1
|
Cai S, Deng Y, Zou Z, Tian W, Tang Z, Li J, Tan Z, Wu Z, Han Z, Wen B, Feng Y, Liu R, Zhu X, Wu Y, Xiao H, He H, Ye J, Zhong W. Metformin inhibits the progression of castration-resistant prostate cancer by regulating PDE6D induced purine metabolic alternation and cGMP / PKG pathway activation. Cancer Lett 2025; 622:217694. [PMID: 40216151 DOI: 10.1016/j.canlet.2025.217694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
The castration-resistant prostate cancer (CRPC) remains an incurable disease. Metformin has demonstrated a potential therapeutic effect on CRPC. However, the poor clinical performance of metformin against cancer may be due to its clinical dose being much lower than the anticancer concentration used in pre-clinical experiments. The challenge is to determine a way to enhance sensitivity to metformin at an appropriate concentration on CRPC. In this study, a mouse model of low-dose metformin treatment for CRPC cells were established. Metabolomic-seq and transcriptomic-seq was used to investigate changes in CRPC xenografts. We discovered that low-dose metformin inhibits the progression of CRPC by regulating PDE6D, which induces alterations in purine metabolism and activates the cGMP/PKG pathway. Furthermore, we found that cells with high expression of PDE6D were more resistant to metformin. When combined with the PDE6D inhibitor TMX-4100, the inhibitory effect on tumors was enhanced, and TMX-4100 demonstrated favorable biosafety in animal models. In conclusion, we found that low-dose metformin inhibits the progression of CRPC by regulating PDE6D-induced alterations in purine metabolism and activating the cGMP/PKG pathway. Moreover, patients with high PDE6D expression may exhibit greater resistance to metformin. Combining metformin with TMX-4100 could further improve the inhibitory effects on tumors.
Collapse
Affiliation(s)
- Shanghua Cai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yulin Deng
- Department of Urology, The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710, Dongguan, Guangdong, China
| | - Zhihao Zou
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Weicheng Tian
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhenfeng Tang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Jinchuang Li
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zeheng Tan
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zhenjie Wu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Zhaodong Han
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Biyan Wen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yuanfa Feng
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Ren Liu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Xuejin Zhu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Yongding Wu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Haiyin Xiao
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China
| | - Huichan He
- Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China.
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macao Special Administrative Region of China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China.
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macao Special Administrative Region of China; Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Gong Y, Wang S, Fang Z, Hu X, Li Y, Che Y, Tan Z, Su B, Ge M, Pan Z. POLR1F promotes proliferation and stemness of anaplastic thyroid cancer by activating F2R/p38 MAPK signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119963. [PMID: 40250711 DOI: 10.1016/j.bbamcr.2025.119963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive cancers characterized by a rapid growth rate. Dysregulation of RNA polymerase (Pol) is critical for cancer development. However, little is known about its role and mechanism in ATC. In the present study, the expression of Pol family members is screened in a large-cohort proteome containing 113 ATCs and 20 normal thyroid samples. Combined with the mRNA levels and gene dependency scores, we find that RNA Polymerase I Subunit F (POLR1F) is significantly upregulated in ATC tissues with the strongest gene effect among the Pol family members. The results are confirmed in ATC tissues and cell lines, revealing that POLR1F mainly locates in the nucleus and expresses stronger than that in normal thyrocytes. Silencing POLR1F in ATC cell lines significantly inhibit cell proliferation, colony formation, and sphere sizes. POLR1F knockdown dramatically reduces ATC tumor growth in both zebrafish and nude mouse xenograft models. RNA sequencing reveals that the coagulation factor thrombin receptor (F2R) is a downstream target of POLR1F, which participates in the p38 MAPK pathway. POLR1F promotes the H3K4 methylation at the F2R promoter by reducing the binding of demethylase KDM5C to H3K4me3, thereby enhancing F2R transcription. These results demonstrate that POLR1F maintains ATC stemness and growth by activating F2R/p38 MAPK signaling, shedding light on the essential role of POLR1F in ATC progression.
Collapse
Affiliation(s)
- Yingying Gong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ziwen Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ying Li
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
| | - Baochun Su
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
| |
Collapse
|
3
|
Milella M, Rutigliano M, Pandolfo SD, Aveta A, Crocetto F, Ferro M, d'Amati A, Ditonno P, Lucarelli G, Lasorsa F. The Metabolic Landscape of Cancer Stem Cells: Insights and Implications for Therapy. Cells 2025; 14:717. [PMID: 40422220 DOI: 10.3390/cells14100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation with self-renewal and differentiation capacities believed to be responsible for tumor initiation, progression, and recurrence. These cells exhibit unique metabolic features that contribute to their stemness and survival in hostile tumor microenvironments. Like non-stem cancer cells, CSCs primarily rely on glycolysis for ATP production, akin to the Warburg effect. However, CSCs also show increased dependence on alternative metabolic pathways, such as oxidative phosphorylation (OXPHOS) and fatty acid metabolism, which provide necessary energy and building blocks for self-renewal and therapy resistance. The metabolic plasticity of CSCs enables them to adapt to fluctuating nutrient availability and hypoxic conditions within the tumor. Recent studies highlight the importance of these metabolic shifts in maintaining the CSC phenotype and promoting cancer progression. The CSC model suggests that a small, metabolically adaptable subpopulation drives tumor growth and therapy resistance. CSCs can switch between glycolysis and mitochondrial metabolism, enhancing their survival under stress and dormant states. Targeting CSC metabolism offers a promising therapeutic strategy; however, their adaptability complicates eradication. A multi-targeted approach addressing various metabolic pathways is essential for effective CSC elimination, underscoring the need for further research into specific CSC markers and mechanisms that distinguish their metabolism from normal stem cells for successful therapeutic intervention.
Collapse
Affiliation(s)
- Martina Milella
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Monica Rutigliano
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Savio Domenico Pandolfo
- Department of Urology, University of L'Aquila, 67100 L'Aquila, Italy
- Department of Neurosciences, Science of Reproduction and Odontostomatology, Federico II University, 80138 Naples, Italy
| | - Achille Aveta
- Department of Urology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Crocetto
- Department of Urology, University of L'Aquila, 67100 L'Aquila, Italy
| | - Matteo Ferro
- Urology Unit, Department of Health Science, University of Milan, 20122 Milan, Italy
| | - Antonio d'Amati
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
- SSD Urologia Clinicizzata, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Francesco Lasorsa
- Urology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area-Urology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
4
|
Tian L, Liu L, Wang C, Kong Y, Miao Z, Yao Q, Zhang H, Li Y. PTTG1 promotes M2 macrophage polarization via the cGMP-PKG signaling pathway and facilitates EMT progression in human epithelial ovarian cancer cells. Discov Oncol 2025; 16:730. [PMID: 40353994 PMCID: PMC12069767 DOI: 10.1007/s12672-025-02512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025] Open
Abstract
Epithelial Ovarian Cancer (EOC) is complex and heterogeneous, making accurate prognosis and treatment prediction difficult. New therapeutic targets and their mechanisms are urgently needed. This study explored the role of PTTG1 in ovarian cancer via the cGMP-PKG signaling pathway, focusing on its effects on M2 macrophage polarization and EMT progression in EOC cells. Using the GSE135886 database, we performed differential gene expression, pathway enrichment, and immune infiltration analyses to identify key targets influencing EMT and macrophage polarization. We then constructed PTTG1 knockdown and overexpression cell lines to assess the impact of PTTG1 on cell proliferation, migration, invasion, EMT, and macrophage polarization in vitro. Analysis revealed that differentially expressed genes were enriched in the cGMP-PKG pathway and correlated with M2 macrophages. PTTG1 overexpression in A2780 and SK-OV-3 ovarian cancer cells promoted proliferation, invasion, and migration, while enhancing sGC, PKG1, and PKG2 expression to activate the cGMP-PKG pathway and induce M2 macrophage polarization. PTTG1 knockdown produced opposite results, reinforcing our conclusions. This study uncovers a novel mechanism of PTTG1 in ovarian cancer development and suggests it as a potential therapeutic target.
Collapse
Affiliation(s)
- Liang Tian
- Department of Pathology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, China
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Liyun Liu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, 063000, China
| | - Chunlou Wang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yan Kong
- Department of Clinical Lab, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Zhigang Miao
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Qing Yao
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - He Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, China.
| |
Collapse
|
5
|
Sun R, Xing L, Wang W, Cui X, Guo Y, Gao F, Geng B, Cheng H, Liang H. A study on the microbiome within oropharyngeal cancer tissues. Discov Oncol 2025; 16:701. [PMID: 40342038 PMCID: PMC12061805 DOI: 10.1007/s12672-025-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
Oropharyngeal cancer (OPC), a prevalent head and neck malignancy, is witnessing a rise in incidence and mortality rates annually. Our study aimed to understand the microbial composition within OPC tissue, utilizing the 2bRAD-M technique to analyze microbiome characteristics of tissue samples from 46 OPC patients and 31 with tonsillitis, followed by bioinformatics analysis. We identified higher relative abundances of Selenomonas sputigena, Nocardia farcinica, and other species in the OPC group compared to the tonsillitis group. KEGG functional prediction revealed enrichment in bile secretion, type II polyketide backbone biosynthesis, staurosporine biosynthesis, and cGMP-PKG signaling pathways. HPV-positive OPC patients showed greater abundances of Pseudomonas and other species, with differential gene enrichment in "ATP-binding cassette" and "ACSL" processes. These microbial disparities may offer potential biomarkers for OPC prediction and insight into its progression, informing treatment strategies for HPV-positive and HPV-negative patients.
Collapse
Affiliation(s)
- Ran Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China
- Department of Otorhinolaryngology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250000, Shandong, China
| | - Lu Xing
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China
- Department of Otorhinolaryngology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250000, Shandong, China
| | - Wenqing Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China
- Department of Otorhinolaryngology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250000, Shandong, China
| | - Xinhua Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China
| | - Ying Guo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China
| | - Fangfang Gao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China
| | - Bo Geng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China
| | - Hongxia Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Hui Liang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
6
|
Moustafa HAM, El-Dakroury WA, Ashraf A, Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Rizk NI, Mageed SSA, Zaki MB, Mansour RM, Mohammed OA, Abd-Elmawla MA, Abdel-Reheim MA, Doghish AS. SNP's use as a potential chemotoxicity stratification tool in breast cancer: from bench to clinic. Funct Integr Genomics 2025; 25:93. [PMID: 40261508 DOI: 10.1007/s10142-025-01602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/22/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Breast cancer (BC) remains one of the most prevalent malignancies affecting women worldwide, necessitating ongoing research to improve treatment outcomes and minimize adverse effects associated with chemotherapy. This article explores the role of genetic variations, particularly single nucleotide polymorphisms (SNPs), in influencing the efficacy and toxicity of chemotherapeutic agents used in BC treatment. It highlights the impact of polymorphisms in drug metabolism and transport genes, such as UDP-glucuronosyltransferase 1A1 (UGT1A1), carbonyl reductase 1 (CBR1), and ATP-binding cassette multidrug transporter (ABCB1) on the risk of adverse effects, including cardiotoxicity and hematological toxicities. By identifying specific SNPs associated with drug response and toxicity, this research underscores the potential for personalized medicine approaches to optimize treatment regimens, enhance therapeutic efficacy, and minimize side effects in BC patients. The findings advocate for the integration of genetic screening in clinical practice to improve patient outcomes and tailor chemotherapy based on individual genetic profiles.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, Sadat, City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo- Alexandria Agricultural Road, Menofia, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
7
|
Duan G, Qi M, Xun L, An Y, Zuo Z, Luo Y, Song Z. Metformin Enhances the Chemosensitivity of Gastric Cancer to Cisplatin by Downregulating Nrf2 Level. Anal Cell Pathol (Amst) 2025; 2025:5714423. [PMID: 40264514 PMCID: PMC12014253 DOI: 10.1155/ancp/5714423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 04/24/2025] Open
Abstract
Cisplatin-based chemotherapy resistance is a common issue for cancer clinical efficacy. Metformin is being studied for its possible anticancer effect. The present study aimed to investigate whether metformin affects the chemosensitivity of gastric cancer to cisplatin and reveal the molecular mechanism. In this study, the effects of combination therapy with metformin and cisplatin on cell viability, cell apoptosis, malondialdehyde, superoxide dismutase, reactive oxygen species level, glucose uptake, lactate production, protein level, and xenograft tumor formation were analyzed in gastric cancer cells. Immunohistochemical staining was performed to detect Ki67 expression in matched tumor samples. The results showed that NCI-N87 and SNU-16 cells were most resistant and sensitive to cisplatin, respectively. Metformin treatment increased the cisplatin sensitivity of gastric cancer by inhibiting cell viability and metabolic reprogramming and promoting cell apoptosis and oxidative stress. Furthermore, overexpression of nuclear factor erythroid 2-related factor 2 (Nrf2) reversed the effects of metformin in the cisplatin sensitivity of gastric cancer by inhibiting cell viability and metabolic reprogramming and promoting cell apoptosis and oxidative stress. Metformin activated p53 and AMPK pathways in cisplatin-induced NCI-N87 cells, which were reversed by upregulating Nrf2. BAY-3827 (AMPK inhibitor) or p-nitro-Pifithrin-α (p53 inhibitor) treatments also reversed the effects of metformin increased the cisplatin sensitivity of gastric cancer by inhibiting cell viability and metabolic reprogramming and promoting cell apoptosis and oxidative stress. These results suggest that metformin significantly increases chemosensitivity of gastric cancer to cisplatin by inhibiting Nrf2 expression and metabolic reprogramming and activating oxidative stress and the pathway of p53 and AMPK.
Collapse
Affiliation(s)
- Guihua Duan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Min Qi
- Department of Radiology, The Third People's Hospital of Kunming City, The Sixth Affiliated Hospital of Dali University, Kunming, Yunnan, China
| | - Linting Xun
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying An
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zan Zuo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yusi Luo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengji Song
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
8
|
Gerbec ZJ, Serapio-Palacios A, Metcalfe-Roach A, Krekhno Z, Bar-Yoseph H, Woodward SE, Pena-Díaz J, Nemirovsky O, Awrey S, Moreno SH, Beatty S, Kong E, Radisavljevic N, Cirstea M, Chafe S, McDonald PC, Aparicio S, Finlay BB, Dedhar S. Identification of intratumoral bacteria that enhance breast tumor metastasis. mBio 2025; 16:e0359524. [PMID: 39932300 PMCID: PMC11898647 DOI: 10.1128/mbio.03595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
The central, mortality-associated hallmark of cancer is the process of metastasis. It is increasingly recognized that bacteria influence multiple facets of cancer progression, but the extent to which tumor microenvironment-associated bacteria control metastasis in cancer is poorly understood. To identify tumor-associated bacteria and their role in metastasis, we utilized established murine models of non-metastatic and metastatic breast tumors to identify bacteria capable of driving metastatic disease. We found several species of the Bacillus genus that were unique to metastatic tumors, and found that breast tumor cells cultured with a Bacillus bacterium isolated from metastatic tumors, Bacillus thermoamylovorans, produced nearly 3× the metastatic burden as control cells or cells cultured with bacteria from non-metastatic breast tumors. We then performed targeted metabolomics on tumor cells cultured with different bacterial species and found that B. thermoamylovorans differentially regulated tumor cell metabolite profiles compared to bacteria isolated from non-metastatic tumors. Using these bacteria, we performed de novo sequencing and tested for the presence of genes that were unique to the bacterium isolated from metastatic tumors in a patient population to provide a proof-of-concept for identifying how specific bacterial functions are associated with the metastatic process in cancer independent of bacterial species. Together, our data directly demonstrate the ability of specific bacteria to promote metastasis through interaction with cancer cells. IMPORTANCE Metastasis is a major barrier to long-term survival for cancer patients, and therapeutic options for patients with aggressive, metastatic forms of breast cancer remain limited. It is therefore critical to understand the differences between non-metastatic and metastatic disease to identify potential methods for slowing or even stopping metastasis. In this work, we identify a bacterial species present with metastatic breast tumors capable of increasing the metastatic capabilities of tumor cells. We isolated and sequenced this bacteria, as well as a control species which failed to promote metastasis, and identified specific bacterial genes that were unique to the metastasis-promoting species. We tested for the presence of these bacterial genes in patient tumor samples and found they were more likely to be associated with mortality. We also identified enrichment of specific bacterial functions, providing insight into possible sources of bacteria-driven increases in the metastatic potential of multiple cancer types.
Collapse
Affiliation(s)
- Zachary J. Gerbec
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Avril Metcalfe-Roach
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haggai Bar-Yoseph
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah E. Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jorge Pena-Díaz
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Sebastian H. Moreno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean Beatty
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Michael Smith Genome Science Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Esther Kong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Michael Smith Genome Science Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Nina Radisavljevic
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shawn Chafe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Sam Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Michael Smith Genome Science Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Hussain MS, Ramalingam PS, Chellasamy G, Yun K, Bisht AS, Gupta G. Harnessing Artificial Intelligence for Precision Diagnosis and Treatment of Triple Negative Breast Cancer. Clin Breast Cancer 2025:S1526-8209(25)00052-7. [PMID: 40158912 DOI: 10.1016/j.clbc.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive subtype of breast cancer (BC) characterized by the absence of estrogen, progesterone, and HER2 receptors, resulting in limited therapeutic options. This article critically examines the role of Artificial Intelligence (AI) in enhancing the diagnosis and treatment of TNBC treatment. We begin by discussing the incidence of TNBC and the fundamentals of precision medicine, emphasizing the need for innovative diagnostic and therapeutic approaches. Current diagnostic methods, including conventional imaging techniques and histopathological assessments, exhibit limitations such as delayed diagnosis and interpretative discrepancies. This article highlights AI-driven advancements in image analysis, biomarker discovery, and the integration of multi-omics data, leading to enhanced precision and efficiency in diagnosis and treatment. In treatment, AI facilitates personalized therapeutic strategies, accelerates drug discovery, and enables real-time monitoring of patient responses. However, challenges persist, including issues related to data quality, model interpretability, and the societal impact of AI implementation. In the conclusion, we discuss the future prospects of integrating AI into clinical practice and emphasize the importance of multidisciplinary collaboration. This review aims to outline key trends and provide recommendations for utilizing AI to improve TNBC management outcomes, while highlighting the need for further research.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Prasanna Srinivasan Ramalingam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
10
|
Lu X, Lin W, Zheng J, Huang W, Yu S, Chen H, Wang H, Zhang Y. Sodium nitrite orchestrates macrophage mimicry of tongue squamous carcinoma cells to drive lymphatic metastasis. Br J Cancer 2025; 132:340-353. [PMID: 39799274 PMCID: PMC11833070 DOI: 10.1038/s41416-024-02923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is a malignant oral cancer with unclear pathogenesis that shows a tendency for early-stage lymphatic metastasis. This results in a poor prognosis, with a low 5-year survival rate. Dietary sodium nitrite (NaNO2) has proposed associations with disease, including cancer. However, a direct relationship between NaNO2 and TSCC has not been established. METHODS In vitro and in vivo assays were used to investigate the role of NaNO2 in TSCC. Protein expression in TSCC specimens was detected by immunohistochemistry and immunofluorescence. The molecular mechanism was determined using RT-qPCR, western blot, RNA-seq, luciferase reporter assays, migration assays, and FACS analysis. More detail of methods can be found in the Materials and methods section. RESULTS The data in this study showed that NaNO2 did not initiate carcinogenesis in the tongue but improved the lymphatic metastatic potential of TSCC cells in the specified experimental period. During metastasis to lymph nodes, monocyte-macrophage markers were upregulated in TSCC cells, whereas keratin markers were downregulated. Specifically, expression of the CD68 gene was high in TSCC cells following NaNO2-induced TSCC phenotypic switching. These phenotypic changes were associated with activation of transcription factor cyclic-AMP response binding protein (CREB1), which directly targets CD68 transcription. Furthermore, blocking CREB1 activity either through gene knockout or specific inhibitor treatment decreased the migration ability of TSCC cells and suppressed CD68 expression. CONCLUSIONS Our findings highlight the role of NaNO2 in enabling macrophage mimicry in TSCC cells through the CREB1-CD68 signaling pathway, which promotes lymphatic metastasis. Shedding light on drivers of lymphatic metastasis in TSCC and providing a new perspective on dietary strategies to improve outcomes of patients with TSCC.
Collapse
Affiliation(s)
- Xiangwan Lu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Weifan Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Junheng Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wuheng Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Shuyi Yu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haoxiang Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
11
|
Wang X, Feng JK, Mao FF, Hou YC, Zhang YQ, Liu LH, Wei Q, Sun JX, Liu C, Shi J, Cheng SQ. Prognostic and Immunotherapeutic Predictive Value of CAD Gene in Hepatocellular Carcinoma: Integrated Bioinformatics and Experimental Analysis. Mol Biotechnol 2025; 67:1240-1255. [PMID: 38683442 DOI: 10.1007/s12033-024-01125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Fei-Fei Mao
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yu-Chao Hou
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Yu-Qing Zhang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Li-Heng Liu
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Qian Wei
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ju-Xian Sun
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
| | - Shu-Qun Cheng
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Su M, Zhu J, Bai L, Cao Y, Wang S. Exploring manzamine a: a promising anti-lung cancer agent from marine sponge Haliclona sp. Front Pharmacol 2025; 16:1525210. [PMID: 40070571 PMCID: PMC11893592 DOI: 10.3389/fphar.2025.1525210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Manzamine A (MA), a bioactive compound derived from the marine sponge Haliclona sp., shows considerable therapeutic potential, particularly in the treatment of various cancer types. Extracted with acetone and purified through chromatography, MA exhibits a bioavailability of 20.6% when administered orally in rats, underscoring its feasibility for therapeutic use. This compound disrupts key cellular mechanisms essential for cancer progression, including microtubule dynamics and DNA replication enzymes, demonstrating strong anti-proliferative effects against multiple cancer cell lines while sparing normal cells. Additionally, network pharmacology and molecular docking studies reveal MA's interactions with important targets related to lung cancer progression, such as EGFR and SRC, bolstering its potential as a novel anti-lung cancer agent. Pathway analyses further indicate that MA influences critical signaling pathways involved in tumor growth and metastasis. Given the urgent need for effective treatments against drug-resistant cancers and the limited toxicity profile of MA, further exploration of its pharmacological benefits and mechanism could pave the way for new therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Min Su
- School of Pharmacy, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jie Zhu
- Department of Scientific Research Management and Foreign Affairs, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Luyuan Bai
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Cao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Chuang PK, Chang KF, Chang CH, Chen TY, Wu YJ, Lin HR, Wu CJ, Wu CC, Ho YC, Lin CC, Yuan CH, Wang CY, Lee YK, Chen TY. Comprehensive Bioinformatics Analysis of Glycosylation-Related Genes and Potential Therapeutic Targets in Colorectal Cancer. Int J Mol Sci 2025; 26:1648. [PMID: 40004112 PMCID: PMC11855181 DOI: 10.3390/ijms26041648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, characterized by high incidence and poor survival rates. Glycosylation, a fundamental post-translational modification, influences protein stability, signaling, and tumor progression, with aberrations implicated in immune evasion and metastasis. This study investigates the role of glycosylation-related genes (Glycosylation-RGs) in CRC using machine learning and bioinformatics. Data from The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB) were analyzed to identify 67 differentially expressed Glycosylation-RGs. These genes were used to classify CRC patients into two subgroups with distinct survival outcomes, highlighting their prognostic value. Weighted gene coexpression network analysis (WGCNA) revealed key modules associated with CRC traits, including pathways like glycan biosynthesis and PI3K-Akt signaling. A machine-learning-based prognostic model demonstrated strong predictive performance, stratifying patients into high- and low-risk groups with significant survival differences. Additionally, the model revealed correlations between risk scores and immune cell infiltration, providing insights into the tumor immune microenvironment. Drug sensitivity analysis identified potential therapeutic agents, including Trametinib, SCH772984, and Oxaliplatin, showing differential efficacy between risk groups. These findings enhance our understanding of glycosylation in CRC, identifying it as a critical factor in disease progression and a promising target for future therapeutic strategies.
Collapse
Affiliation(s)
- Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-K.C.); (C.-H.C.); (T.-Y.C.)
| | - Kai-Fu Chang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; (K.-F.C.); (C.-H.Y.)
| | - Chih-Hsuan Chang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-K.C.); (C.-H.C.); (T.-Y.C.)
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; (K.-F.C.); (C.-H.Y.)
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-K.C.); (C.-H.C.); (T.-Y.C.)
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; (K.-F.C.); (C.-H.Y.)
| | - Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Hui-Ru Lin
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Nursing Department, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Chi-Jen Wu
- Nursing Department, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- College of Nursing, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.W.); (Y.-C.H.)
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.W.); (Y.-C.H.)
| | - Chih-Chun Lin
- Department of Physical Therapy, I-Shou University, Kaohsiung 824005, Taiwan;
| | - Chien-Han Yuan
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; (K.-F.C.); (C.-H.Y.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Otolaryngology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Department of Otolaryngology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; (K.-F.C.); (C.-H.Y.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Division of Experimental Surgery Center, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tung-Yuan Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| |
Collapse
|
14
|
Xiaomiao H, Ruihong Z, Wei L, Xiaocheng P, Yin D, Huimin W, Yantao W, Chengcheng Z. Host protein PRPS2 interact with the non-structural protein p17 of Avian Reovirus and promote viral replication. Poult Sci 2025; 104:104582. [PMID: 39631276 PMCID: PMC11665346 DOI: 10.1016/j.psj.2024.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Avian reovirus (ARV) is highly prevalent in healthy poultry flocks and has been linked to viral arthritis/tendonitis, dwarf syndrome, chronic respiratory disease, and immunosuppression in avian species, resulting in significant economic losses within the poultry industry. The non-structural protein p17 encoded by ARV induces cellular autophagy and facilitates viral proliferation, playing a pivotal role in viral pathogenesis. To further elucidate the pathogenic mechanism basis of ARV p17 protein function, we employed a yeast two-hybrid system to identify Phosphoribosyl pyrophosphate synthetase 2 (PRPS2) as an interacting host protein with p17. In this study, we validated the interaction between PRPS2 and p17 using laser confocal microscopy, coimmunoprecipitation, and GST-Pulldown assays. Moreover, our findings demonstrate that the C-terminal region of PRPS2 is responsible for its binding to the p17 protein. Intriguingly, ARV infection significantly upregulated PRPS2 expression levels. Additionally, PRPS2 was shown to have a substantial impact on ARV replication; overexpression of PRPS2 increased ARV replication while knockdown of PRPS2 resulted in decreased quantities of ARV particles. Furthermore, our findings suggest that this process involves cellular apoptosis as a potential mechanism underlying these observations. Overall, this research provides valuable insights into elucidating the function of the p17 protein and sheds light on the pathogenic mechanism involving ARV-induced cellular apoptosis while offering novel perspectives for exploring therapeutic targets against ARV.
Collapse
Affiliation(s)
- Hu Xiaomiao
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Zhao Ruihong
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Li Wei
- Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Pan Xiaocheng
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Dai Yin
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui province Key laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Wu Huimin
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Wu Yantao
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Zhang Chengcheng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
15
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
16
|
Wulandari F, Fauzi A, Da'i M, Mirzaei M, Maryati, Harismah K. Screening and identification of potential target of 1'-acetoxychavicol acetate (ACA) in acquired lapatinib-resistant breast cancer. Heliyon 2024; 10:e40769. [PMID: 39698092 PMCID: PMC11652900 DOI: 10.1016/j.heliyon.2024.e40769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
1'-Acetoxychavicol acetate (ACA) eliminates breast cancer cells via the HER2/MAPK/ERK1/2 and PI3K/AKT pathways, and it also directly influences endocrine resistance by both enhancing pro-apoptotic signals and suppressing pro-survival molecules. This study utilized bioinformatics to assess ACA target genes for lapatinib-resistant breast cancer. We identified differentially expressed genes (DEGs) using GSE16179 microarray data. DEGs from ACA-treated and lapatinib-resistant cells were analyses using Panther DB, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and protein-protein interaction (PPI) network analysis. Genomic mutations, expression levels, prognostic significance, and ROC analysis were examined in selected genes. We used AutoDock Vina to conduct ACA molecular docking with potential target genes. In the PPI network analysis, BCL2, CXCR2, and CDC42 were the three highest-scoring genes. Genetic modification analysis identified PLAU and SSTR3 as the genes most frequently altered in breast cancer samples. The RTK-Ras pathway is likely to be affected by changes in BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET genes. Patients with breast cancer who had lower levels of BCL2, SSTR3, PLAU, ICAM1, IGF1R, and MET had worse overall survival compared to other groups. ACA exhibited moderate binding affinity to BCL2, SSTR3, PLAU, ICAM1, IGF1R, and MET. Overall, ACA might counteract breast cancer resistance to lapatinib by targeting BCL2, SSTR3, PLAU, ICAM1, IGF1R, and MET. Further in vitro studies involving gene silencing could provide more detailed insights into the mechanism by which ACA combats lapatinib resistance.
Collapse
Affiliation(s)
- Febri Wulandari
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | - Ahmad Fauzi
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | - Muhammad Da'i
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | - Mahmoud Mirzaei
- Laboratory of Molecular Computations (LMC), Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Tarsus, Turkey
| | - Maryati
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | - Kun Harismah
- Department of Chemical Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| |
Collapse
|
17
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
18
|
Li X, Sun Y, Guo J, Cheng Y, Lu W, Yang W, Wang L, Cheng Z. Sodium bicarbonate potentiates the antitumor effects of Olaparib in ovarian cancer via cGMP/PKG-mediated ROS scavenging and M1 macrophage transformation. Biomed Pharmacother 2024; 180:117509. [PMID: 39442234 DOI: 10.1016/j.biopha.2024.117509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The high metabolic requirements of cancer cells result in excess accumulation of H+ in the tumor microenvironment. Therefore, the extracellular pH of solid tumors is acidic, whereas the pH of normal tissues is more alkaline. The acidic tumor environment is correlated with tumor metastasis, immune escape, and chemoresistance, but the underlying mechanisms remain elusive. Herein, we demonstrate that sodium bicarbonate, a weakly alkaline compound, induces cytotoxicity in ovarian cancer cells and hinders cancer migration and invasion in vitro. The anti-cancer efficacy of Olaparib can be significantly augmented when combined with sodium bicarbonate. In vivo experiments suggest that the combinatorial treatment of sodium bicarbonate and Olaparib is biocompatible and more effective at inhibiting ovarian cancer growth than either treatment alone. Additionally, RNA-sequencing results reveal that the differentially expressed genes are enriched in pathways related to reactive oxygen species (ROS) generation, such as the cGMP/PKG pathway. The combined treatment increases M1 macrophage composition in tumors and reduces the accumulation of excessive ROS. These findings strongly suggest that sodium bicarbonate holds great potential as an adjuvant treatment by scavenging ROS accumulation and promoting M1 macrophage composition, thereby enhancing Olaparib's anti-cancer activity.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujie Cheng
- Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Lu
- Anhui University of Science and Technology, Huainan 232001, China
| | - Weihong Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Lian Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
19
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024; 300:107907. [PMID: 39433125 PMCID: PMC11599458 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the posttranslational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modification govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including heat shock protein 70, heat shock protein 90, carboxyl-terminus of HSC70 interacting protein, and heat shock protein organizing protein. This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from heat shock protein organizing protein to carboxyl-terminus of HSC70 interacting protein in association with heat shock protein 70 and heat shock protein 90-which could influence cellular growth and survival pathways. A comprehensive examination of posttranslational modification-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
20
|
Wu S, Miao J, Zhu S, Wu X, Shi J, Zhou J, Xing Y, Hu K, Ren J, Yang H. Pongamol Prevents Neurotoxicity via the Activation of MAPKs/Nrf2 Signaling Pathway in H 2O 2-Induced Neuronal PC12 Cells and Prolongs the Lifespan of Caenorhabditis elegans. Mol Neurobiol 2024; 61:8219-8233. [PMID: 38483657 DOI: 10.1007/s12035-024-04110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 09/21/2024]
Abstract
Despite tremendous advances in modern medicine, effective prevention or therapeutic strategies for age-related neurodegenerative diseases such as Alzheimer's disease (AD) remain limited. Growing evidence now suggests that oxidative stress and apoptosis are increasingly associated with AD as promising therapeutic targets. Pongamol, a flavonoid, is the main constituent of pongamia pinnata and possesses a variety of pharmacological activities such as antioxidant, anti-aging and anti-inflammatory. In the present study, we investigated the antioxidant effects and mechanisms of pongamol in H2O2-induced PC12 cells and Caenorhabditis elegans (C. elegans). Our findings revealed that pongamol reduced cellular damage and apoptosis in H2O2-induced PC12 cells. Furthermore, pongamol reduced levels of apoptosis-related proteins Bax, Cyto C, Cleaved Caspase-3, and Cleaved PARP1, and increased the level of anti-apoptotic protein Bcl-2. Pongamol also effectively attenuated the level of oxidative stress markers such as glutathione (GSH) and reactive oxygen species (ROS) in H2O2-induced PC12 cells. Additionally, pongamol possessed antioxidant activity in H2O2-induced PC12 cells through the MAPKs/Nrf2 signaling pathway. Furthermore, pongamol exerted neuroprotective and anti-aging effects in C. elegans. All together, these results suggested that pongamol has a potential neuroprotective effect through the modulation of MAPKs/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shaojun Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Miao
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Xinyuan Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jindan Shi
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jichao Zhou
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Yi Xing
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Kun Hu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
21
|
Wang M, Luo K, Bian B, Tian M, Zhao H, Zhang Y, Wang J, Guo Q, Cheng G, Si N, Wei X, Yang J, Wang H, Zhou Y. Study on chemical profiling of bailing capsule and its potential mechanism against thyroiditis based on network pharmacology with molecular docking strategy. Biomed Chromatogr 2024; 38:e5900. [PMID: 38937935 DOI: 10.1002/bmc.5900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
Bailing capsule (BLC), a drug that is clinically administered to modulate the autoimmune system, exhibits promising therapeutic potential in the treatment of thyroiditis. This study elucidates the chemical profile of BLC and its potential therapeutic mechanism in thyroiditis, leveraging network pharmacology and molecular docking techniques. Utilizing ultra-high-performance liquid chromatography coupled with linear trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS), 58 compounds were identified, the majority of which were nucleosides and amino acids. Utilizing the ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC QqQ MS/MS) strategy, 16 representative active components from six batches of BLCs were simultaneously determined. Network pharmacology analysis further revealed that the active components included 5'-adenylate, guanosine, adenosine, cordycepin, inosine, 5'-guanylic acid, and l-lysine. Targets with higher connectivity included AKT1, MAPK3, RAC1, and PIK3CA. The signaling pathways primarily focused on thyroid hormone regulation and the Ras, PI3K/AKT, and MAPK pathways, all of which were intricately linked to inflammatory immunity and hormonal regulation. Molecular docking analysis corroborated the findings from network pharmacology, revealing that adenosine, guanosine, and cordycepin exhibited strong affinity toward AKT1, MAPK3, PIK3CA, and RAC1. Overall, this study successfully elucidated the material basis and preliminary mechanism underlying BLC's intervention in thyroiditis, thus laying a solid basis for further exploration of its in-depth mechanisms.
Collapse
Affiliation(s)
- Mengxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keke Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jigang Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Guo
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangqing Cheng
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Lu AL, Yin L, Huang Y, Islam ZH, Kanchetty R, Johnston C, Zhang K, Xie X, Park KH, Chalfant CE, Wang B. The role of 6-phosphogluconate dehydrogenase in vascular smooth muscle cell phenotypic switching and angioplasty-induced intimal hyperplasia. JVS Vasc Sci 2024; 5:100214. [PMID: 39318609 PMCID: PMC11420449 DOI: 10.1016/j.jvssci.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/21/2024] [Indexed: 09/26/2024] Open
Abstract
Background Restenosis poses a significant challenge for individuals afflicted with peripheral artery diseases, often leading to considerable morbidity and necessitating repeated interventions. The primary culprit behind the pathogenesis of restenosis is intimal hyperplasia (IH), in which the hyperproliferative and migratory vascular smooth muscle cell (VSMC) accumulate excessively in the tunica intima. 6-Phosphogluconate dehydrogenase (6PGD), sometimes referred to as PGD, is one of the critical enzymes in pentose phosphate pathway (PPP). In this study, we sought to probe whether 6PGD is aberrantly regulated in IH and contributes to VSMC phenotypic switching. Methods We used clinical specimens of diseased human coronary arteries with IH lesions and observed robust upregulation of 6PGD at protein level in both the medial and intimal layers in comparison with healthy arterial segments. Results 6PGD activity and protein expression were profoundly stimulated upon platelet-derived growth factor-induced VSMC phenotypic switching. Using gain-of-function (dCas9-mediated transcriptional activation) and loss-of-function (small interfering RNA-mediated) silencing, we were able to demonstrate the pathogenic role of 6PGD in driving VSMC hyperproliferation, migration, dedifferentiation, and inflammation. Finally, we conducted a rat model of balloon angioplasty in the common carotid artery, with Pluronic hydrogel-assisted perivascular delivery of Physcion, a selective 6PGD inhibitor with poor systemic bioavailability, and observed effective mitigation of IH. Conclusions We contend that aberrant 6PGD expression and activity-indicative of a metabolic shift toward pentose phosphate pathway-could serve as a new disease-driving mechanism and, hence, an actionable target for the development of effective new therapies for IH and restenosis after endovascular interventions.
Collapse
Affiliation(s)
- Amy L. Lu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Rohan Kanchetty
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Campbell Johnston
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Kaijie Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Ki Ho Park
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
23
|
Yu J, Zhang Y, Xue Y, Pei H, Li B. Emerging roles of long noncoding RNAs in enzymes related intracellular metabolic pathways in cancer biology. Biomed Pharmacother 2024; 176:116831. [PMID: 38824835 DOI: 10.1016/j.biopha.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Metabolic reprogramming plays critical roles in the development and progression of tumor by providing cancer cells with a sufficient supply of nutrients and other factors needed for fast-proliferating. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in the initiation of metastasis via regulating the metabolic reprogramming in various cancers. In this paper, we aim to summarize that lncRNAs could participate in intracellular nutrient metabolism including glucose, amino acid, lipid, and nucleotide, regardless of whether lncRNAs have tumor-promoting or tumor-suppressor function. Meanwhile, modulation of lncRNAs in glucose metabolic enzymes in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle (TCA) in cancer is reviewed. We also discuss therapeutic strategies targeted at interfering with enzyme activity to decrease the utilization of glucoses, amino acid, nucleotide acid and lipid in tumor cells. This review focuses on our current understanding of lncRNAs participating in cancer cell metabolic reprogramming, paving the way for further investigation into the combination of such approaches with existing anti-cancer therapies.
Collapse
Affiliation(s)
- Jing Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; Department of clinical laboratory Center, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Zhang
- School of Clinical Medicine, Medical College of Soochow University, Suzhou 215123, China
| | - Yaqi Xue
- Department of Clinical Nutrition, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
24
|
Zhou H, Wang Z, Guo J, Zhu Z, Sun G. Analysis of the potential biological significance of glycosylation in triple-negative breast cancer on patient prognosis. Am J Transl Res 2024; 16:2212-2232. [PMID: 39006258 PMCID: PMC11236660 DOI: 10.62347/pxar3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, with its prognosis varying greatly according to its subtype. Triple-negative breast cancer (TNBC) has the worst prognosis among all subtypes. Glycosylation is a critical factor influencing the prognosis of patients with TNBC. Our aim is to develop a tumor prognosis model by analyzing genes related to glycosylation to predict patient outcomes. METHODS The dataset used in this study was downloaded from the Cancer Genome Atlas Program (TCGA) database, and predictive genes were identified through Cox one-way regression analysis. The model genes with the highest risk scores among the 18 samples were obtained by lasso regression analysis to establish the model. We analyzed the pathways affecting the progression of TNBC and discovered key genes for subsequent research. RESULTS Our model was constructed using data from TCGA database and validated through Kaplan-Meier curve analysis and Receiver Operating Characteristic (ROC) curve assessment. Our analysis revealed that a high expression of tumor-related chemokines in the high-risk group may be associated with poor tumor prognosis. Furthermore, we conducted a random survival forest analysis and identified two significant genes, namely DPM2 and PINK1, which have been selected for further investigation. CONCLUSION The prognostic analysis model, developed based on the glycosylation genes in TNBC, exhibits excellent validation efficacy. This model is valuable for the prognostic analysis of patients with TNBC.
Collapse
Affiliation(s)
- Han Zhou
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zhiwei Wang
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Jun Guo
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zihui Zhu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
| |
Collapse
|
25
|
Yuan L, Jiang H, Jia Y, Liao Y, Shao C, Zhou Y, Li J, Liao Y, Huang H, Pan Y, Wen W, Zhao X, Chen L, Jing X, Pan C, Wang W, Yao S, Zhang C. Fatty Acid Oxidation Supports Lymph Node Metastasis of Cervical Cancer via Acetyl-CoA-Mediated Stemness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308422. [PMID: 38520724 DOI: 10.1002/advs.202308422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/18/2024] [Indexed: 03/25/2024]
Abstract
Accumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO). Inhibition of carnitine palmitoyl transferase 1A (CPT1A) significantly compromises palmitate-induced cell stemness. Mechanistically, FAO-derived acetyl-CoA enhances H3K27 acetylation (H3K27Ac) modification level in the promoter of stemness genes, increasing stemness and nodal metastasis in the lipid-rich nodal environment. Genetic and pharmacological loss of CPT1A function markedly suppresses the metastatic colonization of CCa cells in tumor-draining lymph nodes. Together, these findings propose an effective method of cancer therapy by targeting FAO in patients with CCa and lymph node metastasis.
Collapse
Affiliation(s)
- Li Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Caixia Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yijia Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Jiaying Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yan Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Weijia Wen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Xueyuan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Linna Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, 17165, Sweden
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| |
Collapse
|
26
|
Yang X, Liu Q, Li G. Anti-NSCLC role of SCN4B by negative regulation of the cGMP-PKG pathway: Integrated utilization of bioinformatics analysis and in vitro assay validation. Drug Dev Res 2024; 85:e22192. [PMID: 38678552 DOI: 10.1002/ddr.22192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with low overall cure and survival rates. Uncovering abnormally expressed genes is significantly important for developing novel targeted therapies in NSCLC. This study aimed to discover new differentially expressed genes (DEGs) of NSCLC. The DEGs of NSCLC were identified in eight data sets from Gene Expression Omnibus (GEO) database. The expression profiles and the prognostic significance of SCN4B in LUAD and LUSC were analyzed using GEPIA database. LinkedOmics was used to identify co-expressed genes with SCN4B, which were further subjected to KEGG pathway enrichment analysis. SCN4B-overexpressing plasmid (pcDNA/SCN4B) was transfected into A549 and NCI-H2170 cells to elevate the expression of SCN4B. MTT and TUNEL assays were performed to evaluate cell viability and apoptosis. Relying on the screened DEGs from GEO database, we identified that SCN4B was significantly downregulated in LUAD and LUSC. We confirmed the downregulation of SCN4B in NSCLC tissues using GEPIA database. SCN4B has a prognostic value in LUAD, but not LUSC. KEGG pathway enrichment analysis of SCN4B-related genes showed that cGMP-PKG signaling pathway might be involved in the role of SCN4B in NSCLC. Overexpression of SCN4B in A549 and NCI-H2170 cells inhibited the cell viability. Besides, SCN4B overexpression induced apoptosis of A549 and NCI-H2170 cells. SCN4B inhibited the expression of PKG1 and p-CREB in NSCLC cells. Moreover, the inhibitory effects of SCN4B on tumor malignancy were attenuated by the activator of PKG. In conclusion, integrated bioinformatical analysis proved that SCN4B was downregulated and had a prognostic significance in NSCLC. In vitro experimental studies demonstrated that SCN4B regulated NSCLC cells viability and apoptosis via inhibiting cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Xiujun Yang
- Department of Respiratory and Critical Care Medicine, Huai'an People's Hospital of Hongze District, Huai'an, China
| | - Qun Liu
- Medical Ward 20, Lianshui County People's Hospital, Huai'an, China
| | - Gang Li
- Department of Respiratory and Critical Care Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
27
|
Wang Z, Zhang Y, Liao Z, Huang M, Shui X. The potential of aryl hydrocarbon receptor as receptors for metabolic changes in tumors. Front Oncol 2024; 14:1328606. [PMID: 38434684 PMCID: PMC10904539 DOI: 10.3389/fonc.2024.1328606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
28
|
Zhang X, Wu L, Jia L, Hu X, Yao Y, Liu H, Ma J, Wang W, Li L, Chen K, Liu B. The implication of integrative multiple RNA modification-based subtypes in gastric cancer immunotherapy and prognosis. iScience 2024; 27:108897. [PMID: 38318382 PMCID: PMC10839690 DOI: 10.1016/j.isci.2024.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/28/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Previous studies have focused on the impact of individual RNA modifications on tumor development. This study comprehensively investigated the effects of multiple RNA modifications, including m6A, alternative polyadenylation, pseudouridine, adenosine-to-inosine editing, and uridylation, on gastric cancer (GC). By analyzing 1,946 GC samples from eleven independent cohorts, we identified distinct clusters of RNA modification genes with varying survival rates and immunological characteristics. We assessed the chromatin activity of these RNA modification clusters through regulon enrichment analysis. A prognostic model was developed using Stepwise Regression and Random Survival Forest algorithms and validated in ten independent datasets. Notably, the low-risk group showed a more favorable prognosis and positive response to immune checkpoint blockade therapy. Single-cell RNA sequencing confirmed the abundant expression of signature genes in B cells and plasma cells. Overall, our findings shed light on the potential significance of multiple RNA modifications in GC prognosis, stemness development, and chemotherapy resistance.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Liuxing Wu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liqing Jia
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Yanxin Yao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Huahuan Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Junfu Ma
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| |
Collapse
|
29
|
Zheng CS, Huang WM, Xia HM, Mi JL, Li YQ, Liang HQ, Zhou L, Lu ZX, Wu F. Oncogenic and immunological roles of RACGAP1 in pan-cancer and its potential value in nasopharyngeal carcinoma. Apoptosis 2024; 29:243-266. [PMID: 37670104 DOI: 10.1007/s10495-023-01884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.
Collapse
Affiliation(s)
- Cheng-Shan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Wei-Mei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong-Mei Xia
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jing-Lin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Yuan-Qing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Hui-Qing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Li Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Zhou-Xue Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
30
|
Gong W, Zhao J, Yao Z, Zhang Y, Niu Y, Jin K, Li B, Zuo Q. The Establishment and Optimization of a Chicken Primordial Germ Cell Induction Model Using Small-Molecule Compounds. Animals (Basel) 2024; 14:302. [PMID: 38254471 PMCID: PMC10812757 DOI: 10.3390/ani14020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, inducing pluripotent stem cells to differentiate into functional primordial germ cells (PGCs) in vitro has become an important method of obtaining a large number of PGCs. However, the instability and low induction efficiency of the in vitro PGC induction system restrict the application of PGCs in transgenic animal production, germplasm resource conservation and other fields. In this study, we successfully established a two-step induction model of chicken PGCs in vitro, which significantly improved the formation efficiency of PGC-like cells (PGCLCs). To further improve the PGC formation efficiency in vitro, 5025 differentially expressed genes (DEGs) were obtained between embryonic stem cells (ESCs) and PGCs through RNA-seq. GO and KEGG enrichment analysis revealed that signaling pathways such as BMP4, Wnt and Notch were significantly activated during PGC formation, similar to other species. In addition, we noted that cAMP was activated during PGC formation, while MAPK was suppressed. Based on the results of our analysis, we found that the PGC formation efficiency was significantly improved after activating Wnt and inhibiting MAPK, and was lower than after activating cAMP. To sum up, in this study, we successfully established a two-step induction model of chicken PGCs in vitro with high PGC formation efficiency, which lays a theoretical foundation for further demonstrating the regulatory mechanism of PGCs and realizing their specific applications.
Collapse
Affiliation(s)
- Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Juanjuan Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (W.G.); (J.Z.); (Z.Y.); (Y.Z.); (Y.N.); (K.J.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Duan J, Wang Y, Chen Y, Wang Y, Li Q, Liu J, Fu C, Cao C, Cong Z, Su M. Silencing LY6D Expression Inhibits Colon Cancer in Xenograft Mice and Regulates Colon Cancer Stem Cells' Proliferation, Stemness, Invasion, and Apoptosis via the MAPK Pathway. Molecules 2023; 28:7776. [PMID: 38067506 PMCID: PMC10708431 DOI: 10.3390/molecules28237776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
This study explored the role of lymphocyte antigen 6 family member D (LY6D) in colon cancer stem cells' (CCSCs) proliferation and invasion. LY6D was knocked down using siRNA, and the down-regulation of LY6D was verified using Western blotting. After LY6D knockdown, CCSCs' proliferation, stemness, and invasion were suppressed, whereas apoptosis was increased. Gene Ontology (GO) enrichment analysis revealed that the differentially expressed genes (DEGs) between siLY6D and the negative control groups were significantly enriched in the cell-substrate adherens junction, focal adhesion, and cell-substrate junction terms. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DEGs were significantly enriched in the MAPK pathway. In addition, Western blotting results showed that pBRAF and pERK1/2, cascade kinases of the MAPK pathway, were significantly down-regulated after LY6D knockdown. In addition, nude mice xenograft experiments showed that the siLY6D treatment decreased tumor sizes and weights and improved tumor-bearing mice survival rates compared with the control group. In conclusion, these findings indicate that LY6D, which is highly expressed in CCSCs, is a key factor involved in tumor growth and development and might be a potential cancer marker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Jinyue Duan
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Yuanyuan Chen
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Yujue Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Qisen Li
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Jinrui Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Changhao Fu
- VA Palo Alto Health Care System, Medical School, Stanford University, Palo Alto, CA 94304, USA;
| | - Chenyu Cao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Zhongyi Cong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (J.D.); (Y.C.); (Y.W.); (Q.L.); (J.L.); (C.C.)
| |
Collapse
|
32
|
Zhang Y, Wu X, Zhu J, Lu R, Ouyang Y. Knockdown of SLC39A14 inhibits glioma progression by promoting erastin-induced ferroptosis SLC39A14 knockdown inhibits glioma progression. BMC Cancer 2023; 23:1120. [PMID: 37978473 PMCID: PMC10655456 DOI: 10.1186/s12885-023-11637-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Ferroptosis is a newly classified form of regulated cell death with implications in various tumor progression pathways. However, the roles and mechanisms of ferroptosis-related genes in glioma remain unclear. METHODS Bioinformatics analysis was employed to identify differentially expressed ferroptosis-related genes in glioma. The expression levels of hub genes were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). To explore the role of SLC39A14 in glioma, a series of in vitro assays were conducted, including cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and Transwell assays. Enzyme-linked immunosorbent assay (ELISA) was utilized to measure the levels of indicators associated with ferroptosis. Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining were performed to illustrate the clinicopathological features of the mouse transplantation tumor model. Additionally, Western blot analysis was used to assess the expression of the cGMP-PKG pathway-related proteins. RESULTS Seven ferroptosis-related hub genes, namely SLC39A14, WWTR1, STEAP3, NOTCH2, IREB2, HIF1A, and FANCD2, were identified, all of which were highly expressed in glioma. Knockdown of SLC39A14 inhibited glioma cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, SLC39A14 knockdown also facilitated erastin-induced ferroptosis, leading to the suppression of mouse transplantation tumor growth. Mechanistically, SLC39A14 knockdown inhibited the cGMP-PKG signaling pathway activation. CONCLUSION Silencing SLC39A14 inhibits ferroptosis and tumor progression, potentially involving the regulation of the cGMP-PKG signaling pathway.
Collapse
Affiliation(s)
- Yunwen Zhang
- Department of Neurosurgery, First Clinical Medical College of Gannan Medical University, No.1 Xueyuan Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Xinghai Wu
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, No. 67 Xihuan Road, Ganzhou District, Zhangye City, 734000, Gansu Province, China
| | - Jiyong Zhu
- Department of Neurosurgery, Guilin Municipal Hospital of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region, No. 2 Lingui Road, Xiangshan District, Guilin City, 541002, China
| | - Ruibin Lu
- Department of Neurosurgery, First Clinical Medical College of Gannan Medical University, No.1 Xueyuan Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Yian Ouyang
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, No.23 Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
33
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
34
|
Yeh YW, Hsu TW, Su YH, Wang CH, Liao PH, Chiu CF, Tseng PC, Chen TM, Lee WR, Tzeng YS. Silencing of Dicer enhances dacarbazine resistance in melanoma cells by inhibiting ADSL expression. Aging (Albany NY) 2023; 15:12873-12889. [PMID: 37976135 DOI: 10.18632/aging.205207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Dacarbazine (DTIC) is the primary first-line treatment for advanced-stage metastatic melanoma; thus, DTIC resistance is poses a major challenge. Therefore, investigating the mechanism underlying DTIC resistance must be investigated. Dicer, a type III cytoplasmic endoribonuclease, plays a pivotal role in the maturation of miRNAs. Aberrant Dicer expression may contribute to tumor progression, clinical aggressiveness, and poor prognosis in various tumors. Dicer inhibition led to a reduction in DTIC sensitivity and an augmentation in stemness in melanoma cells. Clinical analyses indicated a low Dicer expression level as a predictor of poor prognosis factor. Metabolic alterations in tumor cells may interfere with drug response. Adenylosuccinate lyase (ADSL) is a crucial enzyme in the purine metabolism pathway. An imbalance in ADSL may interfere with the therapeutic efficacy of drugs. We discovered that DTIC treatment enhanced ADSL expression and that Dicer silencing significantly reduced ADSL expression in melanoma cells. Furthermore, ADSL overexpression reversed Dicer silencing induced DTIC resistance and cancer stemness. These findings indicate that Dicer-mediated ADSL regulation influences DTIC sensitivity and stemness in melanoma cells.
Collapse
Affiliation(s)
- Yu-Wen Yeh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Division of Dermatology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Yen-Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsin Wang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Po-Hsiang Liao
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chen Tseng
- Department of Ophthalmology, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tim-Mo Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Sheng Tzeng
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
35
|
Uematsu H, Saito C, Kondo J, Onuma K, Coppo R, Mori Y, Muto M, Kikawa Y, Tada M, Sugie T, Inoue M. De-differentiation in cultures of organoids from luminal-type breast cancer is restored by inhibition of NOTCH signaling. Hum Cell 2023; 36:2099-2112. [PMID: 37634223 DOI: 10.1007/s13577-023-00975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Estrogen receptor (ER) expression in breast cancer can change during progression and the treatment, but the mechanism has not been well studied. In this study, we successfully prepared organoids from samples obtained from 33 luminal-type breast cancer patients and studied their ER expression. The expression status was well maintained in primary organoids, whereas it decreased after passaging in most of the cases. In fact, the studied organoid lines were classified into those that retained a high level of ER expression (9%), those that completely lost it (9%), and those that repressed it to varying degrees (82%). In some cases, the ER expression was suddenly and drastically decreased after passaging. Marker protein immunohistochemistry revealed that after passaging, the differentiation status shifted from a luminal- to a basal-like status. Differentially expressed genes suggested the activation of NOTCH signaling in the passaged organoids, wherein a NOTCH inhibitor was able to substantially rescue the decreased ER expression and alter the differentiation status. Our findings suggest that the differentiation status of luminal-type cancer cells is quite flexible, and that by inhibiting the NOTCH signaling we can preserve the differentiation status of luminal-type breast cancer organoids.
Collapse
Affiliation(s)
- Hiroyuki Uematsu
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
- KBBM Inc, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Chieko Saito
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
- KBBM Inc, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
- Division of Health Sciences, Department of Molecular Biology and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Roberto Coppo
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Yukiko Mori
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuichiro Kikawa
- Department of Breast Surgery, Kansai Medical University, Hirakata, Osaka, 573-1191, Japan
| | - Manami Tada
- Department of Breast Surgery, Kansai Medical University, Hirakata, Osaka, 573-1191, Japan
| | - Tomoharu Sugie
- Department of Breast Surgery, Kansai Medical University, Hirakata, Osaka, 573-1191, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, 46-29, Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan.
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, Med-Pharm Collaboration Building 503, Shimoadachi-cho 46-29, Sakyou-ku, Kyoto, 606-8304, Japan.
| |
Collapse
|
36
|
Xu D, Liu A, Liu Q, Zhang H, Tian M, Bian Y, Zhang X, Ying M, Shen H. Cucurbitacin C suppresses the progression of pancreatic ductal adenocarcinoma via inhibition of the cGMP-PKG-VASP axis. Biochem Pharmacol 2023; 217:115810. [PMID: 37717690 DOI: 10.1016/j.bcp.2023.115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating diseases; it has a considerably poor prognosis and may become the second most lethal malignancy in the next 10 years. Chemotherapeutic resistance is common in PDAC; thus, it is necessary to exploit effective alternative drugs. In recent years, traditional folk medicines and their extracts have shown great potential in cancer treatment. The seed of Lagenaria siceraria (Molina) Standl. is a traditional medicine in Asia. Because of its analgesic effects and ability to reduce swelling, it is often used as an adjuvant treatment for abdominal tumors. Cucurbitacin compounds are extracts abundant in Lagenaria siceraria (Molina) Standl. Here, we found that cucurbitacin C (CuC), a member of the cucurbitacin family, has apparent anti-PDAC therapeutic properties. CuC decreased the viability and suppressed the proliferation of PDAC cells in a time- and dose-dependent manner. Further studies revealed that CuC inhibited cell migration and invasion by inhibiting epithelial-mesenchymal transition (EMT). In addition, G2/M arrest was induced, and the apoptotic pathway was activated. Transcriptomic and bioinformatic analyses showed that CuC inhibited the cGMP-PKG-VASP axis, increasing the content of cGMP to restore tumor characteristics. The antitumor activity of CuC in vivo was verified through animal experiments, and no obvious side effects were observed. Overall, our study indicates a candidate therapeutic compound for PDAC that is worthy of further development.
Collapse
Affiliation(s)
- Dongchao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Ajuan Liu
- Hangzhou Medical College, Hangzhou 311300, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Mengyao Tian
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Bian
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| | - Meidan Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hongzhang Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
37
|
Cui B, He B, Huang Y, Wang C, Luo H, Lu J, Su K, Zhang X, Luo Y, Zhao Z, Yang Y, Zhang Y, An F, Wang H, Lam EWF, Kelley KW, Wang L, Liu Q, Peng F. Pyrroline-5-carboxylate reductase 1 reprograms proline metabolism to drive breast cancer stemness under psychological stress. Cell Death Dis 2023; 14:682. [PMID: 37845207 PMCID: PMC10579265 DOI: 10.1038/s41419-023-06200-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Cancer stem-like cells (CSCs) contribute to cancer metastasis, drug resistance and tumor relapse, yet how amino acid metabolism promotes CSC maintenance remains exclusive. Here, we identify that proline synthetase PYCR1 is critical for breast cancer stemness and tumor growth. Mechanistically, PYCR1-synthesized proline activates cGMP-PKG signaling to enhance cancer stem-like traits. Importantly, cGMP-PKG signaling mediates psychological stress-induced cancer stem-like phenotypes and tumorigenesis. Ablation of PYCR1 markedly reverses psychological stress-induced proline synthesis, cGMP-PKG signaling activation and cancer progression. Clinically, PYCR1 and cGMP-PKG signaling components are highly expressed in breast tumor specimens, conferring poor survival in breast cancer patients. Targeting proline metabolism or cGMP-PKG signaling pathway provides a potential therapeutic strategy for breast patients undergoing psychological stress. Collectively, our findings unveil that PYCR1-enhanced proline synthesis displays a critical role in maintaining breast cancer stemness.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yanping Huang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuanyuan Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hong Wang
- Department of Orthopaedics, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ling Wang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
38
|
Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci 2023; 331:122070. [PMID: 37673296 DOI: 10.1016/j.lfs.2023.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Tumor cells are required to undergo metabolic reprogramming for rapid development and progression, and one of the metabolic characteristics of cancer cells is the excessive synthesis and utilization of nucleotides. Abnormally increased nucleotides and their metabolites not only directly accelerate tumor cell progression but also indirectly act on stromal cells in the tumor microenvironment (TME) via a paracrine manner to regulate tumor progression. Purine nucleotides are mainly produced via de novo nucleotide synthesis in tumor cells; therefore, intervening in their synthesis has emerged as a promising strategy in anti-tumor therapy. De novo purine synthesis is a 10-step reaction catalyzed by six enzymes to synthesize inosine 5-monophosphate (IMP) and subsequently synthesize AMP and GMP. Phosphoribosylaminoimidazole carboxylase/phosphori-bosylaminoimidazole succinocarboxamide synthetase (PAICS) is a bifunctional enzyme that catalyzes de novo purine synthesis. Aberrantly elevated PAICS expression in various tumors is associated with poor prognosis. Evidence suggests that PAICS and its catalytic product, N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR), could inhibit tumor cell apoptosis and promote the growth, epithelial-mesenchymal transition (EMT), invasion, and metastasis by regulating signaling pathways such as pyruvate kinase M2 (PKM2), extracellular signal-related kinases 1 and 2 (ERK1/2), focal adhesion kinase (FAK) and so on. This review summarizes the structure, biological functions and the molecular mechanisms of PAICS in cancer development and discusses its potential to be a target for tumor therapy.
Collapse
Affiliation(s)
- Anqi Huo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
39
|
Watson J, Wang T, Ho KL, Feng Y, Mahawan T, Dobbin KK, Zhao S. Human basal-like breast cancer is represented by one of the two mammary tumor subtypes in dogs. Breast Cancer Res 2023; 25:114. [PMID: 37789381 PMCID: PMC10546663 DOI: 10.1186/s13058-023-01705-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND About 20% of breast cancers in humans are basal-like, a subtype that is often triple-negative and difficult to treat. An effective translational model for basal-like breast cancer is currently lacking and urgently needed. To determine whether spontaneous mammary tumors in pet dogs could meet this need, we subtyped canine mammary tumors and evaluated the dog-human molecular homology at the subtype level. METHODS We subtyped 236 canine mammary tumors from 3 studies by applying various subtyping strategies on their RNA-seq data. We then performed PAM50 classification with canine tumors alone, as well as with canine tumors combined with human breast tumors. We identified feature genes for human BLBC and luminal A subtypes via machine learning and used these genes to repeat canine-alone and cross-species tumor classifications. We investigated differential gene expression, signature gene set enrichment, expression association, mutational landscape, and other features for dog-human subtype comparison. RESULTS Our independent genome-wide subtyping consistently identified two molecularly distinct subtypes among the canine tumors. One subtype is mostly basal-like and clusters with human BLBC in cross-species PAM50 and feature gene classifications, while the other subtype does not cluster with any human breast cancer subtype. Furthermore, the canine basal-like subtype recaptures key molecular features (e.g., cell cycle gene upregulation, TP53 mutation) and gene expression patterns that characterize human BLBC. It is enriched in histological subtypes that match human breast cancer, unlike the other canine subtype. However, about 33% of canine basal-like tumors are estrogen receptor negative (ER-) and progesterone receptor positive (PR+), which is rare in human breast cancer. Further analysis reveals that these ER-PR+ canine tumors harbor additional basal-like features, including upregulation of genes of interferon-γ response and of the Wnt-pluripotency pathway. Interestingly, we observed an association of PGR expression with gene silencing in all canine tumors and with the expression of T cell exhaustion markers (e.g., PDCD1) in ER-PR+ canine tumors. CONCLUSIONS We identify a canine mammary tumor subtype that molecularly resembles human BLBC overall and thus could serve as a vital translational model of this devastating breast cancer subtype. Our study also sheds light on the dog-human difference in the mammary tumor histology and the hormonal cycle.
Collapse
Affiliation(s)
- Joshua Watson
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Kun-Lin Ho
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Yuan Feng
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA
| | - Tanakamol Mahawan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kevin K Dobbin
- Department of Biostatistics, University of Georgia, Athens, GA, 30602, USA
| | - Shaying Zhao
- Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA.
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, 120 E Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
40
|
Sunassee ED, Jardim-Perassi BV, Madonna MC, Ordway B, Ramanujam N. Metabolic Imaging as a Tool to Characterize Chemoresistance and Guide Therapy in Triple-Negative Breast Cancer (TNBC). Mol Cancer Res 2023; 21:995-1009. [PMID: 37343066 PMCID: PMC10592445 DOI: 10.1158/1541-7786.mcr-22-1004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
After an initial response to chemotherapy, tumor relapse is frequent. This event is reflective of both the spatiotemporal heterogeneities of the tumor microenvironment as well as the evolutionary propensity of cancer cell populations to adapt to variable conditions. Because the cause of this adaptation could be genetic or epigenetic, studying phenotypic properties such as tumor metabolism is useful as it reflects molecular, cellular, and tissue-level dynamics. In triple-negative breast cancer (TNBC), the characteristic metabolic phenotype is a highly fermentative state. However, during treatment, the spatial and temporal dynamics of the metabolic landscape are highly unstable, with surviving populations taking on a variety of metabolic states. Thus, longitudinally imaging tumor metabolism provides a promising approach to inform therapeutic strategies, and to monitor treatment responses to understand and mitigate recurrence. Here we summarize some examples of the metabolic plasticity reported in TNBC following chemotherapy and review the current metabolic imaging techniques available in monitoring chemotherapy responses clinically and preclinically. The ensemble of imaging technologies we describe has distinct attributes that make them uniquely suited for a particular length scale, biological model, and/or features that can be captured. We focus on TNBC to highlight the potential of each of these technological advances in understanding evolution-based therapeutic resistance.
Collapse
Affiliation(s)
- Enakshi D. Sunassee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bryce Ordway
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
41
|
Yousefian Naeini Z, Esfandiari N, Hashemi M, Hushmandi K, Arbabian S, Entezari M. Introduced the ITGB1-DT as a novel biomarker associated with five potential drugs using bioinformatics analysis of breast cancer proteomics data and RT-PCR. Mol Cell Probes 2023; 71:101930. [PMID: 37690573 DOI: 10.1016/j.mcp.2023.101930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Breast cancer (BC) has been identified as a significant contributor to the rising number of female cancer deaths. As, it has become clear that breast cancer development depends on the interplay of several biological factors against a single molecule. This research aimed to use proteomics to gain a regulatory and metabolic understanding of BC pathophysiology. METHOD For the study, a breast cancer proteomics dataset was downloaded from ProteomeXchange and then analyzed by employing MaxQuant and Perseus. Functional enrichment analysis through Metascape and Cytoscape software showed DEPs related biomedical phenomena with potential abruption. The expression of selected lncRNA in terms of the highest connectivity parameters was then quantitatively assessed through RT-PCR in 30 tumor tissues of breast cancer patients, as compared to the adjacent healthy ones. RESULT The results indicated that among the 3048 identified proteins, 1149 were differentially expressed, which could be mainly enriched in several key terms. Furthermore, the obtained findings revealed that ITGB1-DT was significantly overexpressed in tumor tissues. Moreover, we found five potential compounds that could be attributed to ITGB1-DT targets (ATN-161, Firategrast, SB-683698, dabigatran-etexilate, and tranexamic-acid). CONCLUSION These analyses proposed that ITGB1-DT could be employed as a differentiated factor to identify breast tumor tissues in healthy samples. Besides this, Firategrast could be introduced as a potential remedial agent for breast cancer patients. Overall, from the analysis of a proteomics dataset, an integrative map was generated, and a novel biomarker that may have been implicated in the early detection of BC was introduced.
Collapse
Affiliation(s)
- Zahra Yousefian Naeini
- Department of Cellular and Molecular, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sedighe Arbabian
- Department of Cellular and Molecular, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
42
|
Khan S, Lokman NA, Oehler MK, Ricciardelli C, Yool AJ. Reducing the Invasiveness of Low- and High-Grade Endometrial Cancers in Both Primary Human Cancer Biopsies and Cell Lines by the Inhibition of Aquaporin-1 Channels. Cancers (Basel) 2023; 15:4507. [PMID: 37760476 PMCID: PMC10526386 DOI: 10.3390/cancers15184507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporin (AQP) channels in endometrial cancer (EC) cells are of interest as pharmacological targets to reduce tumor progression. A panel of compounds, including AQP1 ion channel inhibitors (AqB011 and 5-(phenoxymethyl) furan-2-carbaldehyde, PMFC), were used to test the hypothesis that inhibition of key AQPs can limit the invasiveness of low- and high-grade EC cells. We evaluated the effects on transwell migration in EC cell lines (Ishikawa, MFE-280) and primary EC cells established from surgical tissues (n = 8). Quantitative PCR uncovered classes of AQPs not previously reported in EC that are differentially regulated by hormonal signaling. With estradiol, Ishikawa showed increased AQPs 5, 11, 12, and decreased AQPs 0 and 4; MFE-280 showed increased AQPs 0, 1, 3, 4, 8, and decreased AQP11. Protein expression was confirmed by Western blot and immunocytochemistry. AQPs 1, 4, and 11 were colocalized with plasma membrane marker; AQP8 was intracellular in Ishikawa and not detectable in MFE-280. AQP1 ion channel inhibitors (AqB011; PMFC) reduced invasiveness of EC cell lines in transwell chamber and spheroid dispersal assays. In Ishikawa cells, transwell invasiveness was reduced ~41% by 80 µM AqB011 and ~55% by 0.5 mM 5-PMFC. In MFE-280, 5-PMFC inhibited invasion by ~77%. In contrast, proposed inhibitors of AQP water pores (acetazolamide, ginsenoside, KeenMind, TGN-020, IMD-0354) were not effective. Treatments of cultured primary EC cells with AqB011 or PMFC significantly reduced the invasiveness of both low- and high-grade primary EC cells in transwell chambers. We confirmed the tumors expressed moderate to high levels of AQP1 detected by immunohistochemistry, whereas expression levels of AQP4, AQP8, and AQP11 were substantially lower. The anti-invasive potency of AqB011 treatment for EC tumor tissues showed a positive linear correlation with AQP1 expression levels. In summary, AQP1 ion channels are important for motility in both low- and high-grade EC subtypes. Inhibition of AQP1 is a promising strategy to inhibit EC invasiveness and improve patient outcomes.
Collapse
Affiliation(s)
- Sidra Khan
- School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Noor A. Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
| | - Martin K. Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (N.A.L.); (M.K.O.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5000, Australia;
| |
Collapse
|
43
|
Yuan L, Xiao Z, Lu R. Hypoxanthine guanine phosphoribosyltransferase 1, a target of miR-125b-5p, promotes cell proliferation and invasion in head and neck squamous cell carcinoma. Heliyon 2023; 9:e20174. [PMID: 37810145 PMCID: PMC10559962 DOI: 10.1016/j.heliyon.2023.e20174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The mechanism of hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) upregulation and its function in head and neck squamous cell carcinoma (HNSCC) remains obscure. Herein, the expression and function of HPRT1 and the mechanism underlying its upregulation in HNSCC were explored. Firstly, the expression of HPRT1 and its prognostic values were simultaneously validated using bioinformatic analysis and quantitative real-time PCR (qRT-PCR), and immunohistochemistry staining with local HNSCC samples. The effects of HPRT1 knockdown on proliferation and invasion of HNSCC cells were detected using cell counting kit-8 (CCK-8), plate clone formation, Transwell invasion, nude mouse xenograft model assays. Moreover, the miRNA targeting HPRT1 was validated using dual-luciferase report assay, qRT-PCR and Western blot analysis. The functions of miRNA targeting HPRT1 and its dependence on HPRT1 were further investigated in HNSCC. The results indicated that HPRT1 was highly expressed in HNSCC tissues and cells, which positively correlated with advanced tumor progression and predicted poor prognosis in patients with HNSCC. HPRT1 knockdown markedly inhibited proliferation and invasion of HNSCC cells both in vitro and in vivo. MiR-125b-5p, which was downregulated and positively correlated with a favorable outcome for patients, directly targeted and downregulated HPRT1 expression, and subsequently suppressed cell proliferation and invasion in HNSCC. Collectively, the present study demonstrates that HPRT1 upregulation, at least partially caused by miR-125b-5p downregulation, could promote the malignant progression of HNSCC, highlighting the potential application of the miR-125b-5p/HPRT1 axis as a novel indicator and target in the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqiang Xiao
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruohuang Lu
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Li MX, Wu XT, Jing WQ, Hou WK, Hu S, Yan W. Inosine enhances tumor mitochondrial respiration by inducing Rag GTPases and nascent protein synthesis under nutrient starvation. Cell Death Dis 2023; 14:492. [PMID: 37532694 PMCID: PMC10397262 DOI: 10.1038/s41419-023-06017-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Metabolic heterogeneity of tumor microenvironment (TME) is a hallmark of cancer and a big barrier to cancer treatment. Cancer cells display diverse capacities to utilize alternative carbon sources, including nucleotides, under poor nutrient circumstances. However, whether and how purine, especially inosine, regulates mitochondrial metabolism to buffer nutrient starvation has not been well-defined yet. Here, we identify the induction of 5'-nucleotidase, cytosolic II (NT5C2) gene expression promotes inosine accumulation and maintains cancer cell survival in the nutrient-poor region. Inosine elevation further induces Rag GTPases abundance and mTORC1 signaling pathway by enhancing transcription factor SP1 level in the starved tumor. Besides, inosine supplementary stimulates the synthesis of nascent TCA cycle enzymes, including citrate synthesis (CS) and aconitase 1 (ACO1), to further enhance oxidative phosphorylation of breast cancer cells under glucose starvation, leading to the accumulation of iso-citric acid. Inhibition of the CS activity or knockdown of ACO1 blocks the rescue effect of inosine on cancer survival under starvation. Collectively, our finding highlights the vital signal role of inosine linking mitochondrial respiration and buffering starvation, beyond serving as direct energy carriers or building blocks for genetic code in TME, shedding light on future cancer treatment by targeting inosine metabolism.
Collapse
Affiliation(s)
- Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Ting Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Qiang Jing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Kui Hou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
45
|
Serrano-Villar S, Tincati C, Raju SC, Sáenz JS, Moreno E, Bargiela R, Cabello-Ubeda A, Sendagorta E, Kurz A, Perez Molina JA, de Benito A, Hov JR, Fernandez-Lopez L, Muriel A, Del Campo R, Moreno S, Trøseid M, Seifert J, Ferrer M. Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer. Nat Med 2023; 29:1738-1749. [PMID: 37464040 DOI: 10.1038/s41591-023-02407-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/18/2023] [Indexed: 07/20/2023]
Abstract
Human papillomavirus can cause preinvasive, high-grade squamous intraepithelial lesions (HSILs) as precursors to cancer in the anogenital area, and the microbiome is suggested to be a contributing factor. Men who have sex with men (MSM) living with human immunodeficiency virus (HIV) have a high risk of anal cancer, but current screening strategies for HSIL detection lack specificity. Here, we investigated the anal microbiome to improve HSIL screening. We enrolled participants living with HIV, divided into a discovery (n = 167) and validation cohort (n = 46), and who were predominantly (93.9%) cisgender MSM undergoing HSIL screening with high-resolution anoscopy and anal biopsies. We identified no microbiome composition signatures associated with HSILs, but elevated levels of microbiome-encoded proteins producing succinyl coenzyme A and cobalamin were significantly associated with HSILs in both cohorts. Measurement of these candidate biomarkers alone in anal cytobrushes outperformed anal cytology as a diagnostic indicator for HSILs, increasing the sensitivity from 91.2% to 96.6%, the specificity from 34.1% to 81.8%, and reclassifying 82% of false-positive results as true negatives. We propose that these two microbiome-derived biomarkers may improve the current strategy of anal cancer screening.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, Presidio Ospedaliero San Paolo, University of Milan, Milan, Italy
| | - Sajan C Raju
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Johan S Sáenz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Alfonso Cabello-Ubeda
- Department of Infectious Diseases, IIS-FJD, Hospital Universitario Fundación Jiménez Diaz, Madrid, Spain
| | - Elena Sendagorta
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
- Department of Dermatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Alina Kurz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jose A Perez Molina
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amparo de Benito
- Department of Pathology, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian PSC Research Center and Section of Gastroenterology and Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Alfonso Muriel
- Biostatistics Unit, IRYCIS, Hospital Universitario Ramón y Cajal, CIBERESP, Universidad de Alcalá, Madrid, Spain
| | - Rosa Del Campo
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| |
Collapse
|
46
|
Zhou M, Bao S, Gong T, Wang Q, Sun J, Li J, Lu M, Sun W, Su J, Chen H, Liu Z. The transcriptional landscape and diagnostic potential of long non-coding RNAs in esophageal squamous cell carcinoma. Nat Commun 2023; 14:3799. [PMID: 37365153 PMCID: PMC10293239 DOI: 10.1038/s41467-023-39530-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically relevant biomarkers for early detection. Here, we comprehensively characterized the transcriptional landscape of long non-coding RNAs (lncRNAs) in paired tumor and normal tissue specimens from 93 ESCC patients, and identified six key malignancy-specific lncRNAs that were integrated into a Multi-LncRNA Malignancy Risk Probability model (MLMRPscore). The MLMRPscore performed robustly in distinguishing ESCC from normal controls in multiple in-house and external multicenter validation cohorts, including early-stage I/II cancer. In addition, five candidate lncRNAs were confirmed to have non-invasive diagnostic potential in our institute plasma cohort, showing superior or comparable diagnostic accuracy to current clinical serological markers. Overall, this study highlights the profound and robust dysregulation of lncRNAs in ESCC and demonstrates the potential of lncRNAs as non-invasive biomarkers for the early detection of ESCC.
Collapse
Affiliation(s)
- Meng Zhou
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Siqi Bao
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Jie Sun
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Jiaqi Li
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, P. R. China
| | - Minyi Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Wanyuan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Jianzhong Su
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, P. R. China.
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China.
- Key Laboratory of Cancer and Microbiome, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China.
| |
Collapse
|
47
|
Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen Res 2023; 18:996-1003. [PMID: 36254980 PMCID: PMC9827765 DOI: 10.4103/1673-5374.355748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022] Open
Abstract
Nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
48
|
Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207366. [PMID: 36951547 PMCID: PMC10214247 DOI: 10.1002/advs.202207366] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
Gut microbiota-derived metabolites are key hubs connecting the gut microbiome and cancer progression, primarily by remodeling the tumor microenvironment and regulating key signaling pathways in cancer cells and multiple immune cells. The use of microbial metabolites in radiotherapy and chemotherapy mitigates the severe side effects from treatment and improves the efficacy of treatment. Immunotherapy combined with microbial metabolites effectively activates the immune system to kill tumors and overcomes drug resistance. Consequently, various novel strategies have been developed to modulate microbial metabolites. Manipulation of genes involved in microbial metabolism using synthetic biology approaches directly affects levels of microbial metabolites, while fecal microbial transplantation and phage strategies affect levels of microbial metabolites by altering the composition of the microbiome. However, some microbial metabolites harbor paradoxical functions depending on the context (e.g., type of cancer). Furthermore, the metabolic effects of microorganisms on certain anticancer drugs such as irinotecan and gemcitabine, render the drugs ineffective or exacerbate their adverse effects. Therefore, a personalized and comprehensive consideration of the patient's condition is required when employing microbial metabolites to treat cancer. The purpose of this review is to summarize the correlation between gut microbiota-derived metabolites and cancer, and to provide fresh ideas for future scientific research.
Collapse
Affiliation(s)
- Qiqing Yang
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qinghui Zheng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Xuli Meng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
- Center for Infection & Immunity of International Institutes of Medicine The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
- Cancer CenterZhejiang UniversityHangzhou310058China
| |
Collapse
|
49
|
Shinde SS, Ahmed S, Malik JA, Hani U, Khanam A, Ashraf Bhat F, Ahmad Mir S, Ghazwani M, Wahab S, Haider N, Almehizia AA. Therapeutic Delivery of Tumor Suppressor miRNAs for Breast Cancer Treatment. BIOLOGY 2023; 12:467. [PMID: 36979159 PMCID: PMC10045434 DOI: 10.3390/biology12030467] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The death rate from breast cancer (BC) has dropped due to early detection and sophisticated therapeutic options, yet drug resistance and relapse remain barriers to effective, systematic treatment. Multiple mechanisms underlying miRNAs appear crucial in practically every aspect of cancer progression, including carcinogenesis, metastasis, and drug resistance, as evidenced by the elucidation of drug resistance. Non-coding RNAs called microRNAs (miRNAs) attach to complementary messenger RNAs and degrade them to inhibit the expression and translation to proteins. Evidence suggests that miRNAs play a vital role in developing numerous diseases, including cancer. They affect genes critical for cellular differentiation, proliferation, apoptosis, and metabolism. Recently studies have demonstrated that miRNAs serve as valuable biomarkers for BC. The contrast in the expression of miRNAs in normal tissue cells and tumors suggest that miRNAs are involved in breast cancer. The important aspect behind cancer etiology is the deregulation of miRNAs that can specifically influence cellular physiology. The main objective of this review is to emphasize the role and therapeutic capacity of tumor suppressor miRNAs in BC and the advancement in the delivery system that can deliver miRNAs specifically to cancerous cells. Various approaches are used to deliver these miRNAs to the cancer cells with the help of carrier molecules, like nanoparticles, poly D, L-lactic-co-glycolic acid (PLGA) particles, PEI polymers, modified extracellular vesicles, dendrimers, and liposomes. Additionally, we discuss advanced strategies of TS miRNA delivery techniques such as viral delivery, self-assembled RNA-triple-helix hydrogel drug delivery systems, and hyaluronic acid/protamine sulfate inter-polyelectrolyte complexes. Subsequently, we discuss challenges and prospects on TS miRNA therapeutic delivery in BC management so that miRNAs will become a routine technique in developing individualized patient profiles.
Collapse
Affiliation(s)
- Sonali S. Shinde
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
- Department of Biomedical Engineering, Indian Institute of Technology, Rupnagar 140001, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afreen Khanam
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110062, India
| | | | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, Hazratbal, Srinagar 190006, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
50
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|