1
|
Arslan G, Karabulut YY, Yeleser İ, Erdal ME, Demir S, Özdemir AA. Correlation of hsa-mirna-342-3p and SOX 6 Expression with Diabetic Nephropathy Classification, Prognostic Histomorphological Parameters and Laboratory Findings in Diabetic Nephropathy. Ann Diagn Pathol 2025; 76:152461. [PMID: 40048884 DOI: 10.1016/j.anndiagpath.2025.152461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of end-stage renal disease. The most popular biomarkers in current research on DN are microRNAs. There are studies showing that while the expression of SOX6 increases, hsa-miR-342-3p expression decreases in kidney tissues with DN. The current study evaluated hsa-miR-342-3p expression by Real Time PCR and SOX6 expression by immunohistochemistry in a cohort of 110 DN biopsies, as well as their relationship with various clinical and histomorphological parameters. An inverse relationship between expression of hsa-miR-342-3p and SOX6 was demonstrated. SOX6 genetic expression was correlated with serum creatinine and tubular basement membrane thickening. Immunohistochemically, SOX6 staining was observed in mesangial cells and podocytes in 21 patients, with tubular staining in 45, and interstitial staining in 27 patients. Tubular staining was associated with proteinuria, interstitial fibrosis and inflammation; interstitial staining was associated with creatinine; and staining in the glomerular compartment was associated with advanced DN class. Our study is the first in the literature in which SOX6 was applied immunohistochemically in human kidney tissue, and its relation with DN classes was examined. We demonstrate its correlation with laboratory and histomorphological parameters, and provide a rational basis for future studies on larger patient groups that may result in the development of new biomarkers to predict the progression of DN and enhance its treatment.
Collapse
Affiliation(s)
- Gözde Arslan
- Department of Pathology, Faculty of Medicine, Mersin University, Mersin, Turkey.
| | | | - İrem Yeleser
- Department of Medical Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Mehmet Emin Erdal
- Department of Medical Genetics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Serap Demir
- Department of Internal Medicine, Nephrology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Asena Ayça Özdemir
- Department of Medical Education, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
2
|
Saloni, Sachan M, Rahul, Verma RS, Patel GK. SOXs: Master architects of development and versatile emulators of oncogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189295. [PMID: 40058508 DOI: 10.1016/j.bbcan.2025.189295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Transcription factors regulate a variety of events and maintain cellular homeostasis. Several transcription factors involved in embryonic development, has been shown to be closely associated with carcinogenesis when deregulated. Sry-like high mobility group box (SOX) proteins are potential transcription factors which are evolutionarily conserved. They regulate downstream genes to determine cell fate, via various signaling pathways and cellular processes essential for tissue and organ development. Dysregulation of SOXs has been reported to promote or suppress tumorigenesis by modulating cellular reprogramming, growth, proliferation, angiogenesis, metastasis, apoptosis, immune modulation, lineage plasticity, maintenance of the stem cell pool, therapy resistance and cancer relapse. This review provides a crucial understanding of the molecular mechanism by which SOXs play multifaceted roles in embryonic development and carcinogenesis. It also highlights their potential in advancing therapeutic strategies aimed at targeting SOXs and their downstream effectors in various malignancies.
Collapse
Affiliation(s)
- Saloni
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Rahul
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
3
|
Lu MY, Fang CY, Hsieh PL, Chao SC, Liao YW, Ohiro Y, Yu CC, Ho DCY. MIAT promotes myofibroblastic activities and transformation in oral submucous fibrosis through sponging the miR-342-3p/SOX6 axis. Aging (Albany NY) 2024; 16:12909-12927. [PMID: 39379100 PMCID: PMC11501384 DOI: 10.18632/aging.206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Oral submucous fibrosis (OSF) is an oral potentially malignant disorder that is closely related to the habit of areca nut chewing. Long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) has been identified as an essential regulator in the fibrosis progression. However, the role of MIAT in the development of OSF remains unknown. The transcriptomic profile showed that MIAT is significantly overexpressed in the OSF cohort, with a positive correlation to fibrotic markers. The silencing of MIAT expression in primary buccal mucosal fibroblasts (BMFs) markedly inhibited arecoline-induced myofibroblast transformation. Mechanistically, MIAT functioned as a miR-342-3p sponge and suppressed the inhibitory effect of miR-342-3p on SOX6 mRNA, thereby reinstating SOX6 expression. Subsequent RNA expression rescue experiments confirmed that MIAT enhanced resistance to apoptosis and facilitated myofibroblastic properties such as cell mobility and collagen gel contraction by regulating the miR-342-3p/SOX6 axis. Taken together, these results suggest that the abnormal upregulation of MIAT is important in contributing persistent activation of myofibroblasts in fibrotic tissue, which may result from prolonged exposure to the constituents of areca nut. Furthermore, our findings demonstrated that therapeutic avenues that target the MIAT/miR-342-3p/SOX6 axis may be a promising approach for OSF treatments.
Collapse
Affiliation(s)
- Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yoichi Ohiro
- Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Chen-Chia Yu
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Dennis Chun-Yu Ho
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Liu J, Park K, Shen Z, Ye Y, Lee E, Herman RA, Zhu X, Lu W, Nuhfer J, Bassal MA, Tenen DG, Brunker P, Xu X, Chai L. Exploring Novel Strategies to Alleviate Symptoms of β-Globinopathies: Examining the Potential Role of Embryonic ε-globin Induction. Transfus Med Rev 2024; 38:150861. [PMID: 39549502 DOI: 10.1016/j.tmrv.2024.150861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 11/18/2024]
Abstract
β-thalassemia and sickle cell disease are among the most prevalent genetic blood disorders globally. These conditions arise from mutations in the β-globin gene, leading to defective hemoglobin production and resulting in anemia. Current treatments include γ-globin inducers (eg, Hydroxyurea), blood transfusions, iron chelation therapy, and bone marrow transplantation. Recently approved disease-modifying agents and promising gene therapies offer hope, yet their broad application is constrained by scalability challenges. Traditionally, research and development for β-globinopathies have focused on γ-globin induction. However, the ε-globin variant, which is active during early embryonic development and subsequently silenced prenatally, was once considered noninducible by postnatal pharmacological means. Recent studies indicate that, akin to γ-globin, enhancing ε-globin expression could compensate for impaired β-globin synthesis, potentially ameliorating the clinical manifestations of β-globinopathies. This review critically examines the viability of ε-globin induction as a therapeutic strategy for β-thalassemia and sickle cell diseases. It also delves into the burgeoning research on the mechanisms governing ε-globin silencing and its pharmacological reactivation. We conclude with a discussion of prospective research directions and drug development initiatives aimed at exploiting ε-globin's therapeutic promise.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| | - Kevin Park
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ziyang Shen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GD, China
| | - Ernie Lee
- University of California, Los Angeles, CA, United States
| | - Ruby Adelaide Herman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| | - Xingxin Zhu
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| | - Wen Lu
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester MN, United States
| | - James Nuhfer
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, GD, China
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
5
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 PMCID: PMC11830979 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Palis J. Erythropoiesis in the mammalian embryo. Exp Hematol 2024; 136:104283. [PMID: 39048071 DOI: 10.1016/j.exphem.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Red blood cells (RBCs) comprise a critical component of the cardiovascular network, which constitutes the first functional organ system of the developing mammalian embryo. Examination of circulating blood cells in mammalian embryos revealed two distinct types of erythroid cells: large, nucleated "primitive" erythroblasts followed by smaller, enucleated "definitive" erythrocytes. This review describes the current understanding of primitive and definitive erythropoiesis gleaned from studies of mouse and human embryos and induced pluripotent stem cells (iPSCs). Primitive erythropoiesis in the mouse embryo comprises a transient wave of committed primitive erythroid progenitors (primitive erythroid colony-forming cells, EryP-CFC) in the early yolk sac that generates a robust cohort of precursors that mature in the bloodstream and enucleate. In contrast, definitive erythropoiesis has two distinct developmental origins. The first comprises a transient wave of definitive erythroid progenitors (burst-forming units erythroid, BFU-E) that emerge in the yolk sac and seed the fetal liver where they terminally mature to provide the first definitive RBCs. The second comprises hematopoietic stem cell (HSC)-derived BFU-E that terminally mature at sites colonized by HSCs particularly the fetal liver and subsequently the bone marrow. Primitive and definitive erythropoiesis are derived from endothelial identity precursors with distinct developmental origins. Although they share prototypical transcriptional regulation, primitive and definitive erythropoiesis are also characterized by distinct lineage-specific factors. The exquisitely timed, sequential production of primitive and definitive erythroid cells is necessary for the survival and growth of the mammalian embryo.
Collapse
Affiliation(s)
- James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
7
|
Simbula M, Manchinu MF, Mingoia M, Pala M, Asunis I, Caria CA, Perseu L, Shah M, Crossley M, Moi P, Ristaldi MS. miR-365-3p mediates BCL11A and SOX6 erythroid-specific coregulation: A new player in HbF activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102025. [PMID: 37744176 PMCID: PMC10514143 DOI: 10.1016/j.omtn.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Hemoglobin switching is a complex biological process not yet fully elucidated. The mechanism regulating the suppression of fetal hemoglobin (HbF) expression is of particular interest because of the positive impact of HbF on the course of diseases such as β-thalassemia and sickle cell disease, hereditary hemoglobin disorders that affect the health of countless individuals worldwide. Several transcription factors have been implicated in the control of HbF, of which BCL11A has emerged as a major player in HbF silencing. SOX6 has also been implicated in silencing HbF and is critical to the silencing of the mouse embryonic hemoglobins. BCL11A and SOX6 are co-expressed and physically interact in the erythroid compartment during differentiation. In this study, we observe that BCL11A knockout leads to post-transcriptional downregulation of SOX6 through activation of microRNA (miR)-365-3p. Downregulating SOX6 by transient ectopic expression of miR-365-3p or gene editing activates embryonic and fetal β-like globin gene expression in erythroid cells. The synchronized expression of BCL11A and SOX6 is crucial for hemoglobin switching. In this study, we identified a BCL11A/miR-365-3p/SOX6 evolutionarily conserved pathway, providing insights into the regulation of the embryonic and fetal globin genes suggesting new targets for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Michela Simbula
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maria Francesca Manchinu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maura Mingoia
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Mauro Pala
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Isadora Asunis
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Cristian Antonio Caria
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Lucia Perseu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Paolo Moi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Maria Serafina Ristaldi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| |
Collapse
|
8
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
9
|
Trinh LT, Osipovich AB, Liu B, Shrestha S, Cartailler JP, Wright CVE, Magnuson MA. Single-Cell RNA Sequencing of Sox17-Expressing Lineages Reveals Distinct Gene Regulatory Networks and Dynamic Developmental Trajectories. Stem Cells 2023; 41:643-657. [PMID: 37085274 PMCID: PMC10465087 DOI: 10.1093/stmcls/sxad030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
During early embryogenesis, the transcription factor SOX17 contributes to hepato-pancreato-biliary system formation and vascular-hematopoietic emergence. To better understand Sox17 function in the developing endoderm and endothelium, we developed a dual-color temporal lineage-tracing strategy in mice combined with single-cell RNA sequencing to analyze 6934 cells from Sox17-expressing lineages at embryonic days 9.0-9.5. Our analyses showed 19 distinct cellular clusters combined from all 3 germ layers. Differential gene expression, trajectory and RNA-velocity analyses of endothelial cells revealed a heterogenous population of uncommitted and specialized endothelial subtypes, including 2 hemogenic populations that arise from different origins. Similarly, analyses of posterior foregut endoderm revealed subsets of hepatic, pancreatic, and biliary progenitors with overlapping developmental potency. Calculated gene-regulatory networks predict gene regulons that are dominated by cell type-specific transcription factors unique to each lineage. Vastly different Sox17 regulons found in endoderm versus endothelial cells support the differential interactions of SOX17 with other regulatory factors thereby enabling lineage-specific regulatory actions.
Collapse
Affiliation(s)
- Linh T Trinh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Bryan Liu
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Piantanida N, La Vecchia M, Sculco M, Talmon M, Palattella G, Kurita R, Nakamura Y, Ronchi AE, Dianzani I, Ellis SR, Fresu LG, Aspesi A. Deficiency of ribosomal protein S26, which is mutated in a subset of patients with Diamond Blackfan anemia, impairs erythroid differentiation. Front Genet 2022; 13:1045236. [PMID: 36579335 PMCID: PMC9790993 DOI: 10.3389/fgene.2022.1045236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by defective maturation of the erythroid progenitors in the bone marrow, for which treatment involves steroids, chronic transfusions, or hematopoietic stem cells transplantation. Diamond Blackfan anemia is caused by defective ribosome biogenesis due to heterozygous pathogenic variants in one of 19 ribosomal protein (RP) genes. The decreased number of functional ribosomes leads to the activation of pro-apoptotic pathways and to the reduced translation of key genes for erythropoiesis. Results and discussion: Here we characterized the phenotype of RPS26-deficiency in a cell line derived from human umbilical cord blood erythroid progenitors (HUDEP-1 cells). This model recapitulates cellular hallmarks of Diamond Blackfan anemia including: imbalanced production of ribosomal RNAs, upregulation of pro-apoptotic genes and reduced viability, and shows increased levels of intracellular calcium. Evaluation of the expression of erythroid markers revealed the impairment of erythroid differentiation in RPS26-silenced cells compared to control cells. Conclusions: In conclusion, for the first time we assessed the effect of RPS26 deficiency in a human erythroid progenitor cell line and demonstrated that these cells can be used as a scalable model system to study aspects of DBA pathophysiology that have been refractory to detailed investigation because of the paucity of specific cell types affected in this disorder.
Collapse
Affiliation(s)
- Noemy Piantanida
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marta La Vecchia
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Gioele Palattella
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | | | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Luigia Grazia Fresu
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy,*Correspondence: Anna Aspesi,
| |
Collapse
|
12
|
Generation of TRIM28 Knockout K562 Cells by CRISPR/Cas9 Genome Editing and Characterization of TRIM28-Regulated Gene Expression in Cell Proliferation and Hemoglobin Beta Subunits. Int J Mol Sci 2022; 23:ijms23126839. [PMID: 35743282 PMCID: PMC9224613 DOI: 10.3390/ijms23126839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
TRIM28 is a scaffold protein that interacts with DNA-binding proteins and recruits corepressor complexes to cause gene silencing. TRIM28 contributes to physiological functions such as cell growth and differentiation. In the chronic myeloid leukemia cell line K562, we edited TRIM28 using CRISPR/Cas9 technology, and the complete and partial knockout (KO) cell clones were obtained and confirmed using quantitative droplet digital PCR (ddPCR) technology. The amplicon sequencing demonstrated no off-target effects in our gene editing experiments. The TRIM28 KO cells grew slowly and appeared red, seeming to have a tendency towards erythroid differentiation. To understand how TRIM28 controls K562 cell proliferation and differentiation, transcriptome profiling analysis was performed in wild-type and KO cells to identify TRIM28-regulated genes. Some of the RNAs that encode the proteins regulating the cell cycle were increased (such as p21) or decreased (such as cyclin D2) in TRIM28 KO cell clones; a tumor marker, the MAGE (melanoma antigen) family, which is involved in cell proliferation was reduced. Moreover, we found that knockout of TRIM28 can induce miR-874 expression to downregulate MAGEC2 mRNA via post-transcriptional regulation. The embryonic epsilon-globin gene was significantly increased in TRIM28 KO cell clones through the downregulation of transcription repressor SOX6. Taken together, we provide evidence to demonstrate the regulatory network of TRIM28-mediated cell growth and erythroid differentiation in K562 leukemia cells.
Collapse
|
13
|
Chen L, Li J, Yuan R, Wang Y, Zhang J, Lin Y, Wang L, Zhu X, Zhu W, Bai J, Kong F, Zeng B, Lu L, Ma J, Long K, Jin L, Huang Z, Huo J, Gu Y, Wang D, Mo D, Li D, Tang Q, Li X, Wu J, Chen Y, Li M. Dynamic 3D genome reorganization during development and metabolic stress of the porcine liver. Cell Discov 2022; 8:56. [PMID: 35701393 PMCID: PMC9197842 DOI: 10.1038/s41421-022-00416-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Liver development is a complex process that is regulated by a series of signaling pathways. Three-dimensional (3D) chromatin architecture plays an important role in transcriptional regulation; nonetheless, its dynamics and role in the rapid transition of core liver functions during development and obesity-induced metabolic stress remain largely unexplored. To investigate the dynamic chromatin architecture during liver development and under metabolic stress, we generated high-resolution maps of chromatin architecture for porcine livers across six major developmental stages (from embryonic day 38 to the adult stage) and under a high-fat diet-induced obesity. The characteristically loose chromatin architecture supports a highly plastic genome organization during early liver development, which fundamentally contributes to the rapid functional transitions in the liver after birth. We reveal the multi-scale reorganization of chromatin architecture and its influence on transcriptional regulation of critical signaling processes during liver development, and show its close association with transition in hepatic functions (i.e., from hematopoiesis in the fetus to metabolism and immunity after birth). The limited changes in chromatin structure help explain the observed metabolic adaptation to excessive energy intake in pigs. These results provide a global overview of chromatin architecture dynamics associated with the transition of physiological liver functions between prenatal development and postnatal maturation, and a foundational resource that allows for future in-depth functional characterization.
Collapse
Affiliation(s)
- Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lina Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xingxing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyi Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinlong Huo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Danyang Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
15
|
Qin K, Huang P, Feng R, Keller CA, Peslak SA, Khandros E, Saari MS, Lan X, Mayuranathan T, Doerfler PA, Abdulmalik O, Giardine B, Chou ST, Shi J, Hardison RC, Weiss MJ, Blobel GA. Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nat Genet 2022; 54:874-884. [PMID: 35618846 PMCID: PMC9203980 DOI: 10.1038/s41588-022-01076-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
The mechanisms by which the fetal-type β-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease (SCD) and β-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family – NFIA and NFIX – as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared to fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants. Genomic profiling, genome editing, and DNA binding assays demonstrate that the potent concerted activity of NFIA and NFIX is explained in part by their ability to stimulate the expression of BCL11A, a known silencer of the HBG1/2 genes, and in part by directly repressing the HBG1/2 genes. Thus, NFI factors emerge as versatile regulators of the fetal-to-adult switch in β-globin production.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Saleem M, Rahman S, Elijovich F, Laffer CL, Ertuglu LA, Masenga SK, Kirabo A. Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease. Curr Hypertens Rep 2022; 24:145-156. [PMID: 35124768 DOI: 10.1007/s11906-022-01175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions. RECENT FINDINGS The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension. Expression of Sox6 is regulated by miRNAs, which are RNAs of about 22 nucleotides, and have also been implicated in several pathophysiological conditions where Sox6 plays a role. Regulation of Sox6 by miRNAs is important in diverse physiological tissues and organs. Dysregulation of the interplay between miRNAs and Sox6 is an important determinant of various disease conditions and may be actionable for therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sharla Rahman
- Centre for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Lale A Ertuglu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sepiso K Masenga
- School of Medicine and Health Sciences, Mulungushi University, HAND Research Group, Livingstone, Zambia
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
17
|
Jie Q, Lei S, Qu C, Wu H, Liu Y, Huang P, Teng S. 利用CRISPR/Cas9基因编辑技术治疗β-地中海贫血的最新进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Kaewsakulthong W, Pongpaksupasin P, Nualkaew T, Hongeng S, Fucharoen S, Jearawiriyapaisarn N, Sripichai O. Lysine-specific histone demethylase 1 inhibition enhances robust fetal hemoglobin induction in human β 0-thalassemia/hemoglobin E erythroid cells. Hematol Rep 2021; 13:9215. [PMID: 35003571 PMCID: PMC8672213 DOI: 10.4081/hr.2021.9215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) ameliorates the clinical severity of β-thalassemias. Histone methyltransferase LSD1 enzyme removes methyl groups from the activating chromatin mark histone 3 lysine 4 at silenced genes, including the γ-globin genes. LSD1 inhibitor RN-1 induces HbF levels in cultured human erythroid cells. Here, the HbF-inducing activity of RN-1 was investigated in erythroid progenitor cells derived from β0-thalassemia/ hemoglobin E (HbE) patients. The significant and reproducible increases in γ-globin transcript and HbF expression upon RN-1 treatment were demonstrated in erythroid cells with divergent HbF baseline levels, the average of HbF induction was 17.7±0.8%. RN-1 at low concentration did not affect viability and proliferation of erythroid cells, but decreases in cell number were observed in cells treated with RN-1 at high concentration. Delayed terminal erythroid differentiation was revealed in β0-thalassemia/HbE erythroid cells treated with RN-1 as similar to other compounds that target LSD1 activity. Downregulation of repressors of γ- globin expression; NCOR1 and SOX6, was observed in RN-1 treatment. These findings provide proof of the concept that LSD1 epigenetic enzyme is a potential therapeutic target for β0-thalassemia/HbE patients.
Collapse
Affiliation(s)
- Woratree Kaewsakulthong
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok
| | - Phitchapa Pongpaksupasin
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Tiwaporn Nualkaew
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom.,National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
19
|
Li X, Chen M, Liu B, Lu P, Lv X, Zhao X, Cui S, Xu P, Nakamura Y, Kurita R, Chen B, Huang DCS, Liu DP, Liu M, Zhao Q. Transcriptional silencing of fetal hemoglobin expression by NonO. Nucleic Acids Res 2021; 49:9711-9723. [PMID: 34379783 PMCID: PMC8464040 DOI: 10.1093/nar/gkab671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and β-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult β-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.
Collapse
Affiliation(s)
- Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengxia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biru Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiang Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
King AJ, Songdej D, Downes DJ, Beagrie RA, Liu S, Buckley M, Hua P, Suciu MC, Marieke Oudelaar A, Hanssen LLP, Jeziorska D, Roberts N, Carpenter SJ, Francis H, Telenius J, Olijnik AA, Sharpe JA, Sloane-Stanley J, Eglinton J, Kassouf MT, Orkin SH, Pennacchio LA, Davies JOJ, Hughes JR, Higgs DR, Babbs C. Reactivation of a developmentally silenced embryonic globin gene. Nat Commun 2021; 12:4439. [PMID: 34290235 PMCID: PMC8295333 DOI: 10.1038/s41467-021-24402-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/12/2021] [Indexed: 12/26/2022] Open
Abstract
The α- and β-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.
Collapse
Affiliation(s)
- Andrew J King
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Duantida Songdej
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Division of Hematology/Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Siyu Liu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Megan Buckley
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peng Hua
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Maria C Suciu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Lars L P Hanssen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Danuta Jeziorska
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephanie J Carpenter
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Helena Francis
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jacqueline A Sharpe
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jacqueline Sloane-Stanley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jennifer Eglinton
- National Haemoglobinopathy Reference Laboratory, Department of Haematology, Level 4, John Radcliffe Hospital, Oxford, UK
| | - Mira T Kassouf
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | - Len A Pennacchio
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA
| | - James O J Davies
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Barbarani G, Labedz A, Stucchi S, Abbiati A, Ronchi AE. Physiological and Aberrant γ-Globin Transcription During Development. Front Cell Dev Biol 2021; 9:640060. [PMID: 33869190 PMCID: PMC8047207 DOI: 10.3389/fcell.2021.640060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
The expression of the fetal Gγ- and Aγ-globin genes in normal development is confined to the fetal period, where two γ-globin chains assemble with two α-globin chains to form α2γ2 tetramers (HbF). HbF sustains oxygen delivery to tissues until birth, when β-globin replaces γ-globin, leading to the formation of α2β2 tetramers (HbA). However, in different benign and pathological conditions, HbF is expressed in adult cells, as it happens in the hereditary persistence of fetal hemoglobin, in anemias and in some leukemias. The molecular basis of γ-globin differential expression in the fetus and of its inappropriate activation in adult cells is largely unknown, although in recent years, a few transcription factors involved in this process have been identified. The recent discovery that fetal cells can persist to adulthood and contribute to disease raises the possibility that postnatal γ-globin expression could, in some cases, represent the signature of the fetal cellular origin.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Agata Labedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Sarah Stucchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Alessia Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
22
|
Insight of fetal to adult hemoglobin switch: Genetic modulators and therapeutic targets. Blood Rev 2021; 49:100823. [PMID: 33726930 DOI: 10.1016/j.blre.2021.100823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023]
Abstract
The clinical heterogeneity of β-hemoglobinopathies is so variable that it prompted the researchers to identify the genetic modulators of these diseases. Though the primary modulator is the type of β-globin mutation which affects the degree of β-globin chain synthesis, the co-inheritance of α-thalassemia and the fetal hemoglobin (HbF) levels also act as potent secondary genetic modifiers. As elevated HbF levels ameliorate the severity of hemoglobinopathies, in this review, the genetic modulators lying within and outside the β-globin gene cluster with their plausible role in governing the HbF levels have been summarised, which in future may act as potential therapeutic targets.
Collapse
|
23
|
Chen Y, Song Y, Mi Y, Jin H, Cao J, Li H, Han L, Huang T, Zhang X, Ren S, Ma Q, Zou Z. microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6. Apoptosis 2021; 25:205-216. [PMID: 31938895 DOI: 10.1007/s10495-019-01588-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence has indicated that microRNAs are involved in multiple processes of cancer development. Previous studies have demonstrated that microRNA-499a (miR-499a) plays both oncogenic and tumor suppressive roles in several types of malignancies, and genetic variants in miR-499a are associated with the risk of cervical cancer. However, the biological roles of miR-499a in cervical cancer have not been investigated. Quantitative real-time PCR was used to assess miR-499a expression in cervical cancer cells. Mimics or inhibitor of miR-499a was transfected into cervical cancer cells to upregulate or downregulate miR-499a expression. The effects of miR-499a expression change on cervical cancer cells proliferation, colony formation, tumorigenesis, chemosensitivity, transwell migration and invasion were assessed. The potential targets of miR-499a were predicted using online database tools and validated using real-time PCR, Western blot and luciferase reporter experiments. miR-499a was significantly upregulated in cervical cancer cells. Moreover, overexpression of miR-499a significantly enhanced the proliferation, cell cycle progression, colony formation, apoptosis resistance, migration and invasion of cervical cancer cells, while inhibiting miR-499a showed the opposite effects. Further exploration demonstrated that Sex-determining region Y box 6 was the direct target of miR-499a. miR-499a-induced SOX6 downregulation mediated the oncogenic effects of miR-499a in cervical cancer. Inhibiting miR-499a could enhance the anticancer effects of cisplatin in the xenograft mouse model of cervical cancer. Our findings for the first time suggest that miRNA-499a may play an important role in the development of cervical cancer and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China.
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Yanjun Mi
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Liping Han
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Xiaofei Zhang
- Department of Medical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shumin Ren
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Qian Ma
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
24
|
Mohammadi Z, Mohammadi R, Haghpanah S, Moghadam M, Pazhoomand R, Karimi M. Association of Exon 14 of the SOX6 Gene Sequence Variations with Response to Hydroxyurea Therapy in Patients Carrying Non Transfusion-Dependent Thalassemia. Hemoglobin 2020; 44:406-410. [PMID: 33164584 DOI: 10.1080/03630269.2020.1845722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hydroxyurea (HU) activates the γ-globin gene, resulting in increased Hb F synthesis. The SOX6 gene is a member of the Sox (Sry-type HMG box) family of transcription factors, characterized by minor groove binding domain. The DNA binding domain of this gene is encoded by exon 14. We assessed the relationship between response to HU and exon 14 of the SOX6 gene sequence variations in patients with non transfusion-dependent thalassemia (NTDT). One hundred NTDT patients from southern Iran underwent HU therapy randomly participated in this cross-sectional study between February 2013 and October 2014. Based on response to HU therapy, the patients were divided into two groups: good and poor responder. Sequence variations of exon 14 of the SOX6 gene was assayed by the Sanger sequencing technique. From all evaluated single nucleotide polymorphisms (SNPs) as above, we found no significant association between sequence variations of exon 14 of the SOX6 gene and response to HU therapy (p > 0.05). It seems that no SNPs in exon 14 of the SOX6 gene is associated with response to HU in NTDT patients, but more studies are needed for further evaluation.
Collapse
Affiliation(s)
- Zahra Mohammadi
- Department of Pediatric Hematology/Oncology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mohammadi
- Department of Medical Genetics, Shiraz Infertility Treatment, Shiraz, Iran
| | - Sezaneh Haghpanah
- Department of Pediatric Hematology/Oncology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Moghadam
- Department of Pediatric Hematology/Oncology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Pazhoomand
- Department of Medical Genetics, Shiraz Infertility Treatment, Shiraz, Iran
| | - Mehran Karimi
- Department of Pediatric Hematology/Oncology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Saleem M, Barturen‐Larrea P, Gomez JA. Emerging roles of Sox6 in the renal and cardiovascular system. Physiol Rep 2020; 8:e14604. [PMID: 33230925 PMCID: PMC7683808 DOI: 10.14814/phy2.14604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The function of Sex-determining Region Y (SRY)-related high-mobility-group box (Sox) family of transcription factors in cell fate decisions during embryonic development are well-established. Accumulating evidence indicates that the Sox family of transcription factors are fundamental in adult tissue homeostasis, regeneration, and physiology. The SoxD subfamily of genes are expressed in various cell types of different organs during embryogenesis and adulthood and have been involved in cell-fate determination, cellular proliferation and survival, differentiation, and terminal maturation in a number of cell lineages. The dysregulation in the function of SoxD proteins (i.e. Sox5, Sox6, Sox13, and Sox23) have been implicated in different disease conditions such as chondrodysplasia, cancer, diabetes, hypertension, autoimmune diseases, osteoarthritis among others. In this minireview, we present recent developments related to the transcription factor Sox6, which is involved in a number of diseases such as diabetic nephropathy, adipogenesis, cardiomyopathy, inflammatory bowel disease, and cancer. Sox6 has been implicated in the regulation of renin expression and JG cell recruitment in mice during sodium depletion and dehydration. We provide a current perspective of Sox6 research developments in last five years, and the implications of Sox6 functions in cardiovascular physiology and disease conditions.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Pierina Barturen‐Larrea
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Jose A. Gomez
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
26
|
Ying D, Zhou X, Ruan Y, Wang L, Wu X. LncRNA Gm4419 induces cell apoptosis in hepatic ischemia-reperfusion injury via regulating the miR-455-SOX6 axis. Biochem Cell Biol 2020; 98:474-483. [PMID: 32114773 DOI: 10.1139/bcb-2019-0331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA (lncRNA) is known to be involved in a variety of diseases. However, the role of Gm4419 in hepatic ischemia-reperfusion (I/R) injury remains unknown. To study this, we first established a rat model of hepatic I/R, and a BRL-3A cell model of hypoxia-reoxygenation (H/R) for in vivo and in vitro studies. Staining with hematoxylin and eosin and hepatic injury scores were used to evaluate the degree of hepatic I/R injury. Cell apoptosis was assessed via staining with Edu, and with annexin V-FITC-propidium iodide assays. The interactions between Gm4419 and miR-455, as well as miR-455 and SOX6 were evaluated via luciferase reporter activity assays and RNA immunoprecipitation assays. In vivo, we found that Gm4419 was up-regulated in the rats subjected to I/R. Moreover, knockdown of Gm4419 alleviated the I/R-induced liver damage in the rats. In vitro, knockdown of Gm4419 alleviated H/R-induced apoptosis in BRL-3A cells. Interestingly, we found that miR-455 is a target of Gm4419, and Gm4419 regulates the expression of miR-455 via sponging. Furthermore, SOX6 was proven to be the target of miR-455. Finally, rescue experiments confirmed that knockdown of Gm4419 inhibits apoptosis by regulating miR-455 and SOX6 in H/R-treated BRL-3A cells. Therefore, our findings show that the lncRNA Gm4419 accelerates hepatic I/R injury by targeting the miR-455-SOX6 axis, which suggests a novel therapeutic target for hepatic I/R injury.
Collapse
Affiliation(s)
- Dongjian Ying
- Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China.,Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China
| | - Xinhua Zhou
- Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China.,Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China
| | - Yi Ruan
- Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China.,Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China
| | - Luoluo Wang
- Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China.,Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China
| | - Xiang Wu
- Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China.,Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo City, Zhejiang Province, 315040, China
| |
Collapse
|
27
|
Liang Z, Xu J, Gu C. Novel role of the SRY-related high-mobility-group box D gene in cancer. Semin Cancer Biol 2019; 67:83-90. [PMID: 31356865 DOI: 10.1016/j.semcancer.2019.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
The SRY-related high-mobility-group box (Sox) gene family encodes a set of transcription factors and is defined by the presence of highly conserved domains. The Sox gene can be divided into 10 groups (A-J). The SoxD subpopulation consists of Sox5, Sox6, Sox13 and Sox23, which are involved in the transcriptional regulation of developmental processes, including embryonic development, nerve growth and cartilage formation. Recently, the SoxD gene family was recognized as important transcriptional regulators associated with many types of cancer. In addition, Sox5 and Sox6 are representatives of the D subfamily, and there are many related studies; however, there are few reports on Sox13 and Sox23. In this review, we first introduce the structures of the SoxD genes. Next, we summarize the latest research progress on SoxD in various types of cancer. Finally, we discuss the potential direction of future SoxD research. In general, the information reviewed here may contribute to future experimental design and increase the potential of SoxD as a cancer treatment target.
Collapse
Affiliation(s)
- Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China.
| | - Jing Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
28
|
Sher F, Hossain M, Seruggia D, Schoonenberg VAC, Yao Q, Cifani P, Dassama LMK, Cole MA, Ren C, Vinjamur DS, Macias-Trevino C, Luk K, McGuckin C, Schupp PG, Canver MC, Kurita R, Nakamura Y, Fujiwara Y, Wolfe SA, Pinello L, Maeda T, Kentsis A, Orkin SH, Bauer DE. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat Genet 2019; 51:1149-1159. [PMID: 31253978 PMCID: PMC6650275 DOI: 10.1038/s41588-019-0453-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Developmental silencing of fetal globins serves as both a paradigm of spatiotemporal gene regulation and an opportunity for therapeutic intervention of β-hemoglobinopathy. The nucleosome remodeling and deacetylase (NuRD) chromatin complex participates in γ-globin repression. We used pooled CRISPR screening to disrupt NuRD protein coding sequences comprehensively in human adult erythroid precursors. Essential for fetal hemoglobin (HbF) control is a non-redundant subcomplex of NuRD protein family paralogs, whose composition we corroborated by affinity chromatography and proximity labeling mass spectrometry proteomics. Mapping top functional guide RNAs identified key protein interfaces where in-frame alleles resulted in loss-of-function due to destabilization or altered function of subunits. We ascertained mutations of CHD4 that dissociate its requirement for cell fitness from HbF repression in both primary human erythroid precursors and transgenic mice. Finally we demonstrated that sequestering CHD4 from NuRD phenocopied these mutations. These results indicate a generalizable approach to discover protein complex features amenable to rational biochemical targeting.
Collapse
Affiliation(s)
- Falak Sher
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Center for Translational & Computational Neuroimmunology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Mir Hossain
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Vivien A C Schoonenberg
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura M K Dassama
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Mitchel A Cole
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Claudio Macias-Trevino
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick G Schupp
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Epsilon-Globin HBE1 Enhances Radiotherapy Resistance by Down-Regulating BCL11A in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11040498. [PMID: 30965648 PMCID: PMC6521047 DOI: 10.3390/cancers11040498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
Resistance to radiotherapy is considered an important obstacle in the treatment of colorectal cancer. However, the mechanisms that enable tumor cells to tolerate the effects of radiation remain unclear. Moreover, radiotherapy causes accumulated mutations in transcription factors, which can lead to changes in gene expression and radiosensitivity. This phenomenon reduces the effectiveness of radiation therapy towards cancer cells. In the present study, radiation-resistant (RR) cancer cells were established by sequential radiation exposure, and hemoglobin subunit epsilon 1 (HBE1) was identified as a candidate radiation resistance-associated protein based on RNA-sequencing analysis. Then, compared to radiosensitive (RS) cell lines, the overexpression of HBE1 in RR cell lines was used to measure various forms of radiation-induced cellular damage. Consequently, HBE1-overexpressing cell lines were found to exhibit decreased radiation-induced intracellular reactive oxygen species (ROS) production and cell mortality. Conversely, HBE1 deficiency in RR cell lines increased intracellular ROS production, G2/M arrest, and apoptosis, and decreased clonogenic survival rate. These effects were reversed by the ROS scavenger N-acetyl cysteine. Moreover, HBE1 overexpression was found to attenuate radiation-induced endoplasmic reticulum stress and apoptosis via an inositol-requiring enzyme 1(IRE1)-Jun amino-terminal kinase (JNK) signaling pathway. In addition, increased HBE1 expression induced by γ-irradiation in RS cells attenuated expression of the transcriptional regulator BCL11A, whereas its depletion in RR cells increased BCL11A expression. Collectively, these observations indicate that the expression of HBE1 during radiotherapy might potentiate the survival of radiation-exposed colorectal cancer cells.
Collapse
|
30
|
Sox13 is a novel early marker for hair follicle development. Biochem Biophys Res Commun 2019; 509:862-868. [PMID: 30638933 DOI: 10.1016/j.bbrc.2018.12.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 12/25/2018] [Indexed: 12/16/2022]
Abstract
Sox13, a group D member of the Sry-related high-mobility group box (Sox) transcription factor family, is expressed in various tissues including the hair follicle. However, its spatiotemporal expression patterns in the hair follicle and its role in hair development remain to be elucidated. To address these questions, we generated Sox13-LacZ-knock-in mice (Sox13LacZ/+), in which the LacZ reporter gene was inserted in-frame into exon 2, which contains the translation initiation codon. X-gal staining in Sox13LacZ/+ embryos revealed that Sox13 is initially expressed in the epithelial portion of the placode, and subsequently in the hair germ and the hair peg during early hair follicle development. In postnatal catagen and anagen, Sox13 was detected in the epithelial sheath, whereas in telogen, Sox13 was localized in the bulge region, where hair follicle stem cells reside. Immunohistochemistry with an anti-β-galactosidase antibody and anti-hair keratin antibodies that specifically mark the different layers of the hair follicle revealed that Sox13 was predominantly expressed in the outer root sheath in anagen. However, the integumentary structures of Sox13LacZ/LacZ mice were grossly and histologically indistinguishable from those of wild type mice. These results suggest that although Sox13 is dispensable for epidermal and adnexal development, Sox13 is a useful marker for early hair follicle development.
Collapse
|
31
|
King AJ, Higgs DR. Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:353-360. [PMID: 30504332 PMCID: PMC6246003 DOI: 10.1182/asheducation-2018.1.353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The α-thalassemia trait, associated with deletions removing both α-globin genes from 1 chromosome (genotype ζ αα/ζ--), is common throughout Southeast Asia. Consequently, many pregnancies in couples of Southeast Asian origin carry a 1 in 4 risk of producing a fetus inheriting no functional α-globin genes (ζ--/ζ--), leading to hemoglobin (Hb) Bart's hydrops fetalis syndrome (BHFS). Expression of the embryonic α-globin genes (ζ-globin) is normally limited to the early stages of primitive erythropoiesis, and so when the ζ-globin genes are silenced, at ∼6 weeks of gestation, there should be no α-like globin chains to pair with the fetal γ-globin chains of Hb, which consequently form nonfunctional tetramers (γ4) known as Hb Bart's. When deletions leave the ζ-globin gene intact, a low level of ζ-globin gene expression continues in definitive erythroid cells, producing small amounts of Hb Portland (ζ2γ2), a functional form of Hb that allows the fetus to survive up to the second or third trimester. Untreated, all affected individuals die at these stages of development. Prevention is therefore of paramount importance. With improvements in early diagnosis, intrauterine transfusion, and advanced perinatal care, there are now a small number of individuals with BHFS who have survived, with variable outcomes. A deeper understanding of the mechanism underlying the switch from ζ- to α-globin expression could enable persistence or reactivation of embryonic globin synthesis in definitive cells, thereby providing new therapeutic options for such patients.
Collapse
Affiliation(s)
- Andrew J King
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Douglas R Higgs
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
32
|
Shariati L, Rohani F, Heidari Hafshejani N, Kouhpayeh S, Boshtam M, Mirian M, Rahimmanesh I, Hejazi Z, Modarres M, Pieper IL, Khanahmad H. Disruption of
SOX6
gene using CRISPR/Cas9 technology for gamma‐globin reactivation: An approach towards gene therapy of β‐thalassemia. J Cell Biochem 2018; 119:9357-9363. [DOI: 10.1002/jcb.27253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
- Isfahan Cardiovascular Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
| | - Fattah Rohani
- Department of Clinical Sciences Faculty of Veterinary Medicine, University of Shahrekord Shahrekord Iran
| | - Nahid Heidari Hafshejani
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Shirin Kouhpayeh
- Isfahan Neurosciences Research Center, Alzahra Research Institute Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science Isfahan University of Medical Sciences Isfahan Iran
| | - Ilnaz Rahimmanesh
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Zahra Hejazi
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Mehran Modarres
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| | - Ina Laura Pieper
- Institute of Life Science, College of Medicine Swansea University Medical School Swansea United Kingdom
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology School of Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
33
|
Modares Sadeghi M, Shariati L, Hejazi Z, Shahbazi M, Tabatabaiefar MA, Khanahmad H. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia. J Cell Biochem 2017; 119:2512-2519. [PMID: 28941328 DOI: 10.1002/jcb.26412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
β-thalassemia is a common autosomal recessive disorder characterized by a deficiency in the synthesis of β-chains. Evidences show that increased HbF levels improve the symptoms in patients with β-thalassemia or sickle cell anemia. In this study, ZFN technology was applied to induce a mutation in the binding domain region of SOX6 to reactivate γ-globin expression. The sequences coding for ZFP arrays were designed and sub cloned in TDH plus as a transfer vector. The ZFN expression was confirmed using Western blot analysis. In the next step, using the site-directed mutagenesis strategy through the overlap PCR, a missense mutation (D64V) was induced in the catalytic domain of the integrase gene in the packaging plasmid and verified using DNA sequencing. Then, the integrase minus lentivirus containing ZFN cassette was packaged. Transduction of K562 cells with this virus was performed. Mutation detection assay was performed. The indel percentage of the cells transducted with lenti virus containing ZFN was 31%. After 5 days of erythroid differentiation with 15 μg/mL cisplatin, the levels of γ-globin mRNA were sixfold in the cells treated with ZFN compared to untreated cells. In the meantime, the measurement of HbF expression levels was carried out using hemoglobin electrophoresis and showed the same results. Integrase minus lentivirus can provide a useful tool for efficient transient gene expression and helps avoid disadvantages of gene targeting using the native virus. The ZFN strategy applied here to induce indel on SOX6 gene in adult erythroid progenitors may provide a method to activate fetal hemoglobin expression in individuals with β-thalassemia.
Collapse
Affiliation(s)
- Mehran Modares Sadeghi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Hejazi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoureh Shahbazi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
SOX6 Downregulation Induces γ-Globin in Human β-Thalassemia Major Erythroid Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9496058. [PMID: 29333458 PMCID: PMC5733236 DOI: 10.1155/2017/9496058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022]
Abstract
Background Fetal hemoglobin (HbF; α2γ2) is a potent genetic modifier of the severity of β-thalassemia and sickle cell anemia. Differences in the levels of HbF that persist into adulthood affect the severity of sickle cell disease and the β-thalassemia syndromes. Sry type HMG box (SOX6) is a potent silencer of HbF. Here, we reactivated γ-globin expression by downregulating SOX6 to alleviate anemia in the β-thalassemia patients. Methods SOX6 was downregulated by lentiviral RNAi (RNA interference) in K562 cell line and an in vitro culture model of human erythropoiesis in which erythroblasts are derived from the normal donor mononuclear cells (MNC) or β-thalassemia major MNC. The expression of γ-globin was analyzed by qPCR (quantitative real-time PCR) and WB (western blot). Results Our data showed that downregulation of SOX6 induces γ-globin production in K562 cell line and human erythrocytes from normal donors and β-thalassemia major donors, without altering erythroid maturation. Conclusions This is the first report on γ-globin induction by downregulation of SOX6 in human erythroblasts derived from β-thalassemia major.
Collapse
|
35
|
Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis. Sci Rep 2017; 7:14088. [PMID: 29074889 PMCID: PMC5658338 DOI: 10.1038/s41598-017-14336-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
The Sox6 transcription factor is crucial for terminal maturation of definitive red blood cells. Sox6-null mouse fetuses present misshapen and nucleated erythrocytes, due to impaired actin assembly and cytoskeleton stability. These defects are accompanied with a reduced survival of Sox6−/− red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark of erythroid maturation. To obtain an overview on processes downstream to Sox6 expression, we performed a differential proteomic analysis on human erythroid K562 cells overexpressing Sox6. Sox6-overexpression induces dysregulation of 64 proteins, involved in cytoskeleton remodeling and in protein synthesis, folding and trafficking, key processes for erythroid maturation. Moreover, 43 out of 64 genes encoding for differentially expressed proteins contain within their proximal regulatory regions sites that are bound by SOX6 according to ENCODE ChIP-seq datasets and are possible direct SOX6 targets. SAR1B, one of the most induced proteins upon Sox6 overexpression, shares a conserved regulatory module, composed by a double SOX6 binding site and a GATA1 consensus, with the adjacent SEC24 A gene. Since both genes encode for COPII components, this element could concur to the coordinated expression of these proteins during erythropoiesis.
Collapse
|
36
|
Teplyakov E, Wu Q, Liu J, Pugacheva EM, Loukinov D, Boukaba A, Lobanenkov V, Strunnikov A. The downregulation of putative anticancer target BORIS/CTCFL in an addicted myeloid cancer cell line modulates the expression of multiple protein coding and ncRNA genes. Oncotarget 2017; 8:73448-73468. [PMID: 29088719 PMCID: PMC5650274 DOI: 10.18632/oncotarget.20627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
The BORIS/CTCFL gene, is a testis-specific CTCF paralog frequently erroneously activated in cancer, although its exact role in cancer remains unclear. BORIS is both a transcription factor and an architectural chromatin protein. BORIS' normal role is to establish a germline-like gene expression and remodel the epigenetic landscape in testis; it similarly remodels chromatin when activated in human cancer. Critically, at least one cancer cell line, K562, is dependent on BORIS for its self-renewal and survival. Here, we downregulate BORIS expression in the K562 cancer cell line to investigate downstream pathways regulated by BORIS. RNA-seq analyses of both mRNA and small ncRNAs, including miRNA and piRNA, in the knock-down cells revealed a set of differentially expressed genes and pathways, including both testis-specific and general proliferation factors, as well as proteins involved in transcription regulation and cell physiology. The differentially expressed genes included important transcriptional regulators such as SOX6 and LIN28A. Data indicate that both direct binding of BORIS to promoter regions and locus-control activity via long-distance chromatin domain regulation are involved. The sum of findings suggests that BORIS activation in leukemia does not just recapitulate the germline, but creates a unique regulatory network.
Collapse
Affiliation(s)
- Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Dmitry Loukinov
- NIH, NIAID, Laboratory of Immunogenetics, Rockville, MD, USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Derepression of the DNA Methylation Machinery of the Gata1 Gene Triggers the Differentiation Cue for Erythropoiesis. Mol Cell Biol 2017; 37:MCB.00592-16. [PMID: 28069743 DOI: 10.1128/mcb.00592-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
GATA1 is a critical regulator of erythropoiesis. While the mechanisms underlying the high-level expression of GATA1 in maturing erythroid cells have been studied extensively, the initial activation of the Gata1 gene in early hematopoietic progenitors remains to be elucidated. We previously identified a hematopoietic stem and progenitor cell (HSPC)-specific silencer element (the Gata1 methylation-determining region [G1MDR]) that recruits DNA methyltransferase 1 (Dnmt1) and provokes methylation of the Gata1 gene enhancer. In the present study, we hypothesized that removal of the G1MDR-mediated silencing machinery is the molecular basis of the initial activation of the Gata1 gene and erythropoiesis. To address this hypothesis, we generated transgenic mouse lines harboring a Gata1 bacterial artificial chromosome in which the G1MDR was deleted. The mice exhibited abundant GATA1 expression in HSPCs, in a GATA2-dependent manner. The ectopic GATA1 expression repressed Gata2 transcription and induced erythropoiesis and apoptosis of HSPCs. Furthermore, genetic deletion of Dnmt1 in HSPCs activated Gata1 expression and depleted HSPCs, thus recapitulating the HSC phenotype associated with GATA1 gain of function. These results demonstrate that the G1MDR holds the key to HSPC maintenance and suggest that release from this suppressive mechanism is a fundamental requirement for subsequent initiation of erythroid differentiation.
Collapse
|
38
|
Ditadi A, Sturgeon CM, Keller G. A view of human haematopoietic development from the Petri dish. Nat Rev Mol Cell Biol 2016; 18:56-67. [PMID: 27876786 DOI: 10.1038/nrm.2016.127] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide an unparalleled opportunity to establish in vitro differentiation models that will transform our approach to the study of human development. In the case of the blood system, these models will enable investigation of the earliest stages of human embryonic haematopoiesis that was previously not possible. In addition, they will provide platforms for studying the origins of human blood cell diseases and for generating de novo haematopoietic stem and progenitor cell populations for cell-based regenerative therapies.
Collapse
Affiliation(s)
- Andrea Ditadi
- McEwen Centre for Regenerative Medicine and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Christopher M Sturgeon
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Palis J. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett 2016; 590:3965-3974. [PMID: 27790707 DOI: 10.1002/1873-3468.12459] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/20/2023]
Abstract
Steady-state production of all circulating blood cells in the adult ultimately depends on hematopoietic stem cells (HSCs), which first arise in small numbers beginning at embryonic day (E) 10.5 in large arterial vessels of the murine embryo. However, blood cell synthesis first begins in the yolk sac beginning at E7.25 and consists of two waves of hematopoietic progenitors. The first wave consists of primitive erythroid, megakaryocyte, and macrophage progenitors that rapidly give rise to maturing blood cells of all three lineages. This 'primitive' wave of progenitors is followed by a partially overlapping wave of 'erythro-myeloid progenitors', which contain definitive erythroid, megakaryocyte, macrophage, neutrophil, and mast cell progenitors that seed the fetal liver and jump-start hematopoiesis before the engraftment and expansion of HSCs. These two waves of progenitors that arise in the yolk sac are necessary and even sufficient to sustain the survival of the mouse embryo until birth in the absence of HSCs. They provide key signals to support HSC emergence. Finally, HSC-independent hematopoiesis also provides long-lived tissue-resident macrophage populations that function in multiple adult organs.
Collapse
Affiliation(s)
- James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, NY, USA
| |
Collapse
|
40
|
Merryweather-Clarke AT, Tipping AJ, Lamikanra AA, Fa R, Abu-Jamous B, Tsang HP, Carpenter L, Robson KJH, Nandi AK, Roberts DJ. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors. BMC Genomics 2016; 17:817. [PMID: 27769165 PMCID: PMC5073849 DOI: 10.1186/s12864-016-3134-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 09/27/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human-induced pluripotent stem cells (hiPSCs) are a potentially invaluable resource for regenerative medicine, including the in vitro manufacture of blood products. HiPSC-derived red blood cells are an attractive therapeutic option in hematology, yet exhibit unexplained proliferation and enucleation defects that presently preclude such applications. We hypothesised that substantial differential regulation of gene expression during erythroid development accounts for these important differences between hiPSC-derived cells and those from adult or cord-blood progenitors. We thus cultured erythroblasts from each source for transcriptomic analysis to investigate differential gene expression underlying these functional defects. RESULTS Our high resolution transcriptional view of definitive erythropoiesis captures the regulation of genes relevant to cell-cycle control and confers statistical power to deploy novel bioinformatics methods. Whilst the dynamics of erythroid program elaboration from adult and cord blood progenitors were very similar, the emerging erythroid transcriptome in hiPSCs revealed radically different program elaboration compared to adult and cord blood cells. We explored the function of differentially expressed genes in hiPSC-specific clusters defined by our novel tunable clustering algorithms (SMART and Bi-CoPaM). HiPSCs show reduced expression of c-KIT and key erythroid transcription factors SOX6, MYB and BCL11A, strong HBZ-induction, and aberrant expression of genes involved in protein degradation, lysosomal clearance and cell-cycle regulation. CONCLUSIONS Together, these data suggest that hiPSC-derived cells may be specified to a primitive erythroid fate, and implies that definitive specification may more accurately reflect adult development. We have therefore identified, for the first time, distinct gene expression dynamics during erythroblast differentiation from hiPSCs which may cause reduced proliferation and enucleation of hiPSC-derived erythroid cells. The data suggest several mechanistic defects which may partially explain the observed aberrant erythroid differentiation from hiPSCs.
Collapse
Affiliation(s)
- Alison T Merryweather-Clarke
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Alex J Tipping
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Abigail A Lamikanra
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK. .,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK.
| | - Rui Fa
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK
| | - Basel Abu-Jamous
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK
| | - Hoi Pat Tsang
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Lee Carpenter
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Kathryn J H Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, OX3 9DU, Oxford, UK
| | - Asoke K Nandi
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK.,Distinguished Visiting Professor, The Key Laboratory of Embedded Systems and Service Computing, College of Electronic and Information Engineering, Tongji University, Shanghai, People's Republic of China
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK. .,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK.
| |
Collapse
|
41
|
Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, Lu Q, Chen P, Ma K, Zhou C. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis 2016; 21:174-83. [PMID: 26659076 PMCID: PMC4712245 DOI: 10.1007/s10495-015-1201-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.
Collapse
Affiliation(s)
- Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Jiaji Wang
- Beijing Jianhua Experimental School, Yuquan Road 66, Haidian District, Beijing, China
| | - Qiong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Siyu Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Yuyao Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Qin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Kangtao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China.
| |
Collapse
|
42
|
Sakakibara I, Wurmser M, Dos Santos M, Santolini M, Ducommun S, Davaze R, Guernec A, Sakamoto K, Maire P. Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle. Skelet Muscle 2016; 6:30. [PMID: 27597886 PMCID: PMC5011358 DOI: 10.1186/s13395-016-0102-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skeletal muscles are composed of slow and fast myofiber subtypes which each express selective genes required for their specific contractile and metabolic activity. Six homeoproteins are transcription factors regulating muscle cell fate through activation of myogenic regulatory factors and driving fast-type gene expression during embryogenesis. RESULTS We show here that Six1 protein accumulates more robustly in the nuclei of adult fast-type muscles than in adult slow-type muscles, this specific enrichment takes place during perinatal growth. Deletion of Six1 in soleus impaired fast-type myofiber specialization during perinatal development, resulting in a slow phenotype and a complete lack of Myosin heavy chain 2A (MyHCIIA) expression. Global transcriptomic analysis of wild-type and Six1 mutant myofibers identified the gene networks controlled by Six1 in adult soleus muscle. This analysis showed that Six1 is required for the expression of numerous genes encoding fast-type sarcomeric proteins, glycolytic enzymes and controlling intracellular calcium homeostasis. Parvalbumin, a key player of calcium buffering, in particular, is a direct target of Six1 in the adult myofiber. CONCLUSIONS This analysis revealed that Six1 controls distinct aspects of adult muscle physiology in vivo, and acts as a main determinant of fast-fiber type acquisition and maintenance.
Collapse
Affiliation(s)
- Iori Sakakibara
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
- Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Maud Wurmser
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Matthieu Dos Santos
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Marc Santolini
- Laboratoire de Physique Statistique, CNRS, Université P. et M. Curie, Université D. Diderot, École Normale Supérieure, Paris, 75005 France
| | - Serge Ducommun
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Romain Davaze
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Anthony Guernec
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| |
Collapse
|
43
|
Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion. Cell Rep 2016; 15:2550-62. [PMID: 27264182 PMCID: PMC4914771 DOI: 10.1016/j.celrep.2016.05.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/05/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC) development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs). We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development. Gata1, Tal1, Lmo2, and c-Myc reprogram fibroblasts to erythroid progenitors (iEPs) iEP gene expression is more similar to that of primitive than definitive erythroblasts Klf1 or Myb overexpression induces adult hemoglobin expression in iEPs
Collapse
|
44
|
Obeidi N, Pourfathollah AA, Soleimani M, Nikougoftar Zarif M, Kouhkan F. The Effect of Mir-451 Upregulation on Erythroid Lineage Differentiation of Murine Embryonic Stem Cells. CELL JOURNAL 2016; 18:165-78. [PMID: 27540521 PMCID: PMC4988415 DOI: 10.22074/cellj.2016.4311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/14/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are small endogenous non-coding regulatory RNAs that control mRNAs post-transcriptionally. Several mouse stem cells miRNAs are cloned differentially regulated in different hematopoietic lineages, suggesting their possible role in hematopoietic lineage differentiation. Recent studies have shown that specific miRNAs such as Mir-451 have key roles in erythropoiesis. MATERIALS AND METHODS In this experimental study, murine embryonic stem cells (mESCs) were infected with lentiviruses containing pCDH-Mir-451. Erythroid differentiation was assessed based on the expression level of transcriptional factors (Gata-1, Klf-1, Epor) and hemoglobin chains (α, β, γ , ε and ζ) genes using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and presence of erythroid surface antigens (TER-119 and CD235a) using flow cytometery. Colony-forming unit (CFU) assay was also on days 14thand 21thafter transduction. RESULTS Mature Mir-451 expression level increased by 3.434-fold relative to the untreated mESCs on day 4 after transduction (P<0.001). Mir-451 up-regulation correlated with the induction of transcriptional factor (Gata-1, Klf-1, Epor) and hemoglobin chain (α, β, γ, ε and ζ) genes in mESCs (P<0.001) and also showed a strong correlation with presence of CD235a and Ter- 119 markers in these cells (13.084and 13.327-fold increse, respectively) (P<0.05). Moreover, mESCs treated with pCDH-Mir-451 showed a significant raise in CFU-erythroid (CFU-E) colonies (5.2-fold) compared with untreated control group (P<0.05). CONCLUSION Our results showed that Mir-451 up-regulation strongly induces erythroid differentiation and maturation of mESCs. Overexpression of Mir-451 may have the potential to produce artificial red blood cells (RBCs) without the presence of any stimulatory cytokines.
Collapse
Affiliation(s)
- Narges Obeidi
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran; Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Masoud Soleimani
- Department of Hematology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | | |
Collapse
|
45
|
Clarke RL, Robitaille AM, Moon RT, Keller G. A Quantitative Proteomic Analysis of Hemogenic Endothelium Reveals Differential Regulation of Hematopoiesis by SOX17. Stem Cell Reports 2016; 5:291-304. [PMID: 26267830 PMCID: PMC4618836 DOI: 10.1016/j.stemcr.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 10/27/2022] Open
Abstract
The in vitro derivation of hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) is complicated by the existence of multiple overlapping embryonic blood cell programs called primitive, erythromyeloid progenitor (EMP), and definitive. As HSCs are only generated during the definitive stage of hematopoiesis, deciphering the regulatory pathways that control the emergence of this program and identifying markers that distinguish it from the other programs are essential. To identify definitive specific pathways and marker sets, we used label-free proteomics to determine the proteome of embryo-derived and mouse embryonic stem cell-derived VE-CADHERIN(+)CD45(-) definitive hematopoietic progenitors. With this approach, we identified Stat1 as a marker that distinguishes the definitive erythroid lineage from the primitive- and EMP-derived lineages. Additionally, we provide evidence that the generation of the Stat1(+) definitive lineage is dependent on Sox17. These findings establish an approach for monitoring the emergence of definitive hematopoiesis in the PSC differentiation cultures.
Collapse
Affiliation(s)
- Raedun L Clarke
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aaron M Robitaille
- Institute for Stem Cell and Regenerative Medicine and Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Randall T Moon
- Institute for Stem Cell and Regenerative Medicine and Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
46
|
Barminko J, Reinholt B, Baron MH. Development and differentiation of the erythroid lineage in mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:18-29. [PMID: 26709231 PMCID: PMC4775370 DOI: 10.1016/j.dci.2015.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 05/02/2023]
Abstract
The red blood cell (RBC) is responsible for performing the highly specialized function of oxygen transport, making it essential for survival during gestation and postnatal life. Establishment of sufficient RBC numbers, therefore, has evolved to be a major priority of the postimplantation embryo. The "primitive" erythroid lineage is the first to be specified in the developing embryo proper. Significant resources are dedicated to producing RBCs throughout gestation. Two transient and morphologically distinct waves of hematopoietic progenitor-derived erythropoiesis are observed in development before hematopoietic stem cells (HSCs) take over to produce "definitive" RBCs in the fetal liver. Toward the end of gestation, HSCs migrate to the bone marrow, which becomes the primary site of RBC production in the adult. Erythropoiesis is regulated at various stages of erythroid cell maturation to ensure sufficient production of RBCs in response to physiological demands. Here, we highlight key aspects of mammalian erythroid development and maturation as well as differences among the primitive and definitive erythroid cell lineages.
Collapse
Affiliation(s)
- Jeffrey Barminko
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brad Reinholt
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret H Baron
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
48
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
49
|
KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood 2015; 125:2405-17. [PMID: 25724378 DOI: 10.1182/blood-2014-08-590968] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/21/2015] [Indexed: 12/14/2022] Open
Abstract
We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.
Collapse
|
50
|
Ginder GD. Epigenetic regulation of fetal globin gene expression in adult erythroid cells. Transl Res 2015; 165:115-25. [PMID: 24880147 PMCID: PMC4227965 DOI: 10.1016/j.trsl.2014.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The developmental regulation of globin gene expression has served as an important model for understanding higher eukaryotic transcriptional control mechanisms. During human erythroid development, there is a sequential switch from expression of the embryonic ε-globin gene to the fetal ɣ-globin gene in utero, and postpartum the ɣ-globin gene is silenced, as the β-globin gene becomes the predominantly expressed locus. Because the expression of normally silenced fetal ɣ-type globin genes and resultant production of fetal hemoglobin (HbF) in adult erythroid cells can ameliorate the pathophysiological consequences of both abnormal β-globin chains in sickle cell anemia and deficient β-globin chain production in β-thalassemia, understanding the complex mechanisms of this developmental switch has direct translational clinical relevance. Of particular interest for translational research are the factors that mediate silencing of the ɣ-globin gene in adult stage erythroid cells. In addition to the regulatory roles of transcription factors and their cognate DNA sequence motifs, there has been a growing appreciation of the role of epigenetic signals and their cognate factors in gene regulation, and in particular in gene silencing through chromatin. Much of the information about epigenetic silencing stems from studies of globin gene regulation. As discussed here, the term epigenetics refers to postsynthetic modifications of DNA and chromosomal histone proteins that affect gene expression and can be inherited through somatic cell replication. A full understanding of the molecular mechanisms of epigenetic silencing of HbF expression should facilitate the development of more effective treatment of β-globin chain hemoglobinopathies.
Collapse
Affiliation(s)
- Gordon D Ginder
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|