1
|
Li J, Cui J, Li X, Zhu D, Chen Z, Huang X, Wang Y, Wu Q, Tian Y. TMBIM-2 orchestrates systemic mitochondrial stress response via facilitating Ca2+ oscillations. J Cell Biol 2025; 224:e202408050. [PMID: 40100072 PMCID: PMC11917168 DOI: 10.1083/jcb.202408050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/11/2024] [Accepted: 02/09/2025] [Indexed: 03/20/2025] Open
Abstract
Neuronal mitochondrial function is critical for orchestrating inter-tissue communication essential for overall fitness. Despite its significance, the molecular mechanism underlying the impact of prolonged mitochondrial stresses on neuronal activity and how they orchestrate metabolism and aging remains elusive. Here, we identified the evolutionarily conserved transmembrane protein XBX-6/TMBIM-2 as a key mediator in the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt). Our investigations reveal that intrinsic neuronal mitochondrial stress triggers spatiotemporal Ca2+ oscillations in a TMBIM-2-dependent manner through the Ca2+ efflux pump MCA-3. Notably, persistent Ca2+ oscillations at synapses of ADF neurons are critical for facilitating serotonin release and the subsequent activation of the neuronal-to-intestinal UPRmt. TMBIM2 expression diminishes with age; however, its overexpression counteracts the age-related decline in aversive learning behavior and extends the lifespan of Caenorhabditis elegans. These findings underscore the intricate integration of chronic neuronal mitochondrial stress into neurotransmission processes via TMBIM-2-dependent Ca2+ equilibrium, driving metabolic adaptation and behavioral changes for the regulation of aging.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee HW, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y. Mitochondrial complexity is regulated at ER-mitochondria contact sites via PDZD8-FKBP8 tethering. Nat Commun 2025; 16:3401. [PMID: 40246839 PMCID: PMC12006300 DOI: 10.1038/s41467-025-58538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identify the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-electron tomography, and correlative light-electron microscopy. Single molecule tracking reveals highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and captures at MERCS. Overexpression of FKBP8 is sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrate their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
Collapse
Affiliation(s)
- Koki Nakamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Saeko Aoyama-Ishiwatari
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Takahiro Nagao
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Mohammadreza Paaran
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | - Christopher J Obara
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Yui Sakurai-Saito
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jake Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Columbia University Medical Center, New York, NY, 10032, USA
| | - Yudan Du
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Masafumi Tsuboi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Hyun-Woo Rhee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Kon Seo
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Clint Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | | | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
3
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Junker A, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood MD, Boldrini M, Thiebaut de Schotten M, Picard M. A human brain map of mitochondrial respiratory capacity and diversity. Nature 2025:10.1038/s41586-025-08740-6. [PMID: 40140564 DOI: 10.1038/s41586-025-08740-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/04/2025] [Indexed: 03/28/2025]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4. To understand the basis of brain activity and behaviour, there is a need to define the molecular energetic landscape of the brain5-10. Here, to bridge the scale gap between cognitive neuroscience and cell biology, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3 × 3 × 3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes, including OXPHOS enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains diverse mitochondrial phenotypes driven by both topology and cell types. Compared with white matter, grey matter contains >50% more mitochondria. Moreover, the mitochondria in grey matter are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backwards linear regression model that integrates several neuroimaging modalities11 to generate a brain-wide map of mitochondrial distribution and specialization. This model predicted mitochondrial characteristics in an independent brain region of the same donor brain. This approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain function. This resource also relates to neuroimaging data and defines the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders. All data are available at http://humanmitobrainmap.bcblab.com .
Collapse
Affiliation(s)
- Eugene V Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Gorazd B Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational and Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - J John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark D Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Paris, France.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
4
|
Uytiepo M, Zhu Y, Bushong E, Chou K, Polli FS, Zhao E, Kim KY, Luu D, Chang L, Yang D, Ma TC, Kim M, Zhang Y, Walton G, Quach T, Haberl M, Patapoutian L, Shahbazi A, Zhang Y, Beutter E, Zhang W, Dong B, Khoury A, Gu A, McCue E, Stowers L, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. Science 2025; 387:eado8316. [PMID: 40112060 DOI: 10.1126/science.ado8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Memory engrams are formed through experience-dependent plasticity of neural circuits, but their detailed architectures remain unresolved. Using three-dimensional electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway after chemogenetic labeling of cellular ensembles recruited during associative learning. Neurons with a remote history of activity coinciding with memory acquisition showed no strong preference for wiring with each other. Instead, their connectomes expanded through multisynaptic boutons independently of the coactivation state of postsynaptic partners. The rewiring of ensembles representing an initial engram was accompanied by input-specific, spatially restricted upscaling of individual synapses, as well as remodeling of mitochondria, smooth endoplasmic reticulum, and interactions with astrocytes. Our findings elucidate the physical hallmarks of long-term memory and offer a structural basis for the cellular flexibility of information coding.
Collapse
Affiliation(s)
- Marco Uytiepo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yongchuan Zhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Katherine Chou
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Filip Souza Polli
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Zhao
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Danielle Luu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lyanne Chang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Dong Yang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tsz Ching Ma
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mingi Kim
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuting Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Grant Walton
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tom Quach
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthias Haberl
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Luca Patapoutian
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Arya Shahbazi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuxuan Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth Beutter
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Weiheng Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Brian Dong
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Aureliano Khoury
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Alton Gu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elle McCue
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Stowers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Anton Maximov
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Jiang Y, Wang H, Boergens KM, Rzepka N, Wang F, Hua Y. Efficient cell-wide mapping of mitochondria in electron microscopic volumes using webKnossos. CELL REPORTS METHODS 2025; 5:100989. [PMID: 39999790 PMCID: PMC11955265 DOI: 10.1016/j.crmeth.2025.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.
Collapse
Affiliation(s)
- Yi Jiang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China.
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China
| | - Kevin M Boergens
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China.
| |
Collapse
|
6
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Teoh J, Bartolini F. Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease. Curr Opin Neurobiol 2025; 90:102971. [PMID: 39862522 PMCID: PMC11839326 DOI: 10.1016/j.conb.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function. Recent research has further highlighted that disturbances in tubulin PTMs can lead to neurodegeneration, sparking an emerging field of investigation with numerous questions such as whether and how tubulin PTMs can affect neurotransmission and synaptic plasticity and whether restoring balanced tubulin PTM levels could effectively prevent or mitigate neurodegenerative disease.
Collapse
Affiliation(s)
- JiaJie Teoh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA.
| |
Collapse
|
8
|
Cartes-Saavedra B, Ghosh A, Hajnóczky G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00820-1. [PMID: 39870977 DOI: 10.1038/s41580-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Nolan SO, Melugin PR, Erickson KR, Adams WR, Farahbakhsh ZZ, Mcgonigle CE, Kwon MH, Costa VD, Hackett TA, Cuzon Carlson VC, Constantinidis C, Lapish CC, Grant KA, Siciliano CA. Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits. Curr Biol 2025; 35:431-443.e4. [PMID: 39765226 PMCID: PMC11832050 DOI: 10.1016/j.cub.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/03/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025]
Abstract
Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions.1,2 It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes.3,4,5,6,7 In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.3,8 Each cortical microcircuit receives sensory and cognitive information from upstream sources, which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity.4,9 Via recurrent connections within the microcircuit, activity propagates for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output.4,5,10 Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo, where intercortical and intracortical computations cannot be fully dissociated.5,9,11,12 Here, using high-density calcium imaging of macaque dlPFC, we isolated intracortical computations by interrogating microcircuit networks ex vivo. Using peri-sulcal stimulation to evoke recurrent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks wherein orderly, predictable, low-dimensional collective dynamics arise from ensembles with highly labile cellular memberships. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture. Our findings argue against engram or localist architectures, together demonstrating that generation of high-fidelity population-level signals from distributed, labile networks is an intrinsic feature of dlPFC microcircuitry.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kirsty R Erickson
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Wilson R Adams
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Zahra Z Farahbakhsh
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen E Mcgonigle
- Department of Psychology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Michelle H Kwon
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Vincent D Costa
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Department of Psychology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Strucinska K, Kneis P, Pennington T, Cizio K, Szybowska P, Morgan A, Weertman J, Lewis TL. Fis1 is required for the development of the dendritic mitochondrial network in pyramidal cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631801. [PMID: 39829888 PMCID: PMC11741399 DOI: 10.1101/2025.01.07.631801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mitochondrial ATP production and calcium buffering are critical for metabolic regulation and neurotransmission making the formation and maintenance of the mitochondrial network a critical component of neuronal health. Cortical pyramidal neurons contain compartment-specific mitochondrial morphologies that result from distinct axonal and dendritic mitochondrial fission and fusion profiles. We previously showed that axonal mitochondria are maintained at a small size as a result of high axonal mitochondrial fission factor (Mff) activity. However, loss of Mff activity had little effect on cortical dendritic mitochondria, raising the question of how fission/fusion balance is controlled in the dendrites. Thus, we sought to investigate the role of another fission factor, fission 1 (Fis1), on mitochondrial morphology, dynamics and function in cortical neurons. We knocked down Fis1 in cortical neurons both in primary culture and in vivo, and unexpectedly found that Fis1 depletion decreased mitochondrial length in the dendrites, without affecting mitochondrial size in the axon. Further, loss of Fis1 activity resulted in both increased mitochondrial motility and dynamics in the dendrites. These results argue Fis1 exhibits dendrite selectivity and plays a more complex role in neuronal mitochondrial dynamics than previously reported. Functionally, Fis1 loss resulted in reduced mitochondrial membrane potential, increased sensitivity to complex III blockade, and decreased mitochondrial calcium uptake during neuronal activity. The altered mitochondrial network culminated in elevated resting calcium levels that increased dendritic branching but reduced spine density. We conclude that Fis1 regulates morphological and functional mitochondrial characteristics that influence dendritic tree arborization and connectivity.
Collapse
Affiliation(s)
- Klaudia Strucinska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Travis Pennington
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Katarzyna Cizio
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Patrycja Szybowska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Joshua Weertman
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Physiology Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| |
Collapse
|
11
|
Lenert ME, Debner EK, Burton MD. Sensory neuron LKB1 mediates ovarian and reproductive function. Sci Rep 2024; 14:29109. [PMID: 39582088 PMCID: PMC11586444 DOI: 10.1038/s41598-024-79947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Treatments for reproductive disorders in women consist of hormone replacement therapy, which have negative side effects that impact health, spurring the need to understand new mechanisms to employ new therapeutic strategies. Bidirectional communication between sensory neurons and the organs they innervate is an emerging area of interest in tissue physiology with a relevance in reproductive disorders. We hypothesized that the metabolic activity of sensory neurons has a profound effect on reproductive phenotypes. To investigate this phenomenon, we utilized a murine model with conditional deletion of liver kinase B1 (LKB1), a serine/threonine kinase that regulates cellular metabolism in sensory neurons (Nav1.8cre; LKB1fl/fl). LKB1 deletion in sensory neurons resulted in reduced ovarian innervation from dorsal root ganglia neurons and increased follicular turnover compared to littermate controls. Female mice with this LKB1 deletion had significantly more pups per litter compared to wild-type females. Interestingly, the LKB1 genotype of male breeders had no effect on fertility outcomes, thus indicating a female-specific role of sensory neuron metabolism in fertility. In summary, LKB1 expression in peripheral sensory neurons plays an important role in modulating fertility of female mice via ovarian sensory innervation.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX, 75080, USA.
- The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
12
|
Paing YMM, Eom Y, Lee SH. Benzopyrene represses mitochondrial fission factors and PINK1/Parkin-mediated mitophagy in primary astrocytes. Toxicology 2024; 508:153926. [PMID: 39147092 DOI: 10.1016/j.tox.2024.153926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Mitochondria are essential for various physiological functions in astrocytes in the brain, such as maintaining ion and pH homeostasis, regulating neurotransmission, and modulating neuroinflammation. Mitophagy, a form of autophagy specific to mitochondria, is essential for ensuring mitochondrial quality and function. Benzo[a]pyrene (BaP) accumulates in the brain, and exposure to it is recognized as an environmental risk factor for neurodegenerative diseases. However, while the toxic mechanisms of BaP have been investigated in neurons, their effects on astrocytes-the most prevalent glial cells in the brain-are not clearly understood. Therefore, this study aims to investigate the toxic effects of exposure to BaP on mitochondria in primary astrocytes. Fluorescent probes and genetically encoded indicators were utilized to visualize mitochondrial morphology and physiology, and regulatory factors involved in mitochondrial morphology and mitophagy were assessed. Additionally, the mitochondrial respiration rate was measured in BaP-exposed astrocytes. BaP exposure resulted in mitochondrial enlargement owing to the suppression of mitochondrial fission factors. Furthermore, BaP-exposed astrocytes demonstrated reduced mitophagy and exhibited aberrant mitochondrial function and physiology, such as altered mitochondrial respiration rates, increased mitochondrial superoxide, disrupted mitochondrial membrane potential, and dysregulated mitochondrial Ca2+. These findings offer insights into the underlying toxic mechanisms of BaP exposure in neurodegenerative diseases by inducing aberrant mitophagy and mitochondrial dysfunction in astrocytes.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
13
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
14
|
Baum TB, Bodnya C, Costanzo J, Gama V. Patient mutations in DRP1 perturb synaptic maturation of cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609462. [PMID: 39229012 PMCID: PMC11370610 DOI: 10.1101/2024.08.23.609462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the advent of exome sequencing, a growing number of children are being identified with de novo loss of function mutations in the dynamin 1 like (DNM1L) gene encoding the large GTPase essential for mitochondrial fission, dynamin-related protein 1 (DRP1); these mutations result in severe neurodevelopmental phenotypes, such as developmental delay, optic atrophy, and epileptic encephalopathies. Though it is established that mitochondrial fission is an essential precursor to the rapidly changing metabolic needs of the developing cortex, it is not understood how identified mutations in different domains of DRP1 uniquely disrupt cortical development and synaptic maturation. We leveraged the power of induced pluripotent stem cells (iPSCs) harboring DRP1 mutations in either the GTPase or stalk domains to model early stages of cortical development in vitro. High-resolution time-lapse imaging of axonal transport in mutant DRP1 cortical neurons reveals mutation-specific changes in mitochondrial motility of severely hyperfused mitochondrial structures. Transcriptional profiling of mutant DRP1 cortical neurons during maturation also implicates mutation dependent alterations in synaptic development and calcium regulation gene expression. Disruptions in calcium dynamics were confirmed using live functional recordings of 100 DIV (days in vitro) mutant DRP1 cortical neurons. These findings and deficits in pre- and post-synaptic marker colocalization using super resolution microscopy, strongly suggest that altered mitochondrial morphology of DRP1 mutant neurons leads to pathogenic dysregulation of synaptic development and activity.
Collapse
Affiliation(s)
- T B Baum
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - C Bodnya
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - J Costanzo
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
| | - V Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Center for Stem Cell Biology, Nashville, TN
- Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN
| |
Collapse
|
15
|
Kochan SMV, Malo MC, Jevtic M, Jahn-Kelleter HM, Wani GA, Ndoci K, Pérez-Revuelta L, Gaedke F, Schäffner I, Lie DC, Schauss A, Bergami M. Enhanced mitochondrial fusion during a critical period of synaptic plasticity in adult-born neurons. Neuron 2024; 112:1997-2014.e6. [PMID: 38582081 DOI: 10.1016/j.neuron.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.
Collapse
Affiliation(s)
- Sandra M V Kochan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Meret Cepero Malo
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Milica Jevtic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hannah M Jahn-Kelleter
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gulzar A Wani
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Kristiano Ndoci
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Laura Pérez-Revuelta
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine, 50931 Cologne, Germany; Institute of Genetics, University of Cologne, Cologne 50674, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany.
| |
Collapse
|
16
|
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee HW, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y. PDZD8-FKBP8 tethering complex at ER-mitochondria contact sites regulates mitochondrial complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554218. [PMID: 38895210 PMCID: PMC11185567 DOI: 10.1101/2023.08.22.554218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identified the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-Electron Microscopy (Cryo-EM) tomography, and correlative light-EM (CLEM). Single molecule tracking revealed highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and capture at MERCS. Overexpression of FKBP8 was sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrated their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
Collapse
|
17
|
Eom Y, Kim SR, Kim YK, Lee SH. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Mol Neurobiol 2024; 61:3477-3489. [PMID: 37995079 DOI: 10.1007/s12035-023-03795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Mitochondria are critical to cellular Ca2+ homeostasis via the sequestering of cytosolic Ca2+ in the mitochondrial matrix. Mitochondrial Ca2+ buffering regulates neuronal activity and neuronal death by shaping cytosolic and presynaptic Ca2+ or controlling energy metabolism. Dysfunction in mitochondrial Ca2+ buffering has been implicated in psychological and neurological disorders. Ca2+ wave propagation refers to the spreading of Ca2+ for buffering and maintaining the associated rise in Ca2+ concentration. We investigated mitochondrial Ca2+ waves in hippocampal neurons using genetically encoded Ca2+ indicators. Neurons transfected with mito-GCaMP5G, mito-RCaMP1h, and CEPIA3mt exhibited evidence of mitochondrial Ca2+ waves with electrical stimulation. These waves were observed with 200 action potentials at 40 Hz or 20 Hz but not with lower frequencies or fewer action potentials. The application of inhibitors of mitochondrial calcium uniporter and oxidative phosphorylation suppressed mitochondrial Ca2+ waves. However, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptor blockade had no effect on mitochondrial Ca2+ wave were propagation. The Ca2+ waves were not observed in endoplasmic reticula, presynaptic terminals, or cytosol in association with electrical stimulation of 200 action potentials at 40 Hz. These results offer novel insights into the mechanisms underlying mitochondrial Ca2+ buffering and the molecular basis of mitochondrial Ca2+ waves in neurons in response to electrical stimulation.
Collapse
Affiliation(s)
- Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
18
|
Wu Y, Ding C, Sharif B, Weinreb A, Swaim G, Hao H, Yogev S, Watanabe S, Hammarlund M. Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport. J Cell Biol 2024; 223:e202305105. [PMID: 38470363 PMCID: PMC10932739 DOI: 10.1083/jcb.202305105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Mitochondria transport is crucial for axonal mitochondria distribution and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 binding to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1, and metaxin2. We conclude that transport complexes containing kinesin-1 and RIC-7 polarize at the leading edge of mitochondria and are required for anterograde axonal transport in C. elegans.
Collapse
Affiliation(s)
- Youjun Wu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Chen Ding
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Behrang Sharif
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Weinreb
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Grace Swaim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyan Hao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Rose HM, Ferrán B, Ranjit R, Masingale AM, Owen DB, Hussong S, Kinter MT, Galvan V, Logan S, Díaz-García CM. Mitochondrial calcium uniporter deficiency in dentate granule cells remodels neuronal metabolism and impairs reversal learning. J Neurochem 2024; 168:592-607. [PMID: 37415312 PMCID: PMC10770303 DOI: 10.1111/jnc.15901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
The mitochondrial calcium uniporter (MCU) is the main route of calcium (Ca2+) entry into neuronal mitochondria. This channel has been linked to mitochondrial Ca2+ overload and cell death under neurotoxic conditions, but its physiologic roles for normal brain function remain poorly understood. Despite high expression of MCU in excitatory hippocampal neurons, it is unknown whether this channel is required for learning and memory. Here, we genetically down-regulated the Mcu gene in dentate granule cells (DGCs) of the hippocampus and found that this manipulation increases the overall respiratory activity of mitochondrial complexes I and II, augmenting the generation of reactive oxygen species in the context of impaired electron transport chain. The metabolic remodeling of MCU-deficient neurons also involved changes in the expression of enzymes that participate in glycolysis and the regulation of the tricarboxylic acid cycle, as well as the cellular antioxidant defenses. We found that MCU deficiency in DGCs does not change circadian rhythms, spontaneous exploratory behavior, or cognitive function in middle-aged mice (11-13 months old), when assessed with a food-motivated working memory test with three choices. DGC-targeted down-regulation of MCU significantly impairs reversal learning assessed with an 8-arm radial arm water maze but does not affect their ability to learn the task for the first time. Our results indicate that neuronal MCU plays an important physiologic role in memory formation and may be a potential therapeutic target to develop interventions aimed at improving cognitive function in aging, neurodegenerative diseases, and brain injury.
Collapse
Affiliation(s)
- Hadyn M Rose
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Beatriz Ferrán
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Rojina Ranjit
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Anthony M Masingale
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Daniel B Owen
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Stacy Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, Oklahoma, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, Oklahoma, USA
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| |
Collapse
|
20
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Uytiepo M, Zhu Y, Bushong E, Polli F, Chou K, Zhao E, Kim C, Luu D, Chang L, Quach T, Haberl M, Patapoutian L, Beutter E, Zhang W, Dong B, McCue E, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590812. [PMID: 38712256 PMCID: PMC11071366 DOI: 10.1101/2024.04.23.590812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Memory engrams are formed through experience-dependent remodeling of neural circuits, but their detailed architectures have remained unresolved. Using 3D electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway following chemogenetic labeling of cellular ensembles with a remote history of correlated excitation during associative learning. Projection neurons involved in memory acquisition expanded their connectomes via multi-synaptic boutons without altering the numbers and spatial arrangements of individual axonal terminals and dendritic spines. This expansion was driven by presynaptic activity elicited by specific negative valence stimuli, regardless of the co-activation state of postsynaptic partners. The rewiring of initial ensembles representing an engram coincided with local, input-specific changes in the shapes and organelle composition of glutamatergic synapses, reflecting their weights and potential for further modifications. Our findings challenge the view that the connectivity among neuronal substrates of memory traces is governed by Hebbian mechanisms, and offer a structural basis for representational drifts.
Collapse
|
22
|
Yu M, Sun F, Xiang G, Zhang Y, Wang X, Liu X, Huang B, Li X, Zhang D. Liver kinase B-1 modulates the activity of dopamine neurons in the ventral tegmental area and regulates social memory formation. Front Mol Neurosci 2024; 17:1289476. [PMID: 38646099 PMCID: PMC11026561 DOI: 10.3389/fnmol.2024.1289476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Social memory is the ability to discriminate between familiar and unknown conspecifics. It is an important component of social cognition and is therefore essential for the establishment of social relationships. Although the neural circuit mechanisms underlying social memory encoding have been well investigated, little focus has been placed on the regulatory mechanisms of social memory processing. The dopaminergic system, originating from the midbrain ventral tegmental area (VTA), is a key modulator of cognitive function. This study aimed to illustrate its role in modulating social memory and explore the possible molecular mechanisms. Here, we show that the activation of VTA dopamine (DA) neurons is required for the formation, but not the retrieval, of social memory. Inhibition of VTA DA neurons before social interaction, but not 24 h after social interaction, significantly impaired social discrimination the following day. In addition, we showed that the activation of VTA DA neurons was regulated by the serine/threonine protein kinase liver kinase B1 (Lkb1). Deletion of Lkb1 in VTA DA neurons reduced the frequency of burst firing of dopaminergic neurons. Furthermore, Lkb1 plays an important role in regulating social behaviors. Both genetic and virus-mediated deletions of Lkb1 in the VTA of adult mice impaired social memory and subsequently attenuated social familiarization. Altogether, our results provide direct evidence linking social memory formation to the activation of VTA DA neurons in mice and illustrate the crucial role of Lkb1 in regulating VTA DA neuron function.
Collapse
Affiliation(s)
- Meng Yu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Fengjiao Sun
- Institute of Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Guo Xiang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Yuhan Zhang
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuejun Wang
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xia Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
23
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
24
|
Rathor L, Curry S, Park Y, McElroy T, Robles B, Sheng Y, Chen WW, Min K, Xiao R, Lee MH, Han SM. Mitochondrial stress in GABAergic neurons non-cell autonomously regulates organismal health and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585932. [PMID: 38585797 PMCID: PMC10996468 DOI: 10.1101/2024.03.20.585932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.
Collapse
|
25
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, Thiebaut de Schotten M, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. RESEARCH SQUARE 2024:rs.3.rs-4047706. [PMID: 38562777 PMCID: PMC10984021 DOI: 10.21203/rs.3.rs-4047706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
26
|
Lanfranchi M, Yandiev S, Meyer-Dilhet G, Ellouze S, Kerkhofs M, Dos Reis R, Garcia A, Blondet C, Amar A, Kneppers A, Polvèche H, Plassard D, Foretz M, Viollet B, Sakamoto K, Mounier R, Bourgeois CF, Raineteau O, Goillot E, Courchet J. The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions. Nat Commun 2024; 15:2487. [PMID: 38514619 PMCID: PMC10958033 DOI: 10.1038/s41467-024-46146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.
Collapse
Affiliation(s)
- Marine Lanfranchi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Sozerko Yandiev
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Géraldine Meyer-Dilhet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Salma Ellouze
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Martijn Kerkhofs
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Raphael Dos Reis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Audrey Garcia
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Camille Blondet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Alizée Amar
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Anita Kneppers
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
- CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Rémi Mounier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Evelyne Goillot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France.
| |
Collapse
|
27
|
Oevel K, Hohensee S, Kumar A, Rosas-Brugada I, Bartolini F, Soykan T, Haucke V. Rho GTPase signaling and mDia facilitate endocytosis via presynaptic actin. eLife 2024; 12:RP92755. [PMID: 38502163 PMCID: PMC10950329 DOI: 10.7554/elife.92755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.
Collapse
Affiliation(s)
- Kristine Oevel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Svea Hohensee
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | | | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität BerlinBerlinGermany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
28
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, de Schotten MT, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583623. [PMID: 38496679 PMCID: PMC10942385 DOI: 10.1101/2024.03.05.583623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
29
|
Hees JT, Wanderoy S, Lindner J, Helms M, Murali Mahadevan H, Harbauer AB. Insulin signalling regulates Pink1 mRNA localization via modulation of AMPK activity to support PINK1 function in neurons. Nat Metab 2024; 6:514-530. [PMID: 38504131 PMCID: PMC10963278 DOI: 10.1038/s42255-024-01007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Mitochondrial quality control failure is frequently observed in neurodegenerative diseases. The detection of damaged mitochondria by stabilization of PTEN-induced kinase 1 (PINK1) requires transport of Pink1 messenger RNA (mRNA) by tethering it to the mitochondrial surface. Here, we report that inhibition of AMP-activated protein kinase (AMPK) by activation of the insulin signalling cascade prevents Pink1 mRNA binding to mitochondria. Mechanistically, AMPK phosphorylates the RNA anchor complex subunit SYNJ2BP within its PDZ domain, a phosphorylation site that is necessary for its interaction with the RNA-binding protein SYNJ2. Notably, loss of mitochondrial Pink1 mRNA association upon insulin addition is required for PINK1 protein activation and its function as a ubiquitin kinase in the mitophagy pathway, thus placing PINK1 function under metabolic control. Induction of insulin resistance in vitro by the key genetic Alzheimer risk factor apolipoprotein E4 retains Pink1 mRNA at the mitochondria and prevents proper PINK1 activity, especially in neurites. Our results thus identify a metabolic switch controlling Pink1 mRNA localization and PINK1 activity via insulin and AMPK signalling in neurons and propose a mechanistic connection between insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- J Tabitha Hees
- TUM Medical Graduate Center, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Simone Wanderoy
- TUM Medical Graduate Center, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Jana Lindner
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Marlena Helms
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Hariharan Murali Mahadevan
- TUM Medical Graduate Center, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Angelika B Harbauer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
- Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
30
|
Hirabayashi Y, Lewis TL, Du Y, Virga DM, Decker AM, Coceano G, Alvelid J, Paul MA, Hamilton S, Kneis P, Takahashi Y, Gaublomme JT, Testa I, Polleux F. Most axonal mitochondria in cortical pyramidal neurons lack mitochondrial DNA and consume ATP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579972. [PMID: 38405915 PMCID: PMC10888904 DOI: 10.1101/2024.02.12.579972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In neurons of the mammalian central nervous system (CNS), axonal mitochondria are thought to be indispensable for supplying ATP during energy-consuming processes such as neurotransmitter release. Here, we demonstrate using multiple, independent, in vitro and in vivo approaches that the majority (~80-90%) of axonal mitochondria in cortical pyramidal neurons (CPNs), lack mitochondrial DNA (mtDNA). Using dynamic, optical imaging analysis of genetically encoded sensors for mitochondrial matrix ATP and pH, we demonstrate that in axons of CPNs, but not in their dendrites, mitochondrial complex V (ATP synthase) functions in a reverse way, consuming ATP and protruding H+ out of the matrix to maintain mitochondrial membrane potential. Our results demonstrate that in mammalian CPNs, axonal mitochondria do not play a major role in ATP supply, despite playing other functions critical to regulating neurotransmission such as Ca2+ buffering.
Collapse
Affiliation(s)
- Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo; Tokyo, 113-8656, Japan
| | - Tommy L. Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yudan Du
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo; Tokyo, 113-8656, Japan
| | - Daniel M. Virga
- Department of Biological Sciences, Columbia University; New York, NY, 10027, USA
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Aubrianna M. Decker
- Department of Biological Sciences, Columbia University; New York, NY, 10027, USA
| | - Giovanna Coceano
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonatan Alvelid
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Maëla A. Paul
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL; Paris, France
| | - Stevie Hamilton
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yasufumi Takahashi
- Department of Electronics, Graduate School of Engineering, Nagoya University, 464-8603, Nagoya, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920–1192 Japan
| | - Jellert T. Gaublomme
- Department of Biological Sciences, Columbia University; New York, NY, 10027, USA
| | - Ilaria Testa
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Franck Polleux
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| |
Collapse
|
31
|
Lee HR, Choi SH, Lee SH. Differential involvement of mitochondria in post-tetanic potentiation at intracortical excitatory synapses of the medial prefrontal cortex. Cereb Cortex 2024; 34:bhad476. [PMID: 38061690 DOI: 10.1093/cercor/bhad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2022] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Post-tetanic Ca2+ release from mitochondria produces presynaptic residual calcium, which contributes to post-tetanic potentiation. The loss of mitochondria-dependent post-tetanic potentiation is one of the earliest signs of Alzheimer's model mice. Post-tetanic potentiation at intracortical synapses of medial prefrontal cortex has been implicated in working memory. Although mitochondrial contribution to post-tetanic potentiation differs depending on synapse types, it is unknown which synapse types express mitochondria-dependent post-tetanic potentiation in the medial prefrontal cortex. We studied expression of mitochondria-dependent post-tetanic potentiation at different intracortical synapses of the rat medial prefrontal cortex. Post-tetanic potentiation occurred only at intracortical synapses onto layer 5 corticopontine cells from commissural cells and L2/3 pyramidal neurons. Among post-tetanic potentiation-expressing synapses, L2/3-corticopontine synapses in the prelimbic cortex were unique in that post-tetanic potentiation depends on mitochondria because post-tetanic potentiation at corresponding synapse types in other cortical areas was independent of mitochondria. Supporting mitochondria-dependent post-tetanic potentiation at L2/3-to-corticopontine synapses, mitochondria-dependent residual calcium at the axon terminals of L2/3 pyramidal neurons was significantly larger than that at commissural and corticopontine cells. Moreover, post-tetanic potentiation at L2/3-corticopontine synapses, but not at commissural-corticopontine synapses, was impaired in the young adult Alzheimer's model mice. These results would provide a knowledge base for comprehending synaptic mechanisms that underlies the initial clinical signs of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyoung-Ro Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hoon Choi
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Suk-Ho Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
Zhao Q, Liu Z, Song P, Yuan Z, Zou MH. Mitochondria-derived Vesicle Packaging as a Novel Therapeutic Mechanism in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2024; 70:39-49. [PMID: 37713305 PMCID: PMC10768832 DOI: 10.1165/rcmb.2023-0010oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Increasing evidence suggests that mitochondrial dysfunction in pulmonary endothelial cells (ECs) plays a causative role in the initiation and progression of pulmonary hypertension (PH); how mitochondria become dysfunctional in PH remains elusive. Mitochondria-derived vesicles (MDVs) are small subcellular vesicles that excise from mitochondria. Whether MDV deregulation causes mitochondrial dysfunction in PH is unknown. The aim of this study was to determine MDV regulation in ECs and to elucidate how MDV deregulation in ECs leads to PH. MDV formation and mitochondrial morphology/dynamics were examined in ECs of EC-specific liver kinase B1 (LKB1) knockout mice (LKB1ec-/-), in monocrotaline-induced PH rats, and in lungs of patients with PH. Pulmonary ECs of patients with PH and hypoxia-treated pulmonary ECs exhibited increased mitochondrial fragmentation and disorganized mitochondrial ultrastructure characterized by electron lucent-swelling matrix compartments and concentric layering of the cristae network, together with defective MDV shedding. MDVs actively regulated mitochondrial membrane dynamics and mitochondrial ultrastructure via removing mitofission-related cargoes. The shedding of MDVs from parental mitochondria required LKB1-mediated mitochondrial recruitment of Rab9 GTPase. LKB1ec-/- mice spontaneously developed PH with decreased mitochondrial pools of Rab9 GTPase, defective MDV shedding, and disequilibrium of the mitochondrial fusion-fission cycle in pulmonary ECs. Aerosol intratracheal delivery of adeno-associated virus LKB1 reversed PH, together with improved MDV shedding and mitochondrial function in rats in vivo. We conclude that LKB1 regulates MDV shedding and mitochondrial dynamics in pulmonary ECs by enhancing mitochondrial recruitment of Rab9 GTPase. Defects of LKB1-mediated MDV shedding from parental mitochondria instigate EC dysfunction and PH.
Collapse
Affiliation(s)
- Qiang Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
- Department of Cardiology, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Zhixue Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
| | - Zuyi Yuan
- Department of Cardiology, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, Shaanxi, China
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
33
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
34
|
Kim YK, Eom Y, Yoon H, Lee Y, Lee SH. Benzo[a]pyrene represses synaptic vesicle exocytosis by inhibiting P/Q-type calcium channels in hippocampal neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115301. [PMID: 37506439 DOI: 10.1016/j.ecoenv.2023.115301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Humans are exposed to the common carcinogen benzo[a]pyrene (BaP) by ingesting contaminated foods and water or inhaling polluted air. Given the enriched lipids and reduced antioxidative properties in the brain and the accumulation of BaP in the brain due to its high lipophilicity, the brain is susceptible to BaP-induced toxicity. Exposure to BaP leads to impairments in learning and memory, increased anxiety behavior, and neuronal death. It induces protein dysfunctions in neuronal compartments that play essential roles in neuronal activity or physiology. However, the neurotoxicity of BaP on presynaptic terminals, which is crucial to neurotransmission by releasing synaptic vesicles that contain neurotransmitters, has not yet been investigated. In the present study, we investigated the toxicity of BaP at presynaptic terminals in living hippocampal neurons. These neurons were sourced from transgenic mice pups (postnatal 1-day, a total of 12 pups, equal numbers for each sex) that endogenously express synaptic vesicle-fused pHluorin, which is a green fluorescent protein that enables monitoring of synaptic vesicle dynamics. We observed that BaP suppressed synaptic vesicle exocytosis by inhibiting presynaptic Ca2+ entry via P/Q-type Ca2+ channels. Together with molecular docking simulation, we speculate that BaP and metabolites may bind to the P/Q Ca2+ channels. These results suggest the toxic mechanism of BaP exposure-induced abnormal behavior that provides a basis to evaluate the risk assessment of BaP-induced neurotoxicity.
Collapse
Affiliation(s)
- Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hongryul Yoon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
35
|
Rosenberg AM, Saggar M, Monzel AS, Devine J, Rogu P, Limoges A, Junker A, Sandi C, Mosharov EV, Dumitriu D, Anacker C, Picard M. Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice. Nat Commun 2023; 14:4726. [PMID: 37563104 PMCID: PMC10415311 DOI: 10.1038/s41467-023-39941-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Rogu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron Limoges
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne, Switzerland
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Dani Dumitriu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Christoph Anacker
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
36
|
Suga S, Nakamura K, Nakanishi Y, Humbel BM, Kawai H, Hirabayashi Y. An interactive deep learning-based approach reveals mitochondrial cristae topologies. PLoS Biol 2023; 21:e3002246. [PMID: 37651352 PMCID: PMC10470929 DOI: 10.1371/journal.pbio.3002246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
The convolution of membranes called cristae is a critical structural and functional feature of mitochondria. Crista structure is highly diverse between different cell types, reflecting their role in metabolic adaptation. However, their precise three-dimensional (3D) arrangement requires volumetric analysis of serial electron microscopy and has therefore been limiting for unbiased quantitative assessment. Here, we developed a novel, publicly available, deep learning (DL)-based image analysis platform called Python-based human-in-the-loop workflow (PHILOW) implemented with a human-in-the-loop (HITL) algorithm. Analysis of dense, large, and isotropic volumes of focused ion beam-scanning electron microscopy (FIB-SEM) using PHILOW reveals the complex 3D nanostructure of both inner and outer mitochondrial membranes and provides deep, quantitative, structural features of cristae in a large number of individual mitochondria. This nanometer-scale analysis in micrometer-scale cellular contexts uncovers fundamental parameters of cristae, such as total surface area, orientation, tubular/lamellar cristae ratio, and crista junction density in individual mitochondria. Unbiased clustering analysis of our structural data unraveled a new function for the dynamin-related GTPase Optic Atrophy 1 (OPA1) in regulating the balance between lamellar versus tubular cristae subdomains.
Collapse
Affiliation(s)
- Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Koki Nakamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yu Nakanishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Bruno M. Humbel
- Imaging Section, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Kawai
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Mattedi F, Lloyd-Morris E, Hirth F, Vagnoni A. Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila. PLoS Biol 2023; 21:e3002273. [PMID: 37590319 PMCID: PMC10465005 DOI: 10.1371/journal.pbio.3002273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Miro GTPases control mitochondrial morphology, calcium homeostasis, and regulate mitochondrial distribution by mediating their attachment to the kinesin and dynein motor complex. It is not clear, however, how Miro proteins spatially and temporally integrate their function as acute disruption of protein function has not been performed. To address this issue, we have developed an optogenetic loss of function "Split-Miro" allele for precise control of Miro-dependent mitochondrial functions in Drosophila. Rapid optogenetic cleavage of Split-Miro leads to a striking rearrangement of the mitochondrial network, which is mediated by mitochondrial interaction with the microtubules. Unexpectedly, this treatment did not impact the ability of mitochondria to buffer calcium or their association with the endoplasmic reticulum. While Split-Miro overexpression is sufficient to augment mitochondrial motility, sustained photocleavage shows that Split-Miro is surprisingly dispensable to maintain elevated mitochondrial processivity. In adult fly neurons in vivo, Split-Miro photocleavage affects both mitochondrial trafficking and neuronal activity. Furthermore, functional replacement of endogenous Miro with Split-Miro identifies its essential role in the regulation of locomotor activity in adult flies, demonstrating the feasibility of tuning animal behaviour by real-time loss of protein function.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
38
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
39
|
Beccano-Kelly DA, Cherubini M, Mousba Y, Cramb KM, Giussani S, Caiazza MC, Rai P, Vingill S, Bengoa-Vergniory N, Ng B, Corda G, Banerjee A, Vowles J, Cowley S, Wade-Martins R. Calcium dysregulation combined with mitochondrial failure and electrophysiological maturity converge in Parkinson's iPSC-dopamine neurons. iScience 2023; 26:107044. [PMID: 37426342 PMCID: PMC10329047 DOI: 10.1016/j.isci.2023.107044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the GBA-N370S mutation, a strong genetic risk factor for PD. GBA-N370S iPSC-dopamine neurons show an early and persistent calcium dysregulation notably at the mitochondria, followed by reduced mitochondrial membrane potential and oxygen consumption rate, indicating mitochondrial failure. With increased neuronal maturity, we observed decreased synaptic function in PD iPSC-dopamine neurons, consistent with the requirement for ATP and calcium to support the increase in electrophysiological activity over time. Our work demonstrates that calcium dyshomeostasis and mitochondrial failure impair the higher electrophysiological activity of mature neurons and may underlie the vulnerability of dopamine neurons in PD.
Collapse
Affiliation(s)
- Dayne A. Beccano-Kelly
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Marta Cherubini
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Yassine Mousba
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Kaitlyn M.L. Cramb
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Stefania Giussani
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Maria Claudia Caiazza
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Pavandeep Rai
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Siv Vingill
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Nora Bengoa-Vergniory
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Gabriele Corda
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
| | - Abhirup Banerjee
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Jane Vowles
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sally Cowley
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- The James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX3 7BN, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
40
|
Wu Y, Ding C, Weinreb A, Manning L, Swaim G, Yogev S, Colón-Ramos DA, Hammarlund M. Polarized localization of kinesin-1 and RIC-7 drives axonal mitochondria anterograde transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548706. [PMID: 37502914 PMCID: PMC10369933 DOI: 10.1101/2023.07.12.548706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mitochondria transport is crucial for mitochondria distribution in axons and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 recruitment to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1 and metaxin2. We conclude that polarized transport complexes containing kinesin-1 and RIC-7 form at the leading edge of mitochondria, and that these complexes are required for anterograde axonal transport.
Collapse
Affiliation(s)
- Youjun Wu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Chen Ding
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Alexis Weinreb
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Laura Manning
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Grace Swaim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06536, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
41
|
Garcia-Casas P, Rossini M, Filadi R, Pizzo P. Mitochondrial Ca 2+ signaling and Alzheimer's disease: Too much or too little? Cell Calcium 2023; 113:102757. [PMID: 37192560 DOI: 10.1016/j.ceca.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, caused by poorly known pathogenic mechanisms and aggravated by delayed therapeutic intervention, that still lacks an effective cure. However, it is clear that some important neurophysiological processes are altered years before the onset of clinical symptoms, offering the possibility of identifying biological targets useful for implementation of new therapies. Of note, evidence has been provided suggesting that mitochondria, pivotal organelles in sustaining neuronal energy demand and modulating synaptic activity, are dysfunctional in AD samples. In particular, alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegeneration, although the exact outcomes and molecular mechanisms of these defects, as well as their longitudinal progression, are not always clear. Here, we discuss the importance of a correct mitochondrial Ca2+ handling for neuronal physiology and summarize the latest findings on dysfunctional mitochondrial Ca2+ pathways in AD, analysing possible consequences contributing to the neurodegeneration that characterizes the disease.
Collapse
Affiliation(s)
- Paloma Garcia-Casas
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47003 Valladolid, Spain
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Study Centre for Neurodegeneration (CESNE), University of Padova, 35131 Padua, Italy.
| |
Collapse
|
42
|
Lenert ME, Burton MD. Sensory neuron LKB1 mediates ovarian and reproductive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534533. [PMID: 37034663 PMCID: PMC10081243 DOI: 10.1101/2023.03.28.534533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Treatments for reproductive disorders in women primarily consist of hormone replacement therapy, which can have negative health impacts. Bidirectional communication between sensory neurons and innervated organs is an emerging area of interest in tissue physiology with potential relevance for reproductive disorders. Indeed, the metabolic activity of sensory neurons can have profound effects on reproductive phenotypes. To investigate this phenomenon, we utilized a murine model with conditional deletion in sensory neurons of liver kinase B1 (LKB1), a serine/threonine kinase that regulates cellular metabolism. Female mice with this LKB1 deletion (Nav1.8cre;LKB1fl/fl) had significantly more pups per litter compared to wild-type females. Interestingly, the LKB1 genotype of male breeders had no effect on fertility outcomes, thus indicating a female-specific role of sensory neuron metabolism in fertility. LKB1 deletion in sensory neurons resulted in reduced ovarian innervation from dorsal root ganglia neurons and increased follicular turnover compared to littermate controls. In summary, LKB1 expression in peripheral sensory neurons plays an important role in modulating fertility of female mice via ovarian sensory innervation.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX 75080
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies (CAPS), The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
43
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
44
|
Di Sante M, Antonucci S, Pontarollo L, Cappellaro I, Segat F, Deshwal S, Greotti E, Grilo LF, Menabò R, Di Lisa F, Kaludercic N. Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation. Basic Res Cardiol 2023; 118:4. [PMID: 36670288 PMCID: PMC9859871 DOI: 10.1007/s00395-023-00977-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to β-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes.
Collapse
Affiliation(s)
- Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Laura Pontarollo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Ilaria Cappellaro
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesca Segat
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Elisa Greotti
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Luis F Grilo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Roberta Menabò
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127, Padua, Italy.
| |
Collapse
|
45
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
46
|
Physiological roles of organelles at the pre-synapse in neurons. Int J Biochem Cell Biol 2023; 154:106345. [PMID: 36521722 DOI: 10.1016/j.biocel.2022.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria, endoplasmic reticulum and lysosomes are involved in different pathways that can regulate pre-synaptic function. In particular, they could modulate ATP availability in response to rapid changes, could control synaptic protein levels and adjust Ca2+ signalling, which could all impact on neuronal activity. Organelles functions in these processes need to be considered alone when describing the impact of pre-synaptic organelles on neurotransmission. However, the interplay among organelles, which occurs either via signalling pathways or through physical membranous contacts, has to be considered. In this brief review, the physiological role of organelles localized at the pre-synapse in neuronal function is discussed.
Collapse
|
47
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
48
|
Arnst N, Redolfi N, Lia A, Bedetta M, Greotti E, Pizzo P. Mitochondrial Ca 2+ Signaling and Bioenergetics in Alzheimer's Disease. Biomedicines 2022; 10:3025. [PMID: 36551781 PMCID: PMC9775979 DOI: 10.3390/biomedicines10123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a hereditary and sporadic neurodegenerative illness defined by the gradual and cumulative loss of neurons in specific brain areas. The processes that cause AD are still under investigation and there are no available therapies to halt it. Current progress puts at the forefront the "calcium (Ca2+) hypothesis" as a key AD pathogenic pathway, impacting neuronal, astrocyte and microglial function. In this review, we focused on mitochondrial Ca2+ alterations in AD, their causes and bioenergetic consequences in neuronal and glial cells, summarizing the possible mechanisms linking detrimental mitochondrial Ca2+ signals to neuronal death in different experimental AD models.
Collapse
Affiliation(s)
- Nikita Arnst
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Annamaria Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Martina Bedetta
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
- Study Centre for Neurodegeneration (CESNE), University of Padova, 35131 Padua, Italy
| |
Collapse
|
49
|
Devine MJ, Szulc BR, Howden JH, López-Doménech G, Ruiz A, Kittler JT. Mitochondrial Ca2+ uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses. J Cell Sci 2022; 135:jcs259823. [PMID: 36274588 PMCID: PMC10563808 DOI: 10.1242/jcs.259823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
Long-term changes in synaptic strength form the basis of learning and memory. These changes rely upon energy-demanding mechanisms, which are regulated by local Ca2+ signalling. Mitochondria are optimised for providing energy and buffering Ca2+. However, our understanding of the role of mitochondria in regulating synaptic plasticity is incomplete. Here, we have used optical and electrophysiological techniques in cultured hippocampal neurons and ex vivo hippocampal slices from mice with haploinsufficiency of the mitochondrial Ca2+ uniporter (MCU+/-) to address whether reducing mitochondrial Ca2+ uptake alters synaptic transmission and plasticity. We found that cultured MCU+/- hippocampal neurons have impaired Ca2+ clearance, and consequently enhanced synaptic vesicle fusion at presynapses occupied by mitochondria. Furthermore, long-term potentiation (LTP) at mossy fibre (MF) synapses, a process which is dependent on presynaptic Ca2+ accumulation, is enhanced in MCU+/- slices. Our results reveal a previously unrecognised role for mitochondria in regulating presynaptic plasticity of a major excitatory pathway involved in learning and memory.
Collapse
Affiliation(s)
- Michael J. Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Blanka R. Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jack H. Howden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Arnaud Ruiz
- Department of Pharmacology, School of Pharmacy, University College London, Brunswick Square, London WC1N 1AX, UK
| | - Josef T. Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
50
|
Kim SY, Strucinska K, Osei B, Han K, Kwon SK, Lewis TL. Neuronal mitochondrial morphology is significantly affected by both fixative and oxygen level during perfusion. Front Mol Neurosci 2022; 15:1042616. [PMID: 36407767 PMCID: PMC9667081 DOI: 10.3389/fnmol.2022.1042616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 03/31/2023] Open
Abstract
Neurons in the brain have a uniquely polarized structure consisting of multiple dendrites and a single axon generated from a cell body. Interestingly, intracellular mitochondria also show strikingly polarized morphologies along the dendrites and axons: in cortical pyramidal neurons (PNs), dendritic mitochondria have a long and tubular shape, while axonal mitochondria are small and circular. Mitochondria play important roles in each compartment of the neuron by generating adenosine triphosphate (ATP) and buffering calcium, thereby affecting synaptic transmission and neuronal development. In addition, mitochondrial shape, and thereby function, is dynamically altered by environmental stressors such as oxidative stress or in various neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Although the importance of altered mitochondrial shape has been claimed by multiple studies, methods for studying this stress-sensitive organelle have not been standardized. Here we address pertinent steps that influence mitochondrial morphology during experimental processes. We demonstrate that fixative solutions containing only paraformaldehyde (PFA), or that introduce hypoxic conditions during the procedure, induce dramatic fragmentation of mitochondria both in vitro and in vivo. This disruption was not observed following the use of glutaraldehyde (GA) addition or oxygen supplementation, respectively. Finally, using pre-formed fibril α-synuclein treated neurons, we show fixative choice can alter experimental outcomes. Specifically, α-synuclein-induced mitochondrial remodeling could not be observed with PFA only fixation as fixation itself caused mitochondrial fragmentation. Our study provides optimized methods for examining mitochondrial morphology in neurons and demonstrates that fixation conditions are critical when investigating the underlying cellular mechanisms involving mitochondria in physiological and neurodegenerative disease models.
Collapse
Affiliation(s)
- Su Yeon Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Klaudia Strucinska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Bertha Osei
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Tommy L. Lewis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Biochemistry & Molecular Biology, Neuroscience and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|