1
|
Barrozo RB, Bochicchio PA, Ortega-Insaurralde I. Taste adaptations in blood-feeding arthropods: mechanisms and ecological implications. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101342. [PMID: 39909098 DOI: 10.1016/j.cois.2025.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Hematophagous arthropods rely on taste mechanisms to navigate host selection, feeding, mating, and oviposition. These behaviors are driven by environmental taste cues, which shape acceptance or aversion depending on their valence. Positive stimuli, like low concentrations of salts, sugars, amino acids, and nucleotides, promote feeding and oviposition, while negative stimuli, including high salt, bitter compounds, and nociceptive chemicals, trigger avoidance to prevent hazards. Species-specific adaptations enable blood feeders to overcome ecological challenges. Understanding their behavioral, neuronal, and molecular taste mechanisms aids in developing targeted vector control strategies, such as repellents, toxic baits, and oviposition deterrents, to disrupt disease transmission.
Collapse
Affiliation(s)
- Romina B Barrozo
- Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento Biodiversidad y Biología Experimental, Laboratorio de Neuroetología de Insectos, ETI2, Instituto Biodiversidad y Biología Experimental y Aplicada, IBBEA, CONICET, UBA, Buenos Aires, Argentina.
| | - Pablo A Bochicchio
- Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento Biodiversidad y Biología Experimental, Laboratorio de Neuroetología de Insectos, ETI2, Instituto Biodiversidad y Biología Experimental y Aplicada, IBBEA, CONICET, UBA, Buenos Aires, Argentina.
| | - Isabel Ortega-Insaurralde
- Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Departamento Biodiversidad y Biología Experimental, Laboratorio de Neuroetología de Insectos, ETI2, Instituto Biodiversidad y Biología Experimental y Aplicada, IBBEA, CONICET, UBA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Atif M, Lee Y. Taste detection of flonicamid in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104302. [PMID: 40112957 DOI: 10.1016/j.ibmb.2025.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Flonicamid, a widely used insecticide, presents an intriguing question: does it function as an antifeedant by directly activating bitter-sensing gustatory receptor neurons (GRNs) in Drosophila melanogaster. Here, we found that electrophysiological recordings revealed that S-type labellar sensilla exhibited strong neuronal responses to flonicamid, while inhibition of bitter-sensing GRNs nullified this response. Genetic screening identified Gr28b, Gr93a, and Gr98b as essential gustatory receptors for flonicamid detection. Isoform-specific rescue experiments confirmed that Gr28b.a is responsible for restoring sensory responses in Gr28b mutants. Proboscis extension response assays demonstrated that wild-type flies avoided flonicamid, whereas Gr28b, Gr93a, and Gr98b mutants failed to. Functional rescue of these mutants restored the behavioral response, confirming the involvement of these receptors in mediating gustatory aversion. Our findings uncover a novel sensory mechanism for detecting flonicamid through specific gustatory receptors and highlight their potential as molecular targets for insect control strategies.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
3
|
Anbalagan S. Sugar-sensing swodkoreceptors and swodkocrine signaling. Animal Model Exp Med 2025. [PMID: 40110750 DOI: 10.1002/ame2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Sugars are one of the major metabolites and are essential for nucleic acid synthesis and energy production. In addition, sugars can act as signaling molecules. To study sugar signaling at the systemic level, there is an urgent need to systematically identify sugar-sensing proteins and nucleic acids. I propose the terms "swodkoreceptor" and "swodkocrine signaling," derived from the Polish word "słodki" meaning "sweet," to comprise all sugar-sensing proteins and signaling events, respectively, regardless of their cellular location and signaling domains. This proposal is intended to facilitate the inclusion of proteins such as the Escherichia coli LacI repressor as an allolactose receptor, human glucokinase regulatory protein (GCKR) as a fructose receptor, and other sugar-binding based allosterically regulated enzymes and transcription factors as sugar-sensing receptors. In addition, enzyme-interacting proteins whose interaction state is regulated by sugar binding have also been proposed as sugar receptors. The systemic study of protein- and nucleic-acid-based swodkoreceptors may help to identify organelle-specific swodkoreceptors and to also address receptor duality. The study of intra- and inter-organism swodkocrine signaling and its crosstalk with gasocrine signaling may help to understand the etiology of diseases due to dysregulation in sugar homeostasis and signaling.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Sang J, Lee Y. Age-dependent switched taste behavior to ribose. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104194. [PMID: 39406300 DOI: 10.1016/j.ibmb.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Chemical detection is vital for animal survival, aiding in avoiding toxins and selecting nutritious foods. While Drosophila larvae exhibit appetitive feeding behavior toward ribose, an important sugar for RNA, nucleotide, and nucleoside synthesis, how adult Drosophila perceives ribose remains unclear. Through behavioral and electrophysiological investigations, we unexpectedly discovered that adult flies actively avoid ribose. Our external electrophysiological analysis revealed that ribose is detected through bitter-sensing gustatory receptor neurons in S-type sensilla, suggesting its perception as a bitter compound. Additionally, we identify painless as crucial for both ribose aversion and the neuronal response to ribose.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
5
|
Zhang G, Cao S, Wang H, Cao Z, Wei B, Niu C. Identification of a new gustatory receptor BminGR59b tuned to host wax in a specialist, Bactrocera minax (Diptera: Tephritidae). Int J Biol Macromol 2023; 253:127180. [PMID: 37838119 DOI: 10.1016/j.ijbiomac.2023.127180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Host location plays a pivotal role in the coevolution between insects and plants, particularly for specialist insect herbivores with a limited host range. However, how specialists precisely select the appropriate site for oviposition through gustatory system remains elusive. In this study, we investigated the effects of the gustatory system on the host plant selection of a devastating pest in Citrus spp., Bactrocera minax, by conducting behavioral assays. Through genomic and transcriptomic data analysis as well as RNAi technology, we identified a novel gustatory receptor, BminGR59b, highly expressed in the forelegs of female B. minax, which played a critical role in host plant selection before oviposition decision. Additionally, our results encompassing heterologous expression in Sf9 cells and oviposition behavior assay revealed that n-eicosane is the ligand for BminGR59b. Finally, employing the dual luciferase reporter system alongside yeast one-hybrid techniques and RNAi, we verified that the transcription factor BminCEBP regulated the up-regulation of BminGR59b in sexually matured adults. These findings offer new insights into the close-range host fruit recognition and selection for oviposition in a specialist tephritid fruit fly B. minax, which also sheds light on the transcriptional regulation mechanisms underlying the gustatory-mediated oviposition in specialist herbivores for the first time.
Collapse
Affiliation(s)
- Guijian Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuai Cao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haoran Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Cao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bingbing Wei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changying Niu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. eLife 2023; 12:RP89795. [PMID: 38060294 PMCID: PMC10703443 DOI: 10.7554/elife.89795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, gustatory sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand -gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence, and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor 1 (VR1), which is activated by capsaicin, a chemical to which wild-type Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| |
Collapse
|
7
|
Li H, Hong X, Zeng F, Bai C. Identification and expression profiles of olfactory-related genes based on transcriptome analysis in Plodia interpunctella (Lepidoptera: Pyralidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22061. [PMID: 37905450 DOI: 10.1002/arch.22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
The sophisticated olfactory system of insects is plays a critical role in detecting chemical signals and guiding insect behaviors, such as selecting mates, finding hosts, evading predators, and discovering oviposition sites. Therefore, exploring and clarifying the molecular processes of this system is crucial for developing new insecticides or efficient pest control methods. Plodia interpunctella (Hübner) is a disruptive insect pest damaging the stored grains over the world. However, the olfactory processes of P. interpunctella remain unclear. Herein, we employed a transcriptome analysis to identify olfactory and differentially expressed genes to characterize their expression patterns in different developmental stages and antennal tissue. Subsequently, a total of 172 potential olfactory-related genes included 42 odorant-binding proteins, 12 chemosensory proteins, 51 odorant receptors, 13 gustatory receptors, three sensory neuron membrane proteins, and 51 ionotropic receptors. Furthermore, phylogenetic analysis and BLASTx best-hit analyses showed that these olfactory genes were closely linked with those identified in other lepidopterans. Transcriptome analysis revealed 49 differentially expressed olfactory-related genes, and a semiquantitative reverse transcription polymerase chain reaction showed that 11 olfactory genes were particularly expressed in the legs and wings of female P. interpunctella. Meanwhile, PintOBP29 was notably expressed in female antennae and legs. Genes with high expression levels in the abdomen showed high expression in the legs, but low expression in the antennae. Our findings provide the candidate genetic factors for analysis of the olfactory processes in P. interpunctella.
Collapse
Affiliation(s)
- Hui Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Grain Crops, Henan University of Technology, Zhengzhou, Henan, China
| | - Xiwen Hong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
| | - Fangfang Zeng
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
| | - Chunqi Bai
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Grain Crops, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545761. [PMID: 37905057 PMCID: PMC10614748 DOI: 10.1101/2023.06.20.545761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Most animals have functionally distinct populations of taste cells, expressing receptors that are tuned to compounds of different valence. This organizational feature allows for discrimination between chemicals associated with specific taste modalities and facilitates differentiating between unadulterated foods and foods contaminated with toxic substances. In the fruit fly D. melanogaster , primary sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor (VR1), which is activated by capsaicin, a chemical to which wildtype Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca 2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
|
9
|
Fujii S, Ahn JE, Jagge C, Shetty V, Janes C, Mohanty A, Slotman M, Adelman ZN, Amrein H. RNA Taste Is Conserved in Dipteran Insects. J Nutr 2023; 153:1636-1645. [PMID: 36907444 DOI: 10.1016/j.tjnut.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Ribonucleosides and RNA are an underappreciated nutrient group essential during Drosophila larval development and growth. Detection of these nutrients requires at least one of the 6 closely related taste receptors encoded by the Gr28 genes, one of the most conserved insect taste receptor subfamilies. OBJECTIVES We investigated whether blow fly larvae and mosquito larvae, which shared the last ancestor with Drosophila about 65-260 million years ago, respectively, can taste RNA and ribose. We also tested whether the Gr28 homologous genes of the mosquitoes Aedes aegypti and Anopheles gambiae can sense these nutrients when expressed in transgenic Drosophila larvae. METHODS Taste preference in blow flies was examined by adapting a 2-choice preference assay that has been well-established for Drosophila larvae. For the mosquito Aedes aegypti larvae, we developed a new 2-choice preference assay that accommodates the aquatic environment of these insects. Finally, we identified Gr28 homologs in these species and expressed them in Drosophila melanogaster to determine their potential function as RNA receptors. RESULTS Larvae of the blow fly Cochliomyia macellaria and Lucilia cuprina are strongly attracted to RNA (0.5 mg/mL) in the 2-choice feeding assays (P < 0.05). Similarly, the mosquito Aedes aegypti larvae showed a strong preference for RNA (2.5 mg/mL) in an aquatic 2-choice feeding assay. Moreover, when Gr28 homologs of Aedes or Anopheles mosquitoes are expressed in appetitive taste neurons of Drosophila melanogaster larvae lacking their Gr28 genes, preference for RNA (0.5 mg/mL) and ribose (0.1 M) is rescued (P < 0.05). CONCLUSIONS The appetitive taste for RNA and ribonucleosides in insects emerged about 260 million years ago, the time mosquitoes and fruit flies diverged from their last common ancestor. Like sugar receptors, receptors for RNA have been highly conserved during insect evolution, suggesting that RNA is a critical nutrient for fast-growing insect larvae. J NUTR 2023;xx:xx-xx.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Ji-Eun Ahn
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Christopher Jagge
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Vinaya Shetty
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Christopher Janes
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Avha Mohanty
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Michel Slotman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zach N Adelman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
10
|
King BH, Gunathunga PB. Gustation in insects: taste qualities and types of evidence used to show taste function of specific body parts. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 37014302 PMCID: PMC10072106 DOI: 10.1093/jisesa/iead018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.
Collapse
Affiliation(s)
- B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
11
|
Ohhara Y, Yamanaka N. Internal sensory neurons regulate stage-specific growth in Drosophila. Development 2022; 149:dev200440. [PMID: 36227580 PMCID: PMC10496149 DOI: 10.1242/dev.200440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 09/15/2023]
Abstract
Animals control their developmental schedule in accordance with internal states and external environments. In Drosophila larvae, it is well established that nutrient status is sensed by different internal organs, which in turn regulate production of insulin-like peptides and thereby control growth. In contrast, the impact of the chemosensory system on larval development remains largely unclear. Here, we performed a genetic screen to identify gustatory receptor (Gr) neurons regulating growth and development, and found that Gr28a-expressing neurons are required for proper progression of larval growth. Gr28a is expressed in a subset of peripheral internal sensory neurons, which directly extend their axons to insulin-producing cells (IPCs) in the central nervous system. Silencing of Gr28a-expressing neurons blocked insulin-like peptide release from IPCs and suppressed larval growth during the mid-larval period. These results indicate that Gr28a-expressing neurons promote larval development by directly regulating growth-promoting endocrine signaling in a stage-specific manner.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Zhang G, Cao S, Guo T, Wang H, Qi X, Ren X, Niu C. Identification and expression profiles of gustatory receptor genes in Bactrocera minax larvae (Diptera: Tephritidae): Role of BminGR59f in larval growth. INSECT SCIENCE 2022; 29:1240-1250. [PMID: 35146929 DOI: 10.1111/1744-7917.13014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Insects employ various types of gustatory receptors (GRs) to identify nutrient-rich food and avoid toxic substances. The larval gustatory system is the critical checkpoint for food acceptance or rejection. As a specialist herbivore, the larvae of Bactrocera minax feed only on unripe citrus fruits. However, how larvae use GRs to check and adapt to the secondary metabolites in unripe citrus fruits remains unknown. In this study, we first performed developmental expression profiles showing that most BminGRs genes were highly expressed in 1st and 2nd instar larvae and that tissue-specific expression indicated high expression of most BminGRs genes in the mouthparts of 2nd instar larvae. Furthermore, we found that silencing BminGR59f by RNA interference (RNAi) affected the growth of 2nd instar B. minax larvae. Hesperidin and naringin were screened as ligands of BminGR59f via RNAi and cell calcium imaging, and the combination of these two flavones increased the body weight of larvae. In summary, we identified a novel gustatory perception pattern in B. minax for detecting hesperidin and naringin, which boosted the growth of B. minax larvae. These results shed light on how specialist herbivores detect and adapt to host metabolites in adverse environments depending on larval GRs.
Collapse
Affiliation(s)
- Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Guo
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewei Qi
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Ren X, Cao S, Akami M, Mansour A, Yang Y, Jiang N, Wang H, Zhang G, Qi X, Xu P, Guo T, Niu C. Gut symbiotic bacteria are involved in nitrogen recycling in the tephritid fruit fly Bactrocera dorsalis. BMC Biol 2022; 20:201. [PMID: 36104720 PMCID: PMC9476588 DOI: 10.1186/s12915-022-01399-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Nitrogen is considered the most limiting nutrient element for herbivorous insects. To alleviate nitrogen limitation, insects have evolved various symbiotically mediated strategies that enable them to colonize nitrogen-poor habitats or exploit nitrogen-poor diets. In frugivorous tephritid larvae developing in fruit pulp under nitrogen stress, it remains largely unknown how nitrogen is obtained and larval development is completed. Results In this study, we used metagenomics and metatranscriptomics sequencing technologies as well as in vitro verification tests to uncover the mechanism underlying the nitrogen exploitation in the larvae of Bactrocera dorsalis. Our results showed that nitrogenous waste recycling (NWR) could be successfully driven by symbiotic bacteria, including Enterobacterales, Lactobacillales, Orbales, Pseudomonadales, Flavobacteriales, and Bacteroidales. In this process, urea hydrolysis in the larval gut was mainly mediated by Morganella morganii and Klebsiella oxytoca. In addition, core bacteria mediated essential amino acid (arginine excluded) biosynthesis by ammonium assimilation and transamination. Conclusions Symbiotic bacteria contribute to nitrogen transformation in the larvae of B. dorsalis in fruit pulp. Our findings suggest that the pattern of NWR is more likely to be applied by B. dorsalis, and M. morganii, K. oxytoca, and other urease-positive strains play vital roles in hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01399-9.
Collapse
|
14
|
Maier GL, Komarov N, Meyenhofer F, Kwon JY, Sprecher SG. Taste sensing and sugar detection mechanisms in Drosophila larval primary taste center. eLife 2021; 10:67844. [PMID: 34859782 PMCID: PMC8709573 DOI: 10.7554/elife.67844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
Despite the small number of gustatory sense neurons, Drosophila larvae are able to sense a wide range of chemicals. Although evidence for taste multimodality has been provided in single neurons, an overview of gustatory responses at the periphery is missing and hereby we explore whole-organ calcium imaging of the external taste center. We find that neurons can be activated by different combinations of taste modalities, including opposite hedonic valence and identify distinct temporal dynamics of response. Although sweet sensing has not been fully characterized so far in the external larval gustatory organ, we recorded responses elicited by sugar. Previous findings established that larval sugar sensing relies on the Gr43a pharyngeal receptor, but the question remains if external neurons contribute to this taste. Here, we postulate that external and internal gustation use distinct and complementary mechanisms in sugar sensing and we identify external sucrose sensing neurons.
Collapse
Affiliation(s)
- G Larisa Maier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Nikita Komarov
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Felix Meyenhofer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Chabert É. [Interaction between intestinal bacteria compensates the deleterious effects of undernutrition in Drosophila]. Med Sci (Paris) 2021; 37:942-944. [PMID: 34647885 DOI: 10.1051/medsci/2021158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Émilie Chabert
- École normale supérieure de Lyon, Département de biologie, Master Biosciences, Lyon, France
| |
Collapse
|
16
|
Schumann I, Berger M, Nowag N, Schäfer Y, Saumweber J, Scholz H, Thum AS. Ethanol-guided behavior in Drosophila larvae. Sci Rep 2021; 11:12307. [PMID: 34112872 PMCID: PMC8192949 DOI: 10.1038/s41598-021-91677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Chemosensory signals allow vertebrates and invertebrates not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. Ethanol is a substance found in the natural environment of Drosophila melanogaster. Accordingly, D. melanogaster has evolved specific sensory systems, physiological adaptations, and associated behaviors at its larval and adult stage to perceive and process ethanol. To systematically analyze how D. melanogaster larvae respond to naturally occurring ethanol, we examined ethanol-induced behavior in great detail by reevaluating existing approaches and comparing them with new experiments. Using behavioral assays, we confirm that larvae are attracted to different concentrations of ethanol in their environment. This behavior is controlled by olfactory and other environmental cues. It is independent of previous exposure to ethanol in their food. Moreover, moderate, naturally occurring ethanol concentration of 4% results in increased larval fitness. On the contrary, higher concentrations of 10% and 20% ethanol, which rarely or never appear in nature, increase larval mortality. Finally, ethanol also serves as a positive teaching signal in learning and memory and updates valence associated with simultaneously processed odor information. Since information on how larvae perceive and process ethanol at the genetic and neuronal level is limited, the establishment of standardized assays described here is an important step towards their discovery.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Michael Berger
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Nadine Nowag
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Yannick Schäfer
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | | | - Henrike Scholz
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Andreas S Thum
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany. .,Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.
| |
Collapse
|
17
|
Brown EB, Shah KD, Palermo J, Dey M, Dahanukar A, Keene AC. Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. eLife 2021; 10:67878. [PMID: 33949306 PMCID: PMC8169106 DOI: 10.7554/elife.67878] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Chemosensory systems are critical for evaluating the caloric value and potential toxicity of food. While animals can discriminate between thousands of odors, much less is known about the discriminative capabilities of taste systems. Fats and sugars represent calorically potent and attractive food sources that contribute to hedonic feeding. Despite the differences in nutritional value between fats and sugars, the ability of the taste system to discriminate between different rewarding tastants is thought to be limited. In Drosophila, taste neurons expressing the ionotropic receptor 56d (IR56d) are required for reflexive behavioral responses to the medium-chain fatty acid, hexanoic acid. Here, we tested whether flies can discriminate between different classes of fatty acids using an aversive memory assay. Our results indicate that flies are able to discriminate medium-chain fatty acids from both short- and long-chain fatty acids, but not from other medium-chain fatty acids. While IR56d neurons are broadly responsive to short-, medium-, and long-chain fatty acids, genetic deletion of IR56d selectively disrupts response to medium-chain fatty acids. Further, IR56d+ GR64f+ neurons are necessary for proboscis extension response (PER) to medium-chain fatty acids, but both IR56d and GR64f neurons are dispensable for PER to short- and long-chain fatty acids, indicating the involvement of one or more other classes of neurons. Together, these findings reveal that IR56d is selectively required for medium-chain fatty acid taste, and discrimination of fatty acids occurs through differential receptor activation in shared populations of neurons. Our study uncovers a capacity for the taste system to encode tastant identity within a taste category.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Kreesha D Shah
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States.,Wilkes Honors College, Florida Atlantic University, Jupiter, United States
| | - Justin Palermo
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Manali Dey
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, United States
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, United States.,Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, United States
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| |
Collapse
|
18
|
Olafson PU, Saski CA. Chemosensory-Related Gene Family Members of the Horn Fly, Haematobia irritans irritans (Diptera: Muscidae), Identified by Transcriptome Analysis. INSECTS 2020; 11:E816. [PMID: 33228086 PMCID: PMC7699325 DOI: 10.3390/insects11110816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Horn flies are one of the most significant economic pests of cattle in the United States and worldwide. Chemical control methods have been routinely utilized to reduce populations of this pest, but the steady development of insecticide resistance has prompted evaluation of alternative control strategies. Behavior modifying compounds from natural products have shown some success in impacting horn fly populations, and a more thorough understanding of the horn fly chemosensory system would enable improvements in the development of species-specific compounds. Using an RNA-seq approach, we assembled a transcriptome representing genes expressed in adult female and male horn fly head appendages (antennae, maxillary palps, and proboscides) and adult fly bodies from which heads were removed. Differential gene expression analysis identified chemosensory gene family members that were enriched in head appendage tissues compared with headless bodies. Candidate members included 43 odorant binding proteins (OBP) and 5 chemosensory binding proteins (CSP), as well as 44 odorant receptors (OR), 27 gustatory receptors (GR), and 34 ionotropic receptors (IR). Sex-biased expression of these genes was not observed. These findings provide a resource to enable future studies targeting horn fly chemosensation as part of an integrated strategy to control this blood-feeding pest.
Collapse
Affiliation(s)
- Pia Untalan Olafson
- Knipling-Bushland US Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX 78028, USA
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
19
|
Consuegra J, Grenier T, Akherraz H, Rahioui I, Gervais H, da Silva P, Leulier F. Metabolic Cooperation among Commensal Bacteria Supports Drosophila Juvenile Growth under Nutritional Stress. iScience 2020; 23:101232. [PMID: 32563155 PMCID: PMC7305377 DOI: 10.1016/j.isci.2020.101232] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota shapes animal growth trajectory in stressful nutritional environments, but the molecular mechanisms behind such physiological benefits remain poorly understood. The gut microbiota is mostly composed of bacteria, which construct metabolic networks among themselves and with the host. Until now, how the metabolic activities of the microbiota contribute to host juvenile growth remains unknown. Here, using Drosophila as a host model, we report that two of its major bacterial partners, Lactobacillus plantarum and Acetobacter pomorum, engage in a beneficial metabolic dialogue that boosts host juvenile growth despite nutritional stress. We pinpoint that lactate, produced by L. plantarum, is utilized by A. pomorum as an additional carbon source, and A. pomorum provides essential amino acids and vitamins to L. plantarum. Such bacterial cross-feeding provisions a set of anabolic metabolites to the host, which may foster host systemic growth despite poor nutrition. L. plantarum feeds lactate to A. pomorum A. pomorum supplies essential amino acids and vitamins to L. plantarum Microbiota metabolic dialogue boosts Drosophila's larval growth Lactate utilization by Acetobacter releases anabolic metabolites to larvae
Collapse
Affiliation(s)
- Jessika Consuegra
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France.
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France
| | - Isabelle Rahioui
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, UMR0203, 69621 Villeurbanne, France
| | - Hugo Gervais
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France
| | - Pedro da Silva
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, UMR0203, 69621 Villeurbanne, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France.
| |
Collapse
|
20
|
Athrey G, Popkin-Hall Z, Cosme LV, Takken W, Slotman MA. Species and sex-specific chemosensory gene expression in Anopheles coluzzii and An. quadriannulatus antennae. Parasit Vectors 2020; 13:212. [PMID: 32321556 PMCID: PMC7178735 DOI: 10.1186/s13071-020-04085-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/15/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Olfactory cues drive mosquito behaviors such as host-seeking, locating sugar sources and oviposition. These behaviors can vary between sexes and closely related species. For example, the malaria vector Anopheles coluzzii is highly anthropophilic, whereas An. quadriannulatus is not. These behavioral differences may be reflected in chemosensory gene expression. METHODS The expression of chemosensory genes in the antennae of both sexes of An. coluzzii and An. quadriannulatus was compared using RNA-seq. The sex-biased expression of several genes in An. coluzzii was also compared using qPCR. RESULTS The chemosensory expression is mostly similar in the male antennae of An. coluzzii and An. quadriannulatus, with only a few modest differences in expression. A handful of chemosensory genes are male-biased in both species; the highly expressed gustatory receptor AgGr33, odorant binding proteins AgObp25, AgObp26 and possibly AgObp10. Although the chemosensory gene repertoire is mostly shared between the sexes, several highly female-biased AgOrs, AgIrs, and one AgObp were identified, including several whose expression is biased towards the anthropophilic An. coluzzii. Additionally, the expression of several chemosensory genes is biased towards An. coluzzii in both sexes. CONCLUSIONS Chemosensory gene expression is broadly similar between species and sexes, but several sex- biased/specific genes were identified. These may modulate sex- and species-specific behaviors. Although the male behavior of these species remains poorly studied, the identification of sex- and species-specific chemosensory genes may provide fertile ground for future work.
Collapse
Affiliation(s)
- Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX USA
| | | | - Luciano Veiga Cosme
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
21
|
Consuegra J, Grenier T, Baa-Puyoulet P, Rahioui I, Akherraz H, Gervais H, Parisot N, da Silva P, Charles H, Calevro F, Leulier F. Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth. PLoS Biol 2020; 18:e3000681. [PMID: 32196485 PMCID: PMC7112240 DOI: 10.1371/journal.pbio.3000681] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/01/2020] [Accepted: 03/04/2020] [Indexed: 01/14/2023] Open
Abstract
The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host’s diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization. A study of gnotobiotic fruit flies shows that the animal is involved in an integrated nutritional network with its facultative commensal bacteria, centered around the utilization and sharing of nutrients.
Collapse
Affiliation(s)
- Jessika Consuegra
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Patrice Baa-Puyoulet
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Isabelle Rahioui
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Hugo Gervais
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Nicolas Parisot
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Pedro da Silva
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Hubert Charles
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Federica Calevro
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
- * E-mail:
| |
Collapse
|