1
|
Chiu YC, Yi PL, Chang FC. Differential Effects of Light Spectra on Sleep Architecture and Melatonin in Rats. Brain Sci 2025; 15:445. [PMID: 40426617 PMCID: PMC12109716 DOI: 10.3390/brainsci15050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Artificial light exposure, particularly from blue-rich sources, has raised concerns about its impact on sleep and circadian rhythms. While blue light's effects are well-documented, the comparative impact of longer wavelengths, such as orange light (590-635 nm), remains underexplored. This study investigated the effects of 8 h blue (470-490 nm) and orange light exposures (500 lux) on sleep architecture in the next consecutive three days in Sprague-Dawley rats during the light or dark phase of a 12:12 h light-dark cycle. Sleep-wake states were assessed via electroencephalography (EEG) over 72 h. Blue light during the light period suppressed rapid eye movement (REM) sleep acutely and enhanced non-NREM sleep on Days 2 and 3. Orange light during the light period induced no immediate changes but increased NREM sleep on Day 2 with a biphasic REM response-suppression followed by rebound-persisting into Day 3. Blue light during the dark period increased NREM sleep during exposure, followed by suppression in the subsequent light period, with effects normalizing by Day 2. Blue light exposure suppressed melatonin levels compared to controls. These findings highlight spectral and temporal influences on sleep, with blue light exerting stronger acute effects and orange light eliciting delayed, biphasic responses. The results suggest implications for managing light exposure to mitigate sleep disruptions in modern environments.
Collapse
Affiliation(s)
- Yuan-Chun Chiu
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106319, Taiwan;
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia University, 32 Zhen-Li Street, Tamsui Dist., New Taipei City 251306, Taiwan
| | - Fang-Chia Chang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106319, Taiwan;
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
2
|
Li X, Liu J, Huang N, Zhao W, He H. Association Between Internet Use and Sleep Health Among Middle-Aged and Older Chinese Individuals: Nationwide Longitudinal Study. J Med Internet Res 2025; 27:e71030. [PMID: 40239202 PMCID: PMC12044320 DOI: 10.2196/71030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Sleep disorders are common among older adults and have a bidirectional impact on their emotional well-being. While some studies suggest that internet use may offer mental health benefits to this population, the relationship between internet use and sleep outcomes remains underexplored. OBJECTIVE This study investigates the association between internet use (including use frequency) and sleep quality and duration in middle-aged and older Chinese adults. METHODS A longitudinal analysis was conducted using the China Health and Retirement Longitudinal Study data from 2015 to 2018. Sleep quality was assessed using the sleep item from the Centre for Epidemiologic Studies Depression Scale, categorized as "good" (<1 day; reference), "fair" (1-4 days), or "poor" (5-7 days). Sleep duration was classified as short (<6 hours), medium (6-9 hours; reference), or long (>9 hours). Adjusted multinomial logistic regressions were used to examine the associations between internet use or frequency in 2015 and sleep quality or duration in 2018, controlling for age, sex, residence, diseases, smoking, drinking, and napping time and further exploring sex and age group variations. RESULTS The baseline analysis included 18,460 participants aged 45 years and older, with 1272 (6.9%) internet users, 8825 (48.1%) participants had fair or poor sleep, and 6750 (37.2%) participants had abnormal sleep duration. Internet users, particularly those who used it almost daily, were less likely to report poor sleep quality (relative risk [RR] 0.71, 95% CI 0.54-0.94) and longer sleep duration (RR 0.22, 95% CI 0.11-0.44) than nonusers. In the longitudinal analysis, baseline internet users had a significantly reduced risk of fair (RR 0.66, 95% CI 0.51-0.86) and poor sleep quality (RR 0.60, 95% CI 0.44-0.81), as well as short (RR 0.73, 95% CI 0.53-1.00) and long sleep duration (RR 0.39, 95% CI 0.21-0.72) during the follow-up period than nonusers. These associations remained significant for almost daily internet use (RR 0.32, 95% CI 0.15-0.69). Subgroup analyses by sex revealed a positive relationship between internet use and sleep quality, with a stronger effect in female (poor sleep: RR 0.57, 95% CI 0.36-0.89) than male (poor sleep: RR 0.61, 95% CI 0.40-0.92) participants. The effect on sleep duration was significant only in daily male users, showing a reduced risk of long sleep duration (RR 0.30, 95% CI 0.11-0.78). In the age subgroup analysis, most internet users were in the 45- to 59-year age group, with results consistent with the overall findings. CONCLUSIONS This study suggests that internet use is associated with a reduced risk of sleep problems in middle-aged and older adults. The findings indicate that moderate, regular internet engagement-such as daily use-may promote better sleep health in this population.
Collapse
Affiliation(s)
- Xueqin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jin Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Ning Huang
- Center of Gerontology and Geriatrics and National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanyu Zhao
- Center of Gerontology and Geriatrics and National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Ganzhou Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wang YQ, Ma WX, Kong LX, Zhang H, Yuan PC, Qu WM, Liu CF, Huang ZL. Ambient chemical and physical approaches for the modulation of sleep and wakefulness. Sleep Med Rev 2025; 79:102015. [PMID: 39447526 DOI: 10.1016/j.smrv.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Humans spend a third of their lives asleep. While the sleep-wake behaviors are primarily modulated by homeostasis and circadian rhythm, several ambient chemical and physical factors, including light, sound, odor, vibration, temperature, electromagnetic radiation, and ultrasound, also affect sleep and wakefulness. Light at different wavelengths has different effects on sleep and wakefulness. Sound not only promotes but also suppresses sleep; this effect is mediated by certain nuclei, including the pedunculopontine nucleus and inferior colliculus. Certain sleep-promoting odorants regulate sleep through the involvement of the olfactory bulb and olfactory tubercle. In addition, vibrations may induce sleep through the vestibular system. A modest increase in ambient temperature leads to an increase in sleep duration through the involvement of the preoptic area. Electromagnetic radiation has a dual effect on sleep-wake behaviors. The stimulation produced by the ambient chemical and physical factors activates the peripheral sensory system, which converts the chemical and physical stimuli into nerve impulses. This signal is then transmitted to the central nervous system, including several nuclei associated with the modulation of sleep-wake behaviors. This review summarizes the effects of ambient chemical and physical factors on the regulation of sleep and wakefulness, as well as the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Song Y, Yoon M. Melatonin effects on animal behavior: circadian rhythm, stress response, and modulation of behavioral patterns. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:1-16. [PMID: 39974791 PMCID: PMC11833209 DOI: 10.5187/jast.2024.e105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 02/21/2025]
Abstract
Melatonin plays a crucial role in various behavioral and physiological aspects of animals, including regulating their circadian rhythms. This review provides a comprehensive evaluation of the multifaceted effects of melatonin on animal behavior, such as temperament, stress, and aggression regulation. The focus is on the complex interactions between melatonin and the hormonal and neurotransmitter systems, highlighting how melatonin interacts with cortisol, serotonin, and dopamine to influence behavior. Additionally, it investigates the effects of melatonin on the hypothalamic-pituitary-gonada (HPG) axis and stress responses, emphasizing its potential to improve stress management and social interactions, thereby enhancing animal welfare. The review also examines the seasonal variations of melatonin and its impact on aggression and reproductive activities related to photoperiods, as well as its effects on learning and memory to suggest improvements in animal training methods and practices. Furthermore, it discusses the influence of melatonin on appetite and physical activity regulation, implying its involvement in metabolic processes. In conclusion, further research is needed to elucidate the complex mechanisms underlying the extensive influence of melatonin on animal behavior. Through this review, the aim is to integrate the overall knowledge about melatonin and animal behavioral temperament and to propose new research areas for animal management based on behavioral and hormonal regulation.
Collapse
Affiliation(s)
- Yubin Song
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Minjung Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal
Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
5
|
Lee T, Weinberg-Wolf H, Zapadka TE, Rudenko A, Demb JB, Kim IJ. Specific retinal neurons regulate context-dependent defensive responses to visual threat. PNAS NEXUS 2024; 3:pgae423. [PMID: 39359403 PMCID: PMC11443969 DOI: 10.1093/pnasnexus/pgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
While encountering a visual threat, an animal assesses multiple factors to choose an appropriate defensive strategy. For example, when a rodent detects a looming aerial predator, its behavioral response can be influenced by a specific environmental context, such as the availability of a shelter. Indeed, rodents typically escape from a looming stimulus when a shelter is present; otherwise, they typically freeze. Here we report that context-dependent behavioral responses can be initiated at the earliest stage of the visual system by distinct types of retinal ganglion cells (RGCs), the retina's output neurons. Using genetically defined cell ablation in mature mice, we discovered that some RGC types were necessary for either escaping (alpha RGCs) or freezing (intrinsically photosensitive RGCs) in response to a looming stimulus but not for both behaviors; whereas other RGC types were not required for either behavior (direction-selective RGCs preferring vertical motion). Altogether, our results suggest that specific RGC types regulate distinct behavioral responses elicited by the same threatening stimulus depending on contextual signals in the environment. These findings emphasize the unique contribution of early visual pathways to evolutionally conserved behavioral reactions.
Collapse
Affiliation(s)
- Tracy Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hannah Weinberg-Wolf
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrii Rudenko
- Department of Biology, Graduate Programs in Biology and Biochemistry, City College and City University of New York, New York, NY 10031, USA
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Cao M, Xu T, Song Y, Wei S, Wang H, Guo X, Yin D. Brominated Flame Retardant HBCD and Artificial Light at Night Synergically Caused Visual Disorder and Sleep Difficulty in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17247-17258. [PMID: 39291437 DOI: 10.1021/acs.est.4c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Sleep difficulty is a widespread health concern exacerbated by factors such as light and chemical pollution. Artificial light at night (ALAN) can disrupt natural sleep-wake cycles, whereas chemical pollutants can impair sleep-related processes. The prevalence of ALAN increases the health risk of coexposure, yet it has not gained sufficient attention. Meanwhile, visual inputs are important for sleep regulation, especially the non-image-forming circadian visual system centered around melanopsin. This study evaluated the light perception ability and sleep performance of zebrafish larvae exposed to flame retardant hexabromocyclododecanes (HBCDs) at environmentally relevant concentrations (2.5 and 25 μg/L) and to cotreatment of HBCD and ALAN. HBCD induced a longer sleep latency of 34.59 min under 25 μg/L (p < 0.01) versus control (26.04 min). The situation was intensified by coexposure with low-level ALAN (10 lx) to 48.04 min. Similar synergic effects were observed for upregulations of Xenopus-related melanopsin genes and downregulations of the melatonin synthesis gene aanat2, suggesting a melanopsin-aanat2-sleep retina-brain pathway. Image-forming opsins (opn1sw1 and opn1sw2) were also activated by HBCD to 1.29-1.53-fold (p < 0.05), together with elevated retina glutamate, but without synergic effects. Collectively, we found that HBCD and ALAN coexposure caused synergic effects on the non-image-forming visual system and caused sleep difficulty in zebrafish larvae.
Collapse
Affiliation(s)
- Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Andrani M, Dall’Olio E, De Rensis F, Tummaruk P, Saleri R. Bioactive Peptides in Dairy Milk: Highlighting the Role of Melatonin. Biomolecules 2024; 14:934. [PMID: 39199322 PMCID: PMC11352677 DOI: 10.3390/biom14080934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin, an endogenous indolamine derived from tryptophan, is primarily synthesized by the pineal gland in mammals and regulated by a complex neural system. Its release follows a circadian rhythm, which is crucial for regulating physiological processes in response to light-dark cycles in both humans and animals. In this review, we report that the presence of this hormone in bovine milk, with significant differences in concentration between daytime and nighttime milking, has increased interest in milk as a natural source of bioactive molecules. Melatonin lowers cortisol levels at night, reduces body temperature and blood pressure, coinciding with decreased alertness and performance, acts as an antioxidant and anti-inflammatory agent, modulates the immune system, offers neuroprotective benefits, and supports gastrointestinal health by scavenging free radicals and reducing oxidative stress in dairy cows. Many factors influence the release of melatonin, such as the intensity of artificial lighting during nighttime milking, the frequency of milkings, milk yield, and genetic differences between animals. Nocturnal milking under low-intensity light boosts melatonin, potentially reducing oxidative damage and mastitis risk. Additionally, ultra-high temperature (UHT) treatment does not significantly affect the melatonin content in milk. However, further research on its stability during milk processing and storage is crucial for ensuring product efficacy. In some countries, nighttime milk with naturally elevated melatonin content is already commercialized as a natural aid for sleep. Thus, naturally melatonin-rich milk may be a promising alternative to synthetic supplements for promoting better sleep and overall well-being.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Eleonora Dall’Olio
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Fabio De Rensis
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| | - Padet Tummaruk
- Centre of Excellence in Swine Reproduction, Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (E.D.); (F.D.R.); (R.S.)
| |
Collapse
|
8
|
Swan M, Horvath A, Pritchett RK, Barabas AJ, Hickman D, Gaskill BN. The Future Is Not Bright: Evaluation of Rat Preferences for Color and Intensity of Light. Animals (Basel) 2024; 14:2045. [PMID: 39061507 PMCID: PMC11273897 DOI: 10.3390/ani14142045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Light is a key factor influencing the welfare of laboratory rodents, but little is known about their optimal lighting condition. It i common knowledge that rats prefer dim light, so bright light is mitigated with red-tinted shelters or cages, which alter both the color and intensity of light. Because both aspects are altered, the contribution of each feature to rodent preference is unknown. Further, it is unknown if this preference is influenced by previous experience. We hypothesized that rats would prefer lower light intensity and that their preferences would be influenced by their housing environment. Breeder pairs of rats were randomly separated into four treatments groups: red 200 lux, red 25 lux, clear 200 lux, and clear 25 lux. The breeders' offspring were tested three times in an apparatus that offered access to each environment, and their preferences were analyzed. Generally, the rats preferred the lower-lux environments and showed no color preference. However, the rats from the clear, 200 lux cages, preferred clear caging and only showed a preference for 25 lux conditions during the second and third preference tests. These results suggest that the light intensity, more than color, should be considered when designing rodent housing and testing facilities.
Collapse
Affiliation(s)
- Melissa Swan
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Aidan Horvath
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca K. Pritchett
- Animal Sciences Department, Purdue University, West Lafayette, IN 47906, USA (A.J.B.)
| | - Amanda J. Barabas
- Animal Sciences Department, Purdue University, West Lafayette, IN 47906, USA (A.J.B.)
| | - Debra Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, IN 46202, USA;
| | - Brianna N. Gaskill
- Animal Sciences Department, Purdue University, West Lafayette, IN 47906, USA (A.J.B.)
| |
Collapse
|
9
|
Bonilla P, Shanks A, Nerella Y, Porcu A. Effects of chronic light cycle disruption during adolescence on circadian clock, neuronal activity rhythms, and behavior in mice. Front Neurosci 2024; 18:1418694. [PMID: 38952923 PMCID: PMC11215055 DOI: 10.3389/fnins.2024.1418694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.
Collapse
Affiliation(s)
| | | | | | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
10
|
Gürses G, Ömeroğlu Akkoç Fİ, Aktı A, Körez MK. Effectiveness of wearing glasses with green lenses on dental anxiety for third-molar surgery: A randomized clinical trial. J Am Dent Assoc 2024; 155:496-503.e1. [PMID: 38520420 DOI: 10.1016/j.adaj.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Dental anxiety is a common problem for oral surgeries. This study investigated the effectiveness of wearing glasses with green lenses in reducing dental anxiety, blood pressure, heart rate, and intraoperative pain in patients undergoing first-time third-molar surgery. METHODS The authors planned this study as a randomized and parallel-group clinical trial. Patients' dental anxiety was measured with the use of a visual analog scale and a State-Trait Anxiety Inventory for baseline measurement purposes. At the same time, blood pressure, oxygen saturation, and heart rate values were recorded. Patients were given glasses with clear or green lenses, depending on their group. After 10 minutes, all parameters were measured again for preoperative measurement. Patients wore glasses with either green or clear lenses throughout the operation. After the operation, patients were asked to estimate the degree of intraoperative pain using the visual analog scale. RESULTS The study included 128 patients. On the basis of the change between baseline and preoperative measurements, the authors found a statistically significant difference in anxiety and heart rate. Intraoperative pain showed a significant difference between groups. No significant changes were found in blood pressure and oxygen saturation. CONCLUSIONS Patients with anxiety could wear low-cost, easy-to-use glasses with green lenses for 10 minutes before an operation to reduce anxiety and heart rate. In addition, wearing glasses during the surgical procedure can reduce intraoperative pain. PRACTICAL IMPLICATIONS By means of using glasses with green lenses throughout the procedure, existing anxiety and pain can be reduced. An operation can be performed more comfortably for both the patient and the dentist. This clinical trial was registered at ClinicalTrials.gov. The registration number is NCT05584696.
Collapse
|
11
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
14
|
Dauchy RT, Hanifin JP, Brainard GC, Blask DE. Light: An Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:116-147. [PMID: 38211974 PMCID: PMC11022951 DOI: 10.30802/aalas-jaalas-23-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- ign, intergeniculate nucleus
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- k, kelvin temperature
- lan, light at night
- led, light-emitting diode
- lgn, lateral geniculate nucleus
- plr, pupillary light reflex
- pot, primary optic tract
- rht, retinohypothalamic tract
- scn, suprachiasmatic nuclei
- spd, spectral power distribution.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana;,
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
15
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of home-cage elevation on behavioral tests in mice. Brain Behav 2023; 14:e3269. [PMID: 38064177 PMCID: PMC10897499 DOI: 10.1002/brb3.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Research reproducibility is a common problem in preclinical behavioral science. Mice are an important animal model for studying human behavioral disorders. Experimenters, processing methods, and rearing environments are the main causes of data variability in behavioral neuroscience. It is likely that mice adapt their behavior according to the environment outside the breeding cage. We speculated that mice housed on elevated shelves and mice housed on low shelves might have differently altered anxiety-like behavior toward heights. PURPOSE The purpose of this study was to investigate potential behavioral changes in mice raised at different heights for 3 weeks. Changes in behavior were examined using various experimental tests. RESULTS Mice housed on elevated shelves showed reduced anxiety-like behavior in a light/dark traffic test compared with mice housed on low shelves. There were no significant differences between the two groups in terms of activity, exploratory behavior, muscle strength, or depression-like behavior. CONCLUSIONS Our results indicate that different cage heights and corresponding light exposure may alter the anxiety-like behavior of mice in response to brightness. Researchers need to carefully control the cage height and light intensity experienced by the mice to produce reproducible test results.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical TechnologyKawasaki University of Medical WelfareOkayamaJapan
| | - Yu Takahashi
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Shinji Murakami
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Kenta Wani
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health SciencesOkayama UniversityOkayamaJapan
| | | |
Collapse
|
16
|
Chekani Azar S, Sabuncuoğlu Çoban N. Nesfatin-1 protects the reproductive health of male Sprague Dawley rats exposed to blue and white LED lights. Sci Rep 2023; 13:19962. [PMID: 37968298 PMCID: PMC10652020 DOI: 10.1038/s41598-023-46137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
There is little information on the effects of exposure to light emitting diode (LED) illumination on the welfare of laboratory animals. Nesfatin-1, a satiety-regulation peptide present in various tissues, is found in the central nervous system and participates in the stress response. The present study investigated whether exposure to blue and white LED lights for 14 weeks affected growth and reproductive, biochemical and histopathological parameters in male Sprague Dawley (SD) rats as well as whether subcutaneous (SC) injection of nesfatin-1 (0.5 mg/kg bodyweight) in the last two weeks of the experimental period alleviated these effects. Forty male SD rats (21 days of age) were randomly allotted to 6 groups. The animals were exposed to routine fluorescent light (the control [C] and control + sesame oil [CS] groups) or blue/white LEDs (the blue-LED and white-LED groups), accompanied by nesfatin-1 administration (the blue-LED-N1 and white-LED-N1 groups). White-LED rats had significantly higher testis weights (p < 0.05) than control and blue-LED rats. Serum melatonin levels were significantly lower in blue-LED rats, but nesfatin-1 injection rescued melatonin levels in blue-LED-N1 rats (p < 0.05). Blue-LED rats showed the highest serum nesfatin-1 levels, but nesfatin-1 injection decreased nesfatin-1 levels in blue-LED-N1 rats (p < 0.0001). Blue-LED rats showed a significant reduction in sperm motility compared to the other groups (p < 0.0001). White and blue LED exposure caused significant negative histopathological changes in the testes, but nesfatin-1 administration reduced edema in the intertubular spaces, hyperemia in the interstitial cells, degeneration of spermatocytes and thinning of the tubular wall in the testicular tissues; these restorative effects were larger in blue-LED-N1 rats than white-LED-N1 rats. Blue and white LED exposures had negative effects on melatonin levels, testis weights and tissue health. Nesfatin-1 alleviated some of the negative effects of LED lighting.
Collapse
Affiliation(s)
- Saeid Chekani Azar
- Department of Animal Science, Faculty of Veterinary Medicine, University of Atatürk, Erzurum, Turkey.
| | - Nilüfer Sabuncuoğlu Çoban
- Department of Animal Science, Faculty of Veterinary Medicine, University of Atatürk, Erzurum, Turkey
| |
Collapse
|
17
|
Méndez-Hernández R, Rumanova VS, Guzmán-Ruiz MA, Foppen E, Moreno-Morton R, Hurtado-Alvarado G, Escobar C, Kalsbeek A, Buijs RM. Minor Changes in Daily Rhythms Induced by a Skeleton Photoperiod Are Associated with Increased Adiposity and Glucose Intolerance. Adv Biol (Weinh) 2023; 7:e2200116. [PMID: 35818679 DOI: 10.1002/adbi.202200116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Indexed: 11/22/2023]
Abstract
Eating during the rest phase is associated with metabolic syndrome, proposed to result from a conflict between food consumption and the energy-saving state imposed by the circadian system. However, in nocturnal rodents, eating during the rest phase (day-feeding, DF) also implies food intake during light exposure. To investigate whether light exposure contributes to DF-induced metabolic impairments, animals receive food during the subjective day without light. A skeleton photoperiod (SP) is used to entrain rats to a 12:12 cycle with two short light pulses framing the subjective day. DF-induced adiposity is prevented by SP, suggesting that the conflict between light and feeding stimulates fat accumulation. However, all animals under SP conditions develop glucose intolerance regardless of their feeding schedule. Moreover, animals under SP with ad libitum or night-feeding have increased adiposity. SP animals show a delayed onset of the daily rise in body temperature and energy expenditure and shorter duration of nighttime activity, which may contribute to the metabolic disturbances. These data emphasize that metabolic homeostasis can only be achieved when all daily cycling variables are synchronized. Even small shifts in the alignment of different metabolic rhythms, such as those induced by SP, may predispose individuals to metabolic disease.
Collapse
Affiliation(s)
- Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, 04510, Mexico
| | - Valentina S Rumanova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovičova ulica č. 6, Bratislava, 842 15, Slovakia
- Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, Amsterdam, 1105 BA, The Netherlands
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, 04510, Mexico
| | - Ewout Foppen
- Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, Amsterdam, 1105 BA, The Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Rodrigo Moreno-Morton
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, 04510, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, 04510, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, 04510, Mexico
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, Amsterdam, 1105 BA, The Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City, 04510, Mexico
| |
Collapse
|
18
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Wang Y, You L, Tan K, Li M, Zou J, Zhao Z, Hu W, Li T, Xie F, Li C, Yuan R, Ding K, Cao L, Xin F, Shang C, Liu M, Gao Y, Wei L, You Z, Gao X, Xiong W, Cao P, Luo M, Chen F, Li K, Wu J, Hong B, Yuan K. A common thalamic hub for general and defensive arousal control. Neuron 2023; 111:3270-3287.e8. [PMID: 37557180 DOI: 10.1016/j.neuron.2023.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ling You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - KaMun Tan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Meijie Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Jingshan Zou
- Hospital of Chengdu University of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital of Sichuan Province, Chengdu 610036, China
| | - Zhifeng Zhao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenxin Hu
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Fenghua Xie
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Caiqin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ruizhi Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kai Ding
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingwei Cao
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Fengyuan Xin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Congping Shang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Miaomiao Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Laboratory Animal Resources Center, Tsinghua University, Beijing 100084, China
| | - Yixiao Gao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Liqiang Wei
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Zhiwei You
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Feng Chen
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kun Li
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jiamin Wu
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| | - Kexin Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| |
Collapse
|
20
|
Silva EHA, Santana NNM, Seixas NRM, Bezerra LLF, Silva MMO, Santos SF, Cavalcante JS, Leocadio-Miguel MA, Engelberth RC. Blue light exposure-dependent improvement in robustness of circadian rest-activity rhythm in aged rats. PLoS One 2023; 18:e0292342. [PMID: 37792859 PMCID: PMC10550138 DOI: 10.1371/journal.pone.0292342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The aging effects on circadian rhythms have diverse implications including changes in the pattern of rhythmic expressions, such as a wide fragmentation of the rhythm of rest-activity and decrease in amplitude of activity regulated by the suprachiasmatic nucleus (SCN). The study of blue light on biological aspects has received great current interest due, among some aspects, to its positive effects on psychiatric disorders in humans. This study aims to evaluate the effect of blue light therapy on the SCN functional aspects, through the evaluation of the rest-activity rhythm, in aging rats. For this, 33 sixteen-months-old male Wistar rats underwent continuous records of locomotor activity and were exposed to periods of 6 hours of blue light during the first half of the light phase (Zeitgeber times 0-6) for 14 days. After this, the rats were maintained at 12h:12h light:dark cycle to check the long-term effect of blue light for 14 days. Blue light repeated exposure showed positive effects on the rhythmic variables of locomotor activity in aged rats, particularly the increase in amplitude, elevation of rhythmic robustness, phase advance in acrophase, and greater consolidation of the resting phase. This effect depends on the presence of daily blue light exposure. In conclusion, our results indicate that blue light is a reliable therapy to reduce circadian dysfunctions in aged rats, but other studies assessing how blue light modulates the neural components to modulate this response are still needed.
Collapse
Affiliation(s)
- Eryck Holmes A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Narita Renata M. Seixas
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro Lucas F. Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Milena O. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
21
|
Wang G, Liu YF, Yang Z, Yu CX, Tong Q, Tang YL, Shao YQ, Wang LQ, Xu X, Cao H, Zhang YQ, Zhong YM, Weng SJ, Yang XL. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC-CeA circuit. SCIENCE ADVANCES 2023; 9:eadf4651. [PMID: 36947616 PMCID: PMC10032603 DOI: 10.1126/sciadv.adf4651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li-Qin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
23
|
Ishihara A, Courville AB, Chen KY. The Complex Effects of Light on Metabolism in Humans. Nutrients 2023; 15:nu15061391. [PMID: 36986120 PMCID: PMC10056135 DOI: 10.3390/nu15061391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Light is an essential part of many life forms. The natural light–dark cycle has been the dominant stimulus for circadian rhythms throughout human evolution. Artificial light has restructured human activity and provided opportunities to extend the day without reliance on natural day–night cycles. The increase in light exposure at unwanted times or a reduced dynamic range of light between the daytime and nighttime has introduced negative consequences for human health. Light exposure is closely linked to sleep–wake regulation, activity and eating patterns, body temperature, and energy metabolism. Disruptions to these areas due to light are linked to metabolic abnormalities such as an increased risk of obesity and diabetes. Research has revealed that various properties of light influence metabolism. This review will highlight the complex role of light in human physiology, with a specific emphasis on metabolic regulation from the perspective of four main properties of light (intensity, duration, timing of exposure, and wavelength). We also discuss the potential influence of the key circadian hormone melatonin on sleep and metabolic physiology. We explore the relationship between light and metabolism through circadian physiology in various populations to understand the optimal use of light to mitigate short and long-term health consequences.
Collapse
|
24
|
Schöllhorn I, Stefani O, Lucas RJ, Spitschan M, Slawik HC, Cajochen C. Melanopic irradiance defines the impact of evening display light on sleep latency, melatonin and alertness. Commun Biol 2023; 6:228. [PMID: 36854795 PMCID: PMC9974389 DOI: 10.1038/s42003-023-04598-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Evening light-emitting visual displays may disrupt sleep, suppress melatonin and increase alertness. Here, we control melanopic irradiance independent of display luminance and colour, in 72 healthy males 4 h before habitual bedtime and expose each of them to one of four luminance levels (i.e., dim light, smartphone, tablet or computer screen illuminance) at a low and a high melanopic irradiance setting. Low melanopic light shortens the time to fall asleep, attenuates evening melatonin suppression, reduces morning melatonin, advances evening melatonin onset and decreases alertness compared to high melanopic light. In addition, we observe dose-dependent increases in sleep latency, reductions in melatonin concentration and delays in melatonin onset as a function of melanopic irradiance-not so for subjective alertness. We identify melanopic irradiance as an appropriate parameter to mitigate the unwanted effects of screen use at night. Our results may help the many people who sit in front of screens in the evening or at night to fall asleep faster, feel sleepier, and have a more stable melatonin phase by spectrally tuning the visual display light without compromising the visual appearance.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | - Helen C Slawik
- Clinical Sleep Laboratory, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.
| |
Collapse
|
25
|
Turner KL, Gheres KW, Drew PJ. Relating Pupil Diameter and Blinking to Cortical Activity and Hemodynamics across Arousal States. J Neurosci 2023; 43:949-964. [PMID: 36517240 PMCID: PMC9908322 DOI: 10.1523/jneurosci.1244-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Arousal state affects neural activity and vascular dynamics in the cortex, with sleep associated with large changes in the local field potential and increases in cortical blood flow. We investigated the relationship between pupil diameter and blink rate with neural activity and blood volume in the somatosensory cortex in male and female unanesthetized, head-fixed mice. We monitored these variables while the mice were awake, during periods of rapid eye movement (REM), and non-rapid eye movement (NREM) sleep. Pupil diameter was smaller during sleep than in the awake state. Changes in pupil diameter were coherent with both gamma-band power and blood volume in the somatosensory cortex, but the strength and sign of this relationship varied with arousal state. We observed a strong negative correlation between pupil diameter and both gamma-band power and blood volume during periods of awake rest and NREM sleep, although the correlations between pupil diameter and these signals became positive during periods of alertness, active whisking, and REM. Blinking was associated with increases in arousal and decreases in blood volume when the mouse was asleep. Bilateral coherence in gamma-band power and in blood volume dropped following awake blinking, indicating a reset of neural and vascular activity. Using only eye metrics (pupil diameter and eye motion), we could determine the arousal state of the mouse ('Awake,' 'NREM,' 'REM') with >90% accuracy with a 5 s resolution. There is a strong relationship between pupil diameter and hemodynamics signals in mice, reflecting the pronounced effects of arousal on cerebrovascular dynamics.SIGNIFICANCE STATEMENT Determining arousal state is a critical component of any neuroscience experiment. Pupil diameter and blinking are influenced by arousal state, as are hemodynamics signals in the cortex. We investigated the relationship between cortical hemodynamics and pupil diameter and found that pupil diameter was strongly related to the blood volume in the cortex. Mice were more likely to be awake after blinking than before, and blinking resets neural activity. Pupil diameter and eye motion can be used as a reliable, noninvasive indicator of arousal state. As mice transition from wake to sleep and back again over a timescale of seconds, monitoring pupil diameter and eye motion permits the noninvasive detection of sleep events during behavioral or resting-state experiments.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kyle W Gheres
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
| | - Patrick J Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
- Biology and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
26
|
Brock O, Gelegen C, Sully P, Salgarella I, Jager P, Menage L, Mehta I, Jęczmień-Łazur J, Djama D, Strother L, Coculla A, Vernon AC, Brickley S, Holland P, Cooke SF, Delogu A. A Role for Thalamic Projection GABAergic Neurons in Circadian Responses to Light. J Neurosci 2022; 42:9158-9179. [PMID: 36280260 PMCID: PMC9761691 DOI: 10.1523/jneurosci.0112-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
The thalamus is an important hub for sensory information and participates in sensory perception, regulation of attention, arousal and sleep. These functions are executed primarily by glutamatergic thalamocortical neurons that extend axons to the cortex and initiate cortico-thalamocortical connectional loops. However, the thalamus also contains projection GABAergic neurons that do not extend axons toward the cortex. Here, we have harnessed recent insight into the development of the intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (LGv) to specifically target and manipulate thalamic projection GABAergic neurons in female and male mice. Our results show that thalamic GABAergic neurons of the IGL and LGv receive retinal input from diverse classes of retinal ganglion cells (RGCs) but not from the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) type. We describe the synergistic role of the photoreceptor melanopsin and the thalamic neurons of the IGL/LGv in circadian entrainment to dim light. We identify a requirement for the thalamic IGL/LGv neurons in the rapid changes in vigilance states associated with circadian light transitions.SIGNIFICANCE STATEMENT The intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (LGv) are part of the extended circadian system and mediate some nonimage-forming visual functions. Here, we show that each of these structures has a thalamic (dorsal) as well as prethalamic (ventral) developmental origin. We map the retinal input to thalamus-derived cells in the IGL/LGv complex and discover that while RGC input is dominant, this is not likely to originate from M1ipRGCs. We implicate thalamic cells in the IGL/LGv in vigilance state transitions at circadian light changes and in overt behavioral entrainment to dim light, the latter exacerbated by concomitant loss of melanopsin expression.
Collapse
Affiliation(s)
- Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Cigdem Gelegen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Peter Sully
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Lucy Menage
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Ishita Mehta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Jagoda Jęczmień-Łazur
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Deyl Djama
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lauren Strother
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Angelica Coculla
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Stephen Brickley
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philip Holland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- Wolfson Centre for Age Related Disease, King's College London, London SE1 1UL, United Kingdom
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, United Kingdom
| |
Collapse
|
27
|
Altered Behavioral Responses Show GABA Sensitivity in Muscleblind-Like 2-Deficient Mice: Implications for CNS Symptoms in Myotonic Dystrophy. eNeuro 2022; 9:ENEURO.0218-22.2022. [PMID: 36150891 PMCID: PMC9557336 DOI: 10.1523/eneuro.0218-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/17/2023] Open
Abstract
Considerable evidence from mouse models and human postmortem brain suggests loss of Muscleblind-like protein 2 (MBNL2) function in brain is a major driver of CNS symptoms in Myotonic dystrophy type 1 (DM1). Increased hypersomnia, fatigue, and surgical complications associated with general anesthesia suggest possible sensitivity to GABAergic inhibition in DM1. To test the hypothesis that MBNL2 depletion leads to behavioral sensitivity to GABAA receptor (GABAA-R) modulation, Mbnl2 knock-out (KO) and wild-type (WT) littermates were treated with the anesthetic sevoflurane, the benzodiazepine diazepam, the imidazopyridine zolpidem, and the benzodiazepine rescue agent, flumazenil (Ro 15-1788), and assessed for various behavioral metrics. Mbnl2 KO mice exhibited delayed recovery following sevoflurane, delayed emergence and recovery from zolpidem, and enhanced sleep time at baseline that was modulated by flumazenil. A significantly higher proportion of Mbnl2 KO mice also loss their righting reflex [loss of righting reflex (LORR)] from a standard diazepam dose. We further examined whether MBNL2 depletion affects total GABAA-R mRNA subunit levels and validated RNA-sequencing data of mis-spliced Gabrg2, whose isoform ratios are known to regulate GABA sensitivity and associated behaviors. While no other GABAA-R subunit mRNA levels tested were altered in Mbnl2 KO mouse prefrontal cortex, Gabrg2S/L mRNA ratio levels were significantly altered. Taken together, our findings indicate that loss of MBNL2 function affects GABAergic function in a mouse model of myotonic dystrophy (DM1).
Collapse
|
28
|
Cheng K, Martin LF, Calligaro H, Patwardhan A, Ibrahim MM. Case Report: Green Light Exposure Relieves Chronic Headache Pain in a Colorblind Patient. Clin Med Insights Case Rep 2022; 15:11795476221125164. [PMID: 36159182 PMCID: PMC9493681 DOI: 10.1177/11795476221125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with chronic headaches sometimes prefer non-pharmacological methods for
pain management. We have shown previously that green light exposure (GLED, Green
Light Emitting Diode) reversed thermal hyperalgesia and mechanical allodynia in
a rat model of neuropathic pain. This effect is mediated through the visual
system. Moreover, we recently showed that GLED was effective in decreasing the
severity of headache pain and the number of headache-days per month in migraine
patients. The visual system is comprised of image-forming and non-image-forming
pathways; however, the contribution of different photosensitive cells to the
effect of GLED is not yet known. Here, we report a 66-year-old man with
headaches attributed to other disorders of homeostasis and color blindness who
was recruited in the GLED study. The subject, diagnosed with protanomaly, cannot
differentiate green, yellow, orange, and red colors. After completing the GLED
exposure protocol, the subject noted significant decreases in headache pain
intensity without reduction in the number of headache-days per month. The
subject also reported improvement in the quality of his sleep. These findings
suggest that green light therapy mediates the decrease of the headache pain
intensity through non-image-forming intrinsically photosensitive retinal
ganglion cells. However, the subject did not report a change in the frequency of
his headaches, suggesting the involvement of cones in reduction of headache
frequency by GLED. This is the first case reported of a colorblind man with
chronic headache using GLED to manage his headache pain and may increase our
understanding of the contribution of different photosensitive cells in mediating
the pain-relieving effects of GLED.
Collapse
Affiliation(s)
- Kevin Cheng
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Laurent F Martin
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Hugo Calligaro
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Amol Patwardhan
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, USA
| | - Mohab M Ibrahim
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA.,Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
29
|
Thankachan S, Yang C, Kastanenka KV, Bacskai BJ, Gerashchenko D. Low frequency visual stimulation enhances slow wave activity without disrupting the sleep pattern in mice. Sci Rep 2022; 12:12278. [PMID: 35853986 PMCID: PMC9296645 DOI: 10.1038/s41598-022-16478-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Non-invasive stimulation technologies are emerging as potential treatment options for a range of neurodegenerative disorders. Experimental evidence suggests that stimuli-evoked changes in slow brain rhythms may mitigate or even prevent neuropathological and behavioral impairments. Slow wave activity is prevalent during sleep and can be triggered non-invasively by sensory stimulation targeting the visual system or directly via activation of neurons locally using optogenetics. Here, we developed new tools for delivering visual stimulation using light-emitting diodes in freely moving mice while awake and during sleep. We compared these tools to traditional optogenetic approaches used for local stimulation of neurons in the cerebral cortex. We then used these tools to compare the effects of low-frequency visual versus optogenetic stimulations on the slow wave activity and sleep pattern in mice. Visual stimulation effectively enhanced slow wave activity without disrupting the sleep pattern. Optogenetic stimulation of cortical GABAergic neurons increased NREM sleep. These results suggest that visual stimulation can be effective at boosting slow wave activity without having adverse effects on sleep and thus holds great potential as a non-invasive stimulation treatment strategy.
Collapse
Affiliation(s)
- Stephen Thankachan
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Chun Yang
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
30
|
Elliott JE, Tinsley CE, Reynolds C, Olson RJ, Weymann KB, Au-Yeung WTM, Wilkerson A, Kaye JA, Lim MM. Tunable White Light for Elders (TWLITE): A Protocol Demonstrating Feasibility and Acceptability for Deployment, Remote Data Collection, and Analysis of a Home-Based Lighting Intervention in Older Adults. SENSORS 2022; 22:s22145372. [PMID: 35891052 PMCID: PMC9320387 DOI: 10.3390/s22145372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Sleep disturbances are common in older adults and may contribute to disease progression in certain populations (e.g., Alzheimer's disease). Light therapy is a simple and cost-effective intervention to improve sleep. Primary barriers to light therapy are: (1) poor acceptability of the use of devices, and (2) inflexibility of current devices to deliver beyond a fixed light spectrum and throughout the entirety of the day. However, dynamic, tunable lighting integrated into the native home lighting system can potentially overcome these limitations. Herein, we describe our protocol to implement a whole-home tunable lighting system installed throughout the homes of healthy older adults already enrolled in an existing study with embedded home assessment platforms (Oregon Center for Aging & Technology-ORCATECH). Within ORCATECH, continuous data on room location, activity, sleep, and general health parameters are collected at a minute-to-minute resolution over years of participation. This single-arm longitudinal protocol collected participants' light usage in addition to ORCATECH outcome measures over a several month period before and after light installation. The protocol was implemented with four subjects living in three ORCATECH homes. Technical/usability challenges and feasibility/acceptability outcomes were explored. The successful implementation of our protocol supports the feasibility of implementing and integrating tunable whole-home lighting systems into an automated home-based assessment platform for continuous data collection of outcome variables, including long-term sleep measures. Challenges and iterative approaches are discussed. This protocol will inform the implementation of future clinical intervention trials using light therapy in patients at risk for developing Alzheimer's disease and related conditions.
Collapse
Affiliation(s)
- Jonathan E. Elliott
- VA Portland Health Care System, Research Service, Portland, OR 97239, USA; (J.E.E.); (C.E.T.); (R.J.O.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (C.R.); (W.-T.M.A.-Y.); (J.A.K.)
| | - Carolyn E. Tinsley
- VA Portland Health Care System, Research Service, Portland, OR 97239, USA; (J.E.E.); (C.E.T.); (R.J.O.)
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christina Reynolds
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (C.R.); (W.-T.M.A.-Y.); (J.A.K.)
| | - Randall J. Olson
- VA Portland Health Care System, Research Service, Portland, OR 97239, USA; (J.E.E.); (C.E.T.); (R.J.O.)
| | | | - Wan-Tai M. Au-Yeung
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (C.R.); (W.-T.M.A.-Y.); (J.A.K.)
| | | | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (C.R.); (W.-T.M.A.-Y.); (J.A.K.)
| | - Miranda M. Lim
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (C.R.); (W.-T.M.A.-Y.); (J.A.K.)
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care System, Mental Illness Research Education and Clinical Center, Neurology, National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA
- Correspondence: ; Tel.: +1-503-220-8262 (ext. 57404)
| |
Collapse
|
31
|
Delorme TC, Srikanta SB, Fisk AS, Cloutier MÈ, Sato M, Pothecary CA, Merz C, Foster RG, Brown SA, Peirson SN, Cermakian N, Banks GT. Chronic Exposure to Dim Light at Night or Irregular Lighting Conditions Impact Circadian Behavior, Motor Coordination, and Neuronal Morphology. Front Neurosci 2022; 16:855154. [PMID: 35495037 PMCID: PMC9043330 DOI: 10.3389/fnins.2022.855154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Mistimed exposure to light has been demonstrated to negatively affect multiple aspects of physiology and behavior. Here we analyzed the effects of chronic exposure to abnormal lighting conditions in mice. We exposed mice for 1 year to either: a standard light/dark cycle, a “light-pollution” condition in which low levels of light were present in the dark phase of the circadian cycle (dim light at night, DLAN), or altered light cycles in which the length of the weekday and weekend light phase differed by 6 h (“social jetlag”). Mice exhibited several circadian activity phenotypes, as well as changes in motor function, associated particularly with the DLAN condition. Our data suggest that these phenotypes might be due to changes outside the core clock. Dendritic spine changes in other brain regions raise the possibility that these phenotypes are mediated by changes in neuronal coordination outside of the clock. Given the prevalence of artificial light exposure in the modern world, further work is required to establish whether these negative effects are observed in humans as well.
Collapse
Affiliation(s)
- Tara C. Delorme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Shashank B. Srikanta
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Angus S. Fisk
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Marie-Ève Cloutier
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Miho Sato
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Carina A. Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Chantal Merz
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Russell G. Foster
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Stuart N. Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Nicolas Cermakian
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
- *Correspondence: Nicolas Cermakian,
| | - Gareth T. Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
- Gareth T. Banks,
| |
Collapse
|
32
|
Gnyawali S, Feigl B, Adhikari P, Zele AJ. The role of melanopsin photoreception on visual attention linked pupil responses. Eur J Neurosci 2022; 55:1986-2002. [PMID: 35357050 PMCID: PMC9324975 DOI: 10.1111/ejn.15659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
A decision during a visual task is marked by a task‐evoked pupil dilation (TEPD) that is linked to the global cortical arousal state. Melanopsin expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) form the afferent pathway for this pupil response. Melanopsin activation also influences mood and arousal and increases activity in decision‐making brain areas that receive direct ipRGC projections. Here, an optical photostimulation method controlled the excitations of all five photoreceptor classes in the human eye to isolate melanopsin‐mediated photoreception. We hypothesised that the TEPD can be driven by directing active visual covert attention through the ipRGC pathway. When observers are completely certain of the stimulus presence, melanopsin‐directed stimulation produces a TEPD of similar amplitude to a cone‐directed stimulation, with their combination producing larger amplitudes. This dilation is satisfactorily modelled by linear addition with a higher melanopsin weighting in ipRGCs. Visual reaction times were longest in response to melanopsin‐directed lights. Next, we asked whether the afferent photoreceptor input and decision certainty, controlled by priming the observer's a priori expectation, interact to drive the TEPD. Signal detection analysis showed that by fixing the predecision certainty (bias), the phasic arousal and TEPD amplitude vary with observer criterion (c′) and sensitivity (d′) but not with preferential activation of melanopsin. The signature feature of the melanopsin response during attention was a biphasic TEPD. We conclude that active covert attention can be modulated by visual information mediated via ipRGCs, but that phasic arousal responses marked using the TEPD are not increased by higher levels of melanopsin activation.
Collapse
Affiliation(s)
- Subodh Gnyawali
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Beatrix Feigl
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Queensland Eye Institute, Brisbane, QLD, Australia
| | - Prakash Adhikari
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Andrew J Zele
- Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
33
|
Direct Effects of Light on Sleep under Ultradian Light-Dark Cycles Depend on Circadian Time and Pulses Duration. Clocks Sleep 2022; 4:208-218. [PMID: 35466270 PMCID: PMC9036312 DOI: 10.3390/clockssleep4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Ultradian light–dark cycles in rodents are a precious tool to study the direct effects of repeated light exposures on sleep, in order to better understand the underlying mechanisms. This study aims to precisely evaluate the effects of light and dark exposures, according to circadian time, on sleep and waking distribution and quality, and to determine if these effects depend on the duration of light and dark pulses. To do this, mice were exposed to 24 h-long ultradian light–dark cycles with different durations of pulses: T2 cycle (1 h of light/1 h of dark) and T7 cycle (3.5 h of light/3.5 h of dark). Exposure to light not only promotes NREM and REM sleep and inhibits wake, but also drastically alters alertness and modifies sleep depth. These effects are modulated by circadian time, appearing especially during early subjective night, and their kinetics is highly dependent on the duration of pulses, suggesting that in the case of pulses of longer duration, the homeostatic process could overtake light direct influence for shaping sleep and waking distribution.
Collapse
|
34
|
von Gall C. The Effects of Light and the Circadian System on Rhythmic Brain Function. Int J Mol Sci 2022; 23:ijms23052778. [PMID: 35269920 PMCID: PMC8911243 DOI: 10.3390/ijms23052778] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Life on earth has evolved under the influence of regularly recurring changes in the environment, such as the 24 h light/dark cycle. Consequently, organisms have developed endogenous clocks, generating 24 h (circadian) rhythms that serve to anticipate these rhythmic changes. In addition to these circadian rhythms, which persist in constant conditions and can be entrained to environmental rhythms, light drives rhythmic behavior and brain function, especially in nocturnal laboratory rodents. In recent decades, research has made great advances in the elucidation of the molecular circadian clockwork and circadian light perception. This review summarizes the role of light and the circadian clock in rhythmic brain function, with a focus on the complex interaction between the different components of the mammalian circadian system. Furthermore, chronodisruption as a consequence of light at night, genetic manipulation, and neurodegenerative diseases is briefly discussed.
Collapse
Affiliation(s)
- Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, 40225 Dusseldorf, Germany
| |
Collapse
|
35
|
A Systematic Review for Establishing Relevant Environmental Parameters for Urban Lighting: Translating Research into Practice. SUSTAINABILITY 2022. [DOI: 10.3390/su14031107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of lighting technologies developed in the 20th century has increased the brightness and changed the spectral composition of nocturnal night-time habitats and night skies across urban, peri-urban, rural, and pristine landscapes, and subsequently, researchers have observed the disturbance of biological rhythms of flora and fauna. To reduce these impacts, it is essential to translate relevant knowledge about the potential adverse effects of artificial light at night (ALAN) from research into applicable urban lighting practice. Therefore, the aim of this paper is to identify and report, via a systematic review, the effects of exposure to different physical properties of artificial light sources on various organism groups, including plants, arthropods, insects, spiders, fish, amphibians, reptiles, birds, and non-human mammals (including bats, rodents, and primates). PRISMA 2020 guidelines were used to identify a total of 1417 studies from Web of Science and PubMed. In 216 studies, diverse behavioral and physiological responses were observed across taxa when organisms were exposed to ALAN. The studies showed that the responses were dependent on high illuminance levels, duration of light exposure, and unnatural color spectra at night and also highlighted where research gaps remain in the domains of ALAN research and urban lighting practice. To avoid misinterpretation, and to define a common language, key terminologies and definitions connected to natural and artificial light have been provided. Furthermore, the adverse impacts of ALAN urgently need to be better researched, understood, and managed for the development of future lighting guidelines and standards to optimize sustainable design applications that preserve night-time environment(s) and their inhabiting flora and fauna.
Collapse
|
36
|
Steel LCE, Tir S, Tam SKE, Bussell JN, Spitschan M, Foster RG, Peirson SN. Effects of Cage Position and Light Transmission on Home Cage Activity and Circadian Entrainment in Mice. Front Neurosci 2022; 15:832535. [PMID: 35082600 PMCID: PMC8784806 DOI: 10.3389/fnins.2021.832535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Light is known to exert powerful effects on behavior and physiology, including upon the amount and distribution of activity across the day/night cycle. Here we use home cage activity monitoring to measure the effect of differences in home cage light spectrum and intensity on key circadian activity parameters in mice. Due to the relative positioning of any individually ventilated cage (IVC) with regard to the animal facility lighting, notable differences in light intensity occur across the IVC rack. Although all mice were found to be entrained, significant differences in the timing of activity onset and differences in activity levels were found between mice housed in standard versus red filtering cages. Furthermore, by calculating the effective irradiance based upon the known mouse photopigments, a significant relationship between light intensity and key circadian parameters are shown. Perhaps unsurprisingly given the important role of the circadian photopigment melanopsin in circadian entrainment, melanopic illuminance is shown to correlate more strongly with key circadian activity parameters than photopic lux. Collectively, our results suggest that differences in light intensity may reflect an uncharacterized source of variation in laboratory rodent research, with potential consequences for reproducibility. Room design and layout vary within and between facilities, and caging design and lighting location relative to cage position can be highly variable. We suggest that cage position should be factored into experimental design, and wherever possible, experimental lighting conditions should be characterized as a way of accounting for this source of variation.
Collapse
Affiliation(s)
- Laura C. E. Steel
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, United Kingdom
| | - Selma Tir
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, United Kingdom
| | - Shu K. E. Tam
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, United Kingdom
| | - James N. Bussell
- Department of Biomedical Services, University of Oxford, Oxford, United Kingdom
| | - Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Russell G. Foster
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, United Kingdom
| | - Stuart N. Peirson
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, United Kingdom
- *Correspondence: Stuart N. Peirson,
| |
Collapse
|
37
|
Mason BJ, Tubbs AS, Fernandez FX, Grandner MA. Spectrophotometric properties of commercially available blue blockers across multiple lighting conditions. Chronobiol Int 2022; 39:653-664. [PMID: 34983271 PMCID: PMC9106867 DOI: 10.1080/07420528.2021.2021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lenses that filter short-wavelength ("blue") light are commercially marketed to improve sleep and circadian health. Despite their widespread use, minimal data are available regarding their comparative efficacy in curtailing blue light exposure while maintaining visibility. Fifty commercial lenses were evaluated using five light sources: a blue LED array, a computer tablet display, an incandescent lamp, a fluorescent overhead luminaire, and sunlight. Absolute irradiance was measured at baseline and for each lens across the visual spectrum (380-780 nm), which allowed calculation of percent transmission. Transmission specificity was also calculated to determine whether light transmission was predominantly circadian-proficient (455-560 nm) or non-proficient (380-454 nm and 561-780 nm). Lenses were grouped by tint and metrics were compared between groups. Red-tinted lenses exhibited the lowest transmission of circadian-proficient light, while reflective blue lenses had the highest transmission. Orange-tinted lenses transmitted similar circadian-proficient light as red-tinted lenses but transmitted more non-circadian-proficient light, resulting in higher transmission specificity. Orange-tinted lenses had the highest transmission specificity while limiting biologically active light exposure in ordinary lighting conditions. Glasses incorporating these lenses currently have the greatest potential to support circadian sleep-wake rhythms.
Collapse
Affiliation(s)
- Brooke J Mason
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Andrew S Tubbs
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| | - Fabian-Xosé Fernandez
- Light Algorithms Laboratory, Department of Psychology, University of Arizona College of Science, Tucson, Arizona, USA
| | - Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine - Tucson, Tucson, Arizona, USA
| |
Collapse
|
38
|
Wu J, Liu D, Li J, Sun J, Huang Y, Zhang S, Gao S, Mei W. Central Neural Circuits Orchestrating Thermogenesis, Sleep-Wakefulness States and General Anesthesia States. Curr Neuropharmacol 2022; 20:223-253. [PMID: 33632102 PMCID: PMC9199556 DOI: 10.2174/1570159x19666210225152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Great progress has been made in specifically identifying the central neural circuits (CNCs) of the core body temperature (Tcore), sleep-wakefulness states (SWs), and general anesthesia states (GAs), mainly utilizing optogenetic or chemogenetic manipulations. We summarize the neuronal populations and neural pathways of these three CNCs, which gives evidence for the orchestration within these three CNCs, and the integrative regulation of these three CNCs by different environmental light signals. We also outline some transient receptor potential (TRP) channels that function in the CNCs-Tcore and are modulated by some general anesthetics, which makes TRP channels possible targets for addressing the general-anestheticsinduced- hypothermia (GAIH). We suggest this review will provide new orientations for further consummating these CNCs and elucidating the central mechanisms of GAIH.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Daiqiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiayan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujie Huang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shaojie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
39
|
Slow vision: Measuring melanopsin-mediated light effects in animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:117-143. [DOI: 10.1016/bs.pbr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Zhang S, Xu M, Shen Z, Shang C, Zhang W, Chen S, Liu C. Green light exposure aggravates high-fat diet feeding-induced hepatic steatosis and pancreatic dysfunction in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112802. [PMID: 34555719 DOI: 10.1016/j.ecoenv.2021.112802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The increased incidence of metabolic syndrome (MetS) has been demonstrated to be closely associated with external environments, such as unhealthy ambient light exposure. Of note, spectral distribution of the light functions as a critical determinant of light's pathophysiological effects. However, the effects of the lighting spectrum on metabolic homeostasis and the specific target organs remain elusive. To address this concern, we in this study high-fat diet (HFD)-fed obese mice with different spectra of the light, and divided them into white light (WL)-treated group, green light (GL)-treated group and blue light (BL)-treated group. We found that compared with BL- or WL-treated obese mice, animals exposed to GL showed worsened metabolic status, including increased body weight gain, impaired glucose tolerance/insulin sensitivity, increased levels of serum lipids, and decreased levels of serum insulin. At the organ level, GL exposure particularly exacerbated hepatic lipid accumulation and enlarged the islet volume. Taking advantages of metabolomics and transcriptomics analyses, we screened out taurocholic acid (TCA) and adenosine (AD) as two promising metabolites mediating the deleterious effects of GL on the liver and islets, respectively. In detail, GL aggravates HFD-induced lipid synthesis and gluconeogenesis in the liver via the reduction of TCA, while triggering inflammation and cellular dysfunction in islets via the induction of AD. Collectively, our findings confirmed that GL and the HFD have a synergistic effect in the induction of metabolic disorders. DATA AVAILABILITY: All data supported the paper are present in the paper and/or the Supplementary Materials. The original datasets are also available from the corresponding author upon request.
Collapse
Affiliation(s)
- Shiyao Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengyi Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ziyue Shen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Changrui Shang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
41
|
Ang G, Brown LA, Tam SKE, Davies KE, Foster RG, Harrison PJ, Sprengel R, Vyazovskiy VV, Oliver PL, Bannerman DM, Peirson SN. Deletion of AMPA receptor GluA1 subunit gene (Gria1) causes circadian rhythm disruption and aberrant responses to environmental cues. Transl Psychiatry 2021; 11:588. [PMID: 34782594 PMCID: PMC8593011 DOI: 10.1038/s41398-021-01690-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 subunit and deficits in synaptic plasticity are implicated in schizophrenia and sleep and circadian rhythm disruption. To investigate the role of GluA1 in circadian and sleep behaviour, we used wheel-running, passive-infrared, and video-based home-cage activity monitoring to assess daily rest-activity profiles of GluA1-knockout mice (Gria1-/-). We showed that these mice displayed various circadian abnormalities, including misaligned, fragmented, and more variable rest-activity patterns. In addition, they showed heightened, but transient, behavioural arousal to light→dark and dark→light transitions, as well as attenuated nocturnal-light-induced activity suppression (negative masking). In the hypothalamic suprachiasmatic nuclei (SCN), nocturnal-light-induced cFos signals (a molecular marker of neuronal activity in the preceding ~1-2 h) were attenuated, indicating reduced light sensitivity in the SCN. However, there was no change in the neuroanatomical distribution of expression levels of two neuropeptides-vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP)-differentially expressed in the core (ventromedial) vs. shell (dorsolateral) SCN subregions and both are known to be important for neuronal synchronisation within the SCN and circadian rhythmicity. In the motor cortex (area M1/M2), there was increased inter-individual variability in cFos levels during the evening period, mirroring the increased inter-individual variability in locomotor activity under nocturnal light. Finally, in the spontaneous odour recognition task GluA1 knockouts' short-term memory was impaired due to enhanced attention to the recently encountered familiar odour. These abnormalities due to altered AMPA-receptor-mediated signalling resemble and may contribute to sleep and circadian rhythm disruption and attentional deficits in different modalities in schizophrenia.
Collapse
Affiliation(s)
- Gauri Ang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- IT Services, University of Oxford, Oxford, UK
| | - Shu K E Tam
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Dim light in the evening causes coordinated realignment of circadian rhythms, sleep, and short-term memory. Proc Natl Acad Sci U S A 2021; 118:2101591118. [PMID: 34556572 PMCID: PMC8488663 DOI: 10.1073/pnas.2101591118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
In modern societies, people are regularly exposed to artificial light (e.g., light-emitting electronic devices). Dim light in the evening (DLE) imposes an artificial extension of the solar day, increasing our alertness before bedtime, delaying melatonin timing and sleep onset, and increasing sleepiness in the next morning. Using laboratory mice as a model organism, we show that 2 wk of 4-h, 20-lux DLE postpones rest–activity rhythms, delays molecular rhythms in the brain and body, and reverses the diurnal pattern of short-term memory performance. These results highlight the biological impact of DLE and emphasize the need to optimize our evening light exposure if we are to avoid shifting our biological clocks. Light provides the primary signal for entraining circadian rhythms to the day/night cycle. In addition to rods and cones, the retina contains a small population of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). Concerns have been raised that exposure to dim artificial lighting in the evening (DLE) may perturb circadian rhythms and sleep patterns, and OPN4 is presumed to mediate these effects. Here, we examine the effects of 4-h, 20-lux DLE on circadian physiology and behavior in mice and the role of OPN4 in these responses. We show that 2 wk of DLE induces a phase delay of ∼2 to 3 h in mice, comparable to that reported in humans. DLE-induced phase shifts are unaffected in Opn4−/− mice, indicating that rods and cones are capable of driving these responses in the absence of melanopsin. DLE delays molecular clock rhythms in the heart, liver, adrenal gland, and dorsal hippocampus. It also reverses short-term recognition memory performance, which is associated with changes in preceding sleep history. In addition, DLE modifies patterns of hypothalamic and cortical cFos signals, a molecular correlate of recent neuronal activity. Together, our data show that DLE causes coordinated realignment of circadian rhythms, sleep patterns, and short-term memory process in mice. These effects are particularly relevant as DLE conditions―due to artificial light exposure―are experienced by the majority of the populace on a daily basis.
Collapse
|
43
|
[Intrinsically photosensitive retinal ganglion cells]. Ophthalmologe 2021; 119:358-366. [PMID: 34350494 PMCID: PMC9005408 DOI: 10.1007/s00347-021-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
Hintergrund Melanopsin exprimierende, intrinsisch-photosensitive retinale Ganglienzellen (ipRGCs) bilden neben Stäbchen und Zapfen die dritte Klasse von retinalen Photorezeptoren. Diese kleine, heterogene Zellfamilie vermittelt ein weites Spektrum an Aufgaben überwiegend des nicht-bildformenden Sehens. Fragestellung Diese Arbeit soll einen Einblick in das aktuelle Verständnis der Funktion und der funktionellen Diversität der ipRGCs geben sowie klinisch und translational relevante Aspekte beleuchten. Material und Methoden Narrative Übersichtsarbeit. Ergebnisse ipRGCs machen etwa 1–2 % aller retinalen Ganglienzellen aus und bilden dabei 6 spezialisierte Subtypen. Mit ihrem Photopigment Melanopsin sind sie in der Lage, unabhängig von synaptischem Input Lichtinformationen an das Gehirn weiterzuleiten oder lichtabhängig zu modifizieren. Je nach Subtyp vermitteln sie so nichtvisuelle Aufgaben wie die Synchronisation der inneren Uhr oder den Pupillenreflex, greifen aber auch in das bildformende System ein. ipRGCs weisen eine differenzielle Widerstandskraft gegenüber Optikusschädigung auf, was sie zu einem attraktiven Studienobjekt für die Entwicklung neuroprotektiver Therapieansätze macht. Melanopsin rückt zudem als optogenetisches Werkzeug, etwa in der prosthetischen Gentherapie, in den Fokus. Schlussfolgerungen Häufige klinische Beobachtungen lassen sich nur mit Kenntnis des ipRGC-Systems verstehen. Ihre neuronale Vernetzung und die intrazelluläre Signalverarbeitung sind Gegenstand aktiver Forschung, die neue translationale Ansätze hervorbringt.
Collapse
|
44
|
Lou L, Arumugam B, Hung LF, She Z, Beach KM, Smith EL, Ostrin LA. Long-Term Narrowband Lighting Influences Activity but Not Intrinsically Photosensitive Retinal Ganglion Cell-Driven Pupil Responses. Front Physiol 2021; 12:711525. [PMID: 34393828 PMCID: PMC8358670 DOI: 10.3389/fphys.2021.711525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023] Open
Abstract
Purpose: Light affects a variety of non-image forming processes, such as circadian rhythm entrainment and the pupillary light reflex, which are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). The purpose of this study was to assess the effects of long- and short-wavelength ambient lighting on activity patterns and pupil responses in rhesus monkeys. Methods: Infant rhesus monkeys were reared under either broadband "white" light (n = 14), long-wavelength "red" light (n = 20; 630 nm), or short-wavelength "blue" light (n = 21; 465 nm) on a 12-h light/dark cycle starting at 24.1 ± 2.6 days of age. Activity was measured for the first 4 months of the experimental period using a Fitbit activity tracking device and quantified as average step counts during the daytime (lights-on) and nighttime (lights-off) periods. Pupil responses to 1 s red (651 nm) and blue (456 nm) stimuli were measured after approximately 8 months. Pupil metrics included maximum constriction and the 6 s post-illumination pupil response (PIPR). Results: Activity during the lights-on period increased with age during the first 10 weeks (p < 0.001 for all) and was not significantly different for monkeys reared in white, red, or blue light (p = 0.07). Activity during the 12-h lights-off period was significantly greater for monkeys reared in blue light compared to those in white light (p = 0.02), but not compared to those in red light (p = 0.08). However, blue light reared monkeys exhibited significantly lower activity compared to both white and red light reared monkeys during the first hour of the lights-off period (p = 0.01 for both) and greater activity during the final hour of the lights-off period (p < 0.001 for both). Maximum pupil constriction and the 6 s PIPR to 1 s red and blue stimuli were not significantly different between groups (p > 0.05 for all). Conclusion: Findings suggest that long-term exposure to 12-h narrowband blue light results in greater disruption in nighttime behavioral patterns compared to narrowband red light. Normal pupil responses measured later in the rearing period suggest that ipRGCs adapt after long-term exposure to narrowband lighting.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, TX, United States
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, TX, United States
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista M. Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, TX, United States
- Brien Holden Vision Institute, Sydney, NSW, Australia
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, TX, United States
| |
Collapse
|
45
|
Ige AO, Adekanye OS, Adewoye EO. Intermittent exposure to green and white light-at-night activates hepatic glycogenolytic and gluconeogenetic activities in male Wistar rats. J Basic Clin Physiol Pharmacol 2021:jbcpp-2020-0251. [PMID: 34147042 DOI: 10.1515/jbcpp-2020-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Exposure to light-at-night (LAN) has been reported to impair blood glucose regulation. The liver modulates blood glucose through mechanisms influenced by several factors that include peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α) and glucose-6-phosphatase (G6Pase). This study investigated the effect of intermittent exposure to green and white LAN on some hepatic glucose regulatory factors in male Wistar rats. METHODS Animals were divided into three equal groups. Group I (control) was exposed to normal housing conditions. Groups II and III were each daily exposed to either green or white LAN for 2 h (7-9 pm) for 14 days. Body weight and blood glucose was monitored on days 0, 7, and 14. Thereafter, retro-orbital sinus blood was obtained after light thiopental anaesthesia and serum insulin was determined. Liver samples were also obtained and evaluated for glycogen, PGC-1α, and G6Pase activity. Insulin resistance was estimated using the HOMA-IR equation. RESULTS Body weight and blood glucose on days 7 and 14 increased in groups II and III compared to control. Hepatic PGC-1α and G6Pase increased in group II (2.33 ± 0.31; 2.07 ± 0.22) and III (2.31 ± 0.20; 0.98 ± 0.23) compared to control (1.73 ± 0.21; 0.47 ± 0.11). Hepatic glycogen was 71.8 and 82.4% reduced in groups II and III compared to control. Insulin in group II increased (63.6%) whiles group III values reduced (27.3%) compared to control. Insulin resistance increased in group II (0.29 ± 0.09) compared to control (0.12 ± 0.03) and group III (0.11 ± 0.03), respectively. CONCLUSIONS Exposure to 2 h green and white LAN in the early dark phase increases hepatic glycogenolysis and gluconeogenetic activities resulting in increased blood glucose. In male Wistar rats, exposure to green but not white LAN may predispose to insulin resistance.
Collapse
Affiliation(s)
- Abayomi O Ige
- Applied and Environmental Physiology Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Olubori S Adekanye
- Applied and Environmental Physiology Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Elsie O Adewoye
- Applied and Environmental Physiology Unit, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
46
|
Mendoza J. Nighttime Light Hurts Mammalian Physiology: What Diurnal Rodent Models Are Telling Us. Clocks Sleep 2021; 3:236-250. [PMID: 33915800 PMCID: PMC8167723 DOI: 10.3390/clockssleep3020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Natural sunlight permits organisms to synchronize their physiology to the external world. However, in current times, natural sunlight has been replaced by artificial light in both day and nighttime. While in the daytime, indoor artificial light is of lower intensity than natural sunlight, leading to a weak entrainment signal for our internal biological clock, at night the exposure to artificial light perturbs the body clock and sleep. Although electric light at night allows us "to live in darkness", our current lifestyle facilitates nighttime exposure to light by the use, or abuse, of electronic devices (e.g., smartphones). The chronic exposure to light at nighttime has been correlated to mood alterations, metabolic dysfunctions, and poor cognition. To decipher the brain mechanisms underlying these alterations, fundamental research has been conducted using animal models, principally of nocturnal nature (e.g., mice). Nevertheless, because of the diurnal nature of human physiology, it is also important to find and propose diurnal animal models for the study of the light effects in circadian biology. The present review provides an overview of the effects of light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the development of new strategies in human health based in circadian biology.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience CNRS UPR3212, University of Strasburg, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
47
|
Bumgarner JR, Nelson RJ. Light at Night and Disrupted Circadian Rhythms Alter Physiology and Behavior. Integr Comp Biol 2021; 61:1160-1169. [PMID: 33787878 DOI: 10.1093/icb/icab017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Life on earth has evolved during the past several billion years under relatively bright days and dark nights. Virtually, all organisms on the planet display an internal representation of the solar days in the form of circadian rhythms driven by biological clocks. Nearly every aspect of physiology and behavior is mediated by these internal clocks. The widespread adoption of electric lights during the past century has exposed animals, including humans, to significant light at night for the first time in our evolutionary history. Importantly, endogenous circadian clocks depend on light for synchronization with the external daily environment. Thus, light at night can derange temporal adaptations. Indeed, disruption of natural light-dark cycles results in several physiological and behavioral changes. In this review, we highlight recent evidence demonstrating how light at night exposure can have serious implications for adaptive physiology and behavior, including immune, endocrine, and metabolic function, as well as reproductive, foraging, and migratory behavior. Lastly, strategies to mitigate the consequences of light at night on behavior and physiology will be considered.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| | - Randy J Nelson
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| |
Collapse
|
48
|
Blue light insertion at night is involved in sleep and arousal-promoting response delays and depressive-like emotion in mice. Biosci Rep 2021; 41:227923. [PMID: 33624794 PMCID: PMC7938454 DOI: 10.1042/bsr20204033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Light plays a direct crucial role in the switch between sleep and arousal and the regulation of physiology and behaviour, such as circadian rhythms and emotional change. Artificial lights, which are different from natural light sources with a continuous light spectrum, are composed of three single-colour lights and are increasingly applied in modern society. However, in vivo research on the mechanisms of blue light-regulated sleep and arousal is still insufficient. In this work, we detected the effects of inserting white or blue light for 1 h during the dark period on the wheel-running activity and sucrose preference of C57 mice. The results showed that blue light could induce delays in sleep and arousal-promoting responses. Furthermore, this lighting pattern, including blue light alone, induced depressive-like emotions. The c-fos expression in the blue light group was significantly higher in the arcuate hypothalamic nucleus (Arc) and significantly lower in the cingulate cortex (Cg) and anterior part of the paraventricular thalamic nucleus (PVA) than in the white light group. Compared with the white light group, the phospho-ERK expression in the paraventricular hypothalamic nucleus (PVN) and PVA was lower in the blue light group. These molecular changes indicated that certain brain regions are involved in blue light-induced response processes. This study may provide useful information to explore the specific mechanism of special light-regulated physiological function.
Collapse
|
49
|
Szalontai Ö, Tóth A, Pethő M, Keserű D, Hajnik T, Détári L. Homeostatic sleep regulation in the absence of the circadian sleep-regulating component: effect of short light-dark cycles on sleep-wake stages and slow waves. BMC Neurosci 2021; 22:13. [PMID: 33639837 PMCID: PMC7913432 DOI: 10.1186/s12868-021-00619-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aside from the homeostatic and circadian components, light has itself an important, direct as well as indirect role in sleep regulation. Light exerts indirect sleep effect by modulating the circadian rhythms. Exposure to short light-dark cycle (LD 1:1, 1:1 h light - dark) eliminates the circadian sleep regulatory component but direct sleep effect of light could prevail. The aim of the present study was to examine the interaction between the light and the homeostatic influences regarding sleep regulation in a rat model. METHODS Spontaneous sleep-wake and homeostatic sleep regulation by sleep deprivation (SD) and analysis of slow waves (SW) were examined in Wistar rats exposed to LD1:1 condition using LD12:12 regime as control. RESULTS Slow wave sleep (SWS) and REM sleep were both enhanced, while wakefulness (W) was attenuated in LD1:1. SWS recovery after 6-h total SD was more intense in LD1:1 compared to LD12:12 and SWS compensation was augmented in the bright hours. Delta power increment during recovery was caused by the increase of SW number in both cases. More SW was seen during baseline in the second half of the day in LD1:1 and after SD compared to the LD12:12. Increase of SW number was greater in the bright hours compared to the dark ones after SD in LD1:1. Lights ON evoked immediate increase in W and decrease in both SWS and REM sleep during baseline LD1:1 condition, while these changes ceased after SD. Moreover, the initial decrease seen in SWS after lights ON, turned to an increase in the next 6-min bin and this increase was stronger after SD. These alterations were caused by the change of the epoch number in W, but not in case of SWS or REM sleep. Lights OFF did not alter sleep-wake times immediately, except W, which was increased by lights OFF after SD. CONCLUSIONS Present results show the complex interaction between light and homeostatic sleep regulation in the absence of the circadian component and indicate the decoupling of SW from the homeostatic sleep drive in LD1:1 lighting condition.
Collapse
Affiliation(s)
- Örs Szalontai
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
50
|
Zhang C, Yang L, Liu S, Xu Y, Zheng H, Zhang B. One-Week Self-Guided Internet Cognitive Behavioral Treatments for Insomnia in Adults With Situational Insomnia During the COVID-19 Outbreak. Front Neurosci 2021; 14:622749. [PMID: 33551732 PMCID: PMC7859353 DOI: 10.3389/fnins.2020.622749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: In the current global home confinement due to COVID-19, most individuals are facing unprecedented stress which can induce situational insomnia. We explored the efficacy of self-guided online cognitive behavioral treatment for insomnia (CBTI) on situational insomnia during the COVID-19 outbreak. Methods: Participants were recruited from March to April in 2020 in Guangzhou, China. A 1-week Internet CBTI intervention was performed for all individuals with situational insomnia. The Pre-sleep Arousal Scale (PSAS), Insomnia Severity Index (ISI), and Hospital Anxiety and Depression Scale (HADS) were measured before and after the intervention and compared between individuals who completed the intervention and those who did not. Results: One hundred and ninety-four individuals with situational insomnia were included. For PSAS score, significant group effects were found on total score (p = 0.003), somatic score (p = 0.014), and cognitive score (p = 0.009). Time effect was significant on total score (p = 0.004) and cognitive score (p < 0.001). There was a significant group × time effect of the somatic score (p = 0.025). For ISI total score, there were significant time effect (p < 0.001) and group × time effect (p = 0.024). For the HADS score, a significant group effect was found on the anxiety score (p = 0.045). The HADS had significant time effects for anxiety and depressive symptoms (all p < 0.001). Conclusion: Our study suggests good efficacy of CBTI on situational insomnia during COVID-19 for adults in the community, as well as on pre-sleep somatic hyperarousal symptom. The CBTI intervention is not applied to improve pre-sleep cognitive hyperarousal, depression, and anxiety symptoms.
Collapse
Affiliation(s)
- Chenxi Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Lulu Yang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Shuai Liu
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Yan Xu
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Affliated School of Medicine of South China University of Technology, Guangzhou, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|