1
|
Petrilli R, Fabbretti A, Pucci K, Pagliaretta G, Napolioni V, Falconi M. Development and Characterization of Ammonia Removal Moving Bed Biofilms for Landfill Leachate Treatment. Microorganisms 2024; 12:2404. [PMID: 39770607 PMCID: PMC11677484 DOI: 10.3390/microorganisms12122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH3-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs). In recent years, research has shown that microbial biofilms, developed on carriers of different materials and called "moving bed biofilm reactors" (MBBRs), may offer promising solutions for bioremediation. This study explored the biofilm development and the nitrification process of moving bed biofilms (MBBs) obtained from high ammonia-selected microbial communities. Using crystal violet staining and confocal laser-scanning microscopy, we followed the biofilm formation stages correlating nitrogen removal to metagenomic analyses. Our results indicate that MBBs unveiled a 10-fold more enhanced nitrification rate than the dispersed microbial community present in the native sludge of the Porto Sant'Elpidio (Italy) WWTP. Four bacterial families, Chitinophagaceae, Comamonadaceae, Sphingomonadaceae, and Nitrosomonadaceae, accumulate in structured biofilms and significantly contribute to the high ammonium removal rate of 80% in 24 h as estimated in leachate-containing wastewaters.
Collapse
Affiliation(s)
- Rossana Petrilli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
- Eco Control Laboratorio Ascolano s.r.l., 63900 Fermo, FM, Italy;
| | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| | - Kathleen Pucci
- Eco Elpidiense s.r.l., 63821 Porto Sant’Elpidio, FM, Italy;
| | - Graziella Pagliaretta
- Eco Control Laboratorio Ascolano s.r.l., 63900 Fermo, FM, Italy;
- Eco Elpidiense s.r.l., 63821 Porto Sant’Elpidio, FM, Italy;
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| | - Maurizio Falconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| |
Collapse
|
2
|
Me MFH, Ang WL, Othman AR, Mohammad AW, Nasharuddin AAA, Aris AM, Khor BC, Lim SS. Assessment of the microbial electrochemical sensor (SENTRY™) as a potential wastewater quality monitoring tool for common pollutants found in Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:366. [PMID: 38483639 DOI: 10.1007/s10661-024-12526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Bioelectrochemical sensors for environment monitoring have the potential to provide facility operators with real-time data, allowing for better and more timely decision-making regarding water and wastewater treatment. To assess the robustness and sensitivity of the Sentry™ biosensor in local conditions, it was tested in Malaysia using domestically available wastewater. The study objectives included (1) enrich the biosensor locally, (2) operate and test the biosensor with local domestic wastewater, and (3) determine the biosensor's responsiveness to model pollutants through pollutant spike and immersion test as well as response to absence of wastewater. Lab-scale operation shows the biosensor was successfully enriched with (1) local University Kebangsaan Malaysia's, microbial community strain collection and (2) local municipal wastewater microflora, operated for more than 50 days with a stable yet responsive carbon consumption rate (CCR) signal. Meanwhile, two independent biosensors were also enriched and operated in Indah Water Research Centre's crude sewage holding tank, showing a stable response to the wastewater. Next, a pilot scale setup was constructed to test the enriched biosensors for the spiked-pollutant test. The biosensors showed a proportional CCR response (pollutant presence detected) towards several organic compounds in the sewage, including ethanol, chicken blood, and dilution of tested sewage but less to curry powder, methanol, and isopropanol. Conversely, there was no significant response (pollutant presence not detected) towards hexane, Congo red, engine oil, and paint, which may be due to their non-biodegradability and/or insoluble nature. Additionally, the biosensors were exposed to air for 6 h to assess their robustness towards aerobic shock with a positive result. Overall, the study suggested that the biosensor could be a powerful monitoring tool, given its responsiveness towards organic compounds in sewage under normal conditions.
Collapse
Affiliation(s)
| | - Wei Lun Ang
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Chemical and Water Desalination Program, College of Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | | | - Alijah Mohd Aris
- Indah Water Research Centre, Indah Water Konsortium Sdn Bhd, No. 1, Jalan Damansara, 60000, Kuala Lumpur, Malaysia
| | - Bee Chin Khor
- Indah Water Research Centre, Indah Water Konsortium Sdn Bhd, No. 1, Jalan Damansara, 60000, Kuala Lumpur, Malaysia
| | - Swee Su Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Magesh S, Hurley AI, Nepper JF, Chevrette MG, Schrope JH, Li C, Beebe DJ, Handelsman J. Surface colonization by Flavobacterium johnsoniae promotes its survival in a model microbial community. mBio 2024; 15:e0342823. [PMID: 38329367 PMCID: PMC10936215 DOI: 10.1128/mbio.03428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.
Collapse
Affiliation(s)
- Shruthi Magesh
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda I. Hurley
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia F. Nepper
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jo Handelsman
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Oppong-Danquah E, Blümel M, Tasdemir D. Metabolomics and Microbiomics Insights into Differential Surface Fouling of Three Macroalgal Species of Fucus (Fucales, Phaeophyceae) That Co-Exist in the German Baltic Sea. Mar Drugs 2023; 21:595. [PMID: 37999420 PMCID: PMC10672516 DOI: 10.3390/md21110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The brown algal genus Fucus provides essential ecosystem services crucial for marine environments. Macroalgae (seaweeds) release dissolved organic matter, hence, are under strong settlement pressure from micro- and macrofoulers. Seaweeds are able to control surface epibionts directly by releasing antimicrobial compounds onto their surfaces, and indirectly by recruiting beneficial microorganisms that produce antimicrobial/antifouling metabolites. In the Kiel Fjord, in the German Baltic Sea, three distinct Fucus species coexist: F. vesiculosus, F. serratus, and F. distichus subsp. evanescens. Despite sharing the same habitat, they show varying fouling levels; F. distichus subsp. evanescens is the least fouled, while F. vesiculosus is the most fouled. The present study explored the surface metabolomes and epiphytic microbiota of these three Fucus spp., aiming to uncover the factors that contribute to the differences in the fouling intensity on their surfaces. Towards this aim, algal surface metabolomes were analyzed using comparative untargeted LC-MS/MS-based metabolomics, to identify the marker metabolites influencing surface fouling. Their epiphytic microbial communities were also comparatively characterized using high-throughput amplicon sequencing, to pinpoint the differences in the surface microbiomes of the algae. Our results show that the surface of the least fouling species, F. distichus subsp. evanescens, is enriched with bioactive compounds, such as betaine lipids MGTA, 4-pyridoxic acid, and ulvaline, which are absent from the other species. Additionally, it exhibits a high abundance of the fungal genera Mucor and Alternaria, along with the bacterial genus Yoonia-Loktanella. These taxa are known for producing antimicrobial/antifouling compounds, suggesting their potential role in the observed fouling resistance on the surface of the F. distichus subsp. evanescens compared to F. serratus and F. vesiculosus. These findings provide valuable clues on the differential surface fouling intensity of Fucus spp., and their importance in marine chemical defense and fouling dynamics.
Collapse
Affiliation(s)
- Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany; (E.O.-D.); (M.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany; (E.O.-D.); (M.B.)
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany; (E.O.-D.); (M.B.)
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Tarabal VS, Abud YKD, da Silva FG, da Cruz LF, Fontes GN, da Silva JA, Filho CBS, Sinisterra RD, Granjeiro JM, Granjeiro PA. Effect of DMPEI coating against biofilm formation on PVC catheter surface. World J Microbiol Biotechnol 2023; 40:6. [PMID: 37932532 DOI: 10.1007/s11274-023-03799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Urinary tract infections (UTIs) are a significant cause of morbidity in healthcare systems and are prominently associated with applying urethral catheters, particularly in surgeries. Polyvinyl chloride (PVC) is extensively utilized in the fabrication of catheters. Biofilms, complex polymeric constructions, provide a protective milieu for cell multiplication and the enhancement of antibiotic resistance. Strategies to counteract biofilm development on medical apparatuses' surfaces incorporate antimicrobial agents such as N,N-dodecyl, and methyl polyethylenimine (DMPEI). This research endeavored to characterize the morphology of PVC and PVC-DMPEI surfaces utilizing Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) and to gauge hydrophobicity through contact angle measurements. Employing Escherichia coli, Staphylococcus aureus, and Candida albicans in adhesion assays enabled the assessment of DMPEI's efficacy in preventing microbial adherence to PVC. Butanol successfully solubilized 2 mg.mL-1 DMPEI without altering the PVC structure. SEM results substantiated the formation of a DMPEI layer on the PVC surface, which led to decreased surface roughness, as validated by AFM, and increased hydrophilicity, as demonstrated by contact angle evaluations. E. coli, S. aureus, and C. albicans exhibited significant adhesion reduction, 89.3%, 94.3%, and 86.6% on PVC-DMPEI surfaces. SEM visualizations confirmed reduced cellular colonization on PVC-DMPEI and highlighted considerable morphological modifications in E. coli. Consequently, DMPEI films effectively minimize the adhesion of E. coli, S. aureus, and C. albicans on PVC surfaces. DMPEI, with its potential as a protective coating for innovative medical devices, promises to inhibit biofilm adherence effectively.
Collapse
Affiliation(s)
- Vinícius S Tarabal
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Yuri K D Abud
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
| | - Flávia G da Silva
- Chemistry Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Luisa F da Cruz
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Giselle N Fontes
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
| | - Jose A da Silva
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Celso B S Filho
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
| | - Ruben D Sinisterra
- Chemistry Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Jose M Granjeiro
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
- Fluminense Federal University, R. Mario Santos Braga, 28 - Centro, Niteroi, RJ, 24020-150, Brazil
| | - Paulo A Granjeiro
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
6
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
7
|
Cao Z, Zuo W, Wang L, Chen J, Qu Z, Jin F, Dai L. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat Commun 2023; 14:1477. [PMID: 36932092 PMCID: PMC10023729 DOI: 10.1038/s41467-023-37188-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Spatial analysis of microbiomes at single cell resolution with high multiplexity and accuracy has remained challenging. Here we present spatial profiling of a microbiome using sequential error-robust fluorescence in situ hybridization (SEER-FISH), a highly multiplexed and accurate imaging method that allows mapping of microbial communities at micron-scale. We show that multiplexity of RNA profiling in microbiomes can be increased significantly by sequential rounds of probe hybridization and dissociation. Combined with error-correction strategies, we demonstrate that SEER-FISH enables accurate taxonomic identification in complex microbial communities. Using microbial communities composed of diverse bacterial taxa isolated from plant rhizospheres, we apply SEER-FISH to quantify the abundance of each taxon and map microbial biogeography on roots. At micron-scale, we identify clustering of microbial cells from multiple species on the rhizoplane. Under treatment of plant metabolites, we find spatial re-organization of microbial colonization along the root and alterations in spatial association among microbial taxa. Taken together, SEER-FISH provides a useful method for profiling the spatial ecology of complex microbial communities in situ.
Collapse
Affiliation(s)
- Zhaohui Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junyu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zepeng Qu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Rieder J, Kapopoulou A, Bank C, Adrian-Kalchhauser I. Metagenomics and metabarcoding experimental choices and their impact on microbial community characterization in freshwater recirculating aquaculture systems. ENVIRONMENTAL MICROBIOME 2023; 18:8. [PMID: 36788626 PMCID: PMC9930364 DOI: 10.1186/s40793-023-00459-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microbial communities in recirculating aquaculture systems (RAS) play a role in system success, nutrient cycling, and water quality. Considering the increasing socio-economic role of fish farming, e.g., regarding food security, an in-depth understanding of aquaculture microbial communities is also relevant from a management perspective, especially regarding the growth, development, and welfare of the farmed animal. However, the current data on the composition of microbial communities within RAS is patchy, which is partly attributable to diverging method choices that render comparative analyses challenging. Therefore, there is a need for accurate, standardized, and user-friendly methods to study microbial communities in aquaculture systems. RESULTS We compared sequencing approach performances (3 types of 16S short amplicon sequencing, PacBio long-read amplicon sequencing, and amplification-free shotgun metagenomics) in the characterization of microbial communities in two commercial RAS fish farms. Results showed that 16S primer choice and amplicon length affect some values (e.g., diversity measures, number of assigned taxa or distinguishing ASVs) but have no impact on spatio-temporal patterns between sample types, farms and time points. This implies that 16S rRNA approaches are adequate for community studies. The long-read amplicons underperformed regarding the quantitative resolution of spatio-temporal patterns but were suited to identify functional services, e.g., nitrification cycling and the detection of pathogens. Finally, shotgun metagenomics extended the picture to fungi, viruses, and bacteriophages, opening avenues for exploring inter-domain interactions. All sequencing datasets agreed on major prokaryotic players, such as Actinobacteriota, Bacteroidota, Nitrospirota, and Proteobacteria. CONCLUSION The different sequencing approaches yielded overlapping and highly complementary results, with each contributing unique data not obtainable with the other approaches. We conclude that a tiered approach constitutes a strategy for obtaining the maximum amount of information on aquaculture microbial communities and can inform basic research on community evolution dynamics. For specific and/or applied questions, single-method approaches are more practical and cost-effective and could lead to better farm management practices.
Collapse
Affiliation(s)
- Jessica Rieder
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Länggasstrasse 122, 3001 Bern, Switzerland
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Adamandia Kapopoulou
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Claudia Bank
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Irene Adrian-Kalchhauser
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Länggasstrasse 122, 3001 Bern, Switzerland
| |
Collapse
|
9
|
Schutte-Smith M, Erasmus E, Mogale R, Marogoa N, Jayiya A, Visser HG. Using visible light to activate antiviral and antimicrobial properties of TiO 2 nanoparticles in paints and coatings: focus on new developments for frequent-touch surfaces in hospitals. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2023; 20:789-817. [PMID: 36777289 PMCID: PMC9904533 DOI: 10.1007/s11998-022-00733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic refocused scientists the world over to produce technologies that will be able to prevent the spread of such diseases in the future. One area that deservedly receives much attention is the disinfection of health facilities like hospitals, public areas like bathrooms and train stations, and cleaning areas in the food industry. Microorganisms and viruses can attach to and survive on surfaces for a long time in most cases, increasing the risk for infection. One of the most attractive disinfection methods is paints and coatings containing nanoparticles that act as photocatalysts. Of these, titanium dioxide is appealing due to its low cost and photoreactivity. However, on its own, it can only be activated under high-energy UV light due to the high band gap and fast recombination of photogenerated species. The ideal material or coating should be activated under artificial light conditions to impact indoor areas, especially considering wall paints or frequent-touch areas like door handles and elevator buttons. By introducing dopants to TiO2 NPs, the bandgap can be lowered to a state of visible-light photocatalysis occurring. Naturally, many researchers are exploring this property now. This review article highlights the most recent advancements and research on visible-light activation of TiO2-doped NPs in coatings and paints. The progress in fighting air pollution and personal protective equipment is also briefly discussed. Graphical Abstract Indoor visible-light photocatalytic activation of reactive oxygen species (ROS) over TiO2 nanoparticles in paint to kill bacteria and coat frequently touched surfaces in the medical and food industries.
Collapse
Affiliation(s)
- M. Schutte-Smith
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - E. Erasmus
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - R. Mogale
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - N. Marogoa
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - A. Jayiya
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - H. G. Visser
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| |
Collapse
|
10
|
Tamfu AN, Kocak G, Ceylan O, Citak F, Bütün V, Çiçek H. Synthesis of cross‐linked diazaborine‐based polymeric microparticles with antiquorum sensing, anti‐swarming, antimicrobial, and antibiofilm properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries University of Ngaoundere Ngaoundere Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Gökhan Kocak
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education Adiyaman University Adiyaman Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Funda Citak
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Vural Bütün
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Hüseyin Çiçek
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
11
|
Gao Y, Jiang X, Wu H, Tong J, Ren X, Ren J, Wu Q, Ye J, Li C, Shi J. Colonization of Penicillium oxalicum SL2 in Pb-contaminated paddy soil and its immobilization effect on soil Pb. J Environ Sci (China) 2022; 120:53-62. [PMID: 35623772 DOI: 10.1016/j.jes.2021.12.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 06/15/2023]
Abstract
Penicillium oxalicum SL2 (SL2) is a previously screened Pb-tolerant fungus that can promote crops growth. The relationship between SL2 colonization and Pb immobilization was studied to provide a theoretical basis for microbial remediation of Pb-contaminated paddy soil. In this study, green fluorescent protein (GFP) labeled SL2 was inoculated into different Pb-contaminated paddy soils (S1-S6). The Pb extracted from the soil by HNO3, EDTA and CaCl2 were used to characterize the available Pb. The results showed that the colonization of SL2 was divided into lag phase (0-7 days), growth phase (7-30 days), and mortality phase (30-90 days). SL2 colonized well in sandy soils rich in clay and total phosphorus with initial pH of 4.5-7.0. In addition, SL2 increased soil pH and decreased soil Eh, which was beneficial to immobilize Pb. In different soils, the highest percentages of CaCl2-Pb, EDTA-Pb, and HNO3-Pb immobilized by SL2 were 34.34%-40.53%, 17.05%-20.11%, and 7.39%-15.62%, respectively. Pearson correlation analysis showed that the percentages of CaCl2-Pb and EDTA-Pb immobilized by SL2 were significantly positively correlated with the number of SL2 during the growth phase. SL2 mainly immobilized Pb in the growth phase and a higher peak number of SL2 was beneficial to the immobilization of Pb.
Collapse
Affiliation(s)
- Yu Gao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Qianhua Wu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhui Li
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Tuck B, Salgar-Chaparro SJ, Watkin E, Somers A, Forsyth M, Machuca LL. Extracellular DNA: A Critical Aspect of Marine Biofilms. Microorganisms 2022; 10:microorganisms10071285. [PMID: 35889003 PMCID: PMC9320517 DOI: 10.3390/microorganisms10071285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multispecies biofilms represent a pervasive threat to marine-based industry, resulting in USD billions in annual losses through biofouling and microbiologically influenced corrosion (MIC). Biocides, the primary line of defence against marine biofilms, now face efficacy and toxicity challenges as chemical tolerance by microorganisms increases. A lack of fundamental understanding of species and EPS composition in marine biofilms remains a bottleneck for the development of effective, target-specific biocides with lower environmental impact. In the present study, marine biofilms are developed on steel with three bacterial isolates to evaluate the composition of the EPSs (extracellular polymeric substances) and population dynamics. Confocal laser scanning microscopy, scanning electron microscopy, and fluorimetry revealed that extracellular DNA (eDNA) was a critical structural component of the biofilms. Parallel population analysis indicated that all three strains were active members of the biofilm community. However, eDNA composition did not correlate with strain abundance or activity. The results of the EPS composition analysis and population analysis reveal that biofilms in marine conditions can be stable, well-defined communities, with enabling populations that shape the EPSs. Under marine conditions, eDNA is a critical EPS component of the biofilm and represents a promising target for the enhancement of biocide specificity against these populations.
Collapse
Affiliation(s)
- Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Silvia J. Salgar-Chaparro
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia;
| | - Anthony Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia; (A.S.); (M.F.)
| | - Laura L. Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA 6102, Australia; (B.T.); (S.J.S.-C.)
- Correspondence:
| |
Collapse
|
13
|
Fessia A, Barra P, Barros G, Nesci A. Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 2022; 133:2148-2166. [PMID: 35476896 DOI: 10.1111/jam.15596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays, but they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Paula Barra
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
14
|
Gambino E, Maione A, Guida M, Albarano L, Carraturo F, Galdiero E, Di Onofrio V. Evaluation of the Pathogenic-Mixed Biofilm Formation of Pseudomonas aeruginosa/ Staphylococcus aureus and Treatment with Limonene on Three Different Materials by a Dynamic Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063741. [PMID: 35329426 PMCID: PMC8955688 DOI: 10.3390/ijerph19063741] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023]
Abstract
Background: Biofilms have been found growing on implantable medical devices. This can lead to persistent clinical infections. The highly antibiotic-resistant property of biofilms necessitates the search for both potent antimicrobial agents and novel antibiofilm strategies. Natural product-based anti-biofilm agents were found to be as efficient as chemically synthesized counterparts with fewer side effects. In the present study, the effects of limonene as an antibiofilm agent were evaluated on Pseudomonas aeruginosa and Staphylococcus aureus biofilm formed on different surfaces using the CDC model system in continuous flow. The flgK gene and the pilA gene expression in P. aeruginosa, and the icaA gene and eno gene in S. aureus, which could be considered as efficient resistance markers, were studied. Methods: Mono- and dual-species biofilms were grown on polycarbonate, polypropylene, and stainless-steel coupons in a CDC biofilm reactor (Biosurface Technologies, Bozeman, MT, USA). To evaluate the ability of limonene to inhibit and eradicate biofilm, a sub-MIC concentration (10 mL/L) was tested. The gene expression of P. aeruginosa and S. aureus was detected by SYBR Green quantitative Real-Time PCR assay (Meridiana Bioline, Brisbane, Australia). Results: The limonene added during the formation of biofilms at sub-MIC concentrations works very well in inhibiting biofilms on all three materials, reducing their growth by about 2 logs. Of the same order of magnitude is the ability of limonene to eradicate both mono- and polymicrobial mature biofilms on all three materials. Greater efficacy was observed in the polymicrobial biofilm on steel coupons. The expression of some genes related to the virulence of the two microorganisms was differently detected in mono- and polymicrobial biofilm. Conclusions: These data showed that the limonene treatment expressed different levels of biofilm-forming genes, especially when both types of strains alone and together grew on different surfaces. Our findings showed that limonene treatment is also very efficient when biofilm has been grown under shear stress causing significant and irreversible damage to the biofilm structure. The effectiveness of the sanitation procedures can be optimized by applying antimicrobial combinations with natural compounds (e.g., limonene).
Collapse
Affiliation(s)
- Edvige Gambino
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Angela Maione
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Marco Guida
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Luisa Albarano
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Federica Carraturo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
- Correspondence: ; Tel.: +39-081-679182
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, 80143 Naples, Italy;
| |
Collapse
|
15
|
Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior. World J Microbiol Biotechnol 2022; 38:49. [DOI: 10.1007/s11274-022-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
|
16
|
Abstract
A key challenge in microbiome science is the scale mismatch problem, which arises when the scale at which microbial communities are sampled, interrogated, and averaged is different from the scale at which individual microorganisms within those communities interact with each other and with their environment. Profiling the microbial communities in a teaspoon of soil, from a scoop of fecal matter, or along a plant leaf surface represents a scale mismatch of multiple orders of magnitude, which may limit our ability to interpret or predict species interactions and community assembly within such samples. In this Perspective, we explore how economists, who are historically and topically split along the lines of micro- and macroeconomics, deal with the scale mismatch problem, and how taking clues from (micro)economists could benefit the field of microbiomics.
Collapse
|
17
|
Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1. J Bacteriol 2021; 203:e0026521. [PMID: 34516283 DOI: 10.1128/jb.00265-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best-characterized model organisms used to study the mechanisms of biofilm formation while also representing two distinct lineages of P. aeruginosa. Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, P. aeruginosa PA14 is better able to invade preformed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. IMPORTANCE Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naive surface, while PA14 is more effective in colonizing a preformed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.
Collapse
|
18
|
Singh C. Guided run-and-tumble active particles: wall accumulation and preferential deposition. SOFT MATTER 2021; 17:8858-8866. [PMID: 34541594 DOI: 10.1039/d1sm00775k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial biofilms cost an enormous amount of resources in the health, medical, and industrial sectors. To understand early biofilm formation, beginning from planktonic states of active suspensions (such as Escherichia coli) to micro-colonization, it is vital to study the mechanics of cell accumulation near surfaces and subsequent deposition. Variability in bacterial motion strategies and the presence of taxis fields make the problem even more multifaceted. In this study, analytical expressions for the density and angular distributions, mean orientation, and deposition rates in such bacterial suspensions are derived, with and without the effects of external guiding or taxis fields. The derived results are closely verified by simulations of confined active particles using run-and-tumble statistics from multiple past experiments and utilizing a preferential sticking probability model for deposition. The behavioral changes in cell running strategies are modeled by varying the run-time distribution from an exponential to a heavy-tailed one. It is found that the deposition rates can be altered significantly by a guiding torque but are less affected by a change in the cell running behavior. However, both the mechanisms alter the pair correlation function of the deposited structures. The factor behind the changes in the architecture of deposited biomass under a torque generating guiding field turns out to be an asymmetrical rotational drift of planktonic cells, which can be an important physical mechanism behind the organization in confined active particle suspensions.
Collapse
Affiliation(s)
- Chamkor Singh
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Lu S, He R, Zhao D, Zeng J, Huang X, Li K, Yu Z, Wu QL. Effects of shading levels on the composition and co-occurrence patterns of bacterioplankton and epibiotic bacterial communities of Cabomba caroliniana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147286. [PMID: 33932676 DOI: 10.1016/j.scitotenv.2021.147286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/31/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Epibiotic bacterial community colonized on the plant leaf plays important roles in promoting plant growth and nutrient absorption, but is sensitive to environmental changes. As one of the most important environmental factors affecting the growth of plants and photosynthetic microorganisms, light may affect the diversity, composition, and interactions of the epibiotic bacterial community. Submerged plants in the aquatic ecosystem may be more sensitive to light intensity variations compared to the terrestrial plants since they usually receive less light. However, the effects of light on the interactions between the submerged plants and their epibiotic microbial communities remain uncertain. Here we used the 16S rRNA gene high-throughput sequencing to investigate the diversity and composition of the bacterioplankton and epibiotic bacterial communities of the Cabomba caroliniana under four different shading levels. A total of 24 water and leaf samples were collected from the experimental microcosms near Lake Taihu. We found the epibiotic bacterial community possessed a higher diversity than that of the bacterioplankton community, although the alpha diversity of the bacterioplankton community was more susceptible to different levels of shading. SourceTracker analysis revealed that with the increase of shading, the colonization of bacterioplankton to epibiotic bacteria decreased. Network analysis showed that the bacterial community network at 50% shading level had the lowest modularity and highest clustering coefficient compared to the bacterial community networks of other shading levels. Our findings provided new understandings of the effects of different light intensities on the epibiotic bacterial communities of submerged macrophytes.
Collapse
Affiliation(s)
- Shijie Lu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China.
| | - Xiaolong Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Klassert TE, Leistner R, Zubiria-Barrera C, Stock M, López M, Neubert R, Driesch D, Gastmeier P, Slevogt H. Bacterial colonization dynamics and antibiotic resistance gene dissemination in the hospital environment after first patient occupancy: a longitudinal metagenetic study. MICROBIOME 2021; 9:169. [PMID: 34380550 PMCID: PMC8359561 DOI: 10.1186/s40168-021-01109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Humans spend the bulk of their time in indoor environments. This space is shared with an indoor ecosystem of microorganisms, which are in continuous exchange with the human inhabitants. In the particular case of hospitals, the environmental microorganisms may influence patient recovery and outcome. An understanding of the bacterial community structure in the hospital environment is pivotal for the prevention of hospital-acquired infections and the dissemination of antibiotic resistance genes. In this study, we performed a longitudinal metagenetic approach in a newly opened ward at the Charité Hospital (Berlin) to characterize the dynamics of the bacterial colonization process in the hospital environment after first patient occupancy. RESULTS The sequencing data showed a site-specific taxonomic succession, which led to stable community structures after only a few weeks. This data was further supported by network analysis and beta-diversity metrics. Furthermore, the fast colonization process was characterized by a significant increase of the bacterial biomass and its alpha-diversity. The compositional dynamics could be linked to the exchange with the patient microbiota. Over a time course of 30 weeks, we did not detect a rise of pathogenic bacteria in the hospital environment, but a significant increase of antibiotic resistance determinants on the hospital floor. CONCLUSIONS The results presented in this study provide new insights into different aspects of the environmental microbiome in the clinical setting, and will help to adopt infection control strategies in hospitals and health care-related buildings. Video Abstract.
Collapse
Affiliation(s)
- Tilman E Klassert
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany.
| | - Rasmus Leistner
- Institute for Hygiene and Environmental Medicine and Department for Medicine (Gastroenterology, Infectious diseases, Rheumatology), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Magdalena Stock
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| | - Mercedes López
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Robert Neubert
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| | | | - Petra Gastmeier
- Institute for Hygiene and Environmental Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Hortense Slevogt
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| |
Collapse
|
21
|
Orevi T, Kashtan N. Life in a Droplet: Microbial Ecology in Microscopic Surface Wetness. Front Microbiol 2021; 12:655459. [PMID: 33927707 PMCID: PMC8076497 DOI: 10.3389/fmicb.2021.655459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
While many natural and artificial surfaces may appear dry, they are in fact covered by thin liquid films and microdroplets invisible to the naked eye known as microscopic surface wetness (MSW). Central to the formation and the retention of MSW are the deliquescent properties of hygroscopic salts that prevent complete drying of wet surfaces or that drive the absorption of water until dissolution when the relative humidity is above a salt-specific level. As salts are ubiquitous, MSW occurs in many microbial habitats, such as soil, rocks, plant leaf, and root surfaces, the built environment, and human and animal skin. While key properties of MSW, including very high salinity and segregation into droplets, greatly affect microbial life therein, it has been scarcely studied, and systematic studies are only in their beginnings. Based on recent findings, we propose that the harsh micro-environment that MSW imposes, which is very different from bulk liquid, affects key aspects of bacterial ecology including survival traits, antibiotic response, competition, motility, communication, and exchange of genetic material. Further research is required to uncover the fundamental principles that govern microbial life and ecology in MSW. Such research will require multidisciplinary science cutting across biology, physics, and chemistry, while incorporating approaches from microbiology, genomics, microscopy, and computational modeling. The results of such research will be critical to understand microbial ecology in vast terrestrial habitats, affecting global biogeochemical cycles, as well as plant, animal, and human health.
Collapse
Affiliation(s)
- Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| |
Collapse
|
22
|
Pylkkö T, Ilina P, Tammela P. Development and validation of a high-content screening assay for inhibitors of enteropathogenic E. coli adhesion. J Microbiol Methods 2021; 184:106201. [PMID: 33713725 DOI: 10.1016/j.mimet.2021.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
Enteropathogenic E. coli (EPEC) causes intestinal infections leading to severe diarrhea. EPEC attaches to the host cell causing lesions to the intestinal epithelium coupled with the effacement of microvilli. In the process, actin accumulates into a pedestal-like structure under bacterial microcolonies. We designed an automated fluorescence microscopy-based screening method for discovering compounds capable of inhibiting EPEC adhesion and virulence using aurodox, a type three secretion system (T3SS) inhibitor, as a positive control. The screening assay employs an EPEC strain (2348/69) expressing a fluorescent protein and actin staining for monitoring the bacteria and their pedestals respectively, analyzing these with a custom image analysis pipeline. The assay allows for the discovery of compounds capable of preventing the formation of pathogenic actin rearrangements. These compounds may be interfering with virulence-related molecular pathways relevant for developing antivirulence leads.
Collapse
Affiliation(s)
- Tuomas Pylkkö
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Polina Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
23
|
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E. Shaping the leaf microbiota: plant-microbe-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:36-56. [PMID: 32910810 PMCID: PMC8210630 DOI: 10.1093/jxb/eraa417] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 05/28/2023]
Abstract
The aerial portion of a plant, namely the leaf, is inhabited by pathogenic and non-pathogenic microbes. The leaf's physical and chemical properties, combined with fluctuating and often challenging environmental factors, create surfaces that require a high degree of adaptation for microbial colonization. As a consequence, specific interactive processes have evolved to establish a plant leaf niche. Little is known about the impact of the host immune system on phyllosphere colonization by non-pathogenic microbes. These organisms can trigger plant basal defenses and benefit the host by priming for enhanced resistance to pathogens. In most disease resistance responses, microbial signals are recognized by extra- or intracellular receptors. The interactions tend to be species specific and it is unclear how they shape leaf microbial communities. In natural habitats, microbe-microbe interactions are also important for shaping leaf communities. To protect resources, plant colonizers have developed direct antagonistic or host manipulation strategies to fight competitors. Phyllosphere-colonizing microbes respond to abiotic and biotic fluctuations and are therefore an important resource for adaptive and protective traits. Understanding the complex regulatory host-microbe-microbe networks is needed to transfer current knowledge to biotechnological applications such as plant-protective probiotics.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| | - Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Priyamedha Sengupta
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences
(CEPLAS), University of Cologne, Center for Molecular Biosciences, Cologne,
Germany
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of
Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Steinberg S, Grinberg M, Beitelman M, Peixoto J, Orevi T, Kashtan N. Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging. ISME JOURNAL 2020; 15:409-420. [PMID: 32963344 DOI: 10.1038/s41396-020-00767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
The phyllosphere - the aerial parts of plants - is an important microbial habitat that is home to diverse microbial communities. The spatial organization of bacterial cells on leaf surfaces is non-random, and correlates with leaf microscopic features. Yet, the role of microscale interactions between bacterial cells therein is not well understood. Here, we ask how interactions between immigrant bacteria and resident microbiota affect the spatial organization of the combined community. By means of live imaging in a simplified in vitro system, we studied the spatial organization, at the micrometer scale, of the biocontrol agent Pseudomonas fluorescens A506 and the plant pathogen P. syringae B728a when introduced to pear and bean leaf microbiota (the corresponding native plants of these strains). We found significant co-localization of immigrant and resident microbial cells at distances of a few micrometers, for both strains. Interestingly, this co-localization was in part due to preferential attachment of microbiota cells near newly formed P. fluorescens aggregates. Our results indicate that two-way immigrant bacteria - resident microbiota interactions affect the microscale spatial organization of leaf microbiota, and possibly that of other surface-related microbial communities.
Collapse
Affiliation(s)
- Shifra Steinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Michael Beitelman
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Julianna Peixoto
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.,Laboratory of Enzymology, Department of Cellular Biology, Biological Sciences Institute, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
25
|
Amaeze N, Akinbobola A, Chukwuemeka V, Abalkhaila A, Ramage G, Kean R, Staines H, Williams C, Mackay W. Development of a high throughput and low cost model for the study of semi-dry biofilms. BIOFOULING 2020; 36:403-415. [PMID: 32441116 DOI: 10.1080/08927014.2020.1766030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well-1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms' phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour.
Collapse
Affiliation(s)
- Ngozi Amaeze
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
- Department of Microbiology, University of Abuja, Abuja, Nigeria
| | - Ayorinde Akinbobola
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Valentine Chukwuemeka
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Adil Abalkhaila
- Department of Human Health, College of Applied Medical Sciences, Qassim University, Buraydah, KSA
| | - Gordon Ramage
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ryan Kean
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - Craig Williams
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - William Mackay
- Institute of Healthcare Policy and Practice, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
26
|
Aryal M, Muriana PM. Efficacy of Commercial Sanitizers Used in Food Processing Facilities for Inactivation of Listeria Monocytogenes, E. Coli O157:H7, and Salmonella Biofilms. Foods 2019; 8:E639. [PMID: 31817159 PMCID: PMC6963748 DOI: 10.3390/foods8120639] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteria entrapped in biofilms are a source of recurring problems in food processing environments. We recently developed a robust, 7-day biofilm microplate protocol for creating biofilms with strongly adherent strains of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella serovars that could be used to examine the effectiveness of various commercial sanitizers. Listeria monocytogenes 99-38, E.coli O157:H7 F4546, and Salmonella Montevideo FSIS 051 were determined from prior studies to be good biofilm formers and could be recovered and enumerated from biofilms following treatment with trypsin. Extended biofilms were generated by cycles of growth and washing daily, for 7 days, to remove planktonic cells. We examined five different sanitizers (three used at two different concentrations) for efficacy against the three pathogenic biofilms. Quaternary ammonium chloride (QAC) and chlorine-based sanitizers were the least effective, showing partial inhibition of the various biofilms within 2 h (1-2 log reduction). The best performing sanitizer across all three pathogens was a combination of modified QAC, hydrogen peroxide, and diacetin which resulted in ~6-7 log reduction, reaching levels below our limit of detection (LOD) within 1-2.5 min. All treatments were performed in triplicate replication and analyzed by one way repeated measures analysis of variance (RM-ANOVA) to determine significant differences (p < 0.05) in the response to sanitizer treatment over time. Analysis of 7-day biofilms by scanning electron microscopy (SEM) suggests the involvement of extracellular polysaccharides with Salmonella and E. coli, which may make their biofilms more impervious to sanitizers than L. monocytogenes.
Collapse
Affiliation(s)
- Manish Aryal
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA;
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA
| | - Peter M. Muriana
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055, USA;
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-6055, USA
| |
Collapse
|
27
|
Leveau JH. A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome. Curr Opin Microbiol 2019; 49:41-49. [PMID: 31707206 DOI: 10.1016/j.mib.2019.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023]
Abstract
The plant leaf surface, or phyllosphere, represents a unique and challenging microbial biome with a diverse and dynamic community of commensal, parasitic, and mutualistic agents of microscopic proportions. This mini-review offers a digest of recently published research dedicated to the study of phyllosphere microbiota, framed in the context of processes and outcomes of microbial community assembly, structure, and (inter)activity in the phyllosphere, with particular focus on the contributions of environment, plant, and microbe, and on the potential benefits of interrogating those contributions at finer resolutions.
Collapse
Affiliation(s)
- Johan Hj Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife 2019; 8:e48508. [PMID: 31610846 PMCID: PMC6824842 DOI: 10.7554/elife.48508] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023] Open
Abstract
Plant leaves constitute a huge microbial habitat of global importance. How microorganisms survive the dry daytime on leaves and avoid desiccation is not well understood. There is evidence that microscopic surface wetness in the form of thin films and micrometer-sized droplets, invisible to the naked eye, persists on leaves during daytime due to deliquescence - the absorption of water until dissolution - of hygroscopic aerosols. Here, we study how such microscopic wetness affects cell survival. We show that, on surfaces drying under moderate humidity, stable microdroplets form around bacterial aggregates due to capillary pinning and deliquescence. Notably, droplet-size increases with aggregate-size, and cell survival is higher the larger the droplet. This phenomenon was observed for 13 bacterial species, two of which - Pseudomonas fluorescens and P. putida - were studied in depth. Microdroplet formation around aggregates is likely key to bacterial survival in a variety of unsaturated microbial habitats, including leaf surfaces.
Collapse
Affiliation(s)
- Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| | - Shifra Steinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| |
Collapse
|
29
|
Rodríguez-Andrade O, Corral-Lugo A, Morales-García YE, Quintero-Hernández V, Rivera-Urbalejo AP, Molina-Romero D, Martínez-Contreras RD, Bernal P, Muñoz-Rojas J. Identification of Klebsiella Variicola T29A Genes Involved In Tolerance To Desiccation. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction:Several plant-beneficial bacteria have the capability to promote the growth of plants through different mechanisms. The survival of such bacteria could be affected by environmental abiotic factors compromising their capabilities of phytostimulation. One of the limiting abiotic factors is low water availability.Materials and Methods:In extreme cases, bacterial cells can suffer desiccation, which triggers harmful effects on cells. Bacteria tolerant to desiccation have developed different strategies to cope with these conditions; however, the genes involved in these processes have not been sufficiently explored.Klebsiella variicolaT29A is a beneficial bacterial strain that promotes the growth of corn plants and is highly tolerant to desiccation. In the present work, we investigated genes involved in desiccation tolerance.Results & Discussion:As a result, a library of 8974 mutants of this bacterial strain was generated by random mutagenesis with mini-Tn5 transposon, and mutants that lost the capability to tolerate desiccation were selected. We found 14 sensitive mutants; those with the lowest bacterial survival rate contained mini-Tn5 transposon inserted into genes encoding a protein domain related to BetR, putative secretion ATPase and dihydroorotase. The mutant in the betR gene had the lowest survival; therefore, the mutagenized gene was validated using specific amplification and sequencing.Conclusion:Trans complementation with the wild-type gene improved the survival of the mutant under desiccation conditions, showing that this gene is a determinant for the survival ofK. variicolaT29A under desiccation conditions.
Collapse
|
30
|
Villa F, Cappitelli F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019; 7:microorganisms7100380. [PMID: 31547498 PMCID: PMC6843906 DOI: 10.3390/microorganisms7100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
The ecological relationship between minerals and microorganisms arguably represents one of the most important associations in dry terrestrial environments, since it strongly influences major biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally, we advocate the need for the convergence between the experimental and theoretical approaches that might be used to characterize and simulate the development of SABs on mineral substrates and SABs’ broader impacts on the dry terrestrial environment.
Collapse
Affiliation(s)
- Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|