1
|
Csendes G, Sanz G, Szalay KZ, Szalai B. Benchmarking foundation cell models for post-perturbation RNA-seq prediction. BMC Genomics 2025; 26:393. [PMID: 40269681 DOI: 10.1186/s12864-025-11600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Accurately predicting cellular responses to perturbations is essential for understanding cell behaviour in both healthy and diseased states. While perturbation data is ideal for building such predictive models, its availability is considerably lower than baseline (non-perturbed) cellular data. To address this limitation, several foundation cell models have been developed using large-scale single-cell gene expression data. These models are fine-tuned after pre-training for specific tasks, such as predicting post-perturbation gene expression profiles, and are considered state-of-the-art for these problems. However, proper benchmarking of these models remains an unsolved challenge. In this study, we benchmarked two recently published foundation models, scGPT and scFoundation, against baseline models. Surprisingly, we found that even the simplest baseline model-taking the mean of training examples-outperformed scGPT and scFoundation. Furthermore, basic machine learning models that incorporate biologically meaningful features outperformed scGPT by a large margin. Additionally, we identified that the current Perturb-Seq benchmark datasets exhibit low perturbation-specific variance, making them suboptimal for evaluating such models. Our results highlight important limitations in current benchmarking approaches and provide insights into more effectively evaluating post-perturbation gene expression prediction models.
Collapse
|
2
|
Zhu H, Asiaee A, Azinfar L, Li J, Liang H, Irajizad E, Do KA, Long JP. AUC-PR is a More Informative Metric for Assessing the Biological Relevance of In Silico Cellular Perturbation Prediction Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641935. [PMID: 40161693 PMCID: PMC11952326 DOI: 10.1101/2025.03.06.641935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In silico perturbation models, computational methods which can predict cellular responses to perturbations, present an opportunity to reduce the need for costly and time-intensive in vitro experiments. Many recently proposed models predict high-dimensional cellular responses, such as gene or protein expression to perturbations such as gene knockout or drugs. However, evaluating in silico performance has largely relied on metrics such asR 2 , which assess overall prediction accuracy but fail to capture biologically significant outcomes like the identification of differentially expressed genes. In this study, we present a novel evaluation framework that introduces the AUC-PR metric to assess the precision and recall of DE gene predictions. By applying this framework to both single-cell and pseudo-bulked datasets, we systematically benchmark simple and advanced computational models. Our results highlight a significant discrepancy betweenR 2 and AUC-PR, with models achieving highR 2 values but struggling to identify Differentially expressed genes accurately, as reflected in their low AUC-PR values. This finding underscores the limitations of traditional evaluation metrics and the importance of biologically relevant assessments. Our framework provides a more comprehensive understanding of model capabilities, advancing the application of computational approaches in cellular perturbation research.
Collapse
Affiliation(s)
- Hongxu Zhu
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St., 77030, Texas, USA
| | - Amir Asiaee
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, 37203, Tennessee, USA
| | - Leila Azinfar
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Avenue, 37203, Tennessee, USA
| | - Jun Li
- Department of Bioinfomatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7007 Bertner Ave., 77030, Texas, USA
| | - Han Liang
- Department of Bioinfomatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7007 Bertner Ave., 77030, Texas, USA
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Ave., 77030, Texas, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Ave., 77030, Texas, USA
| | - James P. Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Ave., 77030, Texas, USA
| |
Collapse
|
3
|
Monfort-Lanzas P, Rungger K, Madersbacher L, Hackl H. Machine learning to dissect perturbations in complex cellular systems. Comput Struct Biotechnol J 2025; 27:832-842. [PMID: 40103613 PMCID: PMC11915099 DOI: 10.1016/j.csbj.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
Understanding the responses of biological systems to various perturbations, such as genetic, chemical, or environmental challenges, is essential for reconstructing causal network models. Emerging single-cell technologies have become instrumental in elucidating cell states and phenotypes and they have been used in combination with genetic screening. Recent advances in machine learning and artificial intelligence architectures have stimulated the development of computational tools for modeling perturbations and the response to compounds. This study outlined core principles underpinning perturbation analysis and discussed the methodologies and analytical frameworks used to decode drug and genetic perturbation responses, complex multicellular interactions, and network dynamics. The current tools used for various applications were overviewed. These developments hold great promise for improving drug development and personalized medicine. Foundation models and perturbation cell and tissue atlases offer immense potential for advancing our understanding of cellular behavior and disease mechanisms.
Collapse
Affiliation(s)
- Pablo Monfort-Lanzas
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Katja Rungger
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| | - Leonie Madersbacher
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
4
|
Adler FR, Griffiths JI. Mathematical models of intercellular signaling in breast cancer. Semin Cancer Biol 2025; 109:91-100. [PMID: 39890041 PMCID: PMC11858920 DOI: 10.1016/j.semcancer.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND AND OBJECTIVES The development and regulation of healthy and cancerous breast tissue is guided by communication between cells. Diverse signals are exchanged between cancer cells and non-cancerous cells of the tumor microenvironment (TME), influencing all stages of tumor progression. Mathematical models are essential for understanding how this complex network determines cancer progression and the effectiveness of treatment. METHODOLOGY We reviewed the current dynamical mathematical models of intercellular signaling in breast cancer, examining models with cancer cells only, fibroblasts, endothelial cells, macrophages and the immune system as whole. We categorized the goals and complexity of these models, to highlight how they can explain many features of cancer emergence and progression. RESULTS We found that dynamical models of intercellular signaling can elucidate tissue-level dysregulation in cancer by explaining: i) maintenance of non-heritable intratumor phenotypic heterogeneity, ii) transitions between tumor dormancy and accelerated invasive growth, iii) stromal support of tumor vascularization and growth factor enrichment and iv) suppression of immune infiltration and cancer surveillance. These models also provide a framework to propose novel TME-targeting treatment strategies. However, most models were focused on a highly selected and small set of signaling interactions between a few cell types, and their translational applicability were severely limited by the availability of tumor-specific data for personalized model calibration. CONCLUSIONS AND IMPLICATIONS Mathematical models of breast cancer have many challenges and opportunities to incorporate signaling. The four key challenges are: 1) finding ways to treat signaling networks as a context-dependent language that incorporates non-linear and non-additive responses, 2) identifying the key cell phenotypes that signals control and understanding the feedbacks between signals and phenotype that determine the progression of cancer, (3) estimating parameters of specific patient tumors early in treatment, 4) linking models with novel data collection methods that have single cell and spatial resolution. As our approaches advance, it is our hope that dynamical mathematical models of inter-cellular signaling can play a central role in identifying and testing new treatment strategies as well as forecasting impacts of disease treatment.
Collapse
Affiliation(s)
- Frederick R Adler
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; School of Biological Sciences, 257 South 1400 East, University of Utah, Salt Lake City, UT, 84112 USA..
| | - Jason I Griffiths
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Etcheverry M, Moulin-Frier C, Oudeyer PY, Levin M. AI-driven automated discovery tools reveal diverse behavioral competencies of biological networks. eLife 2025; 13:RP92683. [PMID: 39804159 PMCID: PMC11729405 DOI: 10.7554/elife.92683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Many applications in biomedicine and synthetic bioengineering rely on understanding, mapping, predicting, and controlling the complex behavior of chemical and genetic networks. The emerging field of diverse intelligence investigates the problem-solving capacities of unconventional agents. However, few quantitative tools exist for exploring the competencies of non-conventional systems. Here, we view gene regulatory networks (GRNs) as agents navigating a problem space and develop automated tools to map the robust goal states GRNs can reach despite perturbations. Our contributions include: (1) Adapting curiosity-driven exploration algorithms from AI to discover the range of reachable goal states of GRNs, and (2) Proposing empirical tests inspired by behaviorist approaches to assess their navigation competencies. Our data shows that models inferred from biological data can reach a wide spectrum of steady states, exhibiting various competencies in physiological network dynamics without requiring structural changes in network properties or connectivity. We also explore the applicability of these 'behavioral catalogs' for comparing evolved competencies across biological networks, for designing drug interventions in biomedical contexts and synthetic gene networks for bioengineering. These tools and the emphasis on behavior-shaping open new paths for efficiently exploring the complex behavior of biological networks. For the interactive version of this paper, please visit https://developmentalsystems.org/curious-exploration-of-grn-competencies.
Collapse
Affiliation(s)
| | | | | | - Michael Levin
- Allen Discovery Center, Tufts UniversityMedfordUnited States
| |
Collapse
|
6
|
Qian L, Sun R, Aebersold R, Bühlmann P, Sander C, Guo T. AI-empowered perturbation proteomics for complex biological systems. CELL GENOMICS 2024; 4:100691. [PMID: 39488205 PMCID: PMC11605689 DOI: 10.1016/j.xgen.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/04/2024]
Abstract
The insufficient availability of comprehensive protein-level perturbation data is impeding the widespread adoption of systems biology. In this perspective, we introduce the rationale, essentiality, and practicality of perturbation proteomics. Biological systems are perturbed with diverse biological, chemical, and/or physical factors, followed by proteomic measurements at various levels, including changes in protein expression and turnover, post-translational modifications, protein interactions, transport, and localization, along with phenotypic data. Computational models, employing traditional machine learning or deep learning, identify or predict perturbation responses, mechanisms of action, and protein functions, aiding in therapy selection, compound design, and efficient experiment design. We propose to outline a generic PMMP (perturbation, measurement, modeling to prediction) pipeline and build foundation models or other suitable mathematical models based on large-scale perturbation proteomic data. Finally, we contrast modeling between artificially and naturally perturbed systems and highlight the importance of perturbation proteomics for advancing our understanding and predictive modeling of biological systems.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Rui Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | | - Chris Sander
- Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Ahmad P, Hussain A, Siqueira WL. Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review. MASS SPECTROMETRY REVIEWS 2024; 43:826-856. [PMID: 36444686 DOI: 10.1002/mas.21822] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dental caries is a multifactorial chronic disease resulting from the intricate interplay among acid-generating bacteria, fermentable carbohydrates, and several host factors such as saliva. Saliva comprises several proteins which could be utilized as biomarkers for caries prevention, diagnosis, and prognosis. Mass spectrometry-based salivary proteomics approaches, owing to their sensitivity, provide the opportunity to investigate and unveil crucial cariogenic pathogen activity and host indicators and may demonstrate clinically relevant biomarkers to improve caries diagnosis and management. The present review outlines the published literature of human clinical proteomics investigations on caries and extensively elucidates frequently reported salivary proteins as biomarkers. This review also discusses important aspects while designing an experimental proteomics workflow. The protein-protein interactions and the clinical relevance of salivary proteins as biomarkers for caries, together with uninvestigated domains of the discipline are also discussed critically.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmed Hussain
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Rukhlenko OS, Imoto H, Tambde A, McGillycuddy A, Junk P, Tuliakova A, Kolch W, Kholodenko BN. Cell State Transition Models Stratify Breast Cancer Cell Phenotypes and Reveal New Therapeutic Targets. Cancers (Basel) 2024; 16:2354. [PMID: 39001416 PMCID: PMC11240448 DOI: 10.3390/cancers16132354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Understanding signaling patterns of transformation and controlling cell phenotypes is a challenge of current biology. Here we applied a cell State Transition Assessment and Regulation (cSTAR) approach to a perturbation dataset of single cell phosphoproteomic patterns of multiple breast cancer (BC) and normal breast tissue-derived cell lines. Following a separation of luminal, basal, and normal cell states, we identified signaling nodes within core control networks, delineated causal connections, and determined the primary drivers underlying oncogenic transformation and transitions across distinct BC subtypes. Whereas cell lines within the same BC subtype have different mutational and expression profiles, the architecture of the core network was similar for all luminal BC cells, and mTOR was a main oncogenic driver. In contrast, core networks of basal BC were heterogeneous and segregated into roughly four major subclasses with distinct oncogenic and BC subtype drivers. Likewise, normal breast tissue cells were separated into two different subclasses. Based on the data and quantified network topologies, we derived mechanistic cSTAR models that serve as digital cell twins and allow the deliberate control of cell movements within a Waddington landscape across different cell states. These cSTAR models suggested strategies of normalizing phosphorylation networks of BC cell lines using small molecule inhibitors.
Collapse
Affiliation(s)
- Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Hiroaki Imoto
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ayush Tambde
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Stratford College, D06 T9V3 Dublin, Ireland
| | - Amy McGillycuddy
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biological, Health and Sports Sciences, Technological University, D07 H6K8 Dublin, Ireland
| | - Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Anna Tuliakova
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Liu Z, Jiang S, Hao B, Xie S, Liu Y, Huang Y, Xu H, Luo C, Huang M, Tan M, Xu JY. A proteomic landscape of pharmacologic perturbations for functional relevance. J Pharm Anal 2024; 14:128-139. [PMID: 38352953 PMCID: PMC10859532 DOI: 10.1016/j.jpha.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.
Collapse
Affiliation(s)
- Zhiwei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shangwen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuyu Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
| |
Collapse
|
10
|
Kholodenko BN, Kolch W, Rukhlenko OS. Reversing pathological cell states: the road less travelled can extend the therapeutic horizon. Trends Cell Biol 2023; 33:913-923. [PMID: 37263821 PMCID: PMC10593090 DOI: 10.1016/j.tcb.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Acquisition of omics data advances at a formidable pace. Yet, our ability to utilize these data to control cell phenotypes and design interventions that reverse pathological states lags behind. Here, we posit that cell states are determined by core networks that control cell-wide networks. To steer cell fate decisions, core networks connecting genotype to phenotype must be reconstructed and understood. A recent method, cell state transition assessment and regulation (cSTAR), applies perturbation biology to quantify causal connections and mechanistically models how core networks influence cell phenotypes. cSTAR models are akin to digital cell twins enabling us to purposefully convert pathological states back to physiologically normal states. While this capability has a range of applications, here we discuss reverting oncogenic transformation.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Tang R, He X, Wang R. Constructing maps between distinct cell fates and parametric conditions by systematic perturbations. Bioinformatics 2023; 39:btad624. [PMID: 37831895 PMCID: PMC10603594 DOI: 10.1093/bioinformatics/btad624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 09/10/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023] Open
Abstract
MOTIVATION Cell fate transitions are common in many developmental processes. Therefore, identifying the mechanisms behind them is crucial. Traditionally, due to complexity of networks and existence of plenty of kinetic parameters, dynamical analysis of biomolecular networks can only be performed by simultaneously perturbing a small number of parameters. Although many efforts have focused on how cell states change under specific perturbations, conversely, how to infer parametric conditions underlying distinct cell fates by systematic perturbations is less clear and needs to be further investigated. RESULTS In this article, we present a general computational method by integrating systematic perturbations, unsupervised clustering, principal component analysis, and fitting analysis. The method can be used to to construct maps between distinct cell fates and parametric conditions by systematic perturbations. In particular, there are no needs of accurate parameter measurements and occurrence of bifurcations to establish the maps. To validate feasibility and inference performance of the method, we use toggle switch, inner cell mass, and epithelial mesenchymal transition as model systems to show how the maps are constructed and how system parameters encode essential information on cell fates. The maps tell us how systematic perturbations drive cell fate decisions and transitions, and allow us to purposefully predict, manipulate, and even control cell states. The approach is especially helpful in understanding crucial roles of certain parameter combinations during fate transitions. We hope that the approach can provide us valuable information on parametric or perturbation conditions so some specific targets, e.g. directional differentiation, can be realized. AVAILABILITY AND IMPLEMENTATION No public data are used. The data we used are generated by randomly chosen values of model parameters in certain ranges, and the corresponding parameters are already attached in supplementary materials.
Collapse
Affiliation(s)
- Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Xinyu He
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
- Newtouch Center for Mathematics of Shanghai University, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Singhania R, Tyson JJ. Evolutionary Stability of Small Molecular Regulatory Networks That Exhibit Near-Perfect Adaptation. BIOLOGY 2023; 12:841. [PMID: 37372126 DOI: 10.3390/biology12060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Large-scale protein regulatory networks, such as signal transduction systems, contain small-scale modules ('motifs') that carry out specific dynamical functions. Systematic characterization of the properties of small network motifs is therefore of great interest to molecular systems biologists. We simulate a generic model of three-node motifs in search of near-perfect adaptation, the property that a system responds transiently to a change in an environmental signal and then returns near-perfectly to its pre-signal state (even in the continued presence of the signal). Using an evolutionary algorithm, we search the parameter space of these generic motifs for network topologies that score well on a pre-defined measure of near-perfect adaptation. We find many high-scoring parameter sets across a variety of three-node topologies. Of all possibilities, the highest scoring topologies contain incoherent feed-forward loops (IFFLs), and these topologies are evolutionarily stable in the sense that, under 'macro-mutations' that alter the topology of a network, the IFFL motif is consistently maintained. Topologies that rely on negative feedback loops with buffering (NFLBs) are also high-scoring; however, they are not evolutionarily stable in the sense that, under macro-mutations, they tend to evolve an IFFL motif and may-or may not-lose the NFLB motif.
Collapse
Affiliation(s)
- Rajat Singhania
- Graduate Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Agajanian S, Alshahrani M, Bai F, Tao P, Verkhivker GM. Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches. J Chem Inf Model 2023; 63:1413-1428. [PMID: 36827465 PMCID: PMC11162550 DOI: 10.1021/acs.jcim.2c01634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
Collapse
Affiliation(s)
- Steve Agajanian
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology and Information Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
15
|
Sarmah D, Smith GR, Bouhaddou M, Stern AD, Erskine J, Birtwistle MR. Network inference from perturbation time course data. NPJ Syst Biol Appl 2022; 8:42. [PMID: 36316338 PMCID: PMC9622863 DOI: 10.1038/s41540-022-00253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Networks underlie much of biology from subcellular to ecological scales. Yet, understanding what experimental data are needed and how to use them for unambiguously identifying the structure of even small networks remains a broad challenge. Here, we integrate a dynamic least squares framework into established modular response analysis (DL-MRA), that specifies sufficient experimental perturbation time course data to robustly infer arbitrary two and three node networks. DL-MRA considers important network properties that current methods often struggle to capture: (i) edge sign and directionality; (ii) cycles with feedback or feedforward loops including self-regulation; (iii) dynamic network behavior; (iv) edges external to the network; and (v) robust performance with experimental noise. We evaluate the performance of and the extent to which the approach applies to cell state transition networks, intracellular signaling networks, and gene regulatory networks. Although signaling networks are often an application of network reconstruction methods, the results suggest that only under quite restricted conditions can they be robustly inferred. For gene regulatory networks, the results suggest that incomplete knockdown is often more informative than full knockout perturbation, which may change experimental strategies for gene regulatory network reconstruction. Overall, the results give a rational basis to experimental data requirements for network reconstruction and can be applied to any such problem where perturbation time course experiments are possible.
Collapse
Affiliation(s)
- Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mehdi Bouhaddou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Erskine
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
16
|
Kreimer S, Haghani A, Binek A, Hauspurg A, Seyedmohammad S, Rivas A, Momenzadeh A, Meyer JG, Raedschelders K, Van Eyk JE. Parallelization with Dual-Trap Single-Column Configuration Maximizes Throughput of Proteomic Analysis. Anal Chem 2022; 94:12452-12460. [PMID: 36044770 PMCID: PMC9900495 DOI: 10.1021/acs.analchem.2c02609] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteomic analysis on the scale that captures population and biological heterogeneity over hundreds to thousands of samples requires rapid mass spectrometry methods, which maximize instrument utilization (IU) and proteome coverage while maintaining precise and reproducible quantification. To achieve this, a short liquid chromatography gradient paired to rapid mass spectrometry data acquisition can be used to reproducibly quantify a moderate set of analytes. High-throughput profiling at a limited depth is becoming an increasingly utilized strategy for tackling large sample sets but the time spent on loading the sample, flushing the column(s), and re-equilibrating the system reduces the ratio of meaningful data acquired to total operation time and IU. The dual-trap single-column configuration (DTSC) presented here maximizes IU in rapid analysis (15 min per sample) of blood and cell lysates by parallelizing trap column cleaning and sample loading and desalting with the analysis of the previous sample. We achieved 90% IU in low microflow (9.5 μL/min) analysis of blood while reproducibly quantifying 300-400 proteins and over 6000 precursor ions. The same IU was achieved for cell lysates and over 4000 proteins (3000 at CV below 20%) and 40,000 precursor ions were quantified at a rate of 15 min/sample. Thus, DTSC enables high-throughput epidemiological blood-based biomarker cohort studies and cell-based perturbation screening.
Collapse
Affiliation(s)
- Simion Kreimer
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Ali Haghani
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Aleksandra Binek
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Alisse Hauspurg
- University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Saeed Seyedmohammad
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Alejandro Rivas
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Amanda Momenzadeh
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Jesse G Meyer
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Koen Raedschelders
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, 121 N San Vicente, Beverly Hills, California 90211, United States
| |
Collapse
|
17
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
18
|
Zhang T, Androulakis IP, Bonate P, Cheng L, Helikar T, Parikh J, Rackauckas C, Subramanian K, Cho CR. Two heads are better than one: current landscape of integrating QSP and machine learning : An ISoP QSP SIG white paper by the working group on the integration of quantitative systems pharmacology and machine learning. J Pharmacokinet Pharmacodyn 2022; 49:5-18. [PMID: 35103884 PMCID: PMC8837505 DOI: 10.1007/s10928-022-09805-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022]
Abstract
Quantitative systems pharmacology (QSP) modeling is applied to address essential questions in drug development, such as the mechanism of action of a therapeutic agent and the progression of disease. Meanwhile, machine learning (ML) approaches also contribute to answering these questions via the analysis of multi-layer 'omics' data such as gene expression, proteomics, metabolomics, and high-throughput imaging. Furthermore, ML approaches can also be applied to aspects of QSP modeling. Both approaches are powerful tools and there is considerable interest in integrating QSP modeling and ML. So far, a few successful implementations have been carried out from which we have learned about how each approach can overcome unique limitations of the other. The QSP + ML working group of the International Society of Pharmacometrics QSP Special Interest Group was convened in September, 2019 to identify and begin realizing new opportunities in QSP and ML integration. The working group, which comprises 21 members representing 18 academic and industry organizations, has identified four categories of current research activity which will be described herein together with case studies of applications to drug development decision making. The working group also concluded that the integration of QSP and ML is still in its early stages of moving from evaluating available technical tools to building case studies. This paper reports on this fast-moving field and serves as a foundation for future codification of best practices.
Collapse
Affiliation(s)
- Tongli Zhang
- University of Cincinnati, Cincinnati, OH, 45267, USA.
| | | | | | | | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Christopher Rackauckas
- Pumas-AI, Baltimore, MD, USA
- Department of Mathematics, Massachusetts Institute of Technology, Boston, MA, USA
| | | | | |
Collapse
|
19
|
Rocca A, Kholodenko BN. Can Systems Biology Advance Clinical Precision Oncology? Cancers (Basel) 2021; 13:6312. [PMID: 34944932 PMCID: PMC8699328 DOI: 10.3390/cancers13246312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Precision oncology is perceived as a way forward to treat individual cancer patients. However, knowing particular cancer mutations is not enough for optimal therapeutic treatment, because cancer genotype-phenotype relationships are nonlinear and dynamic. Systems biology studies the biological processes at the systems' level, using an array of techniques, ranging from statistical methods to network reconstruction and analysis, to mathematical modeling. Its goal is to reconstruct the complex and often counterintuitive dynamic behavior of biological systems and quantitatively predict their responses to environmental perturbations. In this paper, we review the impact of systems biology on precision oncology. We show examples of how the analysis of signal transduction networks allows to dissect resistance to targeted therapies and inform the choice of combinations of targeted drugs based on tumor molecular alterations. Patient-specific biomarkers based on dynamical models of signaling networks can have a greater prognostic value than conventional biomarkers. These examples support systems biology models as valuable tools to advance clinical and translational oncological research.
Collapse
Affiliation(s)
- Andrea Rocca
- Hygiene and Public Health, Local Health Unit of Romagna, 47121 Forlì, Italy
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Franz A, Coscia F, Shen C, Charaoui L, Mann M, Sander C. Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res 2021; 14:140. [PMID: 34686201 PMCID: PMC8539835 DOI: 10.1186/s13048-021-00886-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Poly (ADP)-ribose polymerase (PARP) inhibitors have entered routine clinical practice for the treatment of high-grade serous ovarian cancer (HGSOC), yet the molecular mechanisms underlying treatment response to PARP1 inhibition (PARP1i) are not fully understood. METHODS Here, we used unbiased mass spectrometry based proteomics with data-driven protein network analysis to systematically characterize how HGSOC cells respond to PARP1i treatment. RESULTS We found that PARP1i leads to pronounced proteomic changes in a diverse set of cellular processes in HGSOC cancer cells, consistent with transcript changes in an independent perturbation dataset. We interpret decreases in the levels of the pro-proliferative transcription factors SP1 and β-catenin and in growth factor signaling as reflecting the anti-proliferative effect of PARP1i; and the strong activation of pro-survival processes NF-κB signaling and lipid metabolism as PARPi-induced adaptive resistance mechanisms. Based on these observations, we nominate several protein targets for therapeutic inhibition in combination with PARP1i. When tested experimentally, the combination of PARPi with an inhibitor of fatty acid synthase (TVB-2640) has a 3-fold synergistic effect and is therefore of particular pre-clinical interest. CONCLUSION Our study improves the current understanding of PARP1 function, highlights the potential that the anti-tumor efficacy of PARP1i may not only rely on DNA damage repair mechanisms and informs on the rational design of PARP1i combination therapies in ovarian cancer.
Collapse
Affiliation(s)
- Alexandra Franz
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Fabian Coscia
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ciyue Shen
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lea Charaoui
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Mann
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Chris Sander
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
21
|
Wang N, Lefaudeux D, Mazumder A, Li JJ, Hoffmann A. Identifying the combinatorial control of signal-dependent transcription factors. PLoS Comput Biol 2021; 17:e1009095. [PMID: 34166361 PMCID: PMC8263068 DOI: 10.1371/journal.pcbi.1009095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
The effectiveness of immune responses depends on the precision of stimulus-responsive gene expression programs. Cells specify which genes to express by activating stimulus-specific combinations of stimulus-induced transcription factors (TFs). Their activities are decoded by a gene regulatory strategy (GRS) associated with each response gene. Here, we examined whether the GRSs of target genes may be inferred from stimulus-response (input-output) datasets, which remains an unresolved model-identifiability challenge. We developed a mechanistic modeling framework and computational workflow to determine the identifiability of all possible combinations of synergistic (AND) or non-synergistic (OR) GRSs involving three transcription factors. Considering different sets of perturbations for stimulus-response studies, we found that two thirds of GRSs are easily distinguishable but that substantially more quantitative data is required to distinguish the remaining third. To enhance the accuracy of the inference with timecourse experimental data, we developed an advanced error model that avoids error overestimates by distinguishing between value and temporal error. Incorporating this error model into a Bayesian framework, we show that GRS models can be identified for individual genes by considering multiple datasets. Our analysis rationalizes the allocation of experimental resources by identifying most informative TF stimulation conditions. Applying this computational workflow to experimental data of immune response genes in macrophages, we found that a much greater fraction of genes are combinatorially controlled than previously reported by considering compensation among transcription factors. Specifically, we revealed that a group of known NFκB target genes may also be regulated by IRF3, which is supported by chromatin immuno-precipitation analysis. Our study provides a computational workflow for designing and interpreting stimulus-response gene expression studies to identify underlying gene regulatory strategies and further a mechanistic understanding.
Collapse
Affiliation(s)
- Ning Wang
- Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California, United States of America
| | - Diane Lefaudeux
- Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Anup Mazumder
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Jingyi Jessica Li
- Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, California, United States of America
- Department of Statistics, University of California, Los Angeles, California, United States of America
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Braunstein A, Gueudré T, Pagnani A, Pieropan M. Expectation propagation on the diluted Bayesian classifier. Phys Rev E 2021; 103:043301. [PMID: 34005851 DOI: 10.1103/physreve.103.043301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/15/2021] [Indexed: 11/07/2022]
Abstract
Efficient feature selection from high-dimensional datasets is a very important challenge in many data-driven fields of science and engineering. We introduce a statistical mechanics inspired strategy that addresses the problem of sparse feature selection in the context of binary classification by leveraging a computational scheme known as expectation propagation (EP). The algorithm is used in order to train a continuous-weights perceptron learning a classification rule from a set of (possibly partly mislabeled) examples provided by a teacher perceptron with diluted continuous weights. We test the method in the Bayes optimal setting under a variety of conditions and compare it to other state-of-the-art algorithms based on message passing and on expectation maximization approximate inference schemes. Overall, our simulations show that EP is a robust and competitive algorithm in terms of variable selection properties, estimation accuracy, and computational complexity, especially when the student perceptron is trained from correlated patterns that prevent other iterative methods from converging. Furthermore, our numerical tests demonstrate that the algorithm is capable of learning online the unknown values of prior parameters, such as the dilution level of the weights of the teacher perceptron and the fraction of mislabeled examples, quite accurately. This is achieved by means of a simple maximum likelihood strategy that consists in minimizing the free energy associated with the EP algorithm.
Collapse
Affiliation(s)
- Alfredo Braunstein
- Department of Applied Science and Technologies, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy.,Italian Institute for Genomic Medicine, IRCCS Candiolo, SP-142, I-10060 Candiolo, Italy.,Istituto Nazionale di Fisica Nucleare Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy
| | - Thomas Gueudré
- Department of Applied Science and Technologies, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| | - Andrea Pagnani
- Department of Applied Science and Technologies, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy.,Italian Institute for Genomic Medicine, IRCCS Candiolo, SP-142, I-10060 Candiolo, Italy.,Istituto Nazionale di Fisica Nucleare Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy
| | - Mirko Pieropan
- Department of Applied Science and Technologies, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy
| |
Collapse
|
23
|
Causal interactions from proteomic profiles: Molecular data meet pathway knowledge. PATTERNS 2021; 2:100257. [PMID: 34179843 PMCID: PMC8212145 DOI: 10.1016/j.patter.2021.100257] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/10/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
We present a computational method to infer causal mechanisms in cell biology by analyzing changes in high-throughput proteomic profiles on the background of prior knowledge captured in biochemical reaction knowledge bases. The method mimics a biologist's traditional approach of explaining changes in data using prior knowledge but does this at the scale of hundreds of thousands of reactions. This is a specific example of how to automate scientific reasoning processes and illustrates the power of mapping from experimental data to prior knowledge via logic programming. The identified mechanisms can explain how experimental and physiological perturbations, propagating in a network of reactions, affect cellular responses and their phenotypic consequences. Causal pathway analysis is a powerful and flexible discovery tool for a wide range of cellular profiling data types and biological questions. The automated causation inference tool, as well as the source code, are freely available at http://causalpath.org. CausalPath builds mechanistic models from proteomic profiles It integrates biological pathway models with molecular measurements It supports logical reasoning with post-translational modifications A web server, free software, and a source code are available
Molecular profiling of biological organisms provides us with a great amount of information on cellular differences, but converting it to mechanistic insights is still a very challenging task. A prominent approach is to integrate new measurements with the mechanistic knowledge described in the scientific literature and build a model that is supported by both. Although this can be done in many ways, an adept approach will use the literature knowledge in detail and follow high standards of logical reasoning while integrating the known and the new. This article describes an approach that utilizes the details in human biological pathways to identify pairs of changes with a likely cause-effect relation within. The approach automatically converts comparative proteomic and other molecular profiles into hypotheses of differentially active mechanistic relations that explain how the profiles came to be.
Collapse
|
24
|
Bhattacharya S, Mohanty A, Achuthan S, Kotnala S, Jolly MK, Kulkarni P, Salgia R. Group Behavior and Emergence of Cancer Drug Resistance. Trends Cancer 2021; 7:323-334. [PMID: 33622644 PMCID: PMC8500356 DOI: 10.1016/j.trecan.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Drug resistance is a major impediment in cancer. Although it is generally thought that acquired drug resistance is due to genetic mutations, emerging evidence indicates that nongenetic mechanisms also play an important role. Resistance emerges through a complex interplay of clonal groups within a heterogeneous tumor and the surrounding microenvironment. Traits such as phenotypic plasticity, intercellular communication, and adaptive stress response, act in concert to ensure survival of intermediate reversible phenotypes, until permanent, resistant clones can emerge. Understanding the role of group behavior, and the underlying nongenetic mechanisms, can lead to more efficacious treatment designs and minimize or delay emergence of resistance.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
25
|
Zanin M, Aitya NA, Basilio J, Baumbach J, Benis A, Behera CK, Bucholc M, Castiglione F, Chouvarda I, Comte B, Dao TT, Ding X, Pujos-Guillot E, Filipovic N, Finn DP, Glass DH, Harel N, Iesmantas T, Ivanoska I, Joshi A, Boudjeltia KZ, Kaoui B, Kaur D, Maguire LP, McClean PL, McCombe N, de Miranda JL, Moisescu MA, Pappalardo F, Polster A, Prasad G, Rozman D, Sacala I, Sanchez-Bornot JM, Schmid JA, Sharp T, Solé-Casals J, Spiwok V, Spyrou GM, Stalidzans E, Stres B, Sustersic T, Symeonidis I, Tieri P, Todd S, Van Steen K, Veneva M, Wang DH, Wang H, Wang H, Watterson S, Wong-Lin K, Yang S, Zou X, Schmidt HH. An Early Stage Researcher's Primer on Systems Medicine Terminology. NETWORK AND SYSTEMS MEDICINE 2021; 4:2-50. [PMID: 33659919 PMCID: PMC7919422 DOI: 10.1089/nsm.2020.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nadim A.A. Aitya
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - José Basilio
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Jan Baumbach
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arriel Benis
- Faculty of Technology Management, Holon Institute of Technology (HIT), Holon, Israel
| | - Chandan K. Behera
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Magda Bucholc
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics, and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Blandine Comte
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Tien-Tuan Dao
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Xuemei Ding
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland, Galway, Republic of Ireland
| | - David H. Glass
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Nissim Harel
- Faculty of Sciences, Holon Institute of Technology (HIT), Holon, Israel
| | - Tomas Iesmantas
- Department of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilinka Ivanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222), Medicine Faculty, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Badr Kaoui
- Biomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, Compiègne, France
- Labex MS2T “Control of Technological Systems-of-Systems,” CNRS and Université de Technologie de Compiègne, Compiègne, France
| | - Daman Kaur
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Liam P. Maguire
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Paula L. McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Ulster, United Kingdom
| | - Niamh McCombe
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - João Luís de Miranda
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Portalegre, Portalegre, Portugal
- Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Annikka Polster
- Centre for Molecular Medicine Norway (NCMM), Forskningparken, Oslo, Norway
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ioan Sacala
- Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
| | - Jose M. Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic–Central University of Catalonia, Vic, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - George M. Spyrou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Egils Stalidzans
- Computational Systems Biology Group, Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tijana Sustersic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - Ioannis Symeonidis
- Center for Research and Technology Hellas, Hellenic Institute of Transport, Thessaloniki, Greece
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Stephen Todd
- Altnagelvin Area Hospital, Western Health and Social Care Trust, Altnagelvin, United Kingdom
| | - Kristel Van Steen
- BIO3-Systems Genetics, GIGA-R, University of Liege, Liege, Belgium
- BIO3-Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and School of Systems Science, Beijing Normal University, Beijing, China
| | - Haiying Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Hui Wang
- School of Computing, Ulster University, Ulster, United Kingdom
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Su Yang
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Ulster, United Kingdom
| | - Xin Zou
- Shanghai Centre for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Harald H.H.W. Schmidt
- Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Abstract
MOTIVATION Cells regulate themselves via dizzyingly complex biochemical processes called signaling pathways. These are usually depicted as a network, where nodes represent proteins and edges indicate their influence on each other. In order to understand diseases and therapies at the cellular level, it is crucial to have an accurate understanding of the signaling pathways at work. Since signaling pathways can be modified by disease, the ability to infer signaling pathways from condition- or patient-specific data is highly valuable. A variety of techniques exist for inferring signaling pathways. We build on past works that formulate signaling pathway inference as a Dynamic Bayesian Network structure estimation problem on phosphoproteomic time course data. We take a Bayesian approach, using Markov Chain Monte Carlo to estimate a posterior distribution over possible Dynamic Bayesian Network structures. Our primary contributions are (i) a novel proposal distribution that efficiently samples sparse graphs and (ii) the relaxation of common restrictive modeling assumptions. RESULTS We implement our method, named Sparse Signaling Pathway Sampling, in Julia using the Gen probabilistic programming language. Probabilistic programming is a powerful methodology for building statistical models. The resulting code is modular, extensible and legible. The Gen language, in particular, allows us to customize our inference procedure for biological graphs and ensure efficient sampling. We evaluate our algorithm on simulated data and the HPN-DREAM pathway reconstruction challenge, comparing our performance against a variety of baseline methods. Our results demonstrate the vast potential for probabilistic programming, and Gen specifically, for biological network inference. AVAILABILITY AND IMPLEMENTATION Find the full codebase at https://github.com/gitter-lab/ssps. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David Merrell
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Anthony Gitter
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53726, USA
| |
Collapse
|
27
|
Yuan B, Shen C, Luna A, Korkut A, Marks DS, Ingraham J, Sander C. CellBox: Interpretable Machine Learning for Perturbation Biology with Application to the Design of Cancer Combination Therapy. Cell Syst 2020; 12:128-140.e4. [PMID: 33373583 DOI: 10.1016/j.cels.2020.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023]
Abstract
Systematic perturbation of cells followed by comprehensive measurements of molecular and phenotypic responses provides informative data resources for constructing computational models of cell biology. Models that generalize well beyond training data can be used to identify combinatorial perturbations of potential therapeutic interest. Major challenges for machine learning on large biological datasets are to find global optima in a complex multidimensional space and mechanistically interpret the solutions. To address these challenges, we introduce a hybrid approach that combines explicit mathematical models of cell dynamics with a machine-learning framework, implemented in TensorFlow. We tested the modeling framework on a perturbation-response dataset of a melanoma cell line after drug treatments. The models can be efficiently trained to describe cellular behavior accurately. Even though completely data driven and independent of prior knowledge, the resulting de novo network models recapitulate some known interactions. The approach is readily applicable to various kinetic models of cell biology. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| | - Ciyue Shen
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| | - Augustin Luna
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA
| | - Anil Korkut
- Department of Bioinformatics & Computational Biology, the University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Debora S Marks
- Broad Institute, Cambridge, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John Ingraham
- MIT Computer Science & Artificial Intelligence Laboratory, Boston, MA, USA
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA; cBio Center, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
28
|
Khalilimeybodi A, Paap AM, Christiansen SLM, Saucerman JJ. Context-specific network modeling identifies new crosstalk in β-adrenergic cardiac hypertrophy. PLoS Comput Biol 2020; 16:e1008490. [PMID: 33338038 PMCID: PMC7781532 DOI: 10.1371/journal.pcbi.1008490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/04/2021] [Accepted: 11/05/2020] [Indexed: 11/25/2022] Open
Abstract
Cardiac hypertrophy is a context-dependent phenomenon wherein a myriad of biochemical and biomechanical factors regulate myocardial growth through a complex large-scale signaling network. Although numerous studies have investigated hypertrophic signaling pathways, less is known about hypertrophy signaling as a whole network and how this network acts in a context-dependent manner. Here, we developed a systematic approach, CLASSED (Context-specific Logic-bASed Signaling nEtwork Development), to revise a large-scale signaling model based on context-specific data and identify main reactions and new crosstalks regulating context-specific response. CLASSED involves four sequential stages with an automated validation module as a core which builds a logic-based ODE model from the interaction graph and outputs the model validation percent. The context-specific model is developed by estimation of default parameters, classified qualitative validation, hybrid Morris-Sobol global sensitivity analysis, and discovery of missing context-dependent crosstalks. Applying this pipeline to our prior-knowledge hypertrophy network with context-specific data revealed key signaling reactions which distinctly regulate cell response to isoproterenol, phenylephrine, angiotensin II and stretch. Furthermore, with CLASSED we developed a context-specific model of β-adrenergic cardiac hypertrophy. The model predicted new crosstalks between calcium/calmodulin-dependent pathways and upstream signaling of Ras in the ISO-specific context. Experiments in cardiomyocytes validated the model’s predictions on the role of CaMKII-Gβγ and CaN-Gβγ interactions in mediating hypertrophic signals in ISO-specific context and revealed a difference in the phosphorylation magnitude and translocation of ERK1/2 between cardiac myocytes and fibroblasts. CLASSED is a systematic approach for developing context-specific large-scale signaling networks, yielding insights into new-found crosstalks in β-adrenergic cardiac hypertrophy. Pathological cardiac hypertrophy is a disease in which the heart grows abnormally in response to different motivators such as high blood pressure or variations in hormones and growth factors. The shape of the heart after its growth depends on the context in which it grows. Since cell signaling in the cardiac cells plays a key role in the determination of heart shape, a thorough understanding of cardiac cells signaling in each context enlightens the mechanisms which control response of cardiac cells. However, cell signaling in cardiac hypertrophy comprises a complex web of pathways with numerous interactions, and predicting how these interactions control the hypertrophic signal in each context is not achievable by only experiments or general computational models. To address this need, we developed an approach to bring together the experimental data of each context with a signaling network curated from literature to identify the main players of cardiac cells response in each context and attain the context-specific models of cardiac hypertrophy. By utilizing our approach, we identified the main regulators of cardiac hypertrophy in four important contexts. We developed a network model of β-adrenergic cardiac hypertrophy, and predicted and validated new interactions that regulate cardiac cells response in this context.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alexander M. Paap
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Steven L. M. Christiansen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zhao W, Li J, Chen MJM, Luo Y, Ju Z, Nesser NK, Johnson-Camacho K, Boniface CT, Lawrence Y, Pande NT, Davies MA, Herlyn M, Muranen T, Zervantonakis IK, von Euw E, Schultz A, Kumar SV, Korkut A, Spellman PT, Akbani R, Slamon DJ, Gray JW, Brugge JS, Lu Y, Mills GB, Liang H. Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines. Cancer Cell 2020; 38:829-843.e4. [PMID: 33157050 PMCID: PMC7738392 DOI: 10.1016/j.ccell.2020.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju M Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicole K Nesser
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Katie Johnson-Camacho
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Christopher T Boniface
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Yancey Lawrence
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nupur T Pande
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Taru Muranen
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Ioannis K Zervantonakis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Erika von Euw
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul T Spellman
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dennis J Slamon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joe W Gray
- Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Stepaniants G, Brunton BW, Kutz JN. Inferring causal networks of dynamical systems through transient dynamics and perturbation. Phys Rev E 2020; 102:042309. [PMID: 33212733 DOI: 10.1103/physreve.102.042309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022]
Abstract
Inferring causal relations from time series measurements is an ill-posed mathematical problem, where typically an infinite number of potential solutions can reproduce the given data. We explore in depth a strategy to disambiguate between possible underlying causal networks by perturbing the network, where the forcings are either targeted or applied at random. The resulting transient dynamics provide the critical information necessary to infer causality. Two methods are shown to provide accurate causal reconstructions: Granger causality (GC) with perturbations, and our proposed perturbation cascade inference (PCI). Perturbed GC is capable of inferring smaller networks under low coupling strength regimes. Our proposed PCI method demonstrated consistently strong performance in inferring causal relations for small (2-5 node) and large (10-20 node) networks, with both linear and nonlinear dynamics. Thus, the ability to apply a large and diverse set of perturbations to the network is critical for successfully and accurately determining causal relations and disambiguating between various viable networks.
Collapse
Affiliation(s)
- George Stepaniants
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Mathematics, University of Washington, Seattle, Washington 98195, USA
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
31
|
Weistuch C, Agozzino L, Mujica-Parodi LR, Dill KA. Inferring a network from dynamical signals at its nodes. PLoS Comput Biol 2020; 16:e1008435. [PMID: 33253160 PMCID: PMC7728228 DOI: 10.1371/journal.pcbi.1008435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/10/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
We give an approximate solution to the difficult inverse problem of inferring the topology of an unknown network from given time-dependent signals at the nodes. For example, we measure signals from individual neurons in the brain, and infer how they are inter-connected. We use Maximum Caliber as an inference principle. The combinatorial challenge of high-dimensional data is handled using two different approximations to the pairwise couplings. We show two proofs of principle: in a nonlinear genetic toggle switch circuit, and in a toy neural network.
Collapse
Affiliation(s)
- Corey Weistuch
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Luca Agozzino
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Lilianne R. Mujica-Parodi
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
32
|
Clarke R, Kraikivski P, Jones BC, Sevigny CM, Sengupta S, Wang Y. A systems biology approach to discovering pathway signaling dysregulation in metastasis. Cancer Metastasis Rev 2020; 39:903-918. [PMID: 32776157 PMCID: PMC7487029 DOI: 10.1007/s10555-020-09921-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Total metastatic burden is the primary cause of death for many cancer patients. While the process of metastasis has been studied widely, much remains to be understood. Moreover, few agents have been developed that specifically target the major steps of the metastatic cascade. Many individual genes and pathways have been implicated in metastasis but a holistic view of how these interact and cooperate to regulate and execute the process remains somewhat rudimentary. It is unclear whether all of the signaling features that regulate and execute metastasis are yet fully understood. Novel features of a complex system such as metastasis can often be discovered by taking a systems-based approach. We introduce the concepts of systems modeling and define some of the central challenges facing the application of a multidisciplinary systems-based approach to understanding metastasis and finding actionable targets therein. These challenges include appreciating the unique properties of the high-dimensional omics data often used for modeling, limitations in knowledge of the system (metastasis), tumor heterogeneity and sampling bias, and some of the issues key to understanding critical features of molecular signaling in the context of metastasis. We also provide a brief introduction to integrative modeling that focuses on both the nodes and edges of molecular signaling networks. Finally, we offer some observations on future directions as they relate to developing a systems-based model of the metastatic cascade.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
- Hormel Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Austin, MN, 55912, USA.
| | - Pavel Kraikivski
- Academy of Integrated Science, Division of Systems Biology, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Brandon C Jones
- Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Catherine M Sevigny
- Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Surojeet Sengupta
- Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Yue Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| |
Collapse
|
33
|
Nyman E, Stein RR, Jing X, Wang W, Marks B, Zervantonakis IK, Korkut A, Gauthier NP, Sander C. Perturbation biology links temporal protein changes to drug responses in a melanoma cell line. PLoS Comput Biol 2020; 16:e1007909. [PMID: 32667922 PMCID: PMC7384681 DOI: 10.1371/journal.pcbi.1007909] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/27/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have genetic alterations that often directly affect intracellular protein signaling processes allowing them to bypass control mechanisms for cell death, growth and division. Cancer drugs targeting these alterations often work initially, but resistance is common. Combinations of targeted drugs may overcome or prevent resistance, but their selection requires context-specific knowledge of signaling pathways including complex interactions such as feedback loops and crosstalk. To infer quantitative pathway models, we collected a rich dataset on a melanoma cell line: Following perturbation with 54 drug combinations, we measured 124 (phospho-)protein levels and phenotypic response (cell growth, apoptosis) in a time series from 10 minutes to 67 hours. From these data, we trained time-resolved mathematical models that capture molecular interactions and the coupling of molecular levels to cellular phenotype, which in turn reveal the main direct or indirect molecular responses to each drug. Systematic model simulations identified novel combinations of drugs predicted to reduce the survival of melanoma cells, with partial experimental verification. This particular application of perturbation biology demonstrates the potential impact of combining time-resolved data with modeling for the discovery of new combinations of cancer drugs.
Collapse
Affiliation(s)
- Elin Nyman
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, U.S.A.
- cBio Center, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, U.S.A.
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, U.S.A.
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden
| | - Richard R. Stein
- cBio Center, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, U.S.A.
- Harvard School of Public Health, Boston, MA 02115, U.S.A.
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, U.S.A.
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, U.S.A.
| | - Xiaohong Jing
- Memorial Sloan Kettering Cancer Center, New York, NY 10065 U.S.A.
| | - Weiqing Wang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065 U.S.A.
| | - Benjamin Marks
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, U.S.A.
| | | | - Anil Korkut
- University of Texas MD Anderson Cancer Center, Houston, TX 77030 U.S.A.
| | - Nicholas P. Gauthier
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, U.S.A.
- cBio Center, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, U.S.A.
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, U.S.A.
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, U.S.A.
- cBio Center, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, U.S.A.
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, U.S.A.
| |
Collapse
|
34
|
Abstract
Motivation A major challenge in molecular and cellular biology is to map out the regulatory networks of cells. As regulatory interactions can typically not be directly observed experimentally, various computational methods have been proposed to disentangling direct and indirect effects. Most of these rely on assumptions that are rarely met or cannot be adapted to a given context. Results We present a network inference method that is based on a simple response logic with minimal presumptions. It requires that we can experimentally observe whether or not some of the system’s components respond to perturbations of some other components, and then identifies the directed networks that most accurately account for the observed propagation of the signal. To cope with the intractable number of possible networks, we developed a logic programming approach that can infer networks of hundreds of nodes, while being robust to noisy, heterogeneous or missing data. This allows to directly integrate prior network knowledge and additional constraints such as sparsity. We systematically benchmark our method on KEGG pathways, and show that it outperforms existing approaches in DREAM3 and DREAM4 challenges. Applied to a novel perturbation dataset on PI3K and MAPK pathways in isogenic models of a colon cancer cell line, it generates plausible network hypotheses that explain distinct sensitivities toward various targeted inhibitors due to different PI3K mutants. Availability and implementation A Python/Answer Set Programming implementation can be accessed at github.com/GrossTor/response-logic. Data and analysis scripts are available at github.com/GrossTor/response-logic-projects. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Torsten Gross
- Institut für Pathologie, Charité-Universitätsmedizin, Berlin.,IRI Life Sciences, Humboldt Universität zu Berlin, Berlin.,Berlin Institute of Health, Berlin, Germany
| | | | - Yibing Yan
- Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Nils Blüthgen
- Institut für Pathologie, Charité-Universitätsmedizin, Berlin.,IRI Life Sciences, Humboldt Universität zu Berlin, Berlin.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
35
|
Tiuryn J, Szczurek E. Learning signaling networks from combinatorial perturbations by exploiting siRNA off-target effects. Bioinformatics 2020; 35:i605-i614. [PMID: 31510678 PMCID: PMC6612802 DOI: 10.1093/bioinformatics/btz334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motivation Perturbation experiments constitute the central means to study cellular networks. Several confounding factors complicate computational modeling of signaling networks from this data. First, the technique of RNA interference (RNAi), designed and commonly used to knock-down specific genes, suffers from off-target effects. As a result, each experiment is a combinatorial perturbation of multiple genes. Second, the perturbations propagate along unknown connections in the signaling network. Once the signal is blocked by perturbation, proteins downstream of the targeted proteins also become inactivated. Finally, all perturbed network members, either directly targeted by the experiment, or by propagation in the network, contribute to the observed effect, either in a positive or negative manner. One of the key questions of computational inference of signaling networks from such data are, how many and what combinations of perturbations are required to uniquely and accurately infer the model? Results Here, we introduce an enhanced version of linear effects models (LEMs), which extends the original by accounting for both negative and positive contributions of the perturbed network proteins to the observed phenotype. We prove that the enhanced LEMs are identified from data measured under perturbations of all single, pairs and triplets of network proteins. For small networks of up to five nodes, only perturbations of single and pairs of proteins are required for identifiability. Extensive simulations demonstrate that enhanced LEMs achieve excellent accuracy of parameter estimation and network structure learning, outperforming the previous version on realistic data. LEMs applied to Bartonella henselae infection RNAi screening data identified known interactions between eight nodes of the infection network, confirming high specificity of our model and suggested one new interaction. Availability and implementation https://github.com/EwaSzczurek/LEM Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jerzy Tiuryn
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Ewa Szczurek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Holding AN, Cook HV, Markowetz F. Data generation and network reconstruction strategies for single cell transcriptomic profiles of CRISPR-mediated gene perturbations. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194441. [PMID: 31756390 DOI: 10.1016/j.bbagrm.2019.194441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
Recent advances in single-cell RNA-sequencing (scRNA-seq) in combination with CRISPR/Cas9 technologies have enabled the development of methods for large-scale perturbation studies with transcriptional readouts. These methods are highly scalable and have the potential to provide a wealth of information on the biological networks that underlie cellular response. Here we discuss how to overcome several key challenges to generate and analyse data for the confident reconstruction of models of the underlying cellular network. Some challenges are generic, and apply to analysing any single-cell transcriptomic data, while others are specific to combined single-cell CRISPR/Cas9 data, in particular barcode swapping, knockdown efficiency, multiplicity of infection and potential confounding factors. We also provide a curated collection of published data sets to aid the development of analysis strategies. Finally, we discuss several network reconstruction approaches, including co-expression networks and Bayesian networks, as well as their limitations, and highlight the potential of Nested Effects Models for network reconstruction from scRNA-seq data. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Andrew N Holding
- Department of Biology, University of York, York, UK; York Biomedical Research Institute, University of York, York, UK; CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, UK; The Alan Turing Institute, 96 Euston Road, Kings Cross, London, UK
| | - Helen V Cook
- Department of Biology, University of York, York, UK
| | | |
Collapse
|
37
|
Eduati F, Jaaks P, Wappler J, Cramer T, Merten CA, Garnett MJ, Saez‐Rodriguez J. Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Mol Syst Biol 2020; 16:e8664. [PMID: 32073727 PMCID: PMC7029724 DOI: 10.15252/msb.20188664] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Mechanistic modeling of signaling pathways mediating patient-specific response to therapy can help to unveil resistance mechanisms and improve therapeutic strategies. Yet, creating such models for patients, in particular for solid malignancies, is challenging. A major hurdle to build these models is the limited material available that precludes the generation of large-scale perturbation data. Here, we present an approach that couples ex vivo high-throughput screenings of cancer biopsies using microfluidics with logic-based modeling to generate patient-specific dynamic models of extrinsic and intrinsic apoptosis signaling pathways. We used the resulting models to investigate heterogeneity in pancreatic cancer patients, showing dissimilarities especially in the PI3K-Akt pathway. Variation in model parameters reflected well the different tumor stages. Finally, we used our dynamic models to efficaciously predict new personalized combinatorial treatments. Our results suggest that our combination of microfluidic experiments and mathematical model can be a novel tool toward cancer precision medicine.
Collapse
Affiliation(s)
- Federica Eduati
- European Molecular Biology Laboratory (EMBL)Genome Biology UnitHeidelbergGermany
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- Joint Research Centre for Computational Biomedicine (JRC‐COMBINE)Faculty of MedicineRWTH Aachen UniversityAachenGermany
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | | | - Jessica Wappler
- Department SurgeryMolecular Tumor BiologyRWTH University HospitalAachenGermany
| | - Thorsten Cramer
- Department SurgeryMolecular Tumor BiologyRWTH University HospitalAachenGermany
- ESCAM – European Surgery Center Aachen MaastrichtAachenGermany
- ESCAM – European Surgery Center Aachen MaastrichtMaastrichtThe Netherlands
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL)Genome Biology UnitHeidelbergGermany
| | | | - Julio Saez‐Rodriguez
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- Joint Research Centre for Computational Biomedicine (JRC‐COMBINE)Faculty of MedicineRWTH Aachen UniversityAachenGermany
- Institute for Computational BiomedicineFaculty of MedicineBIOQUANT‐CenterHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
38
|
Buetti-Dinh A, Herold M, Christel S, El Hajjami M, Delogu F, Ilie O, Bellenberg S, Wilmes P, Poetsch A, Sand W, Vera M, Pivkin IV, Friedman R, Dopson M. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations. BMC Bioinformatics 2020; 21:23. [PMID: 31964336 PMCID: PMC6975020 DOI: 10.1186/s12859-019-3337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Network inference is an important aim of systems biology. It enables the transformation of OMICs datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data, such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in biotechnology applications. METHODS We performed simulations according to the approximate Bayesian computation method, where the core model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a limited level of details is available. The simulations outcome was compared to experimentally measured transcriptomics and proteomics data through approximate Bayesian computation. RESULTS The structure of small gene regulatory networks responsible for the regulation of biological functions involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided indications for the role of several uncharacterized proteins by the inferred connection in their network context. CONCLUSIONS The combination of fast algorithms with high-performance computing allowed the simulation of a multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments. This information can be used to influence biological functions and control specific processes in biotechnology applications.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
- Department of Chemistry and Biomedical Sciences, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | | | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Olga Ilie
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
| | - Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- Center for Marine and Molecular Biotechnology, QNLM, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wolfgang Sand
- Faculty of Chemistry, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, People’s Republic of China
- Mining Academy and Technical University Freiberg, Freiberg, Germany
| | - Mario Vera
- Institute for Biological and Medical Engineering. Schools of Engineering, Medicine & Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Hydraulic & Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Igor V. Pivkin
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| |
Collapse
|
39
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
40
|
Banerjee A, Pathak J, Roy R, Restrepo JG, Ott E. Using machine learning to assess short term causal dependence and infer network links. CHAOS (WOODBURY, N.Y.) 2019; 29:121104. [PMID: 31893648 DOI: 10.1063/1.5134845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
We introduce and test a general machine-learning-based technique for the inference of short term causal dependence between state variables of an unknown dynamical system from time-series measurements of its state variables. Our technique leverages the results of a machine learning process for short time prediction to achieve our goal. The basic idea is to use the machine learning to estimate the elements of the Jacobian matrix of the dynamical flow along an orbit. The type of machine learning that we employ is reservoir computing. We present numerical tests on link inference of a network of interacting dynamical nodes. It is seen that dynamical noise can greatly enhance the effectiveness of our technique, while observational noise degrades the effectiveness. We believe that the competition between these two opposing types of noise will be the key factor determining the success of causal inference in many of the most important application situations.
Collapse
Affiliation(s)
- Amitava Banerjee
- Department of Physics and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Jaideep Pathak
- Department of Physics and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Rajarshi Roy
- Department of Physics and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Juan G Restrepo
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
| | - Edward Ott
- Department of Physics and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
41
|
Caldera M, Müller F, Kaltenbrunner I, Licciardello MP, Lardeau CH, Kubicek S, Menche J. Mapping the perturbome network of cellular perturbations. Nat Commun 2019; 10:5140. [PMID: 31723137 PMCID: PMC6853941 DOI: 10.1038/s41467-019-13058-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Drug combinations provide effective treatments for diverse diseases, but also represent a major cause of adverse reactions. Currently there is no systematic understanding of how the complex cellular perturbations induced by different drugs influence each other. Here, we introduce a mathematical framework for classifying any interaction between perturbations with high-dimensional effects into 12 interaction types. We apply our framework to a large-scale imaging screen of cell morphology changes induced by diverse drugs and their combination, resulting in a perturbome network of 242 drugs and 1832 interactions. Our analysis of the chemical and biological features of the drugs reveals distinct molecular fingerprints for each interaction type. We find a direct link between drug similarities on the cell morphology level and the distance of their respective protein targets within the cellular interactome of molecular interactions. The interactome distance is also predictive for different types of drug interactions.
Collapse
Affiliation(s)
- Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Felix Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Isabel Kaltenbrunner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Marco P Licciardello
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090, Vienna, Austria.
| |
Collapse
|
42
|
Lukačišin M, Bollenbach T. Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug Interactions. Cell Syst 2019; 9:423-433.e3. [PMID: 31734160 DOI: 10.1016/j.cels.2019.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
Effective design of combination therapies requires understanding the changes in cell physiology that result from drug interactions. Here, we show that the genome-wide transcriptional response to combinations of two drugs, measured at a rigorously controlled growth rate, can predict higher-order antagonism with a third drug in Saccharomyces cerevisiae. Using isogrowth profiling, over 90% of the variation in cellular response can be decomposed into three principal components (PCs) that have clear biological interpretations. We demonstrate that the third PC captures emergent transcriptional programs that are dependent on both drugs and can predict antagonism with a third drug targeting the emergent pathway. We further show that emergent gene expression patterns are most pronounced at a drug ratio where the drug interaction is strongest, providing a guideline for future measurements. Our results provide a readily applicable recipe for uncovering emergent responses in other systems and for higher-order drug combinations. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Martin Lukačišin
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany; IST Austria, 3400 Klosterneuburg, Austria
| | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
43
|
Loos C, Krause S, Hasenauer J. Hierarchical optimization for the efficient parametrization of ODE models. Bioinformatics 2019; 34:4266-4273. [PMID: 30010716 PMCID: PMC6289139 DOI: 10.1093/bioinformatics/bty514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/10/2018] [Indexed: 11/14/2022] Open
Abstract
Motivation Mathematical models are nowadays important tools for analyzing dynamics of cellular processes. The unknown model parameters are usually estimated from experimental data. These data often only provide information about the relative changes between conditions, hence, the observables contain scaling parameters. The unknown scaling parameters and corresponding noise parameters have to be inferred along with the dynamic parameters. The nuisance parameters often increase the dimensionality of the estimation problem substantially and cause convergence problems. Results In this manuscript, we propose a hierarchical optimization approach for estimating the parameters for ordinary differential equation (ODE) models from relative data. Our approach restructures the optimization problem into an inner and outer subproblem. These subproblems possess lower dimensions than the original optimization problem, and the inner problem can be solved analytically. We evaluated accuracy, robustness and computational efficiency of the hierarchical approach by studying three signaling pathways. The proposed approach achieved better convergence than the standard approach and required a lower computation time. As the hierarchical optimization approach is widely applicable, it provides a powerful alternative to established approaches. Availability and implementation The code is included in the MATLAB toolbox PESTO which is available at http://github.com/ICB-DCM/PESTO. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Carolin Loos
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,Chair of Mathematical Modeling of Biological Systems, Center for Mathematics, Technische Universität München, Garching, Germany
| | - Sabrina Krause
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,Chair of Mathematical Modeling of Biological Systems, Center for Mathematics, Technische Universität München, Garching, Germany
| | - Jan Hasenauer
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.,Chair of Mathematical Modeling of Biological Systems, Center for Mathematics, Technische Universität München, Garching, Germany
| |
Collapse
|
44
|
Harmer R, Le Cornec YS, Legare S, Oshurko E. Bio-Curation for Cellular Signalling: The KAMI Project. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1562-1573. [PMID: 30908261 DOI: 10.1109/tcbb.2019.2906164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The general question of what constitutes bio-curation for rule-based modelling of cellular signalling is posed. A general approach to the problem is presented, based on rewriting in hierarchies of graphs, together with a specific instantiation of the methodology that addresses our particular bio-curation problem. The current state of the ongoing development of the KAMI bio-curation tool, based on this approach, is outlined along with our plans for future development.
Collapse
|
45
|
Bag AK, Mandloi S, Jarmalavicius S, Mondal S, Kumar K, Mandal C, Walden P, Chakrabarti S, Mandal C. Connecting signaling and metabolic pathways in EGF receptor-mediated oncogenesis of glioblastoma. PLoS Comput Biol 2019; 15:e1007090. [PMID: 31386654 PMCID: PMC6684045 DOI: 10.1371/journal.pcbi.1007090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
As malignant transformation requires synchronization of growth-driving signaling (S) and metabolic (M) pathways, defining cancer-specific S-M interconnected networks (SMINs) could lead to better understanding of oncogenic processes. In a systems-biology approach, we developed a mathematical model for SMINs in mutated EGF receptor (EGFRvIII) compared to wild-type EGF receptor (EGFRwt) expressing glioblastoma multiforme (GBM). Starting with experimentally validated human protein-protein interactome data for S-M pathways, and incorporating proteomic data for EGFRvIII and EGFRwt GBM cells and patient transcriptomic data, we designed a dynamic model for EGFR-driven GBM-specific information flow. Key nodes and paths identified by in silico perturbation were validated experimentally when inhibition of signaling pathway proteins altered expression of metabolic proteins as predicted by the model. This demonstrated capacity of the model to identify unknown connections between signaling and metabolic pathways, explain the robustness of oncogenic SMINs, predict drug escape, and assist identification of drug targets and the development of combination therapies. Complex and highly dynamic interconnected networks allow cancer to take different routes and circumvent chemotherapy. Therefore, understanding these context-specific networks and their dynamics of molecular interactions driven by different oncogenic signaling and metabolic pathways is very much needed to predict drug targets and the effect of therapeutics. We incorporated high-throughput transcriptome and proteome data into mathematical models to deduce properties of cancer cells through systems biology approach. Here we report the development, testing and validation of an integrated systems biology model of information flow between signaling and metabolic pathways to understand the regulation of the interconnection between them in cancer. Our model efficiently identified unique connections and key nodes important in signaling-metabolic information flow. We predicted some potential novel targets before performing actual drug tests. We have successfully applied this model to identify the interconnections altered in the constitutive signaling of the mutated EGFR by comparing EGF-dependent and wild-type EGFR signaling in glioblastoma multiforme.
Collapse
Affiliation(s)
- Arup K. Bag
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Sapan Mandloi
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Saulius Jarmalavicius
- Department of Dermatology, Venerology and Allergology, Charité– Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susmita Mondal
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Krishna Kumar
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Chhabinath Mandal
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Peter Walden
- Department of Dermatology, Venerology and Allergology, Charité– Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- * E-mail: (PW); , (SC); , (CM)
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (PW); , (SC); , (CM)
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (PW); , (SC); , (CM)
| |
Collapse
|
46
|
Tang J, Gautam P, Gupta A, He L, Timonen S, Akimov Y, Wang W, Szwajda A, Jaiswal A, Turei D, Yadav B, Kankainen M, Saarela J, Saez-Rodriguez J, Wennerberg K, Aittokallio T. Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. NPJ Syst Biol Appl 2019; 5:20. [PMID: 31312514 PMCID: PMC6614366 DOI: 10.1038/s41540-019-0098-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/06/2019] [Indexed: 01/02/2023] Open
Abstract
Cancer cells with heterogeneous mutation landscapes and extensive functional redundancy easily develop resistance to monotherapies by emerging activation of compensating or bypassing pathways. To achieve more effective and sustained clinical responses, synergistic interactions of multiple druggable targets that inhibit redundant cancer survival pathways are often required. Here, we report a systematic polypharmacology strategy to predict, test, and understand the selective drug combinations for MDA-MB-231 triple-negative breast cancer cells. We started by applying our network pharmacology model to predict synergistic drug combinations. Next, by utilizing kinome-wide drug-target profiles and gene expression data, we pinpointed a synergistic target interaction between Aurora B and ZAK kinase inhibition that led to enhanced growth inhibition and cytotoxicity, as validated by combinatorial siRNA, CRISPR/Cas9, and drug combination experiments. The mechanism of such a context-specific target interaction was elucidated using a dynamic simulation of MDA-MB-231 signaling network, suggesting a cross-talk between p53 and p38 pathways. Our results demonstrate the potential of polypharmacological modeling to systematically interrogate target interactions that may lead to clinically actionable and personalized treatment options.
Collapse
Affiliation(s)
- Jing Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Abhishekh Gupta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, CT USA
| | - Liye He
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sanna Timonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Wenyu Wang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Agnieszka Szwajda
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Alok Jaiswal
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Denes Turei
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Department of Medicine and Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Clarke R, Tyson JJ, Tan M, Baumann WT, Jin L, Xuan J, Wang Y. Systems biology: perspectives on multiscale modeling in research on endocrine-related cancers. Endocr Relat Cancer 2019; 26:R345-R368. [PMID: 30965282 PMCID: PMC7045974 DOI: 10.1530/erc-18-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Drawing on concepts from experimental biology, computer science, informatics, mathematics and statistics, systems biologists integrate data across diverse platforms and scales of time and space to create computational and mathematical models of the integrative, holistic functions of living systems. Endocrine-related cancers are well suited to study from a systems perspective because of the signaling complexities arising from the roles of growth factors, hormones and their receptors as critical regulators of cancer cell biology and from the interactions among cancer cells, normal cells and signaling molecules in the tumor microenvironment. Moreover, growth factors, hormones and their receptors are often effective targets for therapeutic intervention, such as estrogen biosynthesis, estrogen receptors or HER2 in breast cancer and androgen receptors in prostate cancer. Given the complexity underlying the molecular control networks in these cancers, a simple, intuitive understanding of how endocrine-related cancers respond to therapeutic protocols has proved incomplete and unsatisfactory. Systems biology offers an alternative paradigm for understanding these cancers and their treatment. To correctly interpret the results of systems-based studies requires some knowledge of how in silico models are built, and how they are used to describe a system and to predict the effects of perturbations on system function. In this review, we provide a general perspective on the field of cancer systems biology, and we explore some of the advantages, limitations and pitfalls associated with using predictive multiscale modeling to study endocrine-related cancers.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ming Tan
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - William T Baumann
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Lu Jin
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jianhua Xuan
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, Virginia, USA
| |
Collapse
|
48
|
Hiscock TW. Adapting machine-learning algorithms to design gene circuits. BMC Bioinformatics 2019; 20:214. [PMID: 31029103 PMCID: PMC6487017 DOI: 10.1186/s12859-019-2788-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gene circuits are important in many aspects of biology, and perform a wide variety of different functions. For example, some circuits oscillate (e.g. the cell cycle), some are bistable (e.g. as cells differentiate), some respond sharply to environmental signals (e.g. ultrasensitivity), and some pattern multicellular tissues (e.g. Turing's model). Often, one starts from a given circuit, and using simulations, asks what functions it can perform. Here we want to do the opposite: starting from a prescribed function, can we find a circuit that executes this function? Whilst simple in principle, this task is challenging from a computational perspective, since gene circuit models are complex systems with many parameters. In this work, we adapted machine-learning algorithms to significantly accelerate gene circuit discovery. RESULTS We use gradient-descent optimization algorithms from machine learning to rapidly screen and design gene circuits. With this approach, we found that we could rapidly design circuits capable of executing a range of different functions, including those that: (1) recapitulate important in vivo phenomena, such as oscillators, and (2) perform complex tasks for synthetic biology, such as counting noisy biological events. CONCLUSIONS Our computational pipeline will facilitate the systematic study of natural circuits in a range of contexts, and allow the automatic design of circuits for synthetic biology. Our method can be readily applied to biological networks of any type and size, and is provided as an open-source and easy-to-use python module, GeneNet.
Collapse
Affiliation(s)
- Tom W Hiscock
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Network structure of the Wisconsin Schizotypy Scales-Short Forms: Examining psychometric network filtering approaches. Behav Res Methods 2019. [PMID: 29520631 DOI: 10.3758/s13428-018-1032-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizotypy is a multidimensional construct that provides a useful framework for understanding the etiology, development, and risk for schizophrenia-spectrum disorders. Past research has applied traditional methods, such as factor analysis, to uncovering common dimensions of schizotypy. In the present study, we aimed to advance the construct of schizotypy, measured by the Wisconsin Schizotypy Scales-Short Forms (WSS-SF), beyond this general scope by applying two different psychometric network filtering approaches-the state-of-the-art approach (lasso), which has been employed in previous studies, and an alternative approach (information-filtering networks; IFNs). First, we applied both filtering approaches to two large, independent samples of WSS-SF data (ns = 5,831 and 2,171) and assessed each approach's representation of the WSS-SF's schizotypy construct. Both filtering approaches produced results similar to those from traditional methods, with the IFN approach producing results more consistent with previous theoretical interpretations of schizotypy. Then we evaluated how well both filtering approaches reproduced the global and local network characteristics of the two samples. We found that the IFN approach produced more consistent results for both global and local network characteristics. Finally, we sought to evaluate the predictability of the network centrality measures for each filtering approach, by determining the core, intermediate, and peripheral items on the WSS-SF and using them to predict interview reports of schizophrenia-spectrum symptoms. We found some similarities and differences in their effectiveness, with the IFN approach's network structure providing better overall predictive distinctions. We discuss the implications of our findings for schizotypy and for psychometric network analysis more generally.
Collapse
|
50
|
Voukantsis D, Kahn K, Hadley M, Wilson R, Buffa FM. Modeling genotypes in their microenvironment to predict single- and multi-cellular behavior. Gigascience 2019; 8:giz010. [PMID: 30715320 PMCID: PMC6423375 DOI: 10.1093/gigascience/giz010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
A cell's phenotype is the set of observable characteristics resulting from the interaction of the genotype with the surrounding environment, determining cell behavior. Deciphering genotype-phenotype relationships has been crucial to understanding normal and disease biology. Analysis of molecular pathways has provided an invaluable tool to such understanding; however, typically it does not consider the physical microenvironment, which is a key determinant of phenotype. In this study, we present a novel modeling framework that enables the study of the link between genotype, signaling networks, and cell behavior in a three-dimensional microenvironment. To achieve this, we bring together Agent-Based Modeling, a powerful computational modeling technique, and gene networks. This combination allows biological hypotheses to be tested in a controlled stepwise fashion, and it lends itself naturally to model a heterogeneous population of cells acting and evolving in a dynamic microenvironment, which is needed to predict the evolution of complex multi-cellular dynamics. Importantly, this enables modeling co-occurring intrinsic perturbations, such as mutations, and extrinsic perturbations, such as nutrient availability, and their interactions. Using cancer as a model system, we illustrate how this framework delivers a unique opportunity to identify determinants of single-cell behavior, while uncovering emerging properties of multi-cellular growth. This framework is freely available at http://www.microc.org.
Collapse
Affiliation(s)
- Dimitrios Voukantsis
- Computational Biology and Integrative Genomics, MRC/CRUK Oxford Institute, Departmemt of Oncology, University of Oxford, Old Road Campus, Oxford, Oxfordshire, OX3 7DQ, UK
| | - Kenneth Kahn
- Computational Biology and Integrative Genomics, MRC/CRUK Oxford Institute, Departmemt of Oncology, University of Oxford, Old Road Campus, Oxford, Oxfordshire, OX3 7DQ, UK
- Academic Information Technology Research Team, University of Oxford, 13 Bambury Road, Oxford, Oxfordshire, OX2 6NN, UK
| | - Martin Hadley
- Academic Information Technology Research Team, University of Oxford, 13 Bambury Road, Oxford, Oxfordshire, OX2 6NN, UK
| | - Rowan Wilson
- Academic Information Technology Research Team, University of Oxford, 13 Bambury Road, Oxford, Oxfordshire, OX2 6NN, UK
| | - Francesca M Buffa
- Computational Biology and Integrative Genomics, MRC/CRUK Oxford Institute, Departmemt of Oncology, University of Oxford, Old Road Campus, Oxford, Oxfordshire, OX3 7DQ, UK
| |
Collapse
|