1
|
Wang AG, Son M, Gorin A, Kenna E, Padhi A, Keisham B, Schauer A, Hoffmann A, Tay S. Macrophage memory emerges from coordinated transcription factor and chromatin dynamics. Cell Syst 2025; 16:101171. [PMID: 39938520 DOI: 10.1016/j.cels.2025.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
Cells of the immune system operate in dynamic microenvironments where the timing, concentration, and order of signaling molecules constantly change. Despite this complexity, immune cells manage to communicate accurately and control inflammation and infection. It is unclear how these dynamic signals are encoded and decoded and if individual cells retain the memory of past exposure to inflammatory molecules. Here, we use live-cell analysis, ATAC sequencing, and an in vivo model of sepsis to show that sequential inflammatory signals induce memory in individual macrophages through reprogramming the nuclear factor κB (NF-κB) network and the chromatin accessibility landscape. We use transcriptomic profiling and deep learning to show that transcription factor and chromatin dynamics coordinate fine-tuned macrophage responses to new inflammatory signals. This work demonstrates how macrophages retain the memory of previous signals despite single-cell variability and elucidates the mechanisms of signal-induced memory in dynamic inflammatory conditions like sepsis.
Collapse
Affiliation(s)
- Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Aleksandr Gorin
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Abinash Padhi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Adam Schauer
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Bauer M, Ermolaeva M, Singer M, Wetzker R, Soares MP. Hormesis as an adaptive response to infection. Trends Mol Med 2024; 30:633-641. [PMID: 38744580 DOI: 10.1016/j.molmed.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Hormesis is a phenomenon whereby low-level stress can improve cellular, organ, or organismal fitness in response to a subsequent similar or other stress insult. Whereas hormesis is thought to contribute to the fitness benefits arising from symbiotic host-microbe interactions, the putative benefits of hormesis in host-pathogen interactions have yet to be explored. Hormetic responses have nonetheless been reported in experimental models of infection, a common feature of which is regulation of host mitochondrial function. We propose that these mitohormetic responses could be harnessed therapeutically to limit the severity of infectious diseases.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Maria Ermolaeva
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Miguel P Soares
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
3
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
4
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Tang R, He X, Wang R. Constructing maps between distinct cell fates and parametric conditions by systematic perturbations. Bioinformatics 2023; 39:btad624. [PMID: 37831895 PMCID: PMC10603594 DOI: 10.1093/bioinformatics/btad624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 09/10/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023] Open
Abstract
MOTIVATION Cell fate transitions are common in many developmental processes. Therefore, identifying the mechanisms behind them is crucial. Traditionally, due to complexity of networks and existence of plenty of kinetic parameters, dynamical analysis of biomolecular networks can only be performed by simultaneously perturbing a small number of parameters. Although many efforts have focused on how cell states change under specific perturbations, conversely, how to infer parametric conditions underlying distinct cell fates by systematic perturbations is less clear and needs to be further investigated. RESULTS In this article, we present a general computational method by integrating systematic perturbations, unsupervised clustering, principal component analysis, and fitting analysis. The method can be used to to construct maps between distinct cell fates and parametric conditions by systematic perturbations. In particular, there are no needs of accurate parameter measurements and occurrence of bifurcations to establish the maps. To validate feasibility and inference performance of the method, we use toggle switch, inner cell mass, and epithelial mesenchymal transition as model systems to show how the maps are constructed and how system parameters encode essential information on cell fates. The maps tell us how systematic perturbations drive cell fate decisions and transitions, and allow us to purposefully predict, manipulate, and even control cell states. The approach is especially helpful in understanding crucial roles of certain parameter combinations during fate transitions. We hope that the approach can provide us valuable information on parametric or perturbation conditions so some specific targets, e.g. directional differentiation, can be realized. AVAILABILITY AND IMPLEMENTATION No public data are used. The data we used are generated by randomly chosen values of model parameters in certain ranges, and the corresponding parameters are already attached in supplementary materials.
Collapse
Affiliation(s)
- Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Xinyu He
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
- Newtouch Center for Mathematics of Shanghai University, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Towriss M, MacVicar B, Ciernia AV. Modelling Microglial Innate Immune Memory In Vitro: Understanding the Role of Aerobic Glycolysis in Innate Immune Memory. Int J Mol Sci 2023; 24:8967. [PMID: 37240311 PMCID: PMC10219556 DOI: 10.3390/ijms24108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident macrophages of the central nervous system, play important roles in maintaining brain homeostasis and facilitating the brain's innate immune responses. Following immune challenges microglia also retain immune memories, which can alter responses to secondary inflammatory challenges. Microglia have two main memory states, training and tolerance, which are associated with increased and attenuated expression of inflammatory cytokines, respectively. However, the mechanisms differentiating these two distinct states are not well understood. We investigated mechanisms underlying training versus tolerance memory paradigms in vitro in BV2 cells using B-cell-activating factor (BAFF) or bacterial lipopolysaccharide (LPS) as a priming stimulus followed by LPS as a second stimulus. BAFF followed by LPS showed enhanced responses indicative of priming, whereas LPS followed by LPS as the second stimulus caused reduced responses suggestive of tolerance. The main difference between the BAFF versus the LPS stimulus was the induction of aerobic glycolysis by LPS. Inhibiting aerobic glycolysis during the priming stimulus using sodium oxamate prevented the establishment of the tolerized memory state. In addition, tolerized microglia were unable to induce aerobic glycolysis upon LPS restimulus. Therefore, we conclude that aerobic glycolysis triggered by the first LPS stimulus was a critical step in the induction of innate immune tolerance.
Collapse
Affiliation(s)
- Morgan Towriss
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brian MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Resiliac J, Rohlfing M, Santoro J, Hussain SRA, Grayson MH. Low-Dose Lipopolysaccharide Protects from Lethal Paramyxovirus Infection in a Macrophage- and TLR4-Dependent Process. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:348-355. [PMID: 36480273 PMCID: PMC9851983 DOI: 10.4049/jimmunol.2200604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 01/03/2023]
Abstract
Respiratory diseases are a major public health burden and a leading cause of death and disability in the world. Understanding antiviral immune responses is crucial to alleviate morbidity and mortality associated with these respiratory viral infections. Previous data from human and animal studies suggested that pre-existing atopy may provide some protection against severe disease from a respiratory viral infection. However, the mechanism(s) of protection is not understood. Low-dose LPS has been shown to drive an atopic phenotype in mice. In addition, LPS has been shown in vitro to have an antiviral effect. We examined the effect of LPS treatment on mortality to the murine parainfluenza virus Sendai virus. Low-dose LPS treatment 24 h before inoculation with a normally lethal dose of Sendai virus greatly reduced death. This protection was associated with a reduced viral titer and reduced inflammatory cytokine production in the airways. The administration of LPS was associated with a marked increase in lung neutrophils and macrophages. Depletion of neutrophils failed to reverse the protective effect of LPS; however, depletion of macrophages reversed the protective effect of LPS. Further, we demonstrate that the protective effect of LPS depends on type I IFN and TLR4-MyD88 signaling. Together, these studies demonstrate pretreatment with low-dose LPS provides a survival advantage against a severe respiratory viral infection through a macrophage-, TLR4-, and MyD88-dependent pathway.
Collapse
Affiliation(s)
- Jenny Resiliac
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, Ohio
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Michelle Rohlfing
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Jennifer Santoro
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Syed-Rehan A. Hussain
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Mitchell H. Grayson
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH
| |
Collapse
|
8
|
Wang AG, Son M, Kenna E, Thom N, Tay S. NF-κB memory coordinates transcriptional responses to dynamic inflammatory stimuli. Cell Rep 2022; 40:111159. [PMID: 35977475 PMCID: PMC10794069 DOI: 10.1016/j.celrep.2022.111159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many scenarios in cellular communication require cells to interpret multiple dynamic signals. It is unclear how exposure to inflammatory stimuli alters transcriptional responses to subsequent stimulus. Using high-throughput microfluidic live-cell analysis, we systematically profile the NF-κB response to different signal sequences in single cells. We find that NF-κB dynamics store the short-term history of received signals: depending on the prior pathogenic or cytokine signal, the NF-κB response to subsequent stimuli varies from no response to full activation. Using information theory, we reveal that these stimulus-dependent changes in the NF-κB response encode and reflect information about the identity and dose of the prior stimulus. Small-molecule inhibition, computational modeling, and gene expression profiling show that this encoding is driven by stimulus-dependent engagement of negative feedback modules. These results provide a model for how signal transduction networks process sequences of inflammatory stimuli to coordinate cellular responses in complex dynamic environments.
Collapse
Affiliation(s)
- Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Thom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Geng S, Pradhan K, Li L. Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease. Handb Exp Pharmacol 2022; 276:23-41. [PMID: 34085119 DOI: 10.1007/164_2021_485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Zubair K, You C, Kwon G, Kang K. Two Faces of Macrophages: Training and Tolerance. Biomedicines 2021; 9:biomedicines9111596. [PMID: 34829825 PMCID: PMC8615871 DOI: 10.3390/biomedicines9111596] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are present in almost all body tissues. They detect and quickly respond to “environmental signals” in the tissue. Macrophages have been associated with numerous beneficial roles, such as host defense, wound healing, and tissue regeneration; however, they have also been linked to the development of diverse illnesses, particularly cancers and autoimmune disorders. Complex signaling, epigenetic, and metabolic pathways drive macrophage training and tolerance. The induced intracellular program differs depending on the type of initial stimuli and the tissue microenvironment. Due to the essential roles of macrophages in homeostatic and their association with the pathogenesis of inflammatory diseases, recent studies have investigated the molecular mechanisms of macrophage training and tolerance. This review discusses the role of factors involved in macrophage training and tolerance, along with the current studies in human diseases.
Collapse
|
11
|
Pradhan K, Yi Z, Geng S, Li L. Development of Exhausted Memory Monocytes and Underlying Mechanisms. Front Immunol 2021; 12:778830. [PMID: 34777396 PMCID: PMC8583871 DOI: 10.3389/fimmu.2021.778830] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pathogenic inflammation and immuno-suppression are cardinal features of exhausted monocytes increasingly recognized in septic patients and murine models of sepsis. However, underlying mechanisms responsible for the generation of exhausted monocytes have not been addressed. In this report, we examined the generation of exhausted primary murine monocytes through prolonged and repetitive challenges with high dose bacterial endotoxin lipopolysaccharide (LPS). We demonstrated that repetitive LPS challenges skew monocytes into the classically exhausted Ly6Chi population, and deplete the homeostatic non-classical Ly6Clo population, reminiscent of monocyte exhaustion in septic patients. scRNAseq analyses confirmed the expansion of Ly6Chi monocyte cluster, with elevation of pathogenic inflammatory genes previously observed in human septic patients. Furthermore, we identified CD38 as an inflammatory mediator of exhausted monocytes, associated with a drastic depletion of cellular NAD+; elevation of ROS; and compromise of mitochondria respiration, representative of septic monocytes. Mechanistically, we revealed that STAT1 is robustly elevated and sustained in LPS-exhausted monocytes, dependent upon the TRAM adaptor of the TLR4 pathway. TRAM deficient monocytes are largely resistant to LPS-mediated exhaustion, and retain the non-classical homeostatic features. Together, our current study addresses an important yet less-examined area of monocyte exhaustion, by providing phenotypic and mechanistic insights regarding the generation of exhausted monocytes.
Collapse
Affiliation(s)
- Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Lee J, Geng S, Li S, Li L. Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits. Front Immunol 2021; 12:627036. [PMID: 33708217 PMCID: PMC7940189 DOI: 10.3389/fimmu.2021.627036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation of monocytes, which could lead to inflammatory diseases including atherosclerosis and metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compound which can reduce the inflammation caused by SD-LPS. To understand the gene regulatory networks of these processes, we have generated scRNA-seq data from mouse monocytes treated with these compounds and identified 11 novel cell clusters. We have developed a machine learning method to integrate scRNA-seq, ATAC-seq, and binding motifs to characterize gene regulatory networks underlying these cell clusters. Using guided regularized random forest and feature selection, our method achieved high performance and outperformed a traditional enrichment-based method in selecting candidate regulatory genes. Our method is particularly efficient in selecting a few candidate genes to explain observed expression pattern. In particular, among 531 candidate TFs, our method achieves an auROC of 0.961 with only 10 motifs. Finally, we found two novel subpopulations of monocyte cells in response to SD-LPS and we confirmed our analysis using independent flow cytometry experiments. Our results suggest that our new machine learning method can select candidate regulatory genes as potential targets for developing new therapeutics against low grade inflammation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Song Li
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
13
|
Abstract
The epithelial-mesenchymal transition (EMT) and the corresponding reverse process, mesenchymal-epithelial transition (MET), are dynamic and reversible cellular programs orchestrated by many changes at both biochemical and morphological levels. A recent surge in identifying the molecular mechanisms underlying EMT/MET has led to the development of various mathematical models that have contributed to our improved understanding of dynamics at single-cell and population levels: (a) multi-stability-how many phenotypes can cells attain during an EMT/MET?, (b) reversibility/irreversibility-what time and/or concentration of an EMT inducer marks the "tipping point" when cells induced to undergo EMT cannot revert?, (c) symmetry in EMT/MET-do cells take the same path when reverting as they took during the induction of EMT?, and (d) non-cell autonomous mechanisms-how does a cell undergoing EMT alter the tendency of its neighbors to undergo EMT? These dynamical traits may facilitate a heterogenous response within a cell population undergoing EMT/MET. Here, we present a few examples of designing different mathematical models that can contribute to decoding EMT/MET dynamics.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
14
|
Muthukuru M. Commentary: Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Front Immunol 2020; 10:2932. [PMID: 31921186 PMCID: PMC6931266 DOI: 10.3389/fimmu.2019.02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manoj Muthukuru
- Health Sciences Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Abstract
Chronic inflammation and fibrosis can result from inappropriately activated immune responses that are mediated by macrophages. Macrophages can acquire memory-like characteristics in response to antigen exposure. Here, we show the effect of BCG or low-dose LPS stimulation on macrophage phenotype, cytokine production, chromatin and metabolic modifications. Low-dose LPS training alleviates fibrosis and inflammation in a mouse model of systemic sclerosis (SSc), whereas BCG-training exacerbates disease in this model. Adoptive transfer of low-dose LPS-trained or BCG-trained macrophages also has beneficial or harmful effects, respectively. Furthermore, coculture with low-dose LPS trained macrophages reduces the fibro-inflammatory profile of fibroblasts from mice and patients with SSc, indicating that trained immunity might be a phenomenon that can be targeted to treat SSc and other autoimmune and inflammatory fibrotic disorders. Innate immune cells can be trained by some stimuli or pathogen exposures to be metabolically and epigenetically altered such that they have different responses to subsequent exposures. Here the authors show that low-dose LPS trained macrophages and BCG-trained macrophages have opposing effects on fibrosis and inflammation in the context of systemic sclerosis.
Collapse
|
16
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
17
|
Ye Y, Kang X, Bailey J, Li C, Hong T. An enriched network motif family regulates multistep cell fate transitions with restricted reversibility. PLoS Comput Biol 2019; 15:e1006855. [PMID: 30845219 PMCID: PMC6424469 DOI: 10.1371/journal.pcbi.1006855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/19/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Multistep cell fate transitions with stepwise changes of transcriptional profiles are common to many developmental, regenerative and pathological processes. The multiple intermediate cell lineage states can serve as differentiation checkpoints or branching points for channeling cells to more than one lineages. However, mechanisms underlying these transitions remain elusive. Here, we explored gene regulatory circuits that can generate multiple intermediate cellular states with stepwise modulations of transcription factors. With unbiased searching in the network topology space, we found a motif family containing a large set of networks can give rise to four attractors with the stepwise regulations of transcription factors, which limit the reversibility of three consecutive steps of the lineage transition. We found that there is an enrichment of these motifs in a transcriptional network controlling the early T cell development, and a mathematical model based on this network recapitulates multistep transitions in the early T cell lineage commitment. By calculating the energy landscape and minimum action paths for the T cell model, we quantified the stochastic dynamics of the critical factors in response to the differentiation signal with fluctuations. These results are in good agreement with experimental observations and they suggest the stable characteristics of the intermediate states in the T cell differentiation. These dynamical features may help to direct the cells to correct lineages during development. Our findings provide general design principles for multistep cell linage transitions and new insights into the early T cell development. The network motifs containing a large family of topologies can be useful for analyzing diverse biological systems with multistep transitions. The functions of cells are dynamically controlled in many biological processes including development, regeneration and disease progression. Cell fate transition, or the switch of cellular functions, often involves multiple steps. The intermediate stages of the transition provide the biological systems with the opportunities to regulate the transitions in a precise manner. These transitions are controlled by key regulatory genes of which the expression shows stepwise patterns, but how the interactions of these genes can determine the multistep processes was unclear. Here, we present a comprehensive analysis on the design principles of gene circuits that govern multistep cell fate transition. We found a large network family with common structural features that can generate systems with the ability to control three consecutive steps of the transition. We found that this type of networks is enriched in a gene circuit controlling the development of T lymphocyte, a crucial type of immune cells. We performed mathematical modeling using this gene circuit and we recapitulated the stepwise and irreversible loss of stem cell properties of the developing T lymphocytes. Our findings can be useful to analyze a wide range of gene regulatory networks controlling multistep cell fate transitions.
Collapse
Affiliation(s)
- Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Xin Kang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Jordan Bailey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, United States of America
| |
Collapse
|
18
|
Penkov S, Mitroulis I, Hajishengallis G, Chavakis T. Immunometabolic Crosstalk: An Ancestral Principle of Trained Immunity? Trends Immunol 2018; 40:1-11. [PMID: 30503793 DOI: 10.1016/j.it.2018.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023]
Abstract
Memory was traditionally considered an exclusive hallmark of adaptive immunity. This dogma was challenged by recent reports that myeloid cells can retain 'memory' of earlier challenges, enabling them to respond strongly to a secondary stimulus. This process, designated 'trained immunity', is initiated by modulation of precursors of myeloid cells in the bone marrow. The ancestral innate immune system of lower organisms (e.g., Caenorhabditis elegans) can build long-lasting memory that modifies responses to secondary pathogen encounters. We posit that changes in cellular metabolism may be a common denominator of innate immune memory from lower animals to mammals. We discuss evidence from C. elegans and murine/human systems supporting the concept of an ancestral principle regulating innate immune memory by controlling cellular metabolism.
Collapse
Affiliation(s)
- Sider Penkov
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; Equal contribution.
| | - Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany of the German Cancer Research Center (DKFZ), Heidelberg, Germany, and of the Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, and of the Helmholtz Association/Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; Department of Haematology, Democritus University of Thrace, Alexandroupolis, Greece; Equal contribution
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany of the German Cancer Research Center (DKFZ), Heidelberg, Germany, and of the Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany, and of the Helmholtz Association/Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
19
|
Tyson JJ, Laomettachit T, Kraikivski P. Modeling the dynamic behavior of biochemical regulatory networks. J Theor Biol 2018; 462:514-527. [PMID: 30502409 DOI: 10.1016/j.jtbi.2018.11.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Strategies for modeling the complex dynamical behavior of gene/protein regulatory networks have evolved over the last 50 years as both the knowledge of these molecular control systems and the power of computing resources have increased. Here, we review a number of common modeling approaches, including Boolean (logical) models, systems of piecewise-linear or fully non-linear ordinary differential equations, and stochastic models (including hybrid deterministic/stochastic approaches). We discuss the pro's and con's of each approach, to help novice modelers choose a modeling strategy suitable to their problem, based on the type and bounty of available experimental information. We illustrate different modeling strategies in terms of some abstract network motifs, and in the specific context of cell cycle regulation.
Collapse
Affiliation(s)
- John J Tyson
- Department of Biological Sciences, Virginia Tech, 5088 Derring Hall, Blacksburg VA 24061, USA; Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg VA 24061, USA.
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
| | - Pavel Kraikivski
- Department of Biological Sciences, Virginia Tech, 5088 Derring Hall, Blacksburg VA 24061, USA; Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg VA 24061, USA
| |
Collapse
|
20
|
Modeling the Bistable Dynamics of the Innate Immune System. Bull Math Biol 2018; 81:256-276. [PMID: 30387078 DOI: 10.1007/s11538-018-0527-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
The size of primary challenge with lipopolysaccharide induces changes in the innate immune cells phenotype between pro-inflammatory and pro-tolerant states when facing a secondary lipopolysaccharide challenge. To determine the molecular mechanisms governing this differential response, we propose a mathematical model for the interaction between three proteins involved in the immune cell decision making: IRAK-1, PI3K, and RelB. The mutual inhibition of IRAK-1 and PI3K in the model leads to bistable dynamics. By using the levels of RelB as indicative of strength of the immune responses, we connect the size of different primary lipopolysaccharide doses to the differential phenotypical outcomes following a secondary challenge. We further predict under what circumstances the primary LPS dose does not influence the response to a secondary challenge. Our results can be used to guide treatments for patients with either autoimmune disease or compromised immune system.
Collapse
|
21
|
Liu D, Cao S, Zhou Y, Xiong Y. Recent advances in endotoxin tolerance. J Cell Biochem 2018; 120:56-70. [PMID: 30246452 DOI: 10.1002/jcb.27547] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Endotoxin tolerance is defined as a reduced capacity of a cell to respond endotoxin (lipopolysaccharide, LPS) challenge after an initial encounter with endotoxin in advance. The body becomes tolerant to subsequent challenge with a lethal dose of endotoxin and cytokines release and cell/tissue damage induced by inflammatory reaction are significantly reduced in the state of endotoxin tolerance. The main characteristics of endotoxin tolerance are downregulation of inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and C-X-C motif chemokine 10 (CXCL10) and upregulation of anti-inflammatory cytokines such as IL-10 and transforming growth factor β (TGF-β). Therefore, endotoxin tolerance is often regarded as the regulatory mechanism of the host against excessive inflammation. Endotoxin tolerance is a complex pathophysiological process and involved in multiple cellular signal pathways, receptor alterations, and biological molecules. However, the exact mechanism remains elusive up to date. To better understand the underlying cellular and molecular mechanisms of endotoxin tolerance, it is crucial to investigate the comprehensive cellular signal pathways, signaling proteins, cell surface molecules, proinflammatory and anti-inflammatory cytokines, and other mediators. Endotoxin tolerance plays an important role in reducing the mortality of sepsis, endotoxin shock, and other endotoxin-related diseases. Recent reports indicated that endotoxin tolerance is also related to other diseases such as cystic fibrosis, acute coronary syndrome, liver ischemia-reperfusion injury, and cancer. The aim of this review is to discuss the recent advances in endotoxin tolerance mainly based on the cellular and molecular mechanisms by outline the current state of the knowledge of the involvement of the toll-like receptor 4 (TLR4) signaling pathways, negative regulate factor, microRNAs, apoptosis, chromatin modification, and gene reprogramming of immune cells in endotoxin tolerance. We hope to provide a new idea and scientific basis for the rational treatment of endotoxin-related diseases such as endotoxemia, sepsis, and endotoxin shock clinically.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW ARDS is a severe pulmonary disease characterized by inflammation. However, inflammation-directed therapies have yet failed to improve the outcome in ARDS patients. One of the reasons may be the underestimated complexity of inflammation. Here, we summarize recent insights into the complex interrelations between inflammatory circuits. RECENT FINDINGS Gene expression analysis from animal models or from patients with ARDS, sepsis or trauma show an enormous number of differentially expressed genes with highly significant overlaps between the various conditions. These similarities, however, should not obscure the complexity of inflammation. We suggest to consider inflammation in ARDS as a system controlled by scale-free networks of genome-wide molecular interaction with hubs (e.g. NFκB, C/EBPβ, ATF3), exhibiting nonlinear emergence and the ability to adapt, meaning for instance that mild and life-threatening inflammation in ARDS are distinct processes. In order to comprehend this complex system, it seems necessary to combine model-driven simulations, data-driven modelling and hypothesis-driven experimental studies. Recent experimental studies have illustrated how several regulatory circuits interact during pulmonary inflammation, including the resolution of inflammation, the inflammasome, autophagy and apoptosis. SUMMARY We suggest that therapeutic interventions in ARDS should be based on a systems approach to inflammation.
Collapse
|
23
|
Bauer M, Weis S, Netea MG, Wetzker R. Remembering Pathogen Dose: Long-Term Adaptation in Innate Immunity. Trends Immunol 2018; 39:438-445. [PMID: 29716792 DOI: 10.1016/j.it.2018.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/14/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022]
Abstract
Recent investigations reveal memory-like adaptive responses of the innate immune system to sequential pathogen challenge. Of note, opposing effects that include both sensitization ('training') and desensitization ('tolerance') have been reported. While hitherto the nature of the pathogen was thought to be of prime importance, we propose that pathogen dose plays a key role in determining these opposing effects. Within this concept, training and tolerance of innate immune cells emerge as adaptive responses to increasing pathogen load. Furthermore, environmental stressors significantly impact the pathogen-induced responses of these innate immune cells. Therefore, we hypothesize that pathogens, like other stressors, provoke hormetic responses of the affected cells. This concept could explain the tight interplay of dose-related effects of pathogens and other stressors in infectious diseases.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.
| |
Collapse
|
24
|
Abstract
Fifty years after the first description of acute respiratory distress syndrome (ARDS), none of the many positive drug studies in animal models have been confirmed in clinical trials and translated into clinical practice. This bleak outcome of so many animal experiments shows how difficult it is to model ARDS. Lungs from patients are characterized by hyperinflammation, permeability edema, and hypoxemia; accordingly, this is what most models aim to reproduce. However, in animal models it is very easy to cause inflammation in the lungs, but difficult to cause hypoxemia. Often - and not unlike in patients - models with hypoxemia are accompanied by cardiovascular failure that necessitates fluid support and ventilation, raising the question as to the role of intensive care measures in models of ARDS. In our opinion, there are two major arguments in favor of modelling intensive care medicine in models of ARDS: (1) preventing death from shock; and (2) modelling ventilation and other ICU measures as a second hit. The preferable predictive endpoints in any model of ARDS remain unclear. At present, the best recommendation is to use endpoints that can be compared across studies (i.e. PaO2/FiO2 ratio, compliance, wet-to-dry weight ratio) rather than percentage data. Another important and often overlooked issue is the fact that the thermoneutral environmental temperatures for mice and rats are 30℃ and 28℃, respectively; thus, at room temperature (20-22℃) they suffer from cold stress with the associated significant metabolic changes. While, by definition, any model is an abstraction, we suggest that clinically relevant models of ARDS will have to closer recapitulate important properties of the disease while taking into account species-specific confounders.
Collapse
Affiliation(s)
- Stefan Uhlig
- 1 Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang M Kuebler
- 2 72126 Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Anderson WD, DeCicco D, Schwaber JS, Vadigepalli R. A data-driven modeling approach to identify disease-specific multi-organ networks driving physiological dysregulation. PLoS Comput Biol 2017; 13:e1005627. [PMID: 28732007 PMCID: PMC5521738 DOI: 10.1371/journal.pcbi.1005627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/14/2017] [Indexed: 02/02/2023] Open
Abstract
Multiple physiological systems interact throughout the development of a complex disease. Knowledge of the dynamics and connectivity of interactions across physiological systems could facilitate the prevention or mitigation of organ damage underlying complex diseases, many of which are currently refractory to available therapeutics (e.g., hypertension). We studied the regulatory interactions operating within and across organs throughout disease development by integrating in vivo analysis of gene expression dynamics with a reverse engineering approach to infer data-driven dynamic network models of multi-organ gene regulatory influences. We obtained experimental data on the expression of 22 genes across five organs, over a time span that encompassed the development of autonomic nervous system dysfunction and hypertension. We pursued a unique approach for identification of continuous-time models that jointly described the dynamics and structure of multi-organ networks by estimating a sparse subset of ∼12,000 possible gene regulatory interactions. Our analyses revealed that an autonomic dysfunction-specific multi-organ sequence of gene expression activation patterns was associated with a distinct gene regulatory network. We analyzed the model structures for adaptation motifs, and identified disease-specific network motifs involving genes that exhibited aberrant temporal dynamics. Bioinformatic analyses identified disease-specific single nucleotide variants within or near transcription factor binding sites upstream of key genes implicated in maintaining physiological homeostasis. Our approach illustrates a novel framework for investigating the pathogenesis through model-based analysis of multi-organ system dynamics and network properties. Our results yielded novel candidate molecular targets driving the development of cardiovascular disease, metabolic syndrome, and immune dysfunction. Complex diseases such as hypertension often involve maladaptive autonomic nervous system control over the cardiovascular, renal, hepatic, immune, and endocrine systems. We studied the pathogenesis of physiological homeostasis by examining the temporal dynamics of gene expression levels from multiple organs in an animal model of autonomic dysfunction characterized by cardiovascular disease, metabolic dysregulation, and immune system aberrations. We employed a data-driven modeling approach to jointly predict continuous gene expression dynamics and gene regulatory interactions across organs in the disease and control phenotypes. We combined our analyses of multi-organ gene regulatory network dynamics and connectivity with bioinformatic analyses of genetic mutations that could regulate gene expression. Our multi-organ modeling approach to investigate the mechanisms of complex disease pathogenesis revealed novel candidates for therapeutic interventions against the development and progression of complex diseases involving autonomic nervous system dysfunction.
Collapse
Affiliation(s)
- Warren D. Anderson
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Danielle DeCicco
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - James S. Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- * E-mail:
| |
Collapse
|
26
|
Lee C, Geng S, Zhang Y, Rahtes A, Li L. Programming and memory dynamics of innate leukocytes during tissue homeostasis and inflammation. J Leukoc Biol 2017; 102:719-726. [PMID: 28476750 DOI: 10.1189/jlb.6mr0117-027rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
The field of innate immunity is witnessing a paradigm shift regarding "memory" and "programming" dynamics. Past studies of innate leukocytes characterized them as first responders to danger signals with no memory. However, recent findings suggest that innate leukocytes, such as monocytes and neutrophils, are capable of "memorizing" not only the chemical nature but also the history and dosages of external stimulants. As a consequence, innate leukocytes can be dynamically programmed or reprogrammed into complex inflammatory memory states. Key examples of innate leukocyte memory dynamics include the development of primed and tolerant monocytes when "programmed" with a variety of inflammatory stimulants at varying signal strengths. The development of innate leukocyte memory may have far-reaching translational implications, as programmed innate leukocytes may affect the pathogenesis of both acute and chronic inflammatory diseases. This review intends to critically discuss some of the recent studies that address this emerging concept and its implication in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Christina Lee
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| | - Allison Rahtes
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; and
| |
Collapse
|
27
|
Anderson WD, Vadigepalli R. Modeling cytokine regulatory network dynamics driving neuroinflammation in central nervous system disorders. DRUG DISCOVERY TODAY. DISEASE MODELS 2017; 19:59-67. [PMID: 28947907 PMCID: PMC5609716 DOI: 10.1016/j.ddmod.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A central goal of pharmacological efforts to treat central nervous system (CNS) diseases is to develop systemic therapeutics that can restore CNS homeostasis. Achieving this goal requires a fundamental understanding of CNS function within the organismal context so as to leverage the mechanistic insights on the molecular basis of cellular and tissue functions towards novel drug target identification. The immune system constitutes a key link between the periphery and CNS, and many neurological disorders and neurodegenerative diseases are characterized by immune dysfunction. We review the salient opportunities for applying computational models to CNS disease research, and summarize relevant approaches from studies of immune function and neuroinflammation. While the accurate prediction of disease-related phenomena is often considered the central goal of modeling studies, we highlight the utility of computational modeling applications beyond making predictions, particularly for drawing counterintuitive insights from model-based analysis of multi-parametric and time series data sets.
Collapse
Affiliation(s)
- Warren D. Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Yuan R, Geng S, Li L. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands. Front Immunol 2016; 7:497. [PMID: 27891130 PMCID: PMC5103159 DOI: 10.3389/fimmu.2016.00497] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
Abstract
In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.
Collapse
Affiliation(s)
- Ruoxi Yuan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, VA , USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
29
|
Liu B, Liu Q, Yang L, Palaniappan SK, Bahar I, Thiagarajan PS, Ding JL. Innate immune memory and homeostasis may be conferred through crosstalk between the TLR3 and TLR7 pathways. Sci Signal 2016; 9:ra70. [PMID: 27405980 DOI: 10.1126/scisignal.aac9340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate the innate immune response through the production of cytokines. The innate immune response depends on the timing of encountering PAMPs, suggesting a short-term "memory." In particular, activation of TLR3 appears to prime macrophages for the subsequent activation of TLR7, which leads to synergistically increased production of cytokines. By developing a calibrated mathematical model for the kinetics of TLR3 and TLR7 pathway crosstalk and providing experimental validation, we demonstrated the involvement of the Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in controlling the synergistic production of cytokines. Signaling through this pathway played a dual role: It mediated the synergistic production of cytokines, thus boosting the immune response, and it also maintained homeostasis to avoid an excessive inflammatory response. Thus, we propose that the JAK-STAT pathway provides a cytokine rheostat mechanism, which enables macrophages to fine-tune their responses to multiple, temporally separated infection events involving the TLR3 and TLR7 pathways.
Collapse
Affiliation(s)
- Bing Liu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15220, USA
| | - Qian Liu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lei Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15220, USA
| | - P S Thiagarajan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
30
|
Yuan R, Geng S, Chen K, Diao N, Chu HW, Li L. Low-grade inflammatory polarization of monocytes impairs wound healing. J Pathol 2016; 238:571-83. [PMID: 26690561 DOI: 10.1002/path.4680] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/06/2015] [Accepted: 12/02/2015] [Indexed: 01/05/2023]
Abstract
Impaired wound healing often accompanies low-grade inflammatory conditions, during which circulating levels of subclinical super-low-dose endotoxin may persist. Low-grade inflammatory monocyte polarization may occur during chronic inflammation and deter effective wound repair. However, little is understood about the potential mechanisms of monocyte polarization by sustained insult of subclinical super-low-dose endotoxin. We observed that super-low-dose endotoxin preferentially programmes a low-grade inflammatory monocyte state in vitro and in vivo, as represented by the elevated population of CD11b(+) Ly6C(high) monocytes and sustained expression of CCR5. Mechanistically, super-low-dose endotoxin caused cellular stress, altered lysosome function and increased the transcription factor IRF5. TUDCA, a potent inhibitor of cellular stress, effectively blocked monocyte polarization and improved wound healing in mice injected with super-low-dose endotoxin. Our data revealed the polarization of low-grade inflammatory monocytes by sustained endotoxin challenge, its underlying mechanisms and a potential intervention strategy. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ruoxi Yuan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Keqiang Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Na Diao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
31
|
Dynamic modulation of innate immunity programming and memory. SCIENCE CHINA-LIFE SCIENCES 2016; 59:38-43. [DOI: 10.1007/s11427-015-4998-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/28/2015] [Indexed: 01/11/2023]
|
32
|
Day JD, Metes DM, Vodovotz Y. Mathematical Modeling of Early Cellular Innate and Adaptive Immune Responses to Ischemia/Reperfusion Injury and Solid Organ Allotransplantation. Front Immunol 2015; 6:484. [PMID: 26441988 PMCID: PMC4585194 DOI: 10.3389/fimmu.2015.00484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/07/2015] [Indexed: 12/22/2022] Open
Abstract
A mathematical model of the early inflammatory response in transplantation is formulated with ordinary differential equations. We first consider the inflammatory events associated only with the initial surgical procedure and the subsequent ischemia/reperfusion (I/R) events that cause tissue damage to the host as well as the donor graft. These events release damage-associated molecular pattern molecules (DAMPs), thereby initiating an acute inflammatory response. In simulations of this model, resolution of inflammation depends on the severity of the tissue damage caused by these events and the patient's (co)-morbidities. We augment a portion of a previously published mathematical model of acute inflammation with the inflammatory effects of T cells in the absence of antigenic allograft mismatch (but with DAMP release proportional to the degree of graft damage prior to transplant). Finally, we include the antigenic mismatch of the graft, which leads to the stimulation of potent memory T cell responses, leading to further DAMP release from the graft and concomitant increase in allograft damage. Regulatory mechanisms are also included at the final stage. Our simulations suggest that surgical injury and I/R-induced graft damage can be well-tolerated by the recipient when each is present alone, but that their combination (along with antigenic mismatch) may lead to acute rejection, as seen clinically in a subset of patients. An emergent phenomenon from our simulations is that low-level DAMP release can tolerize the recipient to a mismatched allograft, whereas different restimulation regimens resulted in an exaggerated rejection response, in agreement with published studies. We suggest that mechanistic mathematical models might serve as an adjunct for patient- or sub-group-specific predictions, simulated clinical studies, and rational design of immunosuppression.
Collapse
Affiliation(s)
- Judy D. Day
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
- National Institute for Mathematical and Biological Synthesis, Knoxville, TN, USA
| | - Diana M. Metes
- Department of Surgery and Immunology, Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Chen K, Geng S, Yuan R, Diao N, Upchurch Z, Li L. Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine 2015; 2:324-333. [PMID: 26029736 PMCID: PMC4445878 DOI: 10.1016/j.ebiom.2015.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditioning with super-low or low dose endotoxin lipopolysaccharide (LPS) cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP). This is in contrast to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET) in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks. Super-low dose endotoxin pre-conditioning exacerbates, while higher dose endotoxin alleviates sepsis mortality. Super-low dose endotoxin reduces, while higher dose endotoxin facilitates neutrophil extracellular trap (NET) formation. Super-low dose endotoxin suppresses, while higher dose endotoxin induces ERK activation required for NET formation.
Collapse
Affiliation(s)
- Keqiang Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Ruoxi Yuan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Na Diao
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Zachary Upchurch
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
34
|
Lu G, Zhang R, Geng S, Peng L, Jayaraman P, Chen C, Xu F, Yang J, Li Q, Zheng H, Shen K, Wang J, Liu X, Wang W, Zheng Z, Qi CF, Si C, He JC, Liu K, Lira SA, Sikora AG, Li L, Xiong H. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun 2015; 6:6676. [PMID: 25813085 PMCID: PMC4389243 DOI: 10.1038/ncomms7676] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/17/2015] [Indexed: 12/31/2022] Open
Abstract
Here we show that iNOS-deficient mice display enhanced classically activated M1 macrophage polarization without major effects on alternatively activated M2 macrophages. eNOS and nNOS mutant mice show comparable M1 macrophage polarization compared with wild-type control mice. Addition of N6-(1-iminoethyl)-L-lysine dihydrochloride, an iNOS inhibitor, significantly enhances M1 macrophage polarization while S-nitroso-N-acetylpenicillamine, a NO donor, suppresses M1 macrophage polarization. NO derived from iNOS mediates nitration of tyrosine residues in IRF5 protein, leading to the suppression of IRF5-targeted M1 macrophage signature gene activation. Computational analyses corroborate a circuit that fine-tunes the expression of IL-12 by iNOS in macrophages, potentially enabling versatile responses based on changing microenvironments. Finally, studies of an experimental model of endotoxin shock show that iNOS deficiency results in more severe inflammation with an enhanced M1 macrophage activation phenotype. These results suggest that NO derived from iNOS in activated macrophages suppresses M1 macrophage polarization. In response to microbial ligands, IRF5 promotes pro-inflammatory M1 macrophage activation and production of nitrous oxide. Here the authors show that nitrous oxide modifies IRF5 tyrosine residues as a negative feedback, limiting the inflammatory response and protecting from endotoxin shock.
Collapse
Affiliation(s)
- Geming Lu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ruihua Zhang
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Shuo Geng
- Department of Biological Sciences, Center for Inflammation, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Liang Peng
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Padmini Jayaraman
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chun Chen
- Department of Biological Sciences, Center for Inflammation, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Feifong Xu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jianjun Yang
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Qin Li
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hao Zheng
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kimberly Shen
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Juan Wang
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Xiyu Liu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Weidong Wang
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Zihan Zheng
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical College, Jining, Shandong 272067, China
| | - John Cijiang He
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Sergio A Lira
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Andrew G Sikora
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Liwu Li
- Department of Biological Sciences, Center for Inflammation, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Huabao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Immunology and Molecular Medicine, Jining Medical College, Jining, Shandong 272067, China
| |
Collapse
|
35
|
Podvin S, Dang X, Meads M, Kurabi A, Costantini T, Eliceiri BP, Baird A, Coimbra R. Esophageal cancer-related gene-4 (ECRG4) interactions with the innate immunity receptor complex. Inflamm Res 2014; 64:107-18. [PMID: 25511108 DOI: 10.1007/s00011-014-0789-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE AND DESIGN The human c2orf40 gene encodes a tumor suppressor gene called esophageal cancer-related gene-4 (ECRG4) with pro- and anti-inflammatory activities that depend on cell surface processing. Here, we investigated its physical and functional association with the innate immunity receptor complex. METHODS Interactions between ECRG4 and the innate immunity receptor complex were assessed by flow cytometry, immunohistochemistry, confocal microscopy, and co-immunoprecipitation. Phage display was used for ligand targeting to cells that overexpress the TLR4-MD2-CD14. RESULTS Immunoprecipitation and immunohistochemical studies demonstrate a physical interaction between ECRG4 and TLR4-MD2-CD14 on human granulocytes. Flow cytometry shows ECRG4 on the cell surface of a subset of CD14(+) and CD16(+) leukocytes. In a cohort of trauma patients, the C-terminal 16 amino acid domain of ECRG4 (ECRG4(133-148)) appears to be processed and shed, presumably at a thrombin-like consensus sequence. Phage targeting this putative ligand shows that this peptide sequence internalizes into cells through the TLR4/CD14/MD2 complex, but modulates inflammation through non-canonical, NFκB signal transduction. CONCLUSIONS ECRG4 is present on the surface of human monocytes and granulocytes. Its interaction with the human innate immunity receptor complex supports a role for cell surface activation of ECRG4 during inflammation and implicates this receptor in its mechanism of action.
Collapse
Affiliation(s)
- Sonia Podvin
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dillingh MR, van Poelgeest EP, Malone KE, Kemper EM, Stroes ESG, Moerland M, Burggraaf J. Characterization of inflammation and immune cell modulation induced by low-dose LPS administration to healthy volunteers. JOURNAL OF INFLAMMATION-LONDON 2014. [DOI: 10.1186/s12950-014-0028-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Mondal D, Dougherty E, Mukhopadhyay A, Carbo A, Yao G, Xing J. Systematic reverse engineering of network topologies: a case study of resettable bistable cellular responses. PLoS One 2014; 9:e105833. [PMID: 25170839 PMCID: PMC4149494 DOI: 10.1371/journal.pone.0105833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/24/2014] [Indexed: 01/07/2023] Open
Abstract
A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering procedure to identify network topologies with high likelihood in generating desired systems properties. Our method searches the continuous parameter space of an assembly of network topologies, without enumerating individual network topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms, the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study of other biological systems, we have developed a computer package that is available in Information S1.
Collapse
Affiliation(s)
- Debasish Mondal
- Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Edward Dougherty
- Department of Genetics, Bioinformatics and Computational Biology Ph. D program, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Abhishek Mukhopadhyay
- Department of Physics, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America; Department of Computer Science, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Adria Carbo
- Department of Genetics, Bioinformatics and Computational Biology Ph. D program, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America; Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Jianhua Xing
- Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America; Department of Physics, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America; Beijing Computational Science Research Center, Beijing, China
| |
Collapse
|
38
|
Eftekhari G, Hajiasgharzadeh K, Ahmadi-Soleimani SM, Dehpour AR, Semnanian S, Mani AR. Activation of central muscarinic receptor type 1 prevents development of endotoxin tolerance in rat liver. Eur J Pharmacol 2014; 740:436-41. [PMID: 25008070 DOI: 10.1016/j.ejphar.2014.06.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/13/2022]
Abstract
Endotoxin tolerance is a mechanism in which cells receiving low doses of endotoxin, enter a transient phase with less inflammatory response to the next endotoxin challenges. Central nervous system is known to modulate systemic inflammation through activation of the cholinergic system; however, the role of central anti-inflammatory pathway in pathophysiology of hepatic endotoxin tolerance is unknown. Our study was designed to assess the effect central muscarinic type 1 receptor (M1) activation on development of endotoxin tolerance in rat liver. Endotoxin tolerance was induced by daily intraperitoneal injection of endotoxin (1 mg/kg) for 5 days. Animals were randomly divided into two groups which received intracerebroventricular injection of either MCNA-343 (an M1 agonist, 5 ng/kg) or saline 1h after intraperitoneal injection of saline or endotoxin. The responsiveness to endotoxin was assessed by measuring hepatic MCP-1 (monocyte chemotactic protein-1), iNOS (inducible nitric oxide synthase) and TNF-α (tumor necrosis-α) mRNA expression 3h after intraperitoneal administration of endotoxin using quantitative RT-PCR. A significant reduction in hepatic expression of MCP-1, iNOS and TNF-α was observed in rats with 5 days endotoxin challenge in comparison with rats given a single dose of endotoxin. There was no significant difference in hepatic expression of MCP-1, iNOS or TNF-α between acute and chronic LPS-treated groups in rats given MCNA-343. Central MCNA-343 stimulation could prevent the induction of hepatic endotoxin tolerance in animals receiving repeated doses of endotoxin. This indicates that M1 cholinergic receptor activation in the central nervous system can modulate endotoxin tolerance in rat liver.
Collapse
Affiliation(s)
- Golnar Eftekhari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khalil Hajiasgharzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ahmad R Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali R Mani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Wang P, Song C, Zhang H, Wu Z, Tian XJ, Xing J. Epigenetic state network approach for describing cell phenotypic transitions. Interface Focus 2014; 4:20130068. [PMID: 24904734 DOI: 10.1098/rsfs.2013.0068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent breakthroughs of cell phenotype reprogramming impose theoretical challenges on unravelling the complexity of large circuits maintaining cell phenotypes coupled at many different epigenetic and gene regulation levels, and quantitatively describing the phenotypic transition dynamics. A popular picture proposed by Waddington views cell differentiation as a ball sliding down a landscape with valleys corresponding to different cell types separated by ridges. Based on theories of dynamical systems, we establish a novel 'epigenetic state network' framework that captures the global architecture of cell phenotypes, which allows us to translate the metaphorical low-dimensional Waddington epigenetic landscape concept into a simple-yet-predictive rigorous mathematical framework of cell phenotypic transitions. Specifically, we simplify a high-dimensional epigenetic landscape into a collection of discrete states corresponding to stable cell phenotypes connected by optimal transition pathways among them. We then apply the approach to the phenotypic transition processes among fibroblasts (FBs), pluripotent stem cells (PSCs) and cardiomyocytes (CMs). The epigenetic state network for this case predicts three major transition pathways connecting FBs and CMs. One goes by way of PSCs. The other two pathways involve transdifferentiation either indirectly through cardiac progenitor cells or directly from FB to CM. The predicted pathways and multiple intermediate states are supported by existing microarray data and other experiments. Our approach provides a theoretical framework for studying cell phenotypic transitions. Future studies at single-cell levels can directly test the model predictions.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biological Sciences , Virginia Tech , Blacksburg, VA 24060 , USA
| | - Chaoming Song
- Department of Physics , University of Miami , Coral Gables, FL 33124 , USA
| | - Hang Zhang
- Department of Biological Sciences , Virginia Tech , Blacksburg, VA 24060 , USA
| | - Zhanghan Wu
- National Heart, Lung and Blood Institutes , National Institutes of Health , Bethesda, MD 20892 , USA ; Department of Biological Sciences , Virginia Tech , Blacksburg, VA 24060 , USA
| | - Xiao-Jun Tian
- Department of Biological Sciences , Virginia Tech , Blacksburg, VA 24060 , USA
| | - Jianhua Xing
- Department of Biological Sciences , Virginia Tech , Blacksburg, VA 24060 , USA ; Department of Physics , Virginia Tech , Blacksburg, VA 24060 , USA
| |
Collapse
|
40
|
Aerts JM, Haddad WM, An G, Vodovotz Y. From data patterns to mechanistic models in acute critical illness. J Crit Care 2014; 29:604-10. [PMID: 24768566 DOI: 10.1016/j.jcrc.2014.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the physiologic and inflammatory response in acute critical illness has stymied the accurate diagnosis and development of therapies. The Society for Complex Acute Illness was formed a decade ago with the goal of leveraging multiple complex systems approaches to address this unmet need. Two main paths of development have characterized the society's approach: (i) data pattern analysis, either defining the diagnostic/prognostic utility of complexity metrics of physiologic signals or multivariate analyses of molecular and genetic data and (ii) mechanistic mathematical and computational modeling, all being performed with an explicit translational goal. Here, we summarize the progress to date on each of these approaches, along with pitfalls inherent in the use of each approach alone. We suggest that the next decade holds the potential to merge these approaches, connecting patient diagnosis to treatment via mechanism-based dynamical system modeling and feedback control and allowing extrapolation from physiologic signals to biomarkers to novel drug candidates. As a predicate example, we focus on the role of data-driven and mechanistic models in neuroscience and the impact that merging these modeling approaches can have on general anesthesia.
Collapse
Affiliation(s)
- Jean-Marie Aerts
- Division Measure, Model & Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, Belgium B-3001
| | - Wassim M Haddad
- School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150
| | - Gary An
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219.
| |
Collapse
|
41
|
Calçada D, Vianello D, Giampieri E, Sala C, Castellani G, de Graaf A, Kremer B, van Ommen B, Feskens E, Santoro A, Franceschi C, Bouwman J. The role of low-grade inflammation and metabolic flexibility in aging and nutritional modulation thereof: a systems biology approach. Mech Ageing Dev 2014; 136-137:138-47. [PMID: 24462698 DOI: 10.1016/j.mad.2014.01.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/07/2023]
Abstract
Aging is a biological process characterized by the progressive functional decline of many interrelated physiological systems. In particular, aging is associated with the development of a systemic state of low-grade chronic inflammation (inflammaging), and with progressive deterioration of metabolic function. Systems biology has helped in identifying the mediators and pathways involved in these phenomena, mainly through the application of high-throughput screening methods, valued for their molecular comprehensiveness. Nevertheless, inflammation and metabolic regulation are dynamical processes whose behavior must be understood at multiple levels of biological organization (molecular, cellular, organ, and system levels) and on multiple time scales. Mathematical modeling of such behavior, with incorporation of mechanistic knowledge on interactions between inflammatory and metabolic mediators, may help in devising nutritional interventions capable of preventing, or ameliorating, the age-associated functional decline of the corresponding systems.
Collapse
Affiliation(s)
- Dulce Calçada
- TNO, Microbiology and Systems Biology Group, Utrechtseweg 48, 3704 HE Zeist, The Netherlands; Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | - Dario Vianello
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Enrico Giampieri
- University of Bologna, Department of Physics and Astronomy, 40127 Bologna, Italy
| | - Claudia Sala
- University of Bologna, Department of Physics and Astronomy, 40127 Bologna, Italy
| | - Gastone Castellani
- University of Bologna, Department of Physics and Astronomy, 40127 Bologna, Italy
| | - Albert de Graaf
- TNO, Microbiology and Systems Biology Group, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Bas Kremer
- TNO, Microbiology and Systems Biology Group, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Ben van Ommen
- TNO, Microbiology and Systems Biology Group, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Edith Feskens
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | - Aurelia Santoro
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Claudio Franceschi
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy; University of Bologna, Interdepartmental Centre "L. Galvani" (CIG), 40126 Bologna, Italy
| | - Jildau Bouwman
- TNO, Microbiology and Systems Biology Group, Utrechtseweg 48, 3704 HE Zeist, The Netherlands.
| |
Collapse
|
42
|
Sperber J, Lipcsey M, Larsson A, Larsson A, Sjölin J, Castegren M. Lung protective ventilation induces immunotolerance and nitric oxide metabolites in porcine experimental postoperative sepsis. PLoS One 2013; 8:e83182. [PMID: 24349457 PMCID: PMC3861481 DOI: 10.1371/journal.pone.0083182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/22/2013] [Indexed: 01/16/2023] Open
Abstract
Low tidal volume ventilation is beneficial in patients with severe pulmonary dysfunction and would, in theory, reduce postoperative complications if implemented during routine surgery. The study aimed to investigate whether low tidal volume ventilation and high positive end-expiratory pressure (PEEP) in a large animal model of postoperative sepsis would attenuate the systemic inflammatory response and organ dysfunction. Thirty healthy pigs were randomized to three groups: Group Prot-7h, i.e. protective ventilation for 7 h, was ventilated with a tidal volume of 6 mL x kg-1 for 7 h; group Prot-5h, i.e. protective ventilation for 5 h, was ventilated with a tidal volume of 10 mL x kg-1 for 2 h, after which the group was ventilated with a tidal volume of 6 mL x kg-1; and a control group that was ventilated with a tidal volume of 10 mL x kg-1 for 7 h. In groups Prot-7h and Prot-5h PEEP was 5 cmH2O for 2 h and 10 cmH2O for 5 h. In the control group PEEP was 5 cmH2O for the entire experiment. After surgery for 2 h, postoperative sepsis was simulated with an endotoxin infusion for 5 h. Low tidal volume ventilation combined with higher PEEP led to lower levels of interleukin 6 and 10 in plasma, higher PaO2/FiO2, better preserved functional residual capacity and lower plasma troponin I as compared with animals ventilated with a medium high tidal volume and lower PEEP. The beneficial effects of protective ventilation were seen despite greater reductions in cardiac index and oxygen delivery index. In the immediate postoperative phase low VT ventilation with higher PEEP was associated with reduced ex vivo plasma capacity to produce TNF-α upon endotoxin stimulation and higher nitrite levels in urine. These findings might represent mechanistic explanations for the attenuation of systemic inflammation and inflammatory-induced organ dysfunction.
Collapse
Affiliation(s)
- Jesper Sperber
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Biochemical Structure and Function, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Khedoe PPSJ, Wong MC, Wagenaar GTM, Plomp JJ, van Eck M, Havekes LM, Rensen PCN, Hiemstra PS, Berbée JFP. The effect of PPE-induced emphysema and chronic LPS-induced pulmonary inflammation on atherosclerosis development in APOE*3-LEIDEN mice. PLoS One 2013; 8:e80196. [PMID: 24303000 PMCID: PMC3841138 DOI: 10.1371/journal.pone.0080196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/30/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary inflammation, airways obstruction and emphysema, and is a risk factor for cardiovascular disease (CVD). However, the contribution of these individual COPD components to this increased risk is unknown. Therefore, the aim of this study was to determine the contribution of emphysema in the presence or absence of pulmonary inflammation to the increased risk of CVD, using a mouse model for atherosclerosis. Because smoke is a known risk factor for both COPD and CVD, emphysema was induced by intratracheal instillation of porcine pancreatic elastase (PPE). METHODS Hyperlipidemic APOE*3-Leiden mice were intratracheally instilled with vehicle, 15 or 30 µg PPE and after 4 weeks, mice received a Western-type diet (WTD). To study the effect of emphysema combined with pulmonary inflammation on atherosclerosis, mice received 30 µg PPE and during WTD feeding, mice were intranasally instilled with vehicle or low-dose lipopolysaccharide (LPS; 1 µg/mouse, twice weekly). After 20 weeks WTD, mice were sacrificed and emphysema, pulmonary inflammation and atherosclerosis were analysed. RESULTS Intratracheal PPE administration resulted in a dose-dependent increase in emphysema, whereas atherosclerotic lesion area was not affected by PPE treatment. Additional low-dose intranasal LPS administration induced a low-grade systemic IL-6 response, as compared to vehicle. Combining intratracheal PPE with intranasal LPS instillation significantly increased the number of pulmonary macrophages and neutrophils. Plasma lipids during the study were not different. LPS instillation caused a limited, but significant increase in the atherosclerotic lesion area. This increase was not further enhanced by PPE. CONCLUSION This study shows for the first time that PPE-induced emphysema both in the presence and absence of pulmonary inflammation does not affect atherosclerotic lesion development.
Collapse
Affiliation(s)
- P. Padmini S. J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Man C. Wong
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerry T. M. Wagenaar
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap J. Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda van Eck
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Louis M. Havekes
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Organization for Applied Scientific Research, Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F. P. Berbée
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Abstract
OBJECTIVES To familiarize clinicians with advances in computational disease modeling applied to trauma and sepsis. DATA SOURCES PubMed search and review of relevant medical literature. SUMMARY Definitions, key methods, and applications of computational modeling to trauma and sepsis are reviewed. CONCLUSIONS Computational modeling of inflammation and organ dysfunction at the cellular, organ, whole-organism, and population levels has suggested a positive feedback cycle of inflammation → damage → inflammation that manifests via organ-specific inflammatory switching networks. This structure may manifest as multicompartment "tipping points" that drive multiple organ dysfunction. This process may be amenable to rational inflammation reprogramming.
Collapse
|
45
|
Castegren M, Skorup P, Lipcsey M, Larsson A, Sjölin J. Endotoxin tolerance variation over 24 h during porcine endotoxemia: association with changes in circulation and organ dysfunction. PLoS One 2013; 8:e53221. [PMID: 23326400 PMCID: PMC3542331 DOI: 10.1371/journal.pone.0053221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/27/2012] [Indexed: 01/05/2023] Open
Abstract
Endotoxin tolerance (ET), defined as reduced inflammatory responsiveness to endotoxin challenge following a first encounter with endotoxin, is an extensively studied phenomenon. Although reduced mortality and morbidity in the presence of ET has been demonstrated in animal studies, little is known about the temporal development of ET. Further, in acute respiratory distress syndrome ET correlates to the severity of the disease, suggesting a complicated relation between ET and organ dysfunction. Eighteen pigs were subjected to intensive care and a continuous endotoxin infusion for 24 h with the aim to study the time course of early ET and to relate ET to outcome in organ dysfunction. Three animals served as non-endotoxemic controls. Blood samples for cytokine analyses were taken and physiological variables registered every third hour. Production of TNF-α, IL-6, and IL-10 before and after endotoxin stimulation ex vivo was measured. The difference between cytokine values after and before ex vivo LPS stimulation (Δ-values) was calculated for all time points. ΔTNF-α was employed as the principal marker of ET and lower ΔTNF-α values were interpreted as higher levels of ET. During endotoxin infusion, there was suppression of ex vivo productions of TNF-α and IL-6 but not of IL-10 in comparison with that at 0 h. The ex vivo TNF-α values followed another time concentration curve than those in vivo. ΔTNF-α was at the lowest already at 6 h, followed by an increase during the ensuing hours. ΔTNF-α at 6 h correlated positively to blood pressure and systemic vascular resistance and negatively to cardiac index at 24 h. In this study a temporal variation of ET was demonstrated that did not follow changes in plasma TNF-α concentrations. Maximal ET occurred early in the course and the higher the ET, the more hyperdynamic the circulation 18 h later.
Collapse
Affiliation(s)
- Markus Castegren
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
46
|
A strategy to study pathway cross-talks of cells under repetitive exposure to stimuli. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S6. [PMID: 23282371 PMCID: PMC3524319 DOI: 10.1186/1752-0509-6-s3-s6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Cells are subject to fluctuating and multiple stimuli in their natural environment. The signaling pathways often crosstalk to each other and give rise to complex nonlinear dynamics. Specifically repetitive exposure of a cell to a same stimulus sometime leads to augmented cellular responses. Examples are amplified proinflammatory responses of innate immune cells pretreated with a sub-threshold then a high dose of endotoxin or cytokine stimulation. This phenomenon, called priming effect in the literature, has important pathological and clinical significances. Results In a previous study, we enumerated possible mechanisms for priming using a three-node network model. The analysis uncovered three mechanisms. Based on the results, in this work we developed a straightforward procedure to identify molecular candidates contributing to the priming effect and the corresponding mechanisms. The procedure involves time course measurements, e.g., gene expression levels, or protein activities under low, high, and low + high dose of stimulant, then computational analysis of the dynamics patterns, and identification of functional roles in the context of the regulatory network. We applied the procedure to a set of published microarray data on interferon-γ-mediated priming effect of human macrophages. The analysis identified a number of network motifs possibly contributing to Interferon-γ priming. A further detailed mathematical model analysis further reveals how combination of different mechanisms leads to the priming effect. Conclusions One may perform systematic screening using the proposed procedure combining with high throughput measurements, at both transcriptome and proteome levels. It is applicable to various priming phenomena.
Collapse
|
47
|
Maitra U, Li L. Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Arterioscler Thromb Vasc Biol 2012; 33:24-33. [PMID: 23117655 DOI: 10.1161/atvbaha.112.300049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Atherosclerosis is characterized as a chronic inflammatory condition that involves cholesterol deposition in arteries. Together with scavenger receptor B1 (SR-B1), the ATP-binding cassette transporters ABCA1 and ABCG1 are the major components of macrophage cholesterol efflux. Recent studies have shown that low-grade inflammation plays a distinct regulatory role in the expression of SR-B1 and ABCA1/ABCG1. However, the mechanisms linking low-grade inflammation and cholesterol accumulation are poorly understood. METHODS AND RESULTS Using primary bone-marrow-derived macrophages, we demonstrate that subclinical low-dose lipopolysaccharide potently reduces the expression of SR-B1 and ABCA1/ABCG1, as well as cholesterol efflux from macrophages through interleukin-1 receptor-associated kinase 1 and Toll-interacting-protein. Low-dose lipopolysaccharide downregulates the nuclear levels of retinoic acid receptor-α, leading to their reduced binding to the promoters of SR-B1 and ABCA1/ABCG1. We observe that glycogen synthase kinase 3β activation by low-dose lipopolysaccharide through interleukin-1 receptor-associated kinase 1 and Toll-interacting-protein is responsible for reduced levels of retinoic acid receptor-α, and reduced expression of SR-B1 and ABCA1/ABCG1. Interleukin-1 receptor-associated kinase M, however, counteracts the function of interleukin-1 receptor associated kinase 1. CONCLUSIONS Collectively, our data reveal a novel intracellular network regulated by low-dose endotoxemia that disrupts cholesterol efflux from macrophages and leads to the pathogenesis of atherosclerosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/drug effects
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Apolipoprotein A-I/metabolism
- Atherosclerosis/chemically induced
- Atherosclerosis/metabolism
- Binding Sites
- Cells, Cultured
- Cholesterol/metabolism
- Cholesterol, HDL/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Endotoxins/pharmacology
- Endotoxins/toxicity
- Foam Cells/drug effects
- Foam Cells/metabolism
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Interleukin-1 Receptor-Associated Kinases/genetics
- Interleukin-1 Receptor-Associated Kinases/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Lipoproteins/drug effects
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Promoter Regions, Genetic
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Scavenger Receptors, Class B/drug effects
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
Collapse
Affiliation(s)
- Urmila Maitra
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|