1
|
Cao Y, Chen Q, Xu X, Fernie AR, Li J, Zhang Y. Insights from natural rubber biosynthesis evolution for pathway engineering. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00090-1. [PMID: 40254503 DOI: 10.1016/j.tplants.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Natural rubber (NR), valued for its elasticity and impact resistance, is essential for numerous industrial and medical applications, with global demand continuously rising. While approximately 2500 plant species from more than 40 families can produce rubber, the majority is sourced from Hevea brasiliensis grown in tropical regions. Alternative rubber-producing plants, such as Parthenium argentatum and Taraxacum kok-saghyz, offer enhanced environmental adaptability and species diversity, making them promising candidates for rubber production. Recent genome sequencing has shed light on rubber biosynthesis pathways, although the mechanisms involved in producing different forms of polyisoprene across species remain unclear. We explore the evolution of rubber biosynthesis and discuss synthetic biological strategies for enhancing NR-production in subtropical plants and a broader range of plant materials (e.g., Manilkara zapota).
Collapse
Affiliation(s)
- Yinhong Cao
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qingwen Chen
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Xu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jiayang Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Yazhouwan National Laboratory, Sanya, Hainan 572024, China.
| | - Youjun Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Xu S, Gaquerel E. Evolution of plant specialized metabolites: beyond ecological drivers. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00044-5. [PMID: 40113551 DOI: 10.1016/j.tplants.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, 55128 Mainz, Germany.
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Wolters SM, Laibach N, Riekötter J, Roelfs KU, Müller B, Eirich J, Twyman RM, Finkemeier I, Prüfer D, Schulze Gronover C. The interaction networks of small rubber particle proteins in the latex of Taraxacum koksaghyz reveal diverse functions in stress responses and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1498737. [PMID: 39735776 PMCID: PMC11671276 DOI: 10.3389/fpls.2024.1498737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
The Russian dandelion (Taraxacum koksaghyz) is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5. These three proteins support NR synthesis by maintaining rubber particle stability. We used homology-based searches to identify the whole TkSRPP gene family and qPCR to create their spatial expression profiles. Affinity enrichment-mass spectrometry was applied to identify TkSRPP3/4/5 protein interaction partners in T. koksaghyz latex and selected interaction partners were analyzed using qPCR, confocal laser scanning microscopy and heterologous expression in yeast. We identified 17 SRPP-like sequences in the T. koksaghyz genome, including three apparent pseudogenes, 10 paralogs arranged as an inverted repeat in a cluster with TkSRPP3/4/5, and one separate gene (TkSRPP6). Their sequence diversity and different expression profiles indicated distinct functions and the latex interactomes obtained for TkSRPP3/4/5 suggested that TkSRPP4 is a promiscuous hub protein that binds many partners from different compartments, whereas TkSRPP3 and 5 have more focused interactomes. Two interactors shared by TkSRPP3/4/5 (TkSRPP6 and TkUGT80B1) were chosen for independent validation and detailed characterization. TkUGT80B1 triterpenoid glycosylating activity provided first evidence for triterpenoid saponin synthesis in T. koksaghyz latex. Based on its identified interaction partners, TkSRPP4 appears to play a special role in the endoplasmic reticulum, interacting with lipidmodifying enzymes that may facilitate rubber particle formation. TkSRPP5 appears to be involved in GTPase-dependent signaling and TkSRPP3 may act as part of a kinase signaling cascade, with roles in stress tolerance. TkSRPP interaction with TkUGT80B1 draws a new connection between TkSRPPs and triterpenoid saponin synthesis in T. koksaghyz latex. Our data contribute to the functional differentiation between TkSRPP paralogs and demonstrate unexpected interactions that will help to further elucidate the network of proteins linking TkSRPPs, stress responses and NR biosynthesis within the cellular complexity of latex.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jenny Riekötter
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
4
|
Gu C, Zeng B, Wang M, Zhang Y, Yan C, Lin Y, Khan A, Zeng R, Song Y. Study on Active Components and Mechanism of Lettuce Latex Against Spodoptera Litura. Chem Biodivers 2024; 21:e202400993. [PMID: 39136195 DOI: 10.1002/cbdv.202400993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/12/2024] [Indexed: 10/23/2024]
Abstract
Plant latex is a sticky emulsion exuded from laticifers once the plant is damaged. Latex is an essential component of plant defense against herbivores. Lettuce (Lactuca sativa L.) in the Compositae family has relatively fewer insect herbivores compared with other leaf vegetables. The larvae of a generalist lepidopteran pest Spodoptera litura (Fabricius) avoided feeding on living lettuce plants. However, the larvae rapidly damaged the excised leaves that were unable to produce latex. Six compounds were isolated from lettuce latex. They were identified as 2,5-dihydroxybenzaldehyde (1), 3β-hydroxy-4,15-dehydrograndolide (2), annuolide D (3), lactucin (4), lactucopicrin (5), and hanphyllin (6). Bioassays showed that the inhibition rate of compound 1 (2,5-dihydroxybenzaldehyde) and 6 (hanphyllin, a sesquiterpene lactone) on the weight gain of S. litura were 52.4 % and 10 %, respectively, at the concentration of 100 μg/g. RNA-seq analyses showed that larval exposure to compound 1 down-regulated the genes associated with heterobiotic metabolism including drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, retinol metabolism, glutathione metabolism, and drug metabolism-other enzymes (mainly uridine diphosphate glucuronyltransferase, UGTs). RT-qPCR further confirmed that 33 genes in the family of carboxylesterase (CarE), P450s and UGTs were down-regulated by compound 1. The activities of CarE, P450s and UGTs in the larvae fed on diets containing compound 1 were significantly lower than those fed on control diets, with the inhibition for the three detoxification enzymes being 55.4 %, 53.9 %, and 52.9 %. These findings suggest that secondary metabolites including 2,5-dihydroxybenzaldehyde in the latex play a key role in protecting lettuce from insect herbivory.
Collapse
Affiliation(s)
- Chengzhen Gu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bixue Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengmeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujia Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengxi Yan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yangzheng Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Rensen Zeng
- Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
5
|
Yan Q, Xing Q, Liu Z, Zou Y, Liu X, Xia H. The phytochemical and pharmacological profile of dandelion. Biomed Pharmacother 2024; 179:117334. [PMID: 39180794 DOI: 10.1016/j.biopha.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Dandelion (Taraxacum genus), a perennial herb belonging to the Asteraceae family is widely distributed in hillside grasslands, roadsides, fields, and river beaches in middle and low-altitude areas. It has a long history of traditional Chinese medicine usage as a heat-clearing and detoxifying agent, often consumed as tea or vegetable. Multiple pharmacological studies have demonstrated the antiviral, antibacterial, anti-inflammatory, immune-regulating, antioxidant, anti-tumor, and other effects of the Taraxacum genus. Bioactive compounds associated with these effects include triterpenes and their saponins, phenolic acids, sterols and their glycosides, flavonoids, organic acids, volatile oils, and saccharides.
Collapse
Affiliation(s)
- Qingzi Yan
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Yang Zou
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Hong Xia
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
6
|
Huber M. Latex - a potential plant defense against microbes. Trends Microbiol 2024; 32:224-227. [PMID: 38220579 DOI: 10.1016/j.tim.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Laticifers - among the most common defensive reservoirs in plants - are hypothesized to benefit plant fitness by preventing microbes from entering wounds. I argue that while latex seals wounds, and can suppress microbial growth, direct evidence that these processes benefit plant fitness is scarce. I outline a roadmap for filling this knowledge gap.
Collapse
Affiliation(s)
- Meret Huber
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Rajan V. An Alkaline Foregut Protects Herbivores from Latex in Forage, but Increases Their Susceptibility to Bt Endotoxin. Life (Basel) 2023; 13:2195. [PMID: 38004335 PMCID: PMC10672702 DOI: 10.3390/life13112195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
About 10% of angiosperms, an estimated 20,000 species, produce latex from ubiquitous isoprene precursors. Latex, an aqueous suspension of rubber particles and other compounds, functions as an antifeedant and herbivory deterrent. It is soluble in neutral to alkaline pH, and coagulates in acidic environments. Here, I propose that foregut-fermenting herbivores such as ruminants, kangaroos, sloths, insect larvae, and tadpoles have adapted to latex in forage with the evolution of alkaline anterior digestive chamber(s). However, they consequently become susceptible to the action of Bacillus thuringiensis (Bt) δ-endotoxin and related bioinsecticides which are activated in alkaline environments. By contrast, hindgut-fermenting herbivores, such as horses and rabbits, have acidic anterior digestive chambers, in which latex coagulates and may cause gut blockage, but in which Bt is not activated. The latex-adapted foregut herbivore vs. latex-maladapted hindgut herbivore hypothesis developed in this paper has implications for hindgut-fermenting livestock and zoo animals which may be provided with latex-containing forage that is detrimental to their gut health. Further, ruminants and herbivorous tadpoles with alkaline anterior chambers are at risk of damage by the supposedly "environmentally friendly" Bt bioinsecticide, which is widely disseminated or engineered into crops which may enter animal feed streams.
Collapse
Affiliation(s)
- Vidya Rajan
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
9
|
Edwards CB, Ellner SP, Agrawal AA. Plant defense synergies and antagonisms affect performance of specialist herbivores of common milkweed. Ecology 2023; 104:e3915. [PMID: 36336890 DOI: 10.1002/ecy.3915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
As a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co-expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions. We tested for synergies between multiple defense traits of common milkweed (Asclepias syriaca) by assaying the performance of two specialist chewing herbivores on plants in natural populations. We employed regression and a novel application of random forests to identify synergies and antagonisms between defense traits. We found the first direct empirical evidence for two previously hypothesized defense synergies in milkweed (latex by secondary metabolites, latex by trichomes) and identified numerous other potential synergies and antagonisms. Our strongest evidence for a defense synergy was between leaf mass per area and low nitrogen content; given that these "leaf economic" traits typically covary in milkweed, a defense synergy could reinforce their co-expression. We report that each of the plant defense traits showed context-dependent effects on herbivores, and increased trait expression could well be beneficial to herbivores for some ranges of observed expression. The novel methods and findings presented here complement more mechanistic approaches to the study of plant defense diversity and provide some of the best evidence to date that multiple classes of plant defense synergize in their impact on insects. Plant defense synergies against highly specialized herbivores, as shown here, are consistent with ongoing reciprocal evolution between these antagonists.
Collapse
Affiliation(s)
- Collin B Edwards
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Böttner L, Malacrinò A, Schulze Gronover C, van Deenen N, Müller B, Xu S, Gershenzon J, Prüfer D, Huber M. Natural rubber reduces herbivory and alters the microbiome below ground. THE NEW PHYTOLOGIST 2023. [PMID: 36597727 DOI: 10.1111/nph.18709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Laticifers are hypothesized to mediate both plant-herbivore and plant-microbe interactions. However, there is little evidence for this dual function. We investigated whether the major constituent of natural rubber, cis-1,4-polyisoprene, a phylogenetically widespread and economically important latex polymer, alters plant resistance and the root microbiome of the Russian dandelion (Taraxacum koksaghyz) under attack of a root herbivore, the larva of the May cockchafer (Melolontha melolontha). Rubber-depleted transgenic plants lost more shoot and root biomass upon herbivory than normal rubber content near-isogenic lines. Melolontha melolontha preferred to feed on artificial diet supplemented with rubber-depleted rather than normal rubber content latex. Likewise, adding purified cis-1,4-polyisoprene in ecologically relevant concentrations to diet deterred larval feeding and reduced larval weight gain. Metagenomics and metabarcoding revealed that abolishing biosynthesis of natural rubber alters the structure but not the diversity of the rhizosphere and root microbiota (ecto- and endophytes) and that these changes depended on M. melolontha damage. However, the assumption that rubber reduces microbial colonization or pathogen load is contradicted by four lines of evidence. Taken together, our data demonstrate that natural rubber biosynthesis reduces herbivory and alters the plant microbiota, which highlights the role of plant-specialized metabolites and secretory structures in shaping multitrophic interactions.
Collapse
Affiliation(s)
- Laura Böttner
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
- Institute for Evolution and Biodiversity, University of Münster, D-48149, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D-55128, Mainz, Germany
| | - Antonino Malacrinò
- Institute for Evolution and Biodiversity, University of Münster, D-48149, Münster, Germany
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, I-89122, Reggio Calabria, Italy
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, D-48143, Münster, Germany
| | - Nicole van Deenen
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, D-48143, Münster, Germany
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, D-48149, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D-55128, Mainz, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, D-48143, Münster, Germany
| | - Meret Huber
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D-55128, Mainz, Germany
| |
Collapse
|
11
|
Salvagnin U, Unkel K, Sprink T, Bundock P, Sevenier R, Bogdanović M, Todorović S, Cankar K, Hakkert JC, Schijlen E, Nieuwenhuis R, Hingsamer M, Kulmer V, Kernitzkyi M, Bosch D, Martens S, Malnoy M. A comparison of three different delivery methods for achieving CRISPR/Cas9 mediated genome editing in Cichorium intybus L. FRONTIERS IN PLANT SCIENCE 2023; 14:1111110. [PMID: 37123849 PMCID: PMC10131283 DOI: 10.3389/fpls.2023.1111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Root chicory (Cichorium intybus L. var. sativum) is used to extract inulin, a fructose polymer used as a natural sweetener and prebiotic. However, bitter tasting sesquiterpene lactones, giving chicory its known flavour, need to be removed during inulin extraction. To avoid this extraction and associated costs, recently chicory variants with a lower sesquiterpene lactone content were created by inactivating the four copies of the germacrene A synthase gene (CiGAS-S1, -S2, -S3, -L) which encode the enzyme initiating bitter sesquiterpene lactone biosynthesis in chicory. In this study, different delivery methods for CRISPR/Cas9 reagents have been compared regarding their efficiency to induce mutations in the CiGAS genes, the frequency of off-target mutations as well as their environmental and economic impacts. CRISPR/Cas9 reagents were delivered by Agrobacterium-mediated stable transformation or transient delivery by plasmid or preassembled ribonucleic complexes (RNPs) using the same sgRNA. All methods used lead to a high number of INDEL mutations within the CiGAS-S1 and CiGAS-S2 genes, which match the used sgRNA perfectly; additionally, the CiGAS-S3 and CiGAS-L genes, which have a single mismatch with the sgRNA, were mutated but with a lower mutation efficiency. While using both RNPs and plasmids delivery resulted in biallelic, heterozygous or homozygous mutations, plasmid delivery resulted in 30% of unwanted integration of plasmid fragments in the genome. Plants transformed via Agrobacteria often showed chimerism and a mixture of CiGAS genotypes. This genetic mosaic becomes more diverse when plants were grown over a prolonged period. While the genotype of the on-targets varied between the transient and stable delivery methods, no off-target activity in six identified potential off-targets with two to four mismatches was found. The environmental impacts (greenhouse gas (GHG) emissions and primary energy demand) of the methods are highly dependent on their individual electricity demand. From an economic view - like for most research and development activities - employment and value-added multiplier effects are high; particularly when compared to industrial or manufacturing processes. Considering all aspects, we conclude that using RNPs is the most suitable method for genome editing in chicory since it led to a high efficiency of editing, no off-target mutations, non-transgenic plants with no risk of unwanted integration of plasmid DNA and without needed segregation of transgenes.
Collapse
Affiliation(s)
- Umberto Salvagnin
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
- *Correspondence: Umberto Salvagnin, ; Mickael Malnoy,
| | - Katharina Unkel
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Thorben Sprink
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Paul Bundock
- Keygene N.V., Agro Business Park 90, Wageningen, Netherlands
| | - Robert Sevenier
- Keygene N.V., Agro Business Park 90, Wageningen, Netherlands
| | - Milica Bogdanović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slađana Todorović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Cankar
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Elio Schijlen
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald Nieuwenhuis
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Stefan Martens
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
| | - Mickael Malnoy
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
- *Correspondence: Umberto Salvagnin, ; Mickael Malnoy,
| |
Collapse
|
12
|
Chen R, Liu Y, Chen S, Wang M, Zhu Y, Hu T, Wei Q, Yin X, Xie T. Protein Engineering of a Germacrene A Synthase From Lactuca sativa and Its Application in High Productivity of Germacrene A in Escherichia coli. FRONTIERS IN PLANT SCIENCE 2022; 13:932966. [PMID: 36035671 PMCID: PMC9403833 DOI: 10.3389/fpls.2022.932966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Germacrene A (GA) is a key intermediate for the synthesis of medicinal active compounds, especially for β-elemene, which is a broad-spectrum anticancer drug. The production of sufficient GA in the microbial platform is vital for the precursors supply of active compounds. In this study, Escherichia coli BL21 Star (DE3) was used as the host and cultivated in SBMSN medium, obtaining a highest yield of FPP. The GA synthase from Lactuca sativa (LTC2) exhibited the highest level of GA production. Secondly, two residues involved in product release (T410 and T392) were substituted with Ser and Ala, respectively, responsible for relatively higher activities. Next, substitution of selected residues S243 with Asn caused an increase in activity. Furthermore, I364K-T410S and T392A-T410S were created by combination with the beneficial mutation, and they demonstrated dramatically enhanced titers with 1.90-fold and per-cell productivity with 5.44-fold, respectively. Finally, the production titer of GA reached 126.4 mg/L, and the highest productivity was 7.02 mg/L.h by the I364K-T410S mutant in a shake-flask batch culture after fermentation for 18 h. To our knowledge, the productivity of the I364K-T410S mutant is the highest level ever reported. These results highlight a promising method for the industrial production of GA in E. coli, and lay a foundation for pathway reconstruction and the production of valuable natural sesquiterpenes.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yuheng Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Shu Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Ming Wang
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yao Zhu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tianyuan Hu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Qiuhui Wei
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xiaopu Yin
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Zhao Y, Yang L, Chen Y, Zhang X, Li J, Liang D, Jiang S, Gao J, Meng Y. A Comparative Analysis of Bombyx mori (Lepidoptera: Bombycidae) β-fructofuranosidase Homologs Reveals Different Post-Translational Regulations in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). INSECTS 2022; 13:insects13050410. [PMID: 35621746 PMCID: PMC9143633 DOI: 10.3390/insects13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The β-fructofuranosidase (β-FFase) encoding gene BmSuc1 regulates the glycometabolism of silkworm larvae, and it participates in the resistance of mulberry alkaloids. However, there is no molecular or biochemical information available about the mulberry pest Glyphodespyloalis Walker β-FFase homologs. In this paper, we have obtained five β-FFase homologous genes in G. pyloalis and characterized the expression and the localization of GpSUC1a in the midgut. The β-FFase activity in the midgut of G. pyloalis larvae and GpSUC1a were both confirmed, while recombinant GpSUC1a displayed little activity as compared with the higher activity of BmSUC1. Some putative N-glycosylation sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a. The results indicate that such post-translational modifications (PTMs) are differentially supporting that β-FFase are active in these two mulberry feeding caterpillars, and the activation of GpSUC1a may be controlled by a more complex post-translational regulatory system in G. pyloalis larvae. This is the first report on the characterization of β-FFase genes from G. pyloalis and the first comparison of expression regulation between two mulberry feeding insects B. mori and G. pyloalis. Moreover, this research may provide new ideas for the management of mulberry borers. Abstract The silk-spinning and Lepidopteran model insect Bombyx mori (Bombycidae) is a mulberry specialist. The BmSuc1 gene is the first β-fructofuranosidase (β-FFase) encoding gene identified in animals, and β-FFase acts as an essential sucrase for glycometabolism modulation in the silkworm larvae, involved in resistance to mulberry alkaloids. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is an important mulberry pest leading to heavy economic loss of sericulture. However, no molecular or biochemical information is available about G. pyloalis β-FFase homologs. In this study, five β-FFase homologous genes in G. pyloalis were obtained. The genes GpSuc1a and GpSuc2c were expressed in the midgut; GpSuc2c encodes a truncated polypeptide. The expression and the localization of GpSUC1a in the midgut was characterized. Whereas recombinant GpSUC1a expressed in both Escherichia coli and BmN cells displayed little activity as compared with higher activity of BmSUC1, β-FFase activity in the larval midgut of G. pyloalis and GpSUC1a purified from the midgut were both confirmed. The data suggested that the activation of GpSUC1a is probably controlled by a more complicated post-translational regulation system in G. pyloalis larvae than that of BmSUC1 in B. mori. To study post-translational modifications (PTMs), GpSUC1a and BmSUC1 were purified from larval midguts using immunoprecipitation and subjected to LC-MS to perform PTMs analysis. Some putative N-glycosylated sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a, indicating that such PTMs were supporting the differential β-FFases activities in these two mulberry feeding caterpillars.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Liangli Yang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yu Chen
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Xinwei Zhang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Department of Pathology, Henan Provincial People’s Hospital, 7 Weiwu Road, Zhengzhou 450003, China
| | - Jing Li
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Dan Liang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-551-65786967
| |
Collapse
|
14
|
Petschenka G, Halitschke R, Züst T, Roth A, Stiehler S, Tenbusch L, Hartwig C, Gámez JFM, Trusch R, Deckert J, Chalušová K, Vilcinskas A, Exnerová A. Sequestration of defenses against predators drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae). Am Nat 2022; 199:E211-E228. [DOI: 10.1086/719196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Cankar K, Hakkert JC, Sevenier R, Campo E, Schipper B, Papastolopoulou C, Vahabi K, Tissier A, Bundock P, Bosch D. CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots. FRONTIERS IN PLANT SCIENCE 2022; 13:940003. [PMID: 36105709 PMCID: PMC9465254 DOI: 10.3389/fpls.2022.940003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 05/06/2023]
Abstract
Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Katarina Cankar,
| | | | | | - Eva Campo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Bert Schipper
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Cankar K, Bundock P, Sevenier R, Häkkinen ST, Hakkert JC, Beekwilder J, van der Meer IM, de Both M, Bosch D. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2442-2453. [PMID: 34270859 PMCID: PMC8633505 DOI: 10.1111/pbi.13670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 05/06/2023]
Abstract
Chicory (Cichorium intybus var. sativum) is an industrial crop species cultivated for the production of a fructose polymer inulin, which is used as a low-calorie sweetener and prebiotic. Besides, inulin chicory taproots also accumulate sesquiterpene lactones (STLs). These are bitter tasting compounds, which need to be removed during inulin extraction, resulting in additional costs. In this work, we describe chicory lines where STL accumulation is almost completely eliminated. Genome editing using the CRISPR/Cas9 system was used to inactivate four genes that encode the enzyme that performs the first dedicated step in STL synthesis, germacrene A synthase (CiGAS). Chicory lines were obtained that carried null mutations in all four CiGAS genes. Lines lacking functional CiGAS alleles showed a normal phenotype upon greenhouse cultivation and show nearly complete elimination of the STL synthesis in the roots. It was shown that the reduction in STLs could be attributed to mutations in genetically linked copies of the CiGAS-short gene and not the CiGAS-long gene, which is relevant for breeding the trait into other cultivars. The inactivation of the STL biosynthesis pathway led to increase in phenolic compounds as well as accumulation of squalene in the chicory taproot, presumably due to increased availability of farnesyl pyrophosphate (FFP). These results demonstrate that STLs are not essential for chicory growth and that the inhibition of the STL biosynthesis pathway reduced the STL levels chicory which will facilitate inulin extraction.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | | | | | - Jules Beekwilder
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Dirk Bosch
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
17
|
Johnson AR, Moghe GD, Frank MH. Growing a glue factory: Open questions in laticifer development. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102096. [PMID: 34461600 DOI: 10.1016/j.pbi.2021.102096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/25/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Latex-containing cells called laticifers are present in at least 41 flowering plant families and are thought to have convergently evolved at least 12 times. These cells are known to function in defense, but little is known about the molecular genetic mechanisms of their development. The expansion of laticifers into their distinctive tube shape can occur through two distinct mechanisms, cell fusion and intrusive growth. The mechanism and extent of intrusive laticifer growth are still being investigated. Hormonal regulation by jasmonic acid and ethylene is important for both laticifer differentiation and latex biosynthesis. Current evidence suggests that laticifers can be specified independently of latex production, but extensive latex production requires specified laticifers. Laticifers are an emerging system for studying the intersection of cell identity specification and specialized metabolism.
Collapse
Affiliation(s)
- Arielle R Johnson
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
18
|
Huber M, Roder T, Irmisch S, Riedel A, Gablenz S, Fricke J, Rahfeld P, Reichelt M, Paetz C, Liechti N, Hu L, Bont Z, Meng Y, Huang W, Robert CA, Gershenzon J, Erb M. A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. eLife 2021; 10:68642. [PMID: 34632981 PMCID: PMC8504966 DOI: 10.7554/elife.68642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] Open
Abstract
Gut enzymes can metabolize plant defense compounds and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We have demonstrated that TA-G is rapidly deglucosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglucosylation. Using cross-species RNA interference, we have shown that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G-deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense compound. Our work illustrates the multifaceted roles of insect digestive enzymes as mediators of plant-herbivore interactions. Plants produce certain substances to fend off attackers like plant-feeding insects. To stop these compounds from damaging their own cells, plants often attach sugar molecules to them. When an insect tries to eat the plant, the plant removes the stabilizing sugar, ‘activating’ the compounds and making them toxic or foul-tasting. Curiously, some insects remove the sugar themselves, but it is unclear what consequences this has, especially for insect behavior. Dandelions, Taraxacum officinale, make high concentrations of a sugar-containing defense compound in their roots called taraxinic acid β-D-glucopyranosyl ester, or TA-G for short. TA-G deters the larvae of the Maybug – a pest also known as the common cockchafer or the doodlebug – from eating dandelion roots. When Maybug larvae do eat TA-G, it is found in their systems without its sugar. However, it is unclear whether it is the plant or the larva that removes the sugar. A second open question is how the sugar removal process affects the behavior of the Maybug larvae. Using chemical analysis and genetic manipulation, Huber et al. investigated what happens when Maybug larvae eat TA-G. This revealed that the acidity levels in the larvae’s digestive system deactivate the proteins from the dandelion that would normally remove the sugar from TA-G. However, rather than leaving the compound intact, larvae remove the sugar from TA-G themselves. They do this using a digestive enzyme, known as a beta-glucosidase, that cuts through sugar. Removing the sugar from TA-G made the compound less toxic, allowing the larvae to grow bigger, but it also increased TA-G’s deterrent effects, making the larvae less likely to eat the roots. Any organism that eats plants, including humans, must deal with chemicals like TA-G in their food. Once inside the body, enzymes can change these chemicals, altering their effects. This happens with many medicines, too. In the future, it might be possible to design compounds that activate only in certain species, or under certain conditions. Further studies in different systems may aid the development of new methods of pest control, or new drug treatments.
Collapse
Affiliation(s)
- Meret Huber
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.,Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Roder
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Sandra Irmisch
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexander Riedel
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Saskia Gablenz
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Peter Rahfeld
- Department of Bioorganic Chemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Christian Paetz
- Research group Biosynthesis/NMR, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole Liechti
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Lingfei Hu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ye Meng
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Wei Huang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nat Chem Biol 2021; 17:1037-1045. [PMID: 34552220 DOI: 10.1038/s41589-021-00822-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
As sessile organisms, plants evolved elaborate metabolic systems that produce a plethora of specialized metabolites as a means to survive challenging terrestrial environments. Decades of research have revealed the genetic and biochemical basis for a multitude of plant specialized metabolic pathways. Nevertheless, knowledge is still limited concerning the selective advantages provided by individual and collective specialized metabolites to the reproductive success of diverse host plants. Here we review the biological functions conferred by various classes of plant specialized metabolites in the context of the interaction of plants with their surrounding environment. To achieve optimal multifunctionality of diverse specialized metabolic processes, plants use various adaptive mechanisms at subcellular, cellular, tissue, organ and interspecies levels. Understanding these mechanisms and the evolutionary trajectories underlying their occurrence in nature will ultimately enable efficient bioengineering of desirable metabolic traits in chassis organisms.
Collapse
|
20
|
Castelblanque L, García-Andrade J, Martínez-Arias C, Rodríguez JJ, Escaray FJ, Aguilar-Fenollosa E, Jaques JA, Vera P. Opposing roles of plant laticifer cells in the resistance to insect herbivores and fungal pathogens. PLANT COMMUNICATIONS 2021; 2:100112. [PMID: 34027388 PMCID: PMC8132127 DOI: 10.1016/j.xplc.2020.100112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
More than 12,000 plant species (ca. 10% of flowering plants) exude latex when their tissues are injured. Latex is produced and stored in specialized cells named "laticifers". Laticifers form a tubing system composed of rows of elongated cells that branch and create an internal network encompassing the entire plant. Laticifers constitute a recent evolutionary achievement in ecophysiological adaptation to specific natural environments; however, their fitness benefit to the plant still remains to be proven. The identification of Euphorbia lathyris mutants (pil mutants) deficient in laticifer cells or latex metabolism, and therefore compromised in latex production, allowed us to test the importance of laticifers in pest resistance. We provided genetic evidence indicating that laticifers represent a cellular adaptation for an essential defense strategy to fend off arthropod herbivores with different feeding habits, such as Spodoptera exigua and Tetranychus urticae. In marked contrast, we also discovered that a lack of laticifer cells causes complete resistance to the fungal pathogen Botrytis cinerea. Thereafter, a latex-derived factor required for conidia germination on the leaf surface was identified. This factor promoted disease susceptibility enhancement even in the non-latex-bearing plant Arabidopsis. We speculate on the role of laticifers in the co-evolutionary arms race between plants and their enemies.
Collapse
Affiliation(s)
- Lourdes Castelblanque
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Clara Martínez-Arias
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Juan J. Rodríguez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Francisco J. Escaray
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Ernestina Aguilar-Fenollosa
- Universitat Jaume I, Departament de Ciències Agràries i del Medi Natural, Campus del Riu Sec, 12003 Castelló de la Plana, Spain
| | - Josep A. Jaques
- Universitat Jaume I, Departament de Ciències Agràries i del Medi Natural, Campus del Riu Sec, 12003 Castelló de la Plana, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de València-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| |
Collapse
|
21
|
The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS Biol 2021; 19:e3001114. [PMID: 33600420 PMCID: PMC7924754 DOI: 10.1371/journal.pbio.3001114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/02/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.
Collapse
|
22
|
Zhang W, Guo J, Wang Z, Li Y, Meng X, Shen Y, Liu W. Improved production of germacrene A, a direct precursor of ß-elemene, in engineered Saccharomyces cerevisiae by expressing a cyanobacterial germacrene A synthase. Microb Cell Fact 2021; 20:7. [PMID: 33413372 PMCID: PMC7791714 DOI: 10.1186/s12934-020-01500-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/19/2020] [Indexed: 11/25/2022] Open
Abstract
Background The sesquiterpene germacrene A is a direct precursor of ß-elemene that is a major component of the Chinese medicinal herb Curcuma wenyujin with prominent antitumor activity. The microbial platform for germacrene A production was previously established in Saccharomyces cerevisiae using the germacrene A synthase (LTC2) of Lactuca sativa. Results We evaluated the performance of LTC2 (LsGAS) as well as nine other identified or putative germacrene A synthases from different sources for the production of germacrene A. AvGAS, a synthase of Anabaena variabilis, was found to be the most efficient in germacrene A production in yeast. AvGAS expression alone in S. cerevisiae CEN.PK2-1D already resulted in a substantial production of germacrene A while LTC2 expression did not. Further metabolic engineering the yeast using known strategies including overexpression of tHMGR1 and repression of squalene synthesis pathway led to an 11-fold increase in germacrene A production. Site-directed mutagenesis of AvGAS revealed that while changes of several residues located within the active site cavity severely compromised germacrene A production, substitution of Phe23 located on the lateral surface with tryptophan or valine led to a 35.2% and 21.8% increase in germacrene A production, respectively. Finally, the highest production titer of germacrene A reached 309.8 mg/L in shake-flask batch culture. Conclusions Our study highlights the potential of applying bacterial sesquiterpene synthases with improved performance by mutagenesis engineering in producing germacrene A.
Collapse
Affiliation(s)
- Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Junqi Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Zheng Wang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
23
|
Lee YS, Kim J, Woo S, Park JY, Park HS, Shim H, Choi HI, Kang JH, Lee TJ, Sung SH, Yang TJ, Kang KB. Assessing the genetic and chemical diversity of Taraxacum species in the Korean Peninsula. PHYTOCHEMISTRY 2021; 181:112576. [PMID: 33166748 DOI: 10.1016/j.phytochem.2020.112576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 05/12/2023]
Abstract
The genetic relationship between Taraxacum species, also known as the dandelion, is complicated because of asexual and mixed sexual apomictic reproduction. The usage of Taraxacum species in traditional medicines make their specialized metabolism important, but interspecific chemical difference has rarely been reported for the genus. In this study, we assembled the chloroplast genome and 45S rDNA of six Taraxacum species that occur in Korea (T. campylodes, T. coreanum, T. erythrospermum, T. mongolicum, T. platycarpum, and T. ussuriense), and performed a comparative analysis, which revealed their phylogenetic relationships and possible natural hybridity. We also performed a liquid chromatography-mass spectrometry-based phytochemical analysis to reveal interspecific chemical diversity. The comparative metabolomics analysis revealed that Taraxacum species could be separated into three chemotypes according to their major defensive specialized metabolites, which were the sesquiterpene lactones, the phenolic inositols, and chlorogenic acid derivatives. The CP DNA- and 45S rDNA-based phylogenetic trees showed a tangled relationship, which supports the notion of ongoing hybridization of wild Taraxacum species. The untargeted LC-MS analysis revealed that each Taraxacum plant exhibits species-specific defensive specialized metabolism. Moreover, 45S rDNA-based phylogenetic tree correlated with the hierarchical cluster relied on metabolite compositions. Given the coincidence between these analyses, we represented that 45S rDNA could well reflect overall nuclear genome variation in Taraxacum species.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinkyung Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunmin Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Jung Hwa Kang
- Hantaek Botanical Garden, Yongin, 17183, Republic of Korea
| | - Taek Joo Lee
- Hantaek Botanical Garden, Yongin, 17183, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
24
|
Combinatorial Metabolic Engineering in Saccharomyces cerevisiae for the Enhanced Production of the FPP-Derived Sesquiterpene Germacrene. Bioengineering (Basel) 2020; 7:bioengineering7040135. [PMID: 33114339 PMCID: PMC7712416 DOI: 10.3390/bioengineering7040135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/28/2023] Open
Abstract
Farnesyl diphosphate (FPP)-derived isoprenoids represent a diverse group of plant secondary metabolites with great economic potential. To enable their efficient production in the heterologous host Saccharomyces cerevisiae, we refined a metabolic engineering strategy using the CRISPR/Cas9 system with the aim of increasing the availability of FPP for downstream reactions. The strategy included the overexpression of mevalonate pathway (MVA) genes, the redirection of metabolic flux towards desired product formation and the knockout of genes responsible for competitive reactions. Following the optimisation of culture conditions, the availability of the improved FPP biosynthesis for downstream reactions was demonstrated by the expression of a germacrene synthase from dandelion. Subsequently, biosynthesis of significant amounts of germacrene-A was observed in the most productive strain compared to the wild type. Thus, the presented strategy is an excellent tool to increase FPP-derived isoprenoid biosynthesis in yeast.
Collapse
|
25
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 549] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
26
|
Pisman M, Bonte D, de la Peña E. Urbanization alters plastic responses in the common dandelion Taraxacum officinale. Ecol Evol 2020; 10:4082-4090. [PMID: 32489632 PMCID: PMC7244812 DOI: 10.1002/ece3.6176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/07/2022] Open
Abstract
Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations.
Collapse
Affiliation(s)
- Matti Pisman
- Terrestrial Ecology Unit (TEREC)Department of BiologyGhent UniversityGentBelgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC)Department of BiologyGhent UniversityGentBelgium
| | - Eduardo de la Peña
- Terrestrial Ecology Unit (TEREC)Department of BiologyGhent UniversityGentBelgium
- Institute for Subtropical and Mediterranean HorticultureFinca Experimental La MayoraSpanish National Research Council (IHSM‐UMA‐CSIC)MalagaSpain
| |
Collapse
|
27
|
Bont Z, Pfander M, Robert CAM, Huber M, Poelman EH, Raaijmakers CE, Erb M. Adapted dandelions trade dispersal for germination upon root herbivore attack. Proc Biol Sci 2020; 287:20192930. [PMID: 32097589 DOI: 10.1098/rspb.2019.2930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A plant's offspring may escape unfavourable local conditions through seed dispersal. Whether plants use this strategy to escape insect herbivores is not well understood. Here, we explore how different dandelion (Taraxacum officinale agg.) populations, including diploid outcrossers and triploid apomicts, modify seed dispersal in response to root herbivore attack by their main root-feeding natural enemy, the larvae of the common cockchafer Melolontha melolontha. In a manipulative field experiment, root herbivore attack increased seed dispersal potential through a reduction in seed weight in populations that evolved under high root herbivore pressure, but not in populations that evolved under low pressure. This increase in dispersal potential was independent of plant cytotype, but associated with a reduction in germination rate, suggesting that adapted dandelions trade dispersal for establishment upon attack by root herbivores. Analysis of vegetative growth parameters suggested that the increased dispersal capacity was not the result of stress flowering. In summary, these results suggest that root herbivory selects for an induced increase in dispersal ability in response to herbivore attack. Induced seed dispersal may be a strategy that allows adapted plants to escape from herbivores.
Collapse
Affiliation(s)
- Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marc Pfander
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Meret Huber
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Ciska E Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Kowalczyk T, Wieczfinska J, Skała E, Śliwiński T, Sitarek P. Transgenesis as a Tool for the Efficient Production of Selected Secondary Metabolites from in Vitro Plant Cultures. PLANTS (BASEL, SWITZERLAND) 2020; 9:E132. [PMID: 31973076 PMCID: PMC7076688 DOI: 10.3390/plants9020132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
The plant kingdom abounds in countless species with potential medical uses. Many of them contain valuable secondary metabolites belonging to different classes and demonstrating anticancer, anti-inflammatory, antioxidant, antimicrobial or antidiabetic properties. Many of these metabolites, e.g., paclitaxel, vinblastine, betulinic acid, chlorogenic acid or ferrulic acid, have potential applications in medicine. Additionally, these compounds have many therapeutic and health-promoting properties. The growing demand for these plant secondary metabolites forces the use of new green biotechnology tools to create new, more productive in vitro transgenic plant cultures. These procedures have yielded many promising results, and transgenic cultures have been found to be safe, efficient and cost-effective sources of valuable secondary metabolites for medicine and industry. This review focuses on the use of various in vitro plant culture systems for the production of secondary metabolites.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (E.S.); (P.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (E.S.); (P.S.)
| |
Collapse
|
29
|
Michalska K, Marciniuk J, Stojakowska A. A new sesquiterpenoid and further natural products from Taraxacum portentosum Kirschner & Štěpánek, an endangered species. Nat Prod Res 2020; 35:4058-4062. [PMID: 31928353 DOI: 10.1080/14786419.2020.1712389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The chemical studies of roots and aerial parts of Taraxacum portentosum Kirschner & Štěpánek, a member of the section Palustria (H. Lindb.) Dahlst. (Asteraceae), led to the isolation of one new eudesmanolide and 13 known compounds, including five sesquiterpenoids: taraxinic acid, 11β,13-dihydrotaraxinic acid, taraxinic acid β-glucopyranosyl ester and its 11β,13-dihydroderivative, ixerin D, one apocarotenoid ‒ loliolide and seven phenolics: scopoletin, 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone, methyl p-hydroxyphenylacetate, 5-methoxy-eugenyl-4-O-β-glucopyranoside, syringin, dihydroconiferin, and dihydrosyringin. Their structures were established by 1H NMR. The new compound was characterized as 3-oxo-4βH-11,13-eudesmen-12,6-olide-8-O-β-glucopyranoside based on spectroscopic data (1 D and 2 D NMR) and HRESI mass spectrometry.
Collapse
Affiliation(s)
- Klaudia Michalska
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Anna Stojakowska
- Department of Phytochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
30
|
Huang W, Bont Z, Hervé MR, Robert CAM, Erb M. Impact of Seasonal and Temperature-Dependent Variation in Root Defense Metabolites on Herbivore Preference in Taraxacum officinale. J Chem Ecol 2019; 46:63-75. [PMID: 31832894 PMCID: PMC6954900 DOI: 10.1007/s10886-019-01126-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Plants experience seasonal fluctuations in abiotic and biotic factors such as herbivore attack rates. If and how root defense expression co-varies with seasonal fluctuations in abiotic factors and root herbivore attack rates is not well understood. Here, we evaluated seasonal changes in defensive root latex chemistry of Taraxacum officinale plants in the field and correlated the changes with seasonal fluctuations in abiotic factors and damage potential by Melolontha melolontha, a major natural enemy of T. officinale. We then explored the causality and consequences of these relationships under controlled conditions. The concentration of the defensive sesquiterpene lactone taraxinic acid β-D glucopyranosyl ester (TA-G) varied substantially over the year and was most strongly correlated to mean monthly temperature. Both temperature and TA-G levels were correlated with annual fluctuations in potential M. melolontha damage. Under controlled conditions, plants grown under high temperature produced more TA-G and were less attractive for M. melolontha. However, temperature-dependent M. melolontha feeding preferences were not significantly altered in TA-G deficient transgenic lines. Our results suggest that fluctuations in temperature leads to variation in the production of a root defensive metabolites that co-varies with expected attack of a major root herbivore. Temperature-dependent herbivore preference, however, is likely to be modulated by other phenotypic alterations.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland. .,CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Maxime R Hervé
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland.,Inra, Agrocampus Ouest, IGEPP - UMR-A 1349, University of Rennes, F-35000, Rennes, France
| | - Christelle A M Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland.
| |
Collapse
|
31
|
Lackner S, Lackus ND, Paetz C, Köllner TG, Unsicker SB. Aboveground phytochemical responses to belowground herbivory in poplar trees and the consequence for leaf herbivore preference. PLANT, CELL & ENVIRONMENT 2019; 42:3293-3307. [PMID: 31350910 DOI: 10.1111/pce.13628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Belowground (BG) herbivory can influence aboveground (AG) herbivore performance and food preference via changes in plant chemistry. Most evidence for this phenomenon derives from studies in herbaceous plants but studies in woody plants are scarce. Here we investigated whether and how BG herbivory on black poplar (Populus nigra) trees by Melolontha melolontha larvae influences the feeding preference of Lymantria dispar (gypsy moth) caterpillars. In a food choice assay, caterpillars preferred to feed on leaves from trees that had experienced attack by BG herbivores. Therefore, we investigated the effect of BG herbivory on the phytochemical composition of P. nigra trees alone and in combination with AG feeding by L. dispar caterpillars. BG herbivory did not increase systemic AG tree defences like volatile organic compounds, protease inhibitors and salicinoids. Jasmonates and salicylic acid were also not induced by BG herbivory in leaves but abscisic acid concentrations drastically increased together with proline and few other amino acids. Leaf coating experiments with amino acids suggest that proline might be responsible for the caterpillar feeding preference via presumptive phagostimulatory properties. This study shows that BG herbivory in poplar can modify the feeding preference of AG herbivores via phytochemical changes as a consequence of root-to-shoot signaling.
Collapse
Affiliation(s)
- Sandra Lackner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
32
|
Agrawal AA, Hastings AP. Plant Defense by Latex: Ecological Genetics of Inducibility in the Milkweeds and a General Review of Mechanisms, Evolution, and Implications for Agriculture. J Chem Ecol 2019; 45:1004-1018. [PMID: 31755020 DOI: 10.1007/s10886-019-01119-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Latex occurs in 10% of plant families, has evolved independently many times, and is the most effective defense of milkweeds against its chewing herbivores. Here we report on new experiments on the heritability and inducibility of latex in several milkweed species. In addition, we review what is known about the genetic and environmental determinants of latex exudation, hormonal regulation, evolution within and among species, and the role and frequency of latex in agricultural crops. We first evaluated genotype-by-environment interactions using ~20 full-sibling genetic families in each of seven Asclepias species treated as controls or attacked by monarch butterfly caterpillars. All species showed substantial genetic variation for latex exudation and six of seven species responded to monarch herbivory (two species increased latex, two species decreased, and two showed variation among genetic families). Exogenous application of jasmonic acid (JA) to three species induced a consistent increase in latex (including species which showed a decline following caterpillar herbivory). We next evaluated three hypotheses for what determines genetic variation for induced latex in A. syriaca: 1) a trade-off with constitutive investment, 2) differential endogenous JA induction, or 3) variation in responsiveness to JA. We only found support for the second hypothesis: genetic families with a stronger JA-burst showed the greatest latex exudation following herbivory. We conclude that most species exhibit a genetic and inducible basis for latex, although genetic variation in inducibility is not pervasive. Finally, we summarized studies across 22 species of Asclepias and found that neither a species' latitude nor its phylogenetic position predicted latex inducibility. Nonetheless, a negative association between constitutive and induced latex across species indicates a macroevolutionary trade-off in allocation to this defense. Our review indicates that jasmonic acid is a key regulator of latex exudation, laticifer morphology, and defensive metabolites within latex. Biotic and abiotic factors strongly modulate latex expression. A survey of latex in food crops revealed that latex and analogous exudates (gums, resins, mucilage) are more common than expected based on their distribution across all plants. In conclusion, despite its widespread occurrence, the literature on latex is currently dominated by rubber trees and milkweeds, and we look forward to the broadening of ecological, agricultural, and mechanistic research into other systems.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA. .,Department of Entomology, Cornell University, Ithaca, NY, USA.
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Hervé MR, Erb M. Distinct defense strategies allow different grassland species to cope with root herbivore attack. Oecologia 2019; 191:127-139. [PMID: 31367912 DOI: 10.1007/s00442-019-04479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Root-feeding insect herbivores are of substantial evolutionary, ecological and economical importance. Plants defend themselves against insect herbivores through a variety of tolerance and resistance strategies. To date, few studies have systematically assessed the prevalence and importance of these strategies for root-herbivore interactions across different plant species. Here, we characterize the defense strategies used by three different grassland species to cope with a generalist root herbivore, the larvae of the European cockchafer Melolontha melolontha. Our results reveal that the different plant species rely on distinct sets of defense strategies. The spotted knapweed (Centaurea stoebe) resists attack by dissuading the larvae through the release of repellent chemicals. White clover (Trifolium repens) does not repel the herbivore, but reduces feeding, most likely through structural defenses and low nutritional quality. Finally, the common dandelion (Taraxacum officinale) allows M. melolontha to feed abundantly but compensates for tissue loss through induced regrowth. Thus, three co-occurring plant species have evolved different solutions to defend themselves against attack by a generalist root herbivore. The different root defense strategies may reflect distinct defense syndromes.
Collapse
Affiliation(s)
- Maxime R Hervé
- University of Rennes, Inra, Agrocampus Ouest, IGEPP, UMR-A 1349, Campus Beaulieu, Avenue du Général Leclerc, 35000, Rennes, France.
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
34
|
Huang W, Gfeller V, Erb M. Root volatiles in plant-plant interactions II: Root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants. PLANT, CELL & ENVIRONMENT 2019; 42:1964-1973. [PMID: 30754075 PMCID: PMC6849603 DOI: 10.1111/pce.13534] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighbouring plants. However, little is known about the effects of root VOCs on plant-herbivore interactions of neighbouring plants. The spotted knapweed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of C. stoebe root VOCs on the primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant-mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of T. officinale to C.stoebe root VOCs does not affect the accumulation of defensive secondary metabolites but modulates carbohydrate and total protein levels in T. officinale roots. Furthermore, VOC exposure increases M. melolontha growth on T. officinale plants. Exposure of T. officinale to a major C. stoebe root VOC, the sesquiterpene (E)-β-caryophyllene, partially mimics the effect of the full root VOC blend on M. melolontha growth. Thus, releasing root VOCs can modify plant-herbivore interactions of neighbouring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | | | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
35
|
Abstract
Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant-herbivore interactions and discuss how their discovery has structured the current standard model of plant-herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant-herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant-insect interactions should be a future priority.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, 3000 Bern, Switzerland;
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
36
|
Pütter KM, van Deenen N, Müller B, Fuchs L, Vorwerk K, Unland K, Bröker JN, Scherer E, Huber C, Eisenreich W, Prüfer D, Schulze Gronover C. The enzymes OSC1 and CYP716A263 produce a high variety of triterpenoids in the latex of Taraxacum koksaghyz. Sci Rep 2019; 9:5942. [PMID: 30976052 PMCID: PMC6459903 DOI: 10.1038/s41598-019-42381-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
Only very little is known about the resin composition of natural rubber from the dandelion species Taraxacum koksaghyz, thus its full characterization could provide new insights into how the isoprenoid end-products influence the physical properties of natural rubber, and this resin might be a good source of highly diverse triterpenoids. Here, we present a comprehensive analysis of the triterpenoid composition in an acetone extract and identified 13 triterpenes and triterpenoids also including the so far unknown pentacyclic compounds lup-19(21)-en-3-ol (1) and its ketone lup-19(21)-en-3-one (2). We purified single triterpenes from the acetone extract by developing a two-step HPLC system that is adapted to the structural differences of the described triterpenoids. Furthermore, we isolated six different oxidosqualene cyclases (OSCs) and two P450 enzymes, and we functionally characterized TkOSC1 and CYP716A263 in Nicotiana benthamiana and Saccharomyces cerevisiae in detail. TkOSC1 is a multifunctional OSC that was capable of synthesizing at least four of the latex-predominant pentacyclic triterpenes (taraxasterol, α-, β-amyrin and lup-19(21)-en-3-ol) while CYP716A263 oxidized pentacyclic triterpenes at the C-3 position. The identified enzymes responsible for biosynthesis and modification of pentacyclic triterpenes in T. koksaghyz latex may represent excellent tools for bioengineering approaches to produce pentacyclic triterpenes heterologously.
Collapse
Affiliation(s)
- Katharina M Pütter
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Muenster, Germany
| | - Nicole van Deenen
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Muenster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany
| | - Lea Fuchs
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Muenster, Germany
| | - Kirsten Vorwerk
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Muenster, Germany
| | - Kristina Unland
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany
| | - Jan Niklas Bröker
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Muenster, Germany
| | - Emely Scherer
- Technische Universität München, Chair of Biochemistry, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Claudia Huber
- Technische Universität München, Chair of Biochemistry, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Wolfgang Eisenreich
- Technische Universität München, Chair of Biochemistry, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Dirk Prüfer
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Muenster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143, Muenster, Germany.
| |
Collapse
|
37
|
Santhanam R, Menezes RC, Grabe V, Li D, Baldwin IT, Groten K. A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease. Mol Ecol 2019; 28:1154-1169. [PMID: 30633416 DOI: 10.1111/mec.15012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/05/2023]
Abstract
The beneficial effects of plant--bacterial interactions in controlling plant pests have been extensively studied with single bacterial isolates. However, in nature, bacteria interact with plants in multitaxa consortia, systems which remain poorly understood. Previously, we demonstrated that a consortium of five native bacterial isolates protected their host plant Nicotiana attenuata from a sudden wilt disease. Here we explore the mechanisms behind the protection effect against the native pathosystem. Three members of the consortium, Pseudomonas azotoformans A70, P. frederiksbergensis A176 and Arthrobacter nitroguajacolicus E46, form biofilms when grown individually in vitro, and the amount of biofilm increased synergistically in the five-membered consortium, including two Bacillus species, B. megaterium and B. mojavensis. Fluorescence in situ hybridization and scanning electron microscopy in planta imaging techniques confirmed biofilm formation and revealed locally distinct distributions of the five bacterial strains colonizing different areas on the plant-root surface. One of the five isolates, K1 B. mojavensis produces the antifungal compound surfactin, under in vitro and in vivo conditions, clearly inhibiting fungal growth. Furthermore, isolates A70 and A176 produce siderophores under in vitro conditions. Based on these results we infer that the consortium of five bacterial isolates protects its host against fungal phytopathogens via complementary traits. The study should encourage researchers to create synthetic communities from native strains of different genera to improve bioprotection against wilting diseases.
Collapse
Affiliation(s)
- Rakesh Santhanam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Riya C Menezes
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
38
|
Castelblanque L, Balaguer B, Marti C, Orozco M, Vera P. LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris. THE NEW PHYTOLOGIST 2018; 219:1467-1479. [PMID: 29878406 DOI: 10.1111/nph.15253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Laticifers are specialized plant cells capable of indefinite elongation that ramify extensively and are responsible for latex biosynthesis and accumulation. However, the mechanisms underlying laticifer cell differentiation, growth and production of latex remain largely unknown. In a search for mutants showing enhanced accumulation of latex we identified two LOT OF LATEX (LOL) loci in Euphorbia lathyris. lol2 and lol5 mutants show enhanced production of latex contained within laticifer cells. The recessive lol2 mutant carries increased biosynthesis of the plant hormone jasmonoyl-isoleucine (JA-Ile) and therefore establishes a genetic link between jasmonic acid (JA) signaling and latex production in laticifers. Instead, heightened production of latex in lol5 plants obeys to enhanced proliferation of laticifer cells. Phylogenetic analysis of laticifer-expressed genes in E. lathyris and in two other latex-bearing species, Euphorbia corallioides and Euphorbia palustris, allowed the identification of canonical JA responsive elements present in the gene promoter regions of laticifer marker genes. Moreover, we identified that the hormone JA functions not as a morphogen for laticifer differentiation but as a trigger for the fill out of laticifers with latex and the associated triterpenoids. The identification of LOL loci represents a further step towards the understanding of mechanisms controlling latex production in laticifer cells.
Collapse
Affiliation(s)
- Lourdes Castelblanque
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Begoña Balaguer
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Cristina Marti
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Marianela Orozco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| |
Collapse
|
39
|
Guyer A, Hibbard BE, Holzkämper A, Erb M, Robert CAM. Influence of drought on plant performance through changes in belowground tritrophic interactions. Ecol Evol 2018; 8:6756-6765. [PMID: 30038772 PMCID: PMC6053580 DOI: 10.1002/ece3.4183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022] Open
Abstract
Climate change is predicted to increase the risk of drought in many temperate agroecosystems. While the impact of drought on aboveground plant-herbivore-natural enemy interactions has been studied, little is known about its effects on belowground tritrophic interactions and root defense chemistry. We investigated the effects of low soil moisture on the interaction between maize, the western corn rootworm (WCR, Diabrotica virgifera), and soil-borne natural enemies of WCR. In a manipulative field experiment, reduced soil moisture and WCR attack reduced plant performance and increased benzoxazinoid levels. The negative effects of WCR on cob dry weight and silk emergence were strongest at low moisture levels. Inoculation with entomopathogenic nematodes (EPNs, Heterorhabditis bacteriophora) was ineffective in controlling WCR, and the EPNs died rapidly in the warm and dry soil. However, ants of the species Solenopsis molesta invaded the experiment, were more abundant in WCR-infested pots and predated WCR independently of soil moisture. Ant presence increased root and shoot biomass and was associated with attenuated moisture-dependent effects of WCR on maize cob weight. Our study suggests that apart from directly reducing plant performance, drought can also increase the negative effects of root herbivores such as WCR. It furthermore identifies S. molesta as a natural enemy of WCR that can protect maize plants from the negative impact of herbivory under drought stress. Robust herbivore natural enemies may play an important role in buffering the impact of climate change on plant-herbivore interactions.
Collapse
Affiliation(s)
- Anouk Guyer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| | - Bruce E. Hibbard
- Plant Genetics Research UnitUSDA‐ARSUniversity of MissouriColumbiaMissouri
| | - Annelie Holzkämper
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
- Institute for Sustainability Sciences ISSAgroscopeZürichSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| | - Christelle A. M. Robert
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| |
Collapse
|
40
|
Agrawal AA, Hastings AP, Fines DM, Bogdanowicz S, Huber M. Insect herbivory and plant adaptation in an early successional community*. Evolution 2018; 72:1020-1033. [DOI: 10.1111/evo.13451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/04/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
- Department of Entomology Cornell University Ithaca New York 14853
| | - Amy P. Hastings
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Daniel M. Fines
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Steve Bogdanowicz
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Meret Huber
- Department of Biochemistry Max‐Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|
41
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
42
|
Castelblanque L, Balaguer B, Martí C, Rodríguez JJ, Orozco M, Vera P. Multiple facets of laticifer cells. PLANT SIGNALING & BEHAVIOR 2017; 12:e1300743. [PMID: 28718699 PMCID: PMC5586393 DOI: 10.1080/15592324.2017.1300743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
In the latex-bearing plants, the laticiferous system is the tubing structure that contains the latex and is constituted of living cells (laticifers). While laticifers are present only in a small percentage of the flowering plant species, they represent a type of specialized tissue within the plant where a myriad of metabolites are synthesized, some of them of considerable commercial importance. In this mini-review we synopsize the present knowledge about laticifer cells and discuss about their particular features as well as some evolutionary and ecophysiological cues and the potential exploitation of the knowledge generated around this peculiar type of plant cell. We illustrate some of these questions with the experience in Euphorbia lathyris laticifers and latex.
Collapse
Affiliation(s)
- Lourdes Castelblanque
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Begoña Balaguer
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Juan José Rodríguez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Marianela Orozco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| |
Collapse
|
43
|
A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin. J Chem Ecol 2017; 43:295-306. [PMID: 28303526 DOI: 10.1007/s10886-017-0830-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 01/01/2023]
Abstract
Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner.
Collapse
|
44
|
Huber M, Bont Z, Fricke J, Brillatz T, Aziz Z, Gershenzon J, Erb M. A below-ground herbivore shapes root defensive chemistry in natural plant populations. Proc Biol Sci 2016; 283:20160285. [PMID: 27009228 DOI: 10.1098/rspb.2016.0285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.
Collapse
Affiliation(s)
- Meret Huber
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Théo Brillatz
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zohra Aziz
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root Herbivore Interactions Group, Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Castelblanque L, Balaguer B, Martí C, Rodríguez JJ, Orozco M, Vera P. Novel Insights into the Organization of Laticifer Cells: A Cell Comprising a Unified Whole System. PLANT PHYSIOLOGY 2016; 172:1032-1044. [PMID: 27468995 PMCID: PMC5047105 DOI: 10.1104/pp.16.00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
Laticifer cells are specialized plant cells that synthesize and accumulate latex. Studies on laticifers have lagged behind in recent years, and data regarding the functional role of laticifers and their fitness benefit still remain elusive. Laticifer differentiation and its impact on plant growth and development also remain to be investigated. Here, cellular, molecular, and genetic tools were developed to examine the distribution, differentiation, ontogeny, and other characteristic features, as well as the potential developmental role of laticifer cells in the latex-bearing plant Euphorbia lathyris. The organization of the laticiferous system within the E. lathyris plant body is reported, emerging as a single elongated and branched coenocytic cell, constituting the largest cell type existing in plants. We also report the ontogeny and organization of laticifer cells in the embryo and the identification of a laticifer-associated gene expression pattern. Moreover, the identification of laticifer- and latex-deficient mutants (pil mutants) allowed for the identification of distinct loci regulating laticifer differentiation, growth, and metabolic activity. Additionally, pil mutants revealed that laticifer cells appear nonessential for plant growth and development, thus pointing toward their importance, instead, for specific ecophysiological adaptations of latex-bearing plants in natural environments.
Collapse
Affiliation(s)
- Lourdes Castelblanque
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Begoña Balaguer
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Juan José Rodríguez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Marianela Orozco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| |
Collapse
|
46
|
Tenenboim H, Brotman Y. Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:781-791. [PMID: 27185334 DOI: 10.1016/j.tplants.2016.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 05/19/2023]
Abstract
Many aspects of the way plants protect themselves against pathogen attack, or react upon such an attack, are realized by metabolites. The ambitious aim of metabolomics, namely the identification and annotation of the entire cellular metabolome, still poses a considerable challenge due to the high diversity of the metabolites in the cell. Recent advances in analytical methods and data analysis have resulted in improved sensitivity, accuracy, and capacity, allowing the analysis of several hundreds or even thousands of compounds within one sample. Investigators have only recently begun to acknowledge and harness the power of metabolomics to elucidate key questions in the study of plant biotic interactions; we review trends and developments in the field.
Collapse
Affiliation(s)
- Hezi Tenenboim
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
47
|
Machado RAR, McClure M, Hervé MR, Baldwin IT, Erb M. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. eLife 2016; 5:e13720. [PMID: 27352734 PMCID: PMC4927296 DOI: 10.7554/elife.13720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Endogenous jasmonates are important regulators of plant defenses. If and how they enable plants to maintain their reproductive output when facing community-level herbivory under natural conditions, however, remains unknown. We demonstrate that jasmonate-deficient Nicotiana attenuata plants suffer more damage by arthropod and vertebrate herbivores than jasmonate-producing plants in nature. However, only damage by vertebrate herbivores translates into a significant reduction in flower production. Vertebrate stem peeling has the strongest negative impact on plant flower production. Stems are defended by jasmonate-dependent nicotine, and the native cottontail rabbit Sylvilagus nuttallii avoids jasmonate-producing N. attenuata shoots because of their high levels of nicotine. Thus, endogenous jasmonates enable plants to resist different types of herbivores in nature, and jasmonate-dependent defenses are important for plants to maintain their reproductive potential when facing vertebrate herbivory. Ecological and evolutionary models on plant defense signaling should aim at integrating arthropod and vertebrate herbivory at the community level.
Collapse
Affiliation(s)
- Ricardo AR Machado
- Root-Herbivore Interactions Group, Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Mark McClure
- School of the Environment, Washington State University, Washington, United States
| | - Maxime R Hervé
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Institut de Génétique, Environment et Protection des Plantes, Le Rheu, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|