maintaining parasitoid wasp cultures in the laboratory requires meticulous planning and can be labor intensive, a diverse set of wasp species that target many different insect types can be maintained in similar culture conditions. Here, we describe the protocol for culturing parasitoid wasp species on Drosophila larvae and pupae in laboratory conditions. We also detail an egg-laying assay to assess the reproductive modification of Drosophila females in response to parasitoid wasps. This behavioral study is relatively simple and easily adaptable to study environmental or genetic influences on egg-laying, a readout for female germline development. Neither the parasitoid culture conditions or the behavioral assay require special supplies or equipment, making them a powerful and versatile approach in research or teaching laboratory settings. Graphical abstract.
Collapse
Affiliation(s)
- Madhumala K. Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,*For correspondence:
| | | | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
30
|
Zhang L, Zhao M, Aikeremu F, Huang H, You M, Zhao Q. Involvement of three chemosensory proteins in perception of host plant volatiles in the tea green leafhopper, Empoasca onukii. Front Physiol 2023; 13:1068543. [PMID: 36685201 PMCID: PMC9845707 DOI: 10.3389/fphys.2022.1068543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Chemosensory proteins (CSPs) can bind and transport odorant molecules, which are believed to be involved in insect chemoreception. Here, we investigated three CSPs in perception of volatiles in Empoasca onukii. Expression profiles showed that although EonuCSP4, EonuCSP 6-1 and EonuCSP6-2 were ubiquitously expressed in heads, legs, thoraxes and abdomen, they were all highly expressed in the antennae of E. onukii. Further, fluorescence competitive binding assays revealed that EonuCSP4 and 6-1 had binding affinities for three plant volatiles, suggesting their possible involvement in the chemosensory process. Among them, EonuCSP6-1 showed relatively high binding affinities for benzaldehyde. Behavioral assays revealed that the adults of E. onukii showed a significant preference for two compounds including benzaldehyde. The predicted three-dimensional (3D) structures of these 3 CSP have the typical six α-helices, which form the hydrophobic ligand-binding pocket. We therefore suggest that Eoun6-1 might be involved in the chemoreception of the host-related volatiles for E. onukii. Our data may provide a chance of finding a suitable antagonist of alternative control strategies which block the perception of chemosensory signals in pest, preventing the food- orientation behaviors.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Mingxian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Feiruoran Aikeremu
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huoshui Huang
- Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| | - Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China,International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Minsheng You, ; Qian Zhao,
| |
Collapse
|
31
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Vandroux P, Li Z, Capoduro R, François MC, Renou M, Montagné N, Jacquin-Joly E. Activation of pheromone-sensitive olfactory neurons by plant volatiles in the moth Agrotis ipsilon does not occur at the level of the pheromone receptor protein. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1035252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In moths, mate finding relies on female-emitted sex pheromones that the males have to decipher within a complex environmental odorant background. Previous studies have shown that interactions of both sex pheromones and plant volatiles can occur in the peripheral olfactory system, and that some plant volatiles can activate the pheromone-specific detection pathway. In the noctuid moth Agrotis ipsilon, plant volatiles such as heptanal activate the receptor neurons tuned to the pheromone component (Z)7-12:OAc. However, the underlying mechanisms remain totally unknown. Following the general rule that states that one olfactory receptor neuron usually expresses only one type of receptor protein, a logic explanation would be that the receptor protein expressed in (Z)7-12:OAc-sensitive neurons recognizes both pheromone and plant volatiles. To test this hypothesis, we first annotated odorant receptor genes in the genome of A. ipsilon and we identified a candidate receptor putatively tuned to (Z)7-12:OAc, named AipsOR3. Then, we expressed it in Drosophila olfactory neurons and determined its response spectrum to a large panel of pheromone compounds and plant volatiles. Unexpectedly, the receptor protein AipsOR3 appeared to be very specific to (Z)7-12:OAc and was not activated by any of the plant volatiles tested, including heptanal. We also found that (Z)7-12:OAc responses of Drosophila neurons expressing AipsOR3 were not affected by a background of heptanal. As the Drosophila olfactory sensilla that house neurons in which AipsOR3 was expressed contain other olfactory proteins – such as odorant-binding proteins – that may influence its selectivity, we also expressed AipsOR3 in Xenopus oocytes and confirmed its specificity and the lack of activation by plant volatiles. Altogether, our results suggest that a still unknown second odorant receptor protein tuned to heptanal and other plant volatiles is expressed in the (Z)7-12:OAc-sensitive neurons of A. ipsilon.
Collapse
|
33
|
Wang W, Dweck HKM, Talross GJS, Zaidi A, Gendron JM, Carlson JR. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 2022; 11:e81703. [PMID: 36398882 PMCID: PMC9674340 DOI: 10.7554/elife.81703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
The agricultural pest Drosophila suzukii differs from most other Drosophila species in that it lays eggs in ripe, rather than overripe, fruit. Previously, we showed that changes in bitter taste sensation accompanied this adaptation (Dweck et al., 2021). Here, we show that D. suzukii has also undergone a variety of changes in sweet taste sensation. D. suzukii has a weaker preference than Drosophila melanogaster for laying eggs on substrates containing all three primary fruit sugars: sucrose, fructose, and glucose. Major subsets of D. suzukii taste sensilla have lost electrophysiological responses to sugars. Expression of several key sugar receptor genes is reduced in the taste organs of D. suzukii. By contrast, certain mechanosensory channel genes, including no mechanoreceptor potential C, are expressed at higher levels in the taste organs of D. suzukii, which has a higher preference for stiff substrates. Finally, we find that D. suzukii responds differently from D. melanogaster to combinations of sweet and mechanosensory cues. Thus, the two species differ in sweet sensation, mechanosensation, and their integration, which are all likely to contribute to the differences in their egg-laying preferences in nature.
Collapse
Affiliation(s)
- Wanyue Wang
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Hany KM Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gaëlle JS Talross
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Ali Zaidi
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
34
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
35
|
Hayashi TT, MacKenzie AJ, Ganguly I, Ellis KE, Smihula HM, Jacob MS, Litwin-Kumar A, Caron SJC. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster. Curr Biol 2022; 32:4000-4012.e5. [PMID: 35977547 PMCID: PMC9533768 DOI: 10.1016/j.cub.2022.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Associative brain centers, such as the insect mushroom body, need to represent sensory information in an efficient manner. In Drosophila melanogaster, the Kenyon cells of the mushroom body integrate inputs from a random set of olfactory projection neurons, but some projection neurons-namely those activated by a few ethologically meaningful odors-connect to Kenyon cells more frequently than others. This biased and random connectivity pattern is conceivably advantageous, as it enables the mushroom body to represent a large number of odors as unique activity patterns while prioritizing the representation of a few specific odors. How this connectivity pattern is established remains largely unknown. Here, we test whether the mechanisms patterning the connections between Kenyon cells and projection neurons depend on sensory activity or whether they are hardwired. We mapped a large number of mushroom body input connections in partially anosmic flies-flies lacking the obligate odorant co-receptor Orco-and in wild-type flies. Statistical analyses of these datasets reveal that the random and biased connectivity pattern observed between Kenyon cells and projection neurons forms normally in the absence of most olfactory sensory activity. This finding supports the idea that even comparatively subtle, population-level patterns of neuronal connectivity can be encoded by fixed genetic programs and are likely to be the result of evolved prioritization of ecologically and ethologically salient stimuli.
Collapse
Affiliation(s)
- Tatsuya Tatz Hayashi
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexander John MacKenzie
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishani Ganguly
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Kaitlyn Elizabeth Ellis
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Hayley Marie Smihula
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Miles Solomon Jacob
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Ashok Litwin-Kumar
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Sophie Jeanne Cécile Caron
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Boehm AC, Friedrich AB, Hunt S, Bandow P, Siju KP, De Backer JF, Claussen J, Link MH, Hofmann TF, Dawid C, Grunwald Kadow IC. A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females. eLife 2022; 11:e77643. [PMID: 36129174 PMCID: PMC9536836 DOI: 10.7554/elife.77643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Motherhood induces a drastic, sometimes long-lasting, change in internal state and behavior in many female animals. How a change in reproductive state or the discrete event of mating modulates specific female behaviors is still incompletely understood. Using calcium imaging of the whole brain of Drosophila females, we find that mating does not induce a global change in brain activity. Instead, mating modulates the pheromone response of dopaminergic neurons innervating the fly's learning and memory center, the mushroom body (MB). Using the mating-induced increased attraction to the odor of important nutrients, polyamines, we show that disruption of the female fly's ability to smell, for instance the pheromone cVA, during mating leads to a reduction in polyamine preference for days later indicating that the odor environment at mating lastingly influences female perception and choice behavior. Moreover, dopaminergic neurons including innervation of the β'1 compartment are sufficient to induce the lasting behavioral increase in polyamine preference. We further show that MB output neurons (MBON) of the β'1 compartment are activated by pheromone odor and their activity during mating bidirectionally modulates preference behavior in mated and virgin females. Their activity is not required, however, for the expression of polyamine attraction. Instead, inhibition of another type of MBON innervating the β'2 compartment enables expression of high odor attraction. In addition, the response of a lateral horn (LH) neuron, AD1b2, which output is required for the expression of polyamine attraction, shows a modulated polyamine response after mating. Taken together, our data in the fly suggests that mating-related sensory experience regulates female odor perception and expression of choice behavior through a dopamine-gated learning circuit.
Collapse
Affiliation(s)
- Ariane C Boehm
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
| | - Anja B Friedrich
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Sydney Hunt
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Paul Bandow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
| | - KP Siju
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Jean Francois De Backer
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Julia Claussen
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Marie Helen Link
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
| | - Thomas F Hofmann
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Corinna Dawid
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- Technical University Munich, School of Life Sciences, Chair of Food Chemistry and Molecular Sensory ScienceFreisingGermany
| | - Ilona C Grunwald Kadow
- Technical University Munich, School of Life Sciences, Neuronal Control of MetabolismFreisingGermany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian UniversityMartinsriedGermany
- ZIEL – Institute for Food and Health, Technical University Munich, School of Life SciencesFreisingGermany
- University of Bonn, Faculty of Medicine, Institute of Physiology IIBonnGermany
| |
Collapse
|
37
|
Gao F, Gao K, Zhang P, Fu Y, Liu X, Bai S, Li W, Qian Z. A biomimetic sensor using neurotransmitter detection to decode odor perception by an olfactory network. Biosens Bioelectron 2022; 211:114391. [DOI: 10.1016/j.bios.2022.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/08/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
|
38
|
Bol S, Scaffidi A, Bunnik EM, Flematti GR. Behavioral differences among domestic cats in the response to cat-attracting plants and their volatile compounds reveal a potential distinct mechanism of action for actinidine. BMC Biol 2022; 20:192. [PMID: 36008824 PMCID: PMC9414117 DOI: 10.1186/s12915-022-01369-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background It has been known for centuries that cats respond euphorically to Nepeta cataria (catnip). Recently, we have shown that Lonicera tatarica (Tatarian honeysuckle), Actinidia polygama (silver vine), and Valeriana officinalis (valerian) can also elicit this “catnip response”. The aim of this study was to learn if the behavior seen in response to these plants is similar to the response to catnip. Furthermore, we studied if these responses are fixed or if there are differences between cats. While nepetalactone was identified decades ago as the molecule responsible for the “catnip response”, we know that this volatile is found almost exclusively in catnip. Therefore, we also aimed to identify other compounds in these alternative plants that can elicit the blissful behavior in cats. Bioassays with 6 cats were performed in a low-stress environment, where 5 plants and 13 single compounds were each tested for at least 100 and 17 h, respectively. All responses were video recorded and BORIS software was used to analyze the cats’ behavior. Results Both response duration and behavior differed significantly between the cats. While individual cats had preferences for particular plants, the behavior of individual cats was consistent among all plants. About half a dozen lactones similar in structure to nepetalactone were able to elicit the “catnip response”, as were the structurally more distinct molecules actinidine and dihydroactinidiolide. Most cats did not respond to actinidine, whereas those who did, responded longer to this volatile than any of the other secondary plant metabolites, and different behavior was observed. Interestingly, dihydroactinidiolide was also found in excretions and secretions of the red fox, making this the first report of a compound produced by a mammal that can elicit the “catnip response”. A range of different cat-attracting compounds was detected by chemical analysis of plant materials but differences in cat behavior could not be directly related to differences in chemical composition of the plants. Together with results of, among others, habituation / dishabituation experiments, this indicates that additional cat-attracting compounds may be present in the plant materials that remain to be discovered. Conclusions Collectively, these findings suggest that both the personality of the cat and genetic variation in the genes encoding olfactory receptors may play a role in how cats respond to cat-attracting plants. Furthermore, the data suggest a potential distinct mechanism of action for actinidine. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01369-1.
Collapse
Affiliation(s)
| | - Adrian Scaffidi
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | | | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
39
|
Herre M, Goldman OV, Lu TC, Caballero-Vidal G, Qi Y, Gilbert ZN, Gong Z, Morita T, Rahiel S, Ghaninia M, Ignell R, Matthews BJ, Li H, Vosshall LB, Younger MA. Non-canonical odor coding in the mosquito. Cell 2022; 185:3104-3123.e28. [PMID: 35985288 PMCID: PMC9480278 DOI: 10.1016/j.cell.2022.07.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding. The canonical view is that olfactory sensory neurons each express a single chemosensory receptor that defines its ligand selectivity. We discovered that Ae. aegypti uses a different organizational principle, with many neurons co-expressing multiple chemosensory receptor genes. In vivo electrophysiology demonstrates that the broad ligand-sensitivity of mosquito olfactory neurons depends on this non-canonical co-expression. The redundancy afforded by an olfactory system in which neurons co-express multiple chemosensory receptors may increase the robustness of the mosquito olfactory system and explain our long-standing inability to disrupt the detection of humans by mosquitoes.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Olivia V Goldman
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriela Caballero-Vidal
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Yanyan Qi
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary N Gilbert
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Zhongyan Gong
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Saher Rahiel
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Majid Ghaninia
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp 234 22, Sweden
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Hongjie Li
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Meg A Younger
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
41
|
Copy number changes in co-expressed odorant receptor genes enable selection for sensory differences in drosophilid species. Nat Ecol Evol 2022; 6:1343-1353. [PMID: 35864227 DOI: 10.1038/s41559-022-01830-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous examples of chemoreceptor gene family expansions and contractions, how these relate to modifications in the sensory neuron populations in which they are expressed remains unclear. Drosophila melanogaster's odorant receptor (Or) family is ideal for addressing this question because most Ors are expressed in distinct olfactory sensory neuron (OSN) types. Between-species changes in Or copy number may therefore indicate increases or reductions in the number of OSN populations. Here we investigated the Or67a subfamily, which exhibits copy number variation in D. melanogaster and its closest relatives: D. simulans, D. sechellia and D. mauritiana. These species' common ancestor had three Or67a paralogues that had already diverged adaptively. Following speciation, two Or67a paralogues were lost independently in D. melanogaster and D. sechellia, with ongoing positive selection shaping the intact genes. Unexpectedly, the functionally diverged Or67a paralogues in D. simulans are co-expressed in a single neuron population, which projects to a glomerulus homologous to that innervated by Or67a neurons in D. melanogaster. Thus, while sensory pathway neuroanatomy is conserved, independent selection on co-expressed receptors has contributed to species-specific peripheral coding. This work reveals a type of adaptive change largely overlooked for olfactory evolution, raising the possibility that similar processes influence other cases of insect Or co-expression.
Collapse
|
42
|
Wertheim B. Adaptations and counter-adaptations in Drosophila host-parasitoid interactions: advances in the molecular mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100896. [PMID: 35240335 DOI: 10.1016/j.cois.2022.100896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Both hosts and parasitoids evolved a diverse array of traits and strategies for their antagonistic interactions, affecting their chances of encounter, attack and survival after parasitoid attack. This review summarizes the recent progress that has been made in elucidating the molecular mechanisms of these adaptations and counter-adaptations in various Drosophila host-parasitoid interactions. For the hosts, it focuses on the neurobiological and genetic control of strategies in Drosophila adults and larvae of avoidance or escape behaviours upon sensing the parasitoids, and the immunological defences involving diverse classes of haemocytes. For the parasitoids, it highlights their behavioural strategies in host finding, as well as the rich variety of venom components that evolved and were partially acquired through horizontal gene transfer. Recent studies revealed the mechanisms by which these venom components manipulate their parasitized hosts in exhibiting escape behaviour to avoid superparasitism, and their counter-strategies to evade or obstruct the hosts' immunological defences.
Collapse
Affiliation(s)
- Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
43
|
Kannan K, Galizia CG, Nouvian M. Olfactory Strategies in the Defensive Behaviour of Insects. INSECTS 2022; 13:470. [PMID: 35621804 PMCID: PMC9145661 DOI: 10.3390/insects13050470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Most animals must defend themselves in order to survive. Defensive behaviour includes detecting predators or intruders, avoiding them by staying low-key or escaping or deterring them away by means of aggressive behaviour, i.e., attacking them. Responses vary across insect species, ranging from individual responses to coordinated group attacks in group-living species. Among different modalities of sensory perception, insects predominantly use the sense of smell to detect predators, intruders, and other threats. Furthermore, social insects, such as honeybees and ants, communicate about danger by means of alarm pheromones. In this review, we focus on how olfaction is put to use by insects in defensive behaviour. We review the knowledge of how chemical signals such as the alarm pheromone are processed in the insect brain. We further discuss future studies for understanding defensive behaviour and the role of olfaction.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
44
|
Keesey IW, Zhang J, Depetris-Chauvin A, Obiero GF, Gupta A, Gupta N, Vogel H, Knaden M, Hansson BS. Functional olfactory evolution in Drosophila suzukii and the subgenus Sophophora. iScience 2022; 25:104212. [PMID: 35573203 PMCID: PMC9093017 DOI: 10.1016/j.isci.2022.104212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 10/25/2022] Open
|
45
|
He Z, Yu Z, He X, Hao Y, Qiao L, Luo S, Zhang J, Chen B. Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasit Vectors 2022; 15:143. [PMID: 35461301 PMCID: PMC9034491 DOI: 10.1186/s13071-022-05259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anophelessinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An.sinensis. Methods The OR genes were identified using the available genome sequences of An.sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An.sinensis antennae, proboscis and maxillary palps of both sexes. Results A total of 59 putative OR genes have been identified and characterized in An.sinensis. This number is significantly less than that in An.gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. Conclusions This is the first genome-wide analysis of the entire repertoire of OR genes in An.sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An.sinensis in the future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05259-x.
Collapse
Affiliation(s)
- Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Zhengrong Yu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Xingfei He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Youjin Hao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Shihui Luo
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingjing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
46
|
Task D, Lin CC, Vulpe A, Afify A, Ballou S, Brbic M, Schlegel P, Raji J, Jefferis GSXE, Li H, Menuz K, Potter CJ. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 2022; 11:e72599. [PMID: 35442190 PMCID: PMC9020824 DOI: 10.7554/elife.72599] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.
Collapse
Affiliation(s)
- Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mortimer B. Zuckermann Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Alina Vulpe
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sydney Ballou
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Karen Menuz
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
47
|
Milutinović B, Schmitt T. Chemical cues in disease recognition and their immunomodulatory role in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100884. [PMID: 35151903 DOI: 10.1016/j.cois.2022.100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Preventing infections is crucial for host fitness and many insects modify their behaviour upon sensing a contagion. We review chemical cues that mediate insect behaviour in response to parasites, and diseased or dead conspecifics. Considering the large diversity of behavioural disease defences described, surprisingly little is known about disease-associated cues that mediate them, especially their chemoreceptor and neuronal details. Interestingly, disease cues do not only modify host behaviour, but they could also play a direct role in immune system activation via neuroendocrine regulation, bypassing the need for risky immunological contact with the parasite. Such crosstalk is an exciting emerging research area in insect ecological immunology that should prove invaluable in studying host-parasite interactions by combining analytical methods from chemical ecology.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany; Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
48
|
Abstract
Are olfactory receptor neurons (ORNs) arranged in a functionally meaningful manner to facilitate information processing? Here, we address this long-standing question by uncovering a valence map in the olfactory periphery of Drosophila. Within sensory hairs, we find that neighboring ORNs antagonistically regulate behaviors: stereotypically compartmentalized large- and small-spike ORNs, recognized by their characteristic spike amplitudes, either promote or inhibit the same type of behavior, respectively. Systematic optogenetic and thermogenetic assays—covering the majority of antennal sensilla—highlight a valence-opponent organization. Critically, odor-mixture behavioral experiments show that lateral inhibition between antagonistic ORNs mediates robust behavioral decisions in response to countervailing cues. Computational modeling predicts that the robustness of behavioral output depends on odor mixture ratios. A hallmark of complex sensory systems is the organization of neurons into functionally meaningful maps, which allow for comparison and contrast of parallel inputs via lateral inhibition. However, it is unclear whether such a map exists in olfaction. Here, we address this question by determining the organizing principle underlying the stereotyped pairing of olfactory receptor neurons (ORNs) in Drosophila sensory hairs, wherein compartmentalized neurons inhibit each other via ephaptic coupling. Systematic behavioral assays reveal that most paired ORNs antagonistically regulate the same type of behavior. Such valence opponency is relevant in critical behavioral contexts including place preference, egg laying, and courtship. Odor-mixture experiments show that ephaptic inhibition provides a peripheral means for evaluating and shaping countervailing cues relayed to higher brain centers. Furthermore, computational modeling suggests that this organization likely contributes to processing ratio information in odor mixtures. This olfactory valence map may have evolved to swiftly process ethologically meaningful odor blends without involving costly synaptic computation.
Collapse
|
49
|
Tumkaya T, Burhanudin S, Khalilnezhad A, Stewart J, Choi H, Claridge-Chang A. Most primary olfactory neurons have individually neutral effects on behavior. eLife 2022; 11:e71238. [PMID: 35044905 PMCID: PMC8806191 DOI: 10.7554/elife.71238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
| | | | | | - James Stewart
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
| | - Hyungwon Choi
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Department of Medicine, National University of SingaporeSingaporeSingapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
- Department of Physiology, National University of SingaporeSingaporeSingapore
| |
Collapse
|
50
|
Abstract
In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.
Collapse
Affiliation(s)
- Ian W Keesey
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|