1
|
Verma P, Allen JM, Sánchez Alvarado A, Duncan EM. Chromatin remodeling protein BPTF mediates chromatin accessibility at gene promoters in planarian stem cells. BMC Genomics 2025; 26:232. [PMID: 40069606 PMCID: PMC11895202 DOI: 10.1186/s12864-025-11405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The regulation of chromatin accessibility is essential in eukaryotic cells as one of several mechanisms that ensure gene activation occurs at appropriate times and in appropriate cell types. Accordingly, mutations in chromatin remodeling proteins are linked to many different developmental disorders and cancers. One example of a chromatin protein that has been linked to both developmental abnormalities and cancer is BPTF/NURF301, the largest subunit of the Nucleosome Remodeling Factor (NuRF) complex. The BPTF subunit is not only important for the formation of NuRF but also helps direct its activity to particular regions of chromatin by preferentially binding histone H3 lysine four trimethylation (H3K4me3). Notably, defects caused by knockdown of bptf in Xenopus embryos mimic those caused by knockdown of wdr5, a core subunit of all H3K4me3 methyltransferase complexes. However, the mechanistic details of how and where BPTF/NuRF is recruited to regulate gene expression vary between studies and have been largely tested in vitro and/or in cultured cells. Improving our understanding of how this chromatin remodeling complex targets specific gene loci and regulates their expression in an organismal context will provide important insight into how pathogenic mutations disrupt its normal, in vivo, cellular functions. RESULTS Here, we report our findings on the role of BPTF in maintaining chromatin accessibility and essential function in planarian (Schmidtea mediterranea) stem cells. We find that depletion of planarian BPTF primarily affects accessibility at gene promoters near transcription start sites (TSSs). BPTF-dependent loss of accessibility did not correlate with decreased gene expression when we considered all affected loci. However, we found that genes marked by Set1-dependent H3K4me3, but not MLL1/2-dependent H3K4me3, showed increased sensitivity to the loss of BPTF-dependent accessibility. In addition, knockdown of bptf (Smed-bptf) produces loss-of-function phenotypes similar to those caused by knockdown of Smed-set1. CONCLUSIONS The S.mediterranea homolog of NuRF protein BPTF (SMED-BPTF) is essential for normal homeostasis in planarian tissues, potentially through its role in maintaining chromatin accessibility at a specific subset of gene promoters in planarian stem cells. By identifying loci that lose both chromatin accessibility and gene expression after depletion of BPTF, we have identified a cohort of genes that may have important functions in stem cell biology.
Collapse
Affiliation(s)
- Prince Verma
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - John M Allen
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
2
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
3
|
Pan Y, Yuan F, Lin Z, Li Y. BPTF promotes glioma development through USP34-mediated de-ubiquitination of FOXC1. Histol Histopathol 2025; 40:205-214. [PMID: 38686761 DOI: 10.14670/hh-18-748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Glioma is the most prevalent malignant tumor of the brain, and the study of the molecular mechanisms associated with its development has important clinical significance. Our previous study found that BPTF promotes the malignant phenotype of glioma and is significantly associated with poor prognosis; the downstream regulatory mechanisms are explored in this study. Western blot and immunohistochemical staining were used to detect protein expression in cells or tissues. BPTF knockdown as well as FOXC1-overexpressing lentiviruses were used in combination for the construction of the U251 cell model, leading to functional rescue experiments. CCK8 assay, flow cytometry, scratch assay, and Transwell assay were used to detect cell proliferation, apoptosis, and migration, respectively. Finally, immunoprecipitation assays, combined with western blot (WB), were used to detect the interaction between proteins as well as the level of ubiquitination modification. The obtained results suggested that BPTF knockdown may inhibit the malignant behavior of glioma cells by downregulating FOXC1 expression. Moreover, FOXC1 expression was significantly higher in glioma tissues than in normal brain tissues and was significantly associated with higher tumor stage and worse patient prognosis. Finally, the mechanism of FOXC1 regulation by BPTF was found to result from the affected protein stability of FOXC1 through USP34-mediated de-ubiquitylation. In conclusion, the BPTF/FOXC1 axis was identified as a key promotor in glioma development and may be a potential target in the inhibition of glioma development.
Collapse
Affiliation(s)
- Yanling Pan
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Feng Yuan
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Zhiren Lin
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Yijie Li
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China.
| |
Collapse
|
4
|
Ferretti A, Furlan M, Glinton KE, Fenger CD, Boschann F, Amlie-Wolf L, Zeidler S, Moretti R, Stoltenburg C, Tarquinio DC, Furia F, Parisi P, Rubboli G, Devinsky O, Mignot C, Gripp KW, Møller RS, Yang Y, Stankiewicz P, Gardella E. Epilepsy as a Novel Phenotype of BPTF-Related Disorders. Pediatr Neurol 2024; 158:17-25. [PMID: 38936258 DOI: 10.1016/j.pediatrneurol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) is associated to BPTF gene haploinsufficiency. Epilepsy was not included in the initial descriptions of NEDDFL, but emerging evidence indicates that epileptic seizures occur in some affected individuals. This study aims to investigate the electroclinical epilepsy features in individuals with NEDDFL. METHODS We enrolled individuals with BPTF-related seizures or interictal epileptiform discharges (IEDs) on electroencephalography (EEG). Demographic, clinical, genetic, raw EEG, and neuroimaging data as well as response to antiseizure medication were assessed. RESULTS We studied 11 individuals with a null variant in BPTF, including five previously unpublished ones. Median age at last observation was 9 years (range: 4 to 43 years). Eight individuals had epilepsy, one had a single unprovoked seizure, and two showed IEDs only. Key features included (1) early childhood epilepsy onset (median 4 years, range: 10 months to 7 years), (2) well-organized EEG background (all cases) and brief bursts of spikes and slow waves (50% of individuals), and (3) developmental delay preceding seizure onset. Spectrum of epilepsy severity varied from drug-resistant epilepsy (27%) to isolated IEDs without seizures (18%). Levetiracetam was widely used and reduced seizure frequency in 67% of the cases. CONCLUSIONS Our study provides the first characterization of BPTF-related epilepsy. Early-childhood-onset epilepsy occurs in 19% of subjects, all presenting with a well-organized EEG background associated with generalized interictal epileptiform abnormalities in half of these cases. Drug resistance is rare.
Collapse
Affiliation(s)
- Alessandro Ferretti
- Pediatrics Unit, Faculty of Medicine and Psychology, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy; Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Margherita Furlan
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Kevin E Glinton
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Amplexa Genetics A/S, Odense, Denmark
| | - Felix Boschann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours Children's Health, Wilmington, Delaware
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Raffaella Moretti
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Corinna Stoltenburg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Sozialpädiatrisches Zentrum Neuropädiatrie, Berlin, Germany
| | - Daniel C Tarquinio
- Rett Syndrome Clinic, Center for Rare Neurological Diseases, Norcross, Georgia
| | - Francesca Furia
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Faculty of Health Sciences, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Pasquale Parisi
- Pediatrics Unit, Faculty of Medicine and Psychology, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Member of ERN EpiCARE
| | - Orrin Devinsky
- NYU Langone Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York City, New York
| | - Cyril Mignot
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Health, Wilmington, Delaware
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Faculty of Health Sciences, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE
| | - Yaping Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas; AiLife Diagnostics, Pearland, Texas
| | - Pawel Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Elena Gardella
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Faculty of Health Sciences, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark; Member of ERN EpiCARE.
| |
Collapse
|
5
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
6
|
Khan I, Kashani-Sabet M. Bromodomain inhibition targeting BPTF in the treatment of melanoma and other solid tumors. Clin Exp Metastasis 2024; 41:509-515. [PMID: 38683257 DOI: 10.1007/s10585-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/06/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic mechanisms have been shown to play an important role in the development of cancer. These include the activation of chromatin remodeling factors in various malignancies, including bromodomain plant homeodomain (PHD) finger transcription factor (BPTF), the largest component of the human nucleosome remodeling factor (NURF). In the last few years, BPTF has been identified as a pro-tumorigenic factor in melanoma, stimulated by research into the molecular mechanisms underlying BPTF function. Developing therapy targeting the BPTF bromodomain would represent a significant advance. Melanoma therapy has been revolutionized by the efficacy of immunotherapeutic and targeted strategies, but the development of drug resistance calls for alternative therapeutic approaches. Recent work has shown both a biomarker as well as functional role for BPTF in melanoma progression and as a possible target for its therapy. BPTF was shown to stimulate the mitogen-activated protein kinase pathway, which is targeted by selective BRAF inhibitors. The advent of small molecule inhibitors that target bromodomain motifs has shown that bromodomains are druggable. By combining the bromodomain inhibitor bromosporine with existing treatments that target mutant BRAF, BPTF targeting has emerged as a novel and promising therapeutic approach for metastatic melanoma. This article summarizes the functional role of BPTF in tumor progression, reviews the clinical experience to date with bromodomain inhibitors, and discusses the promise of BPTF targeting in melanoma and other solid tumors.
Collapse
Affiliation(s)
- Imran Khan
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center Research Institute, 475 Brannan St, Suite 130, San Francisco, CA, 94107, USA.
| |
Collapse
|
7
|
Pan L, Zhu F, Yu A, Jia C, Tang H, Zhou M, Li M, Jiang S, Li J, Cui Y, Tang L. Effect of bromodomain PHD-finger transcription factor (BPTF) on trophoblast epithelial-to-mesenchymal transition. Gene 2024; 914:148405. [PMID: 38521110 DOI: 10.1016/j.gene.2024.148405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The trophoblast epithelial-to-mesenchymal transition (EMT) is a procedure related to embryo implantation, spiral artery establishment and fetal-maternal communication, which is a key event for successful pregnancy. Inadequate EMT is one of the pathological mechanisms of recurrent miscarriage (RM). Whole-exome sequencing revealed that the mutation of bromodomain PHD-finger transcription factor (BPTF) was strongly associated with RM. In the present study, the effects of BPTF on EMT and the underlying mechanism were investigated. We found that the expression of BPTF in the villi of RM patients was significantly downregulated. Gene Ontology (GO) analysis revealed that BPTF participated in cell adhesion. The knockdown of BPTF prevented EMT and attenuated trophoblast invasion in vitro. BPTF activated Slug transcription by binding directly to the promoter region of the Slug gene. Interestingly, the protein levels of both Slug and BPTF were decreased in the villous cytotrophoblasts (VCTs) of RM villi. In conclusion, BPTF participates in the regulation of trophoblast EMT by activating Slug expression, suggesting that BPTF defects are an important factor in RM pathogenesis.
Collapse
Affiliation(s)
- Linqing Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huaiyun Tang
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Minglian Zhou
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Mingrui Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shiwen Jiang
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lisha Tang
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang 222000, China.
| |
Collapse
|
8
|
Zhang W, Xu C, Zhou M, Liu L, Ni Z, Su S, Wang C. Copy number variants selected during pig domestication inferred from whole genome resequencing. Front Vet Sci 2024; 11:1364267. [PMID: 38505001 PMCID: PMC10950068 DOI: 10.3389/fvets.2024.1364267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Over extended periods of natural and artificial selection, China has developed numerous exceptional pig breeds. Deciphering the germplasm characteristics of these breeds is crucial for their preservation and utilization. While many studies have employed single nucleotide polymorphism (SNP) analysis to investigate the local pig germplasm characteristics, copy number variation (CNV), another significant type of genetic variation, has been less explored in understanding pig resources. In this study, we examined the CNVs of 18 Wanbei pigs (WBP) using whole genome resequencing data with an average depth of 12.61. We identified a total of 8,783 CNVs (~30.07 Mb, 1.20% of the pig genome) in WBP, including 8,427 deletions and 356 duplications. Utilizing fixation index (Fst), we determined that 164 CNVs were within the top 1% of the Fst value and defined as under selection. Functional enrichment analyses of the genes associated with these selected CNVs revealed genes linked to reproduction (SPATA6, CFAP43, CFTR, BPTF), growth and development (NR6A1, SMYD3, VIPR2), and immunity (PARD3, FYB2). This study enhances our understanding of the genomic characteristics of the Wanbei pig and offers a theoretical foundation for the future breeding of this breed.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chengliang Xu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Linqing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Zelan Ni
- Anhui Provincial Livestock and Poultry Genetic Resources Conservation Center, Hefei, China
| | - Shiguang Su
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| |
Collapse
|
9
|
Turkova T, Kokavec J, Zikmund T, Dibus N, Pimkova K, Nemec D, Holeckova M, Ruskova L, Sedlacek R, Cermak L, Stopka T. Differential requirements for Smarca5 expression during hematopoietic stem cell commitment. Commun Biol 2024; 7:244. [PMID: 38424235 PMCID: PMC10904812 DOI: 10.1038/s42003-024-05917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
The formation of hematopoietic cells relies on the chromatin remodeling activities of ISWI ATPase SMARCA5 (SNF2H) and its complexes. The Smarca5 null and conditional alleles have been used to study its functions in embryonic and organ development in mice. These mouse model phenotypes vary from embryonic lethality of constitutive knockout to less severe phenotypes observed in tissue-specific Smarca5 deletions, e.g., in the hematopoietic system. Here we show that, in a gene dosage-dependent manner, the hypomorphic allele of SMARCA5 (S5tg) can rescue not only the developmental arrest in hematopoiesis in the hCD2iCre model but also the lethal phenotypes associated with constitutive Smarca5 deletion or Vav1iCre-driven conditional knockout in hematopoietic progenitor cells. Interestingly, the latter model also provided evidence for the role of SMARCA5 expression level in hematopoietic stem cells, as the Vav1iCre S5tg animals accumulate stem and progenitor cells. Furthermore, their hematopoietic stem cells exhibited impaired lymphoid lineage entry and differentiation. This observation contrasts with the myeloid lineage which is developing without significant disturbances. Our findings indicate that animals with low expression of SMARCA5 exhibit normal embryonic development with altered lymphoid entry within the hematopoietic stem cell compartment.
Collapse
Grants
- 24-10435S, 24-10353S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
- NU21-08-00312, NU22-05-00374 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- LX22NPO5102, SVV 260637, UNCE/MED/016, COOPERATIO Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- CZ.02.1.01/0.0/0.0/16_013/0001789, CZ.02.1.01/0.0/0.0/18_046/0015861 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Collapse
Affiliation(s)
- Tereza Turkova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Juraj Kokavec
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tomas Zikmund
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Nikol Dibus
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Dusan Nemec
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Marketa Holeckova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Livia Ruskova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Tomas Stopka
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
10
|
Choi JM, Park C, Chae H. moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud. PeerJ 2024; 12:e17006. [PMID: 38426141 PMCID: PMC10903350 DOI: 10.7717/peerj.17006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Single-cell omics sequencing has rapidly advanced, enabling the quantification of diverse omics profiles at a single-cell resolution. To facilitate comprehensive biological insights, such as cellular differentiation trajectories, precise annotation of cell subtypes is essential. Conventional methods involve clustering cells and manually assigning subtypes based on canonical markers, a labor-intensive and expert-dependent process. Hence, an automated computational prediction framework is crucial. While several classification frameworks for predicting cell subtypes from single-cell RNA sequencing datasets exist, these methods solely rely on single-omics data, offering insights at a single molecular level. They often miss inter-omic correlations and a holistic understanding of cellular processes. To address this, the integration of multi-omics datasets from individual cells is essential for accurate subtype annotation. This article introduces moSCminer, a novel framework for classifying cell subtypes that harnesses the power of single-cell multi-omics sequencing datasets through an attention-based neural network operating at the omics level. By integrating three distinct omics datasets-gene expression, DNA methylation, and DNA accessibility-while accounting for their biological relationships, moSCminer excels at learning the relative significance of each omics feature. It then transforms this knowledge into a novel representation for cell subtype classification. Comparative evaluations against standard machine learning-based classifiers demonstrate moSCminer's superior performance, consistently achieving the highest average performance on real datasets. The efficacy of multi-omics integration is further corroborated through an in-depth analysis of the omics-level attention module, which identifies potential markers for cell subtype annotation. To enhance accessibility and scalability, moSCminer is accessible as a user-friendly web-based platform seamlessly connected to a cloud system, publicly accessible at http://203.252.206.118:5568. Notably, this study marks the pioneering integration of three single-cell multi-omics datasets for cell subtype identification.
Collapse
Affiliation(s)
- Joung Min Choi
- Department of Computer Science, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - Chaelin Park
- Division of Computer Science, Sookmyung Women’s University, Seoul, South Korea
| | - Heejoon Chae
- Division of Computer Science, Sookmyung Women’s University, Seoul, South Korea
| |
Collapse
|
11
|
Felipe I, Martínez-de-Villarreal J, Patel K, Martínez-Torrecuadrada J, Grossmann LD, Roncador G, Cubells M, Farrell A, Kendsersky N, Sabroso-Lasa S, Sancho-Temiño L, Torres K, Martinez D, Perez JM, García F, Pogoriler J, Moreno L, Maris JM, Real FX. BPTF cooperates with MYCN and MYC to link neuroblastoma cell cycle control to epigenetic cellular states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579816. [PMID: 38405949 PMCID: PMC10888818 DOI: 10.1101/2024.02.11.579816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The nucleosome remodeling factor BPTF is required for the deployment of the MYC-driven transcriptional program. Deletion of one Bptf allele delays tumor progression in mouse models of pancreatic cancer and lymphoma. In neuroblastoma, MYCN cooperates with the transcriptional core regulatory circuitry (CRC). High BPTF levels are associated with high-risk features and decreased survival. BPTF depletion results in a dramatic decrease of cell proliferation. Bulk RNA-seq, single-cell sequencing, and tissue microarrays reveal a positive correlation of BPTF and CRC transcription factor expression. Immunoprecipitation/mass spectrometry shows that BPTF interacts with MYCN and the CRC proteins. Genome-wide distribution analysis of BPTF and CRC in neuroblastoma reveals a dual role for BPTF: 1) it co-localizes with MYCN/MYC at the promoter of genes involved in cell cycle and 2) it co-localizes with the CRC at super-enhancers to regulate cell identity. The critical role of BPTF across neuroblastoma subtypes supports its relevance as a therapeutic target.
Collapse
|
12
|
Yogev Y, Schaffer M, Shlapobersky M, Jean MM, Wormser O, Drabkin M, Halperin D, Kassem R, Livoff A, Tsitrina AA, Asna N, Birk OS. A role of BPTF in viral oncogenicity delineated through studies of heritable Kaposi sarcoma. J Med Virol 2024; 96:e29436. [PMID: 38380509 DOI: 10.1002/jmv.29436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.
Collapse
Affiliation(s)
- Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moshe Schaffer
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Mark Shlapobersky
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Matan M Jean
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Riad Kassem
- Department of Dermatology, Sheba Medical Center, Ramat Gan, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Department of Pathology, Galilee Medical Center, and The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Alexandra A Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Asna
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
13
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
14
|
Radzisheuskaya A, Peña‐Rømer I, Lorenzini E, Koche R, Zhan Y, Shliaha PV, Cooper AJ, Fan Z, Shlyueva D, Johansen JV, Hendrickson RC, Helin K. An alternative NURF complex sustains acute myeloid leukemia by regulating the accessibility of insulator regions. EMBO J 2023; 42:e114221. [PMID: 37987160 PMCID: PMC10711654 DOI: 10.15252/embj.2023114221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Isabel Peña‐Rømer
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Eugenia Lorenzini
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Richard Koche
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Yingqian Zhan
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Pavel V Shliaha
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | - Zheng Fan
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Daria Shlyueva
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Jens V Johansen
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Ronald C Hendrickson
- Microchemistry & Proteomics CoreMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Kristian Helin
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Biotech Research & Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
- Center for Epigenetics ResearchMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Cell Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
15
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
16
|
Wang D, Lu X, Jiang Y, Pan L, Zhu F, Yu A, Zhao M, Yang M, Bi J, He X, Liu H, Li J. The chromatin remodeling protein BPTF mediates cell cycle, proliferation and apoptosis in porcine ovarian granulosa cells. Theriogenology 2023; 211:172-181. [PMID: 37643502 DOI: 10.1016/j.theriogenology.2023.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Bromodomain PHD finger transcription factor (BPTF), a core subunit of nucleosome-remodeling factor (NURF) complex, plays an important role in chromatin remodeling. However, few information of BPTF is available in pig, especially in mammalian follicular granulosa cells (GCs). The present study firstly confirmed that BPTF in porcine was relative close to human and mouse. The expression of BPTF could be detected in ovary, testes, lung, kidney, large intestine, and small intestine. And a relative high expression of BPTF was observed in ovarian follicles and GCs. When BPTF was knocked down (BPTF-siRNA), the viability of GCs was affected. And the expression level of CDK1, cyclin B1, CDK4 and CDK2 was higher than the control, which might indicate that the cell cycle of GCs was inhibited from S to G2/M phase. Although the apoptosis level was induced in the BPTF-siRNA GCs, the reduced level of H3K4 methylation was detected with the down regulation of SMYD3, EHMT2 and DPY30. Thereby, results in the present might provide the primary knowledge of BPTF in GCs and the follicular development in pig.
Collapse
Affiliation(s)
- Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinyue Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Linqing Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingyue Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaying Bi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xu He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
17
|
Devaraj A, Singh M, Narayanavari SA, Yong G, Chen J, Wang J, Becker M, Walisko O, Schorn A, Cseresznyés Z, Raskó T, Radscheit K, Selbach M, Ivics Z, Izsvák Z. HMGXB4 Targets Sleeping Beauty Transposition to Germinal Stem Cells. Int J Mol Sci 2023; 24:ijms24087283. [PMID: 37108449 PMCID: PMC10138897 DOI: 10.3390/ijms24087283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes.
Collapse
Affiliation(s)
- Anantharam Devaraj
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Manvendra Singh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Suneel A Narayanavari
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Guo Yong
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Mareike Becker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver Walisko
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Andrea Schorn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Cseresznyés
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Tamás Raskó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kathrin Radscheit
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Matthias Selbach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
18
|
Martinelli P, Schaaf O, Mantoulidis A, Martin LJ, Fuchs JE, Bader G, Gollner A, Wolkerstorfer B, Rogers C, Balıkçı E, Lipp JJ, Mischerikow N, Doebel S, Gerstberger T, Sommergruber W, Huber KVM, Böttcher J. Discovery of a Chemical Probe to Study Implications of BPTF Bromodomain Inhibition in Cellular and in vivo Experiments. ChemMedChem 2023; 18:e202200686. [PMID: 36649575 DOI: 10.1002/cmdc.202200686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
The bromodomain and PHD-finger containing transcription factor (BPTF) is part of the nucleosome remodeling factor (NURF) complex and has been implicated in multiple cancer types. Here, we report the discovery of a potent and selective chemical probe targeting the bromodomain of BPTF with an attractive pharmacokinetic profile enabling cellular and in vivo experiments in mice. Microarray-based transcriptomics in presence of the probe in two lung cancer cell lines revealed only minor effects on the transcriptome. Profiling against a panel of cancer cell lines revealed that the antiproliferative effect does not correlate with BPTF dependency score in depletion screens. Both observations and the multi-domain architecture of BPTF suggest that depleting the protein by proteolysis targeting chimeras (PROTACs) could be a promising strategy to target cancer cell proliferation. We envision that the presented chemical probe and the related negative control will enable the research community to further explore scientific hypotheses with respect to BPTF bromodomain inhibition.
Collapse
Affiliation(s)
- Paola Martinelli
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Otmar Schaaf
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Laetitia J Martin
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Julian E Fuchs
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Bernhard Wolkerstorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Catherine Rogers
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Esra Balıkçı
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Jesse J Lipp
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Nikolai Mischerikow
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Sandra Doebel
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Kilian V M Huber
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| |
Collapse
|
19
|
Liang X, Cao Y, Duan Z, Wang M, Zhang N, Ding Y, Luo C, Lu N, Chen S. Discovery of new small molecule inhibitors of the BPTF bromodomain. Bioorg Chem 2023; 134:106453. [PMID: 36898211 DOI: 10.1016/j.bioorg.2023.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Chromatin remodeling regulates many basic cellular processes, such as gene transcription, DNA repair, and programmed cell death. As the largest member of nucleosome remodeling factor (NURF), BPTF plays a vital role in the occurrence and development of cancer. Currently, BPTF bromodomain inhibitors are still in development. In this study, by conducting homogenous time-resolved fluorescence resonance energy transfer (HTRF) assay, we identified a potential, novel BPTF inhibitor scaffold Sanguinarine chloride with the IC50 value of 344.2 ± 25.1 nM. Biochemical analysis revealed that compound Sanguinarine chloride exhibited high binding affinity to the BPTF bromodomain. Molecular docking predicted the binding mode of Sanguinarine chloride and elucidated the activities of its derivatives. Moreover, Sanguinarine chloride showed a potent anti-proliferative effect in MIAPaCa-2 cells and inhibited the expression of BPTF target gene c-Myc. Taken together, Sanguinarine chloride provides a qualified chemical tool for developing potent BPTF bromodomain inhibitors.
Collapse
Affiliation(s)
- Xiaochen Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhe Duan
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiluan Ding
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
21
|
Bezrookove V, Khan IA, Nosrati M, Miller JR, McAllister S, Dar AA, Kashani-Sabet M. BPTF promotes the progression of distinct subtypes of breast cancer and is a therapeutic target. Front Oncol 2022; 12:1011173. [PMID: 36530982 PMCID: PMC9748419 DOI: 10.3389/fonc.2022.1011173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 07/22/2023] Open
Abstract
Purpose To assess the biomarker and functional role of the chromatin remodeling factor, bromodomain PHD finger transcription factor (BPTF), in breast cancer progression. Methods BPTF copy number was assessed using fluorescence in situ hybridization. BPTF expression was regulated in breast cancer cells by shRNA/siRNA-mediated gene silencing and BPTF cDNA overexpression. The effects of regulating BPTF expression were examined on key oncogenic signaling pathways and on breast cancer cell proliferation, apoptosis, and cell cycle progression, as well as in xenograft models. The consequences of pharmacological bromodomain inhibition, alone or in combination with other targeted agents, on breast cancer progression were assessed in culture and in xenograft models. Results BPTF copy number was gained in 34.1% and separately amplified in 8.2% of a breast cancer tissue cohort. Elevated BPTF copy number was significantly associated with increasing patient age and tumor grade and observed in both ER-positive and triple-negative breast cancer (TNBC) subtypes. BPTF copy number gain and amplification were also observed in The Cancer Genome Atlas (TCGA) breast cancer cohort. Stable shRNA-mediated silencing of BPTF significantly inhibited cell proliferation and induced apoptosis in TNBC and ER-positive human breast cancer cell lines. BPTF knockdown suppressed signaling through the phosphoinositide 3 kinase (PI3K) pathway, including reduced expression of phosphorylated AKT (Ser473), phosphorylated GSK-β (Ser9), and CCND1. These findings were confirmed following transient BPTF knockdown by a distinct siRNA in TNBC and ER-positive breast cancer cells. Stable suppression of BPTF expression significantly inhibited the in vivo growth of TNBC cells. Conversely, BPTF cDNA overexpression in TNBC and ER-positive breast cancer cells enhanced breast cancer cell proliferation and reduced apoptosis. BPTF targeting with the bromodomain inhibitor bromosporine, alone or in combination with the PI3K pathway inhibitor gedatolisib, produced significant anti-tumor effects against TNBC cells in vitro and in vivo. Conclusion These studies demonstrate BPTF activation in distinct breast cancer subtypes, identify pathways by which BPTF promotes breast cancer progression, and suggest BPTF as a rational target for breast cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Altaf A. Dar
- *Correspondence: Mohammed Kashani-Sabet, ; Altaf A. Dar,
| | | |
Collapse
|
22
|
Identification of the Inner Cell Mass and the Trophectoderm Responses after an In Vitro Exposure to Glucose and Insulin during the Preimplantation Period in the Rabbit Embryo. Cells 2022; 11:cells11233766. [PMID: 36497026 PMCID: PMC9736044 DOI: 10.3390/cells11233766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
The prevalence of metabolic diseases is increasing, leading to more women entering pregnancy with alterations in the glucose-insulin axis. The aim of this work was to investigate the effect of a hyperglycemic and/or hyperinsulinemic environment on the development of the preimplantation embryo. In rabbit embryos developed in vitro in the presence of high insulin (HI), high glucose (HG), or both (HGI), we determined the transcriptomes of the inner cell mass (ICM) and the trophectoderm (TE). HI induced 10 differentially expressed genes (DEG) in ICM and 1 in TE. HG ICM exhibited 41 DEGs involved in oxidative phosphorylation (OXPHOS) and cell number regulation. In HG ICM, proliferation was decreased (p < 0.01) and apoptosis increased (p < 0.001). HG TE displayed 132 DEG linked to mTOR signaling and regulation of cell number. In HG TE, proliferation was increased (p < 0.001) and apoptosis decreased (p < 0.001). HGI ICM presented 39 DEG involved in OXPHOS and no differences in proliferation and apoptosis. HGI TE showed 16 DEG linked to OXPHOS and cell number regulation and exhibited increased proliferation (p < 0.001). Exposure to HG and HGI during preimplantation development results in common and specific ICM and TE responses that could compromise the development of the future individual and placenta.
Collapse
|
23
|
Wu W, Chen R. The effect of growth hormone treatment in children with novel BPTF gene variants: A report of two cases and literature review. Mol Genet Genomic Med 2022; 11:e2066. [PMID: 36153657 PMCID: PMC9834177 DOI: 10.1002/mgg3.2066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) is a rare neurodevelopmental disease caused by BPTF gene variants. To date, there are only 36 cases reported in the literature, and patients mainly presented with a developmental delay, language delay, and microcephaly. About 35% of the patients had short stature, but there had no reports published on the treatment. METHODS The exome sequencing was performed in two probands. Sanger sequencing was used to confirm the identified variants both in probands and their parents. RESULTS As for the Chinese population, we report two novel variants in BPTF gene (NM_004459.6: c.1133G>A, c.5941delC) causing NEDDFL from two unrelated families. Both children had short stature and responded to recombinant human growth hormone (rhGH) treatment - the first report of this therapy in NEDDFL patients. CONCLUSION Our findings broaden the genotypic spectrum of BPTF variants. The salutary effect of rhGH in the NEDDFL is documented.
Collapse
Affiliation(s)
- Wenyong Wu
- Fuzhou Children's Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Ruimin Chen
- Fuzhou Children's Hospital of Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
24
|
Guo P, Zu S, Han S, Yu W, Xue G, Lu X, Lin H, Zhao X, Lu H, Hua C, Wan X, Ru L, Guo Z, Ge H, Lv K, Zhang G, Deng W, Luo C, Guo W. BPTF inhibition antagonizes colorectal cancer progression by transcriptionally inactivating Cdc25A. Redox Biol 2022; 55:102418. [PMID: 35932692 PMCID: PMC9356279 DOI: 10.1016/j.redox.2022.102418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
As the largest subunit of the nuclear remodeling factor complex, Bromodomain PHD Finger Transcription Factor (BPTF) has been reported to be involved in tumorigenesis and development in several cancers. However, to date, its functions and related molecular mechanisms in colorectal cancer (CRC) are still poorly defined and deserve to be revealed. In this study, we uncovered that, under the expression regulation of c-Myc, BPTF promoted CRC progression by targeting Cdc25A. BPTF was found to be highly expressed in CRC and promoted the proliferation and metastasis of CRC cells through BPTF specific siRNAs, shRNAs or inhibitors. Based on RNA-seq, combined with DNA-pulldown, ChIP and luciferase reporter assay, we proved that, by binding to -178/+107 region within Cdc25A promoter, BPTF transcriptionally activated Cdc25A, thus accelerating the cell cycle process of CRC cells. Meanwhile, BPTF itself was found to be transcriptionally regulated by c-Myc. Moreover, BPTF knockdown or inactivation was verified to sensitize CRC cells to chemotherapeutics, 5-Fluorouracil (5FU) and Oxaliplatin (Oxa), c-Myc inhibitor and cell cycle inhibitor not just at the cellular level in vitro, but in subcutaneous xenografts or AOM/DSS-induced in situ models of CRC in mice, while Cdc25A overexpression partially reversed BPTF silencing-caused tumor growth inhibition. Clinically, BPTF, c-Myc and Cdc25A were highly expressed in CRC tissues simultaneously, the expression of any two of the three was positively correlated, and their expressions were highly relevant to tumor differentiation, TNM staging and poor prognosis of CRC patients. Thus, our study indicated that the targeted inhibition of BPTF alone, or together with chemotherapy and/or cell cycle-targeted therapy, might act as a promising new strategy for CRC treatment, while c-Myc/BPTF/Cdc25A signaling axis is expected to be developed as an associated set of candidate biomarkers for CRC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Ping Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Shijia Zu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilong Han
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Wendan Yu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Guoqing Xue
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Xiaona Lu
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Hua Lin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinrui Zhao
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Haibo Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Chunyu Hua
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Xinyu Wan
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Liyuan Ru
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Ziyue Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Hanxiao Ge
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Kuan Lv
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Guohui Zhang
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; China University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | - Wei Guo
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
25
|
Zapata G, Yan K, Picketts DJ. Generation of a mouse model of the neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) syndrome. Hum Mol Genet 2022; 31:3405-3421. [PMID: 35604347 DOI: 10.1093/hmg/ddac119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Heterozygous variants in BPTF cause the neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) syndrome (MIM#617755) characterized by intellectual disability (ID), speech delay, and postnatal microcephaly. BPTF functions within NURF, a complex comprising SNF2L, an ISWI chromatin remodeling protein encoded by the SMARCA1 gene. Surprisingly, ablation of Smarca1 resulted in mice with enlarged brains, a direct contrast to the phenotype of NEDDFL patients. To model the NEDDFL syndrome, we generated forebrain-specific Bptf knockout (Bptf cKO) mice. Bptf cKO mice were born in normal Mendelian ratios, survived to adulthood but were smaller in size with severe cortical hypoplasia. Prolonged progenitor cell cycle length and a high incidence of cell death reduced neuronal output. Cortical lamination was also disrupted with reduced proportions of deep layer neurons, and neuronal maturation defects that impaired the acquisition of distinct cell fates (eg. Ctip2+ neurons). RNAseq and pathway analysis identified altered expression of fate-determining transcription factors, and biological pathways involved in neural development, apoptotic signaling, and amino acid biosynthesis. Dysregulated genes were enriched for Myc binding sites, a known BPTF transcriptional co-factor. We propose Bptf cKO mice as a valuable model for further study of the NEDDFL syndrome.
Collapse
Affiliation(s)
- Gerardo Zapata
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6.,Departments of Biochemistry, Microbiology, & Immunology, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6.,Departments of Biochemistry, Microbiology, & Immunology, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5.,Departments of Biochemistry, Microbiology, & Immunology, Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5.,Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5
| |
Collapse
|
26
|
Muñoz Velasco R, Jiménez Sánchez P, García García A, Blanco Martinez-Illescas R, Pastor Senovilla Á, Lozano Yagüe M, Trento A, García-Martin RM, Navarro D, Sainz B, Rodríguez Peralto JL, Sánchez-Arévalo Lobo VJ. Targeting BPTF Sensitizes Pancreatic Ductal Adenocarcinoma to Chemotherapy by Repressing ABC-Transporters and Impairing Multidrug Resistance (MDR). Cancers (Basel) 2022; 14:cancers14061518. [PMID: 35326669 PMCID: PMC8946837 DOI: 10.3390/cancers14061518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a devastating disease and an extremely chemoresistant tumour. In the present manuscript, we described the role of BPTF during tumour pancreatic ductal adenocarcinoma progression and in response to gemcitabine treatment, a gold standard treatment in this tumour type. Through different genetic approaches, we reduced BPTF levels in a panel of pancreatic ductal adenocarcinoma cell lines. We validated its therapeutic effect in cell cultures and in mouse models of pancreatic cancer. A reduction in BPTF levels impaired cell proliferation and sensitized pancreatic tumour cells to gemcitabine. We demonstrated that BPTF-silencing reduced the expression of several ABC-transporters, which are involved in gemcitabine resistance, and enhanced its accumulation in the tumour cell, improving its therapeutic effect. Abstract Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis due to its late diagnosis and strong chemoresistance to the current treatments. Therefore, finding new therapeutic targets is an urgent need nowadays. In this study, we report the role of the chromatin remodeler BPTF (Bromodomain PHD Finger Transcription Factor) as a therapeutic target in PDA. BPTF-silencing dramatically reduced cell proliferation and migration in vitro and in vivo in human and mouse PDA cell lines. Moreover, BPTF-silencing reduces the IC50 of gemcitabine in vitro and enhanced its therapeutic effect in vivo. Mechanistically, BPTF is required for c-MYC recruitment to the promoter of ABC-transporters and its downregulation facilitates gemcitabine accumulation in tumour cells, increases DNA damage, and a generates a strong synergistic effect in vivo. We show that BPTF is a therapeutic target in pancreatic ductal adenocarcinoma due to its strong effect on proliferation and in response to gemcitabine.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Ana García García
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Raquel Blanco Martinez-Illescas
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Ángela Pastor Senovilla
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Marian Lozano Yagüe
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Alfonsina Trento
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Rosa María García-Martin
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Diego Navarro
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.N.); (B.S.J.)
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.N.); (B.S.J.)
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, 28029 Madrid, Spain
| | - José Luis Rodríguez Peralto
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), 28223 Madrid, Spain; (R.M.V.); (P.J.S.); (A.G.G.); (R.B.M.-I.); (Á.P.S.); (M.L.Y.)
- Pathology Department, Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain; (A.T.); (R.M.G.-M.); (J.L.R.P.)
- Correspondence:
| |
Collapse
|
27
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
28
|
Zahid H, Buchholz CR, Singh M, Ciccone MF, Chan A, Nithianantham S, Shi K, Aihara H, Fischer M, Schönbrunn E, Dos Santos CO, Landry JW, Pomerantz WCK. New Design Rules for Developing Potent Cell-Active Inhibitors of the Nucleosome Remodeling Factor (NURF) via BPTF Bromodomain Inhibition. J Med Chem 2021; 64:13902-13917. [PMID: 34515477 DOI: 10.1021/acs.jmedchem.1c01294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nucleosome remodeling factor (NURF) alters chromatin accessibility through interactions with its largest subunit,the bromodomain PHD finger transcription factor BPTF. BPTF is overexpressed in several cancers and is an emerging anticancer target. Targeting the BPTF bromodomain presents a potential strategy for its inhibition and the evaluation of its functional significance; however, inhibitor development for BPTF has lagged behind those of other bromodomains. Here we describe the development of pyridazinone-based BPTF inhibitors. The lead compound, BZ1, possesses a high potency (Kd = 6.3 nM) and >350-fold selectivity over BET bromodomains. We identify an acidic triad in the binding pocket to guide future designs. We show that our inhibitors sensitize 4T1 breast cancer cells to doxorubicin but not BPTF knockdown cells, suggesting a specificity to BPTF. Given the high potency and good physicochemical properties of these inhibitors, we anticipate that they will be useful starting points for chemical tool development to explore the biological roles of BPTF.
Collapse
Affiliation(s)
- Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Manjulata Singh
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Michael F Ciccone
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Stanley Nithianantham
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Joseph W Landry
- The Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Zahid H, Olson NM, Pomerantz WCK. Opportunity knocks for uncovering the new function of an understudied nucleosome remodeling complex member, the bromodomain PHD finger transcription factor, BPTF. Curr Opin Chem Biol 2021; 63:57-67. [PMID: 33706239 PMCID: PMC8384639 DOI: 10.1016/j.cbpa.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/27/2022]
Abstract
Nucleosome remodeling provides access to genomic DNA for recruitment of the transcriptional machinery to mediate gene expression. The aberrant function of nucleosome remodeling complexes has been correlated to human cancer, making them emerging therapeutic targets. The bromodomain PHD finger transcription factor, BPTF, is the largest member of the human nucleosome remodeling factor NURF. Over the last five years, BPTF has become increasingly identified as a protumorigenic factor, prompting investigations into the molecular mechanisms associated with BPTF function. Despite a druggable bromodomain, small molecule discovery is at an early stage. Here we highlight recent investigations into the biology being discovered for BPTF, chemical biology approaches used to study its function, and small molecule inhibitors being designed as future chemical probes and therapeutics.
Collapse
Affiliation(s)
- Huda Zahid
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noelle M Olson
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - William C K Pomerantz
- 207Pleasant St. SE, Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
30
|
Goodwin LR, Zapata G, Timpano S, Marenger J, Picketts DJ. Impaired SNF2L Chromatin Remodeling Prolongs Accessibility at Promoters Enriched for Fos/Jun Binding Sites and Delays Granule Neuron Differentiation. Front Mol Neurosci 2021; 14:680280. [PMID: 34295220 PMCID: PMC8290069 DOI: 10.3389/fnmol.2021.680280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling proteins utilize the energy from ATP hydrolysis to mobilize nucleosomes often creating accessibility for transcription factors within gene regulatory elements. Aberrant chromatin remodeling has diverse effects on neuroprogenitor homeostasis altering progenitor competence, proliferation, survival, or cell fate. Previous work has shown that inactivation of the ISWI genes, Smarca5 (encoding Snf2h) and Smarca1 (encoding Snf2l) have dramatic effects on brain development. Smarca5 conditional knockout mice have reduced progenitor expansion and severe forebrain hypoplasia, with a similar effect on the postnatal growth of the cerebellum. In contrast, Smarca1 mutants exhibited enlarged forebrains with delayed progenitor differentiation and increased neuronal output. Here, we utilized cerebellar granule neuron precursor (GNP) cultures from Smarca1 mutant mice (Ex6DEL) to explore the requirement for Snf2l on progenitor homeostasis. The Ex6DEL GNPs showed delayed differentiation upon plating that was not attributed to changes in the Sonic Hedgehog pathway but was associated with overexpression of numerous positive effectors of proliferation, including targets of Wnt activation. Transcriptome analysis identified increased expression of Fosb and Fosl2 while ATACseq experiments identified a large increase in chromatin accessibility at promoters many enriched for Fos/Jun binding sites. Nonetheless, the elevated proliferation index was transient and the Ex6DEL cultures initiated differentiation with a high concordance in gene expression changes to the wild type cultures. Genes specific to Ex6DEL differentiation were associated with an increased activation of the ERK signaling pathway. Taken together, this data provides the first indication of how Smarca1 mutations alter progenitor cell homeostasis and contribute to changes in brain size.
Collapse
Affiliation(s)
- Laura R Goodwin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Gerardo Zapata
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jacob Marenger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
31
|
Mélin L, Calosing C, Kharenko OA, Hansen HC, Gagnon A. Synthesis of NVS-BPTF-1 and evaluation of its biological activity. Bioorg Med Chem Lett 2021; 47:128208. [PMID: 34146702 DOI: 10.1016/j.bmcl.2021.128208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
BPTF (bromodomain and PHD finger containing transcription factor) is a multidomain protein that plays essential roles in transcriptional regulation, T-cell homeostasis and stem cell pluripotency. As part of the chromatin remodeling complex hNURF (nucleosome remodeling factor), BPTF epigenetic reader subunits are particularly important for BPTF cellular function. Here we report the synthesis of NVS-BPTF-1, a previously reported highly potent and selective BPTF-bromodomain inhibitor. Evaluation of the impact of the inhibition of BPTF-bromodomain using NVS-BPTF-1 on selected proteins involved in the antigen processing pathway revealed that exclusively targeting BPTF-bromodomain is insufficient to observe an increase of PSMB8, PSMB9, TAP1 and TAP2 proteins.
Collapse
Affiliation(s)
- Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Cyrus Calosing
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Olesya A Kharenko
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Henrik C Hansen
- Zenith Epigenetics Ltd, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
32
|
Tyutyunyk-Massey L, Sun Y, Dao N, Ngo H, Dammalapati M, Vaidyanathan A, Singh M, Haqqani S, Haueis J, Finnegan R, Deng X, Kirberger SE, Bos PD, Bandyopadhyay D, Pomerantz WCK, Pommier Y, Gewirtz DA, Landry JW. Autophagy-Dependent Sensitization of Triple-Negative Breast Cancer Models to Topoisomerase II Poisons by Inhibition of the Nucleosome Remodeling Factor. Mol Cancer Res 2021; 19:1338-1349. [PMID: 33811160 DOI: 10.1158/1541-7786.mcr-20-0743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic regulators can modulate the effects of cancer therapeutics. To further these observations, we discovered that the bromodomain PHD finger transcription factor subunit (BPTF) of the nucleosome remodeling factor (NURF) promotes resistance to doxorubicin, etoposide, and paclitaxel in the 4T1 breast tumor cell line. BPTF functions in promoting resistance to doxorubicin and etoposide, but not paclitaxel, and may be selective to cancer cells, as a similar effect was not observed in embryonic stem cells. Sensitization to doxorubicin and etoposide with BPTF knockdown (KD) was associated with increased DNA damage, topoisomerase II (TOP2) crosslinking and autophagy; however, there was only a modest increase in apoptosis and no increase in senescence. Sensitization to doxorubicin was confirmed in vivo with the syngeneic 4T1 breast tumor model using both genetic and pharmacologic inhibition of BPTF. The effects of BPTF inhibition in vivo are autophagy dependent, based on genetic autophagy inhibition. Finally, treatment of 4T1, 66cl4, 4T07, MDA-MB-231, but not ER-positive 67NR and MCF7 breast cancer cells with the selective BPTF bromodomain inhibitor, AU1, recapitulates genetic BPTF inhibition, including in vitro sensitization to doxorubicin, increased TOP2-DNA crosslinks and DNA damage. Taken together, these studies demonstrate that BPTF provides resistance to the antitumor activity of TOP2 poisons, preventing the resolution of TOP2 crosslinking and associated autophagy. These studies suggest that BPTF can be targeted with small-molecule inhibitors to enhance the effectiveness of TOP2-targeted cancer chemotherapeutic drugs. IMPLICATIONS: These studies suggest NURF can be inhibited pharmacologically as a viable strategy to improve chemotherapy effectiveness.
Collapse
Affiliation(s)
- Liliya Tyutyunyk-Massey
- VCU Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Nga Dao
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Hannah Ngo
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Mallika Dammalapati
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ashish Vaidyanathan
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Manjulata Singh
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Syed Haqqani
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joshua Haueis
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ryan Finnegan
- VCU Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xiaoyan Deng
- VCU Massey Cancer Center, Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Steve E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Paula D Bos
- VCU Massey Cancer Center, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Dipankar Bandyopadhyay
- VCU Massey Cancer Center, Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | | | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NIH, Bethesda, Maryland
| | - David A Gewirtz
- VCU Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph W Landry
- VCU Massey Cancer Center, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
33
|
Wang X, Ping C, Tan P, Sun C, Liu G, Liu T, Yang S, Si Y, Zhao L, Hu Y, Jia Y, Wang X, Zhang M, Wang F, Wang D, Yu J, Ma Y, Huang Y. hnRNPLL controls pluripotency exit of embryonic stem cells by modulating alternative splicing of Tbx3 and Bptf. EMBO J 2021; 40:e104729. [PMID: 33349972 PMCID: PMC7883296 DOI: 10.15252/embj.2020104729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
The regulatory circuitry underlying embryonic stem (ES) cell self-renewal is well defined, but how this circuitry is disintegrated to enable lineage specification is unclear. RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and preliminary data suggest that they might regulate ES cell fate. By combining bioinformatic analyses with functional screening, we identified seven RBPs played important roles for the exit from pluripotency of ES cells. We characterized hnRNPLL, which mainly functions as a global regulator of alternative splicing in ES cells. Specifically, hnRNPLL promotes multiple ES cell-preferred exon skipping events during the onset of ES cell differentiation. hnRNPLL depletion thus leads to sustained expression of ES cell-preferred isoforms, resulting in a differentiation deficiency that causes developmental defects and growth impairment in hnRNPLL-KO mice. In particular, hnRNPLL-mediated alternative splicing of two transcription factors, Bptf and Tbx3, is important for pluripotency exit. These data uncover the critical role of RBPs in pluripotency exit and suggest the application of targeting RBPs in controlling ES cell fate.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Changyun Ping
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of PathologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Puwen Tan
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chenguang Sun
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Guang Liu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Tao Liu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical University (General Hospital)ChongqingChina
| | - Shuchun Yang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanmin Si
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Lijun Zhao
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yongfei Hu
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Meili Zhang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fang Wang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Dong Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Dermatology HospitalSouthern Medical UniversityGuangzhouChina
- Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jia Yu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanni Ma
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Key Laboratory of RNA Regulation and HematopoiesisDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yue Huang
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- Department of Medical GeneticsInstitute of Basic Medical SciencesChinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
34
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
35
|
Glinton KE, Hurst ACE, Bowling KM, Cristian I, Haynes D, Adstamongkonkul D, Schnappauf O, Beck DB, Brewer C, Parikh AS, Shinde DN, Donaldson A, Brautbar A, Koene S, van Haeringen A, Piton A, Capri Y, Furlan M, Gardella E, Møller RS, van de Beek I, Zuurbier L, Lakeman P, Bayat A, Martinez J, Signer R, Torring PM, Engelund MB, Gripp KW, Amlie-Wolf L, Henderson LB, Midro AT, Tarasów E, Stasiewicz-Jarocka B, Moskal-Jasinska D, Vos P, Boschann F, Stoltenburg C, Puk O, Mero IL, Lossius K, Mignot C, Keren B, Acosta Guio JC, Briceño I, Gomez A, Yang Y, Stankiewicz P. Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies. Am J Med Genet A 2021; 185:1366-1378. [PMID: 33522091 PMCID: PMC8048530 DOI: 10.1002/ajmg.a.62102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage‐sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi‐faceted complications due to haploinsufficiency of BPTF.
Collapse
Affiliation(s)
- Kevin E Glinton
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin M Bowling
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Ingrid Cristian
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, Florida, USA
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, Florida, USA
| | - Dusit Adstamongkonkul
- CoxHealth, CoxHealth Pediatric Specialties, Springfield, Missouri, USA.,University of Missouri School of Medicine, Springfield Clinical Campus, Springfield, Missouri, USA
| | - Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carole Brewer
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Aditi Shah Parikh
- Center for Human Genetics, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Deepali N Shinde
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Alan Donaldson
- Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Ariel Brautbar
- Medical Genetics Department, Cook Children's Hospital, Fort Worth, Texas, USA
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Amélie Piton
- Unité de Génétique Moléculaire Strasbourg University Hospital, 1 place de l'Hôpital, Strasbourg Cedex, France
| | - Yline Capri
- Service de Génétique Clinique, CHU Robert Debré, Paris Cedex, France
| | | | - Elena Gardella
- Danish Epilepsy Centre, Dianalund, Denmark.,University of Southern Denmark, Odense, Denmark
| | | | - Irma van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Amsterdam, the Netherlands
| | - Allan Bayat
- Danish Epilepsy Centre, Dianalund, Denmark.,University of Southern Denmark, Odense, Denmark.,Department of Pediatrics, University Hospital of Hvidovre, Copenhagen, Denmark
| | - Julian Martinez
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Rebecca Signer
- Departments of Human Genetics, Pediatrics and Psychiatry, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Pernille M Torring
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Karen W Gripp
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | - Alina T Midro
- Department of Clinical Genetics, Medical University, Białystok, 15-089, Białystok, Poland
| | | | | | - Diana Moskal-Jasinska
- Department of Clinical Phonoaudiology and Speech Therapy, Medical University, Białystok, Białystok, Poland
| | - Paul Vos
- Department of Pediatrics, Haga Teaching Hospital, Juliana Children's Hospital, The Hague, The Netherlands
| | - Felix Boschann
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Neuropaediatrics, Charité - Berlin University of Medicine, Berlin, Germany
| | - Oliver Puk
- Praxis für Humangenetik Tuebingen, Department of Genetic Diagnostics, Tuebingen, Germany
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Norway
| | - Kristine Lossius
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Norway
| | - Cyril Mignot
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Department of Genetics, APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Johanna C Acosta Guio
- Especialista en Genética Médica, Instituto de Ortopedia Infantil Roosevelt, Bogotá, Cundinamarca, Colombia
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Alberto Gomez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Yaping Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA.,AiLife Diagnostics, Country Place Pkwy Suite 100, Pearland, Texas, USA
| | - Pawel Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
36
|
ATP-Dependent Chromatin Remodeling Complex in the Lineage Specification of Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8839703. [PMID: 32963551 PMCID: PMC7499328 DOI: 10.1155/2020/8839703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) present in multiple tissues can self-renew and differentiate into multiple lineages including the bone, cartilage, muscle, cardiac tissue, and connective tissue. Key events, including cell proliferation, lineage commitment, and MSC differentiation, are ensured by precise gene expression regulation. ATP-dependent chromatin alteration is one form of epigenetic modifications that can regulate the transcriptional level of specific genes by utilizing the energy from ATP hydrolysis to reorganize chromatin structure. ATP-dependent chromatin remodeling complexes consist of a variety of subunits that together perform multiple functions in self-renewal and lineage specification. This review highlights the important role of ATP-dependent chromatin remodeling complexes and their different subunits in modulating MSC fate determination and discusses the proposed mechanisms by which ATP-dependent chromatin remodelers function.
Collapse
|
37
|
Combined Protein- and Ligand-Observed NMR Workflow to Screen Fragment Cocktails against Multiple Proteins: A Case Study Using Bromodomains. Molecules 2020; 25:molecules25173949. [PMID: 32872491 PMCID: PMC7504435 DOI: 10.3390/molecules25173949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
As fragment-based drug discovery has become mainstream, there has been an increase in various screening methodologies. Protein-observed 19F (PrOF) NMR and 1H CPMG NMR are two fragment screening assays that have complementary advantages. Here, we sought to combine these two NMR-based assays into a new screening workflow. This combination of protein- and ligand-observed experiments allows for a time- and resource-efficient multiplexed screen of mixtures of fragments and proteins. PrOF NMR is first used to screen mixtures against two proteins. Hit mixtures for each protein are identified then deconvoluted using 1H CPMG NMR. We demonstrate the benefit of this fragment screening method by conducting the first reported fragment screens against the bromodomains of BPTF and Plasmodium falciparum (Pf) GCN5 using 467 3D-enriched fragments. The hit rates were 6%, 5% and 4% for fragments binding BPTF, PfGCN5, and fragments binding both proteins, respectively. Select hits were characterized, revealing a broad range of affinities from low µM to mM dissociation constants. Follow-up experiments supported a low-affinity second binding site on PfGCN5. This approach can be used to bias fragment screens towards more selective hits at the onset of inhibitor development in a resource- and time-efficient manner.
Collapse
|
38
|
Richart L, Felipe I, Delgado P, Andrés MPD, Prieto J, Pozo ND, García JF, Piris MA, Ramiro A, Real FX. Bptf determines oncogenic addiction in aggressive B-cell lymphomas. Oncogene 2020; 39:4884-4895. [PMID: 32451433 DOI: 10.1038/s41388-020-1331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Chromatin remodeling factors contribute to establish aberrant gene expression programs in cancer cells and therefore represent valuable targets for therapeutic intervention. BPTF (Bromodomain PhD Transcription Factor), a core subunit of the nucleosome remodeling factor (NURF), modulates c-MYC oncogenic activity in pancreatic cancer. Here, we analyze the role of BPTF in c-MYC-driven B-cell lymphomagenesis using the Eμ-Myc transgenic mouse model of aggressive B-cell lymphoma. We find that BPTF is required for normal B-cell differentiation without evidence of haploinsufficiency. In contrast, deletion of one Bptf allele is sufficient to delay lymphomagenesis in Eμ-Myc mice. Tumors arising in a Bptf heterozygous background display decreased c-MYC levels and pathway activity, together with increased activation of the NF-κB pathway, a molecular signature characteristic of human diffuse large B-cell lymphoma (DLBCL). In human B-cell lymphoma samples, we find a strong correlation between BPTF and c-MYC mRNA and protein levels, together with an anti-correlation between BPTF and NF-κB pathway activity. Our results indicate that BPTF is a relevant therapeutic target in B-cell lymphomas and that, upon its inhibition, cells acquire distinct oncogenic dependencies.
Collapse
Affiliation(s)
- Laia Richart
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Pilar Delgado
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Mónica P de Andrés
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Jaime Prieto
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Juan F García
- Department of Pathology, MD Anderson Cancer Center, 28033, Madrid, Spain
| | - Miguel A Piris
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Department of Pathology, Fundación Jiménez Díaz, 28040, Madrid, Spain.,Department of Pathology, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Almudena Ramiro
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
39
|
Olson NM, Kroc S, Johnson JA, Zahid H, Ycas PD, Chan A, Kimbrough JR, Kalra P, Schönbrunn E, Pomerantz WCK. NMR Analyses of Acetylated H2A.Z Isoforms Identify Differential Binding Interactions with the Bromodomain of the NURF Nucleosome Remodeling Complex. Biochemistry 2020; 59:1871-1880. [PMID: 32356653 DOI: 10.1021/acs.biochem.0c00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene specific recruitment of bromodomain-containing proteins to chromatin is affected by post-translational acetylation of lysine on histones. Whereas interactions of the bromodomain with acetylation patterns of native histones (H2A, H2B, H3, and H4) have been well characterized, the motif for recognition for histone variants H2A.Z I and H2A.Z II by bromodomains has yet to be fully investigated. Elucidating these molecular mechanisms is crucial for understanding transcriptional regulation in cellular processes involved in both development and disease. Here, we have used protein-observed fluorine NMR to fully characterize the affinities of H2A.Z I and II acetylation patterns for BPTF's bromodomain and found the diacetylated mark of lysine 7 and 13 on H2A.Z II to have the strongest interaction with K7ac preferentially engaging the binding site. We further examined the selectivity of H2A.Z histones against a variety of bromodomains, revealing that the bromodomain of CECR2 binds with the highest affinity and specificity for acetylated H2A.Z I over isoform II. These results support a possible role for different H2A.Z transcriptional activation mechanisms that involve recruitment of chromatin remodeling complexes.
Collapse
Affiliation(s)
- Noelle M Olson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Samantha Kroc
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jorden A Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Alice Chan
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Galarreta CI, Vaida F, Bird LM. Patterns of malformation associated with esophageal atresia/tracheoesophageal fistula: A retrospective single center study. Am J Med Genet A 2020; 182:1351-1363. [PMID: 32250545 DOI: 10.1002/ajmg.a.61582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal birth defects. It can occur in isolation or in association with other birth defects or genetic syndromes. We retrospectively reviewed the EA/TEF cases evaluated at Rady Children's Hospital San Diego (San Diego, CA) between 2007 and 2016. Data were collected for 157 patients. The majority of patients (105, 66.8%) had an associated major malformation present, and 52 patients (33.1%) had isolated EA/TEF. The patients with associated malformations were distributed as follows: 16 patients (10.2%) had a known genetic syndrome (the most common being Trisomy 21 in 11 patients); six patients (3.8%) had a suspected genetic syndrome; one patient had a suspected teratogenic syndrome (diabetic embryopathy); 30 patients had VACTERL association (19.1%); 32 patients had a "partial VACTERL" association (only two VACTERL-type defects without other malformation); nine patients (5.7%) had one additional non-VACTERL-type birth defect, two patients had VACTERL-type defects plus auricular malformations; and nine patients (5.7%) were classified as "unknown syndrome." A classification of the patterns of malformation of patients with congenital EA/TEF is proposed based on reviewing the data of this relatively large and phenotypically diverse patient group.
Collapse
Affiliation(s)
- Carolina I Galarreta
- Department of Pediatrics, Division of Genetics and Dysmorphology, UC San Diego/Rady Children's Hospital, San Diego, California
| | - Florin Vaida
- Department of Family Medicine and Public Health, UC San Diego, San Diego, California
| | - Lynne M Bird
- Department of Pediatrics, Division of Genetics and Dysmorphology, UC San Diego/Rady Children's Hospital, San Diego, California
| |
Collapse
|
41
|
Cui P, Zhang P, Zhang Y, Sun L, Cui G, Guo X, Wang H, Zhang X, Shi Y, Yu Z. HIF-1α/Actl6a/H3K9ac axis is critical for pluripotency and lineage differentiation of human induced pluripotent stem cells. FASEB J 2020; 34:5740-5753. [PMID: 32112486 DOI: 10.1096/fj.201902829rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells (PSCs) are important models for analyzing cellular metabolism and individual development. As a hypoxia-inducible factor subunit, HIF-1α plays an important role in maintaining the pluripotency of PSCs under hypoxic conditions. However, the mechanisms underlying the self-renewal and pluripotency maintenance of human induced pluripotent stem cells (hiPSCs) via regulating HIF-1α largely remain elusive. In this study, we found that disrupting the expression of HIF-1α reduced self-renewal and pluripotency of hiPSCs. Additionally, HIF-1α-knockdown led to lower mitochondrial membrane potential (ΔΨm ) and higher reactive oxygen species production in hiPSCs. However, HIF-1α-overexpression increased ATP content in hiPSCs, while the role of HIF-1α-knockdown was opposite. The embryoid body (EB) and teratoma formation assays showed that HIF-1α-knockdown promoted endoderm differentiation and development in vitro and in vivo. In terms of the underlying molecular mechanisms, HIF-1α-knockdown inhibited the expression of Actl6a and histone H3K9ac acetylation (H3K9ac). Actl6a knockdown reduced the expression of H3K9ac and the pluripotency of hiPSCs, and also affected endoderm differentiation. These data suggest that hindering HIF-1α expression causes the changes in mitochondrial properties and metabolic disorders in hiPSCs. Furthermore, HIF-1α affects hiPSC pluripotency, and germ layer differentiation via Actl6a and histone acetylation.
Collapse
Affiliation(s)
- Peng Cui
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ping Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yanmin Zhang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Guanghui Cui
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xin Guo
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - He Wang
- Department of Medical Laboratory, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaowei Zhang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yu Shi
- Department of Research and Teaching, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zhendong Yu
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
42
|
Green AL, DeSisto J, Flannery P, Lemma R, Knox A, Lemieux M, Sanford B, O'Rourke R, Ramkissoon S, Jones K, Perry J, Hui X, Moroze E, Balakrishnan I, O'Neill AF, Dunn K, DeRyckere D, Danis E, Safadi A, Gilani A, Hubbell-Engler B, Nuss Z, Levy JMM, Serkova N, Venkataraman S, Graham DK, Foreman N, Ligon K, Jones K, Kung AL, Vibhakar R. BPTF regulates growth of adult and pediatric high-grade glioma through the MYC pathway. Oncogene 2020; 39:2305-2327. [PMID: 31844250 PMCID: PMC7071968 DOI: 10.1038/s41388-019-1125-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
High-grade gliomas (HGG) afflict both children and adults and respond poorly to current therapies. Epigenetic regulators have a role in gliomagenesis, but a broad, functional investigation of the impact and role of specific epigenetic targets has not been undertaken. Using a two-step, in vitro/in vivo epigenomic shRNA inhibition screen, we determine the chromatin remodeler BPTF to be a key regulator of adult HGG growth. We then demonstrate that BPTF knockdown decreases HGG growth in multiple pediatric HGG models as well. BPTF appears to regulate tumor growth through cell self-renewal maintenance, and BPTF knockdown leads these glial tumors toward more neuronal characteristics. BPTF's impact on growth is mediated through positive effects on expression of MYC and MYC pathway targets. HDAC inhibitors synergize with BPTF knockdown against HGG growth. BPTF inhibition is a promising strategy to combat HGG through epigenetic regulation of the MYC oncogenic pathway.
Collapse
Affiliation(s)
- Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Patrick Flannery
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Rakeb Lemma
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Aaron Knox
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | | | - Bridget Sanford
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Rebecca O'Rourke
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | | | | | | | - Xu Hui
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Moroze
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | | | | | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA, USA
| | - Etienne Danis
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Aaron Safadi
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Zachary Nuss
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Jean M Mulcahy Levy
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Natalie Serkova
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University, Atlanta, GA, USA
| | - Nicholas Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Keith Ligon
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ken Jones
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
| | - Andrew L Kung
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, RC1-N, Mail Stop 8302 12800 E. 19th Ave., Aurora, CO, 80045, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
43
|
Zhan W, Liao X, Wang Y, Li L, Li J, Chen Z, Tian T, He J. circCTIC1 promotes the self-renewal of colon TICs through BPTF-dependent c-Myc expression. Carcinogenesis 2020; 40:560-568. [PMID: 30403769 DOI: 10.1093/carcin/bgy144] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2018] [Indexed: 12/27/2022] Open
Abstract
Colon tumor is a conman tumor in the world. There are various kinds of cells in colon tumor bulk, and only a small population can initiate tumor efficiently and termed as tumor-initiating cells (TICs). With self-renewal and differentiation capacities, colon TICs drive colon tumorigenesis, metastasis and relapse. However, the molecular mechanisms of colon TICs self-renewal are elusive. Here, we found that circular RNA (circCTIC1) was highly expressed in colon tumor and colon TICs. circCTIC1 knockdown impaired the self-renewal of colon TICs, and its overexpression played an opposite role. circCTIC1 promoted the expression of c-Myc and drove the self-renewal of colon TIC through c-Myc-dependent manner. circCTIC1 interacted with nuclear remodeling factor (NURF) complex, recruited NURF complex onto c-Myc promoter and finally drove the transcriptional initiation of c-Myc. Altogether, circCTIC1 drove the self-renewal of colon TICs through bromodomain PHD finger transcription factor (BPTF)-mediated c-Myc expression.
Collapse
Affiliation(s)
- Wei Zhan
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China.,Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Xin Liao
- Guizhou Medical University, Gui Zhou Province, Guiyang, China.,Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Yuan Wang
- Oncology Department in the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huaian, China
| | - Lianghe Li
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Jin Li
- Oncology Department in the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huaian, China
| | - Zhongsheng Chen
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Tian Tian
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Gui Zhou Province, Guiyang, China
| | - Jingdong He
- Guizhou Medical University, Gui Zhou Province, Guiyang, China.,Oncology Department in the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huaian, China
| |
Collapse
|
44
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
45
|
Xu W, Long L, Zhao Y, Stevens L, Felipe I, Munoz J, Ellis RE, McGrath PT. Evolution of Yin and Yang isoforms of a chromatin remodeling subunit precedes the creation of two genes. eLife 2019; 8:e48119. [PMID: 31498079 PMCID: PMC6752949 DOI: 10.7554/elife.48119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.
Collapse
Affiliation(s)
- Wen Xu
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lijiang Long
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative BiosciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Yuehui Zhao
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Irene Felipe
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Center-CNIOMadridSpain
| | - Javier Munoz
- Proteomics Unit-ProteoRed-ISCIIISpanish National Cancer Research Center-CNIOMadridSpain
| | - Ronald E Ellis
- Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordUnited States
| | - Patrick T McGrath
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Parker H. Petit Institute of Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUnited States
- School of PhysicsGeorgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
46
|
Shaheen R, Maddirevula S, Ewida N, Alsahli S, Abdel-Salam GMH, Zaki MS, Tala SA, Alhashem A, Softah A, Al-Owain M, Alazami AM, Abadel B, Patel N, Al-Sheddi T, Alomar R, Alobeid E, Ibrahim N, Hashem M, Abdulwahab F, Hamad M, Tabarki B, Alwadei AH, Alhazzani F, Bashiri FA, Kentab A, Şahintürk S, Sherr E, Fregeau B, Sogati S, Alshahwan SAM, Alkhalifi S, Alhumaidi Z, Temtamy S, Aglan M, Otaify G, Girisha KM, Tulbah M, Seidahmed MZ, Salih MA, Abouelhoda M, Momin AA, Saffar MA, Partlow JN, Arold ST, Faqeih E, Walsh C, Alkuraya FS. Genomic and phenotypic delineation of congenital microcephaly. Genet Med 2019; 21:545-552. [PMID: 30214071 PMCID: PMC6986385 DOI: 10.1038/s41436-018-0140-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.
Collapse
Affiliation(s)
- Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Saeed Al Tala
- Department of Pediatrics, Genetic Unit, Armed Forces Hospital Southern Region, Khamis Mushayt, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ameen Softah
- King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Basma Abadel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Al-Sheddi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Alomar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muddathir Hamad
- Division of Pediatric Neurology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ali H Alwadei
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fahad Alhazzani
- Pediatrics Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fahad A Bashiri
- Division of Pediatric Neurology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Amal Kentab
- Division of Pediatric Neurology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Serdar Şahintürk
- Faculty of Medicine, Physiology Department, Bursa Uludag University, Bursa, Turkey
| | - Elliott Sherr
- Department of Neurology, University of California, San Francisco, California, USA
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, California, USA
| | - Samira Sogati
- Department of Medical Genetics, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Saad Ali M Alshahwan
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | | | - Samia Temtamy
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Mona Aglan
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada Otaify
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Katta M Girisha
- Department of Medical Genetics Kasturba Medical College, Manipal University (currently Manipal Academy of Higher Education), Manipal, India
| | - Maha Tulbah
- Department of obstetrics and gynecology king Faisal specialist hospital and research center, Riyadh, Saudi Arabia
| | | | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Afaque A Momin
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Muna Al Saffar
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Division of Genetics and Genomics, Department of Medicine, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Department of Medicine, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Christopher Walsh
- Division of Genetics and Genomics, Department of Medicine, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
47
|
Kirberger SE, Ycas PD, Johnson JA, Chen C, Ciccone MF, Woo RWL, Urick AK, Zahid H, Shi K, Aihara H, McAllister SD, Kashani-Sabet M, Shi J, Dickson A, Dos Santos CO, Pomerantz WCK. Selectivity, ligand deconstruction, and cellular activity analysis of a BPTF bromodomain inhibitor. Org Biomol Chem 2019; 17:2020-2027. [PMID: 30706071 PMCID: PMC6374164 DOI: 10.1039/c8ob02599a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bromodomain and PHD finger containing protein transcription factor (BPTF) is an epigenetic protein involved in chromatin remodelling and is a potential anticancer target. The BPTF bromodomain has one reported small molecule inhibitor (AU1, rac-1). Here, advances made on the structure-activity relationship of a BPTF bromodomain ligand are reported using a combination of experimental and molecular dynamics simulations leading to the active enatiomer (S)-1. Additionally, a ligand deconstruction analysis was conducted to characterize important pharmacophores for engaging the BPTF bromodomain. These studies have been enabled by a protein-based fluorine NMR approach, highlighting the versatility of the method for selectivity, ligand deconstruction, and ligand binding. To enable future analysis of biological activity, cell growth analyses in a panel of cancer cell lines were carried out using CRISPR-Cas9 and (S)-1 to identify cell-based model systems that are sensitive to BPTF inhibition.
Collapse
Affiliation(s)
- Steven E Kirberger
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE., Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pan Y, Yuan F, Li Y, Wang G, Lin Z, Chen L. Bromodomain PHD‑finger transcription factor promotes glioma progression and indicates poor prognosis. Oncol Rep 2018; 41:246-256. [PMID: 30542695 PMCID: PMC6278589 DOI: 10.3892/or.2018.6832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/19/2018] [Indexed: 02/01/2023] Open
Abstract
Glioma is one of the most deadly central nervous system tumors around the world. Uncontrollable cell proliferation and invasion are key factors of cancer progression as well as glioma. Available evidence suggests that bromodomain PHD-finger transcription factor (BPTF) plays an important role in stem cell proliferation and differentiation, as well as in progression of some tumors, but there is little data on glioma. Therefore, the present study aimed to explore the functional role and potential clinical value of BPTF in glioma. Public database, real-time PCR and western blotting were used to detect the expression of BPTF in glioma tissue and cells. The relationship between BPTF with clinicopathological features and the prognosis of glioma patients was analyzed by immunohistochemical staining in 113 cases of paraffin-embedded primary glioma specimens. Furthermore, cytological experiments were conducted to elucidate the functional role of BPTF in glioma U251 cells, as well as the potential molecular mechanism. The expression of BPTF in glioma tissues was significantly higher than that in normal brain tissues. The association analysis results revealed that high BPTF expression was significantly associated with WHO grade and tumor size. Survival analysis revealed that the BPTF high-expression group had poorer overall survival (OS) and progression-free survival (PFS) compared with the low-expression group. Univariate and multivariate Cox regression analyses revealed that BPTF expression was an independent prognostic factor for the OS and PFS of glioma patients. Cytological experiments revealed that BPTF overexpression could significantly promote the proliferation, migration and invasion of human glioma U251 cells. A study of the underlying mechanism indicated that BPTF promoted glioma progression via MYC signaling. Our results preliminarily indicated that BPTF promoted glioma progression via MYC signaling and may be a potential prognostic biomarker and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Yanling Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Feng Yuan
- Department of Radiation Oncology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Yijie Li
- Department of Radiation Oncology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Guoping Wang
- Department of Radiation Oncology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Zhiren Lin
- Department of Radiation Oncology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
49
|
Zhao X, Zheng F, Li Y, Hao J, Tang Z, Tian C, Yang Q, Zhu T, Diao C, Zhang C, Chen M, Hu S, Guo P, Zhang L, Liao Y, Yu W, Chen M, Zou L, Guo W, Deng W. BPTF promotes hepatocellular carcinoma growth by modulating hTERT signaling and cancer stem cell traits. Redox Biol 2018; 20:427-441. [PMID: 30419422 PMCID: PMC6230923 DOI: 10.1016/j.redox.2018.10.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Bromodomain PHD finger transcription factor (BPTF), a core subunit of nucleosome-remodeling factor (NURF) complex, plays an important role in chromatin remodeling. However, its precise function and molecular mechanism involved in hepatocellular carcinoma (HCC) growth are still poorly defined. Here, we demonstrated the tumor-promoting role of BPTF in HCC progression. BPTF was highly expressed in HCC cells and tumor tissues of HCC patients compared with normal liver cells and tissues. Knockdown of BPTF inhibited cell proliferation, colony formation and stem cell-like traits in HCC cells. In addition, BPTF knockdown effectively sensitized the anti-tumor effect of chemotherapeutic drugs and induced more apoptosis in HCC cells. Consistently, knockdown of BPTF in a xenograft mouse model also suppressed tumor growth and metastasis accompanied by the suppression of cancer stem cells (CSC)-related protein markers. Moreover, the mechanism study showed that the tumor-promoting role of BPTF in HCC was realized by transcriptionally regulating the expression of human telomerase reverse transcriptase (hTERT). Furthermore, we found that HCC patients with high BPTF expression displayed high hTERT expression, and high BPTF or hTERT expression level was positively correlated with advanced malignancy and poor prognosis in HCC patients. Collectively, our results demonstrate that BPTF promotes HCC growth by targeting hTERT and suggest that the BPTF-hTERT axis maybe a novel and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Xinrui Zhao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhipeng Tang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Yang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoliang Diao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Manyu Chen
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lizhi Zhang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yina Liao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijuan Zou
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
50
|
Caforio M, Sorino C, Iacovelli S, Fanciulli M, Locatelli F, Folgiero V. Recent advances in searching c-Myc transcriptional cofactors during tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:239. [PMID: 30261904 PMCID: PMC6161371 DOI: 10.1186/s13046-018-0912-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023]
Abstract
Background The mechanism by which c-Myc exerts its oncogenic functions is not completely clear and different hypotheses are still under investigation. The knowledge of the capacity of c-Myc to bind exclusively E-box sequences determined the discrepancy between, on the one hand, genomic studies showing the binding of c-Myc to all active promoters and, on the other hand, the evidence that only 60% or less of the binding sites have E-box sequences. Main body In this review, we provide support to the hypothesis that the cooperation of c-Myc with transcriptional cofactors mediates c-Myc-induced cellular functions. We produce evidence that recently identified cofactors are involved in c-Myc control of survival mechanisms of cancer cells. Conclusion The identification of new c-Myc cofactors could favor the development of therapeutic strategies able to compensate the difficulty of targeting c-Myc.
Collapse
Affiliation(s)
- Matteo Caforio
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy
| | - Cristina Sorino
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Stefano Iacovelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy.,Department of Pediatric Science, University of Pavia, 27100, Pavia, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children's Hospital, 00146, Rome, Italy.
| |
Collapse
|