1
|
Baron M, Tagore M, Wall P, Zheng F, Barkley D, Yanai I, Yang J, Kiuru M, White RM, Ideker T. Desmosome mutations impact the tumor microenvironment to promote melanoma proliferation. Nat Genet 2025:10.1038/s41588-025-02163-9. [PMID: 40240879 DOI: 10.1038/s41588-025-02163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma, where desmosomes are mutated in more than 70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations in desmosome genes is associated with a strong reduction in desmosome gene expression. Analysis by spatial transcriptomics and protein immunofluorescence suggests that these decreases in expression occur in keratinocytes in the microenvironment rather than in primary melanoma cells. In further support of a microenvironmental origin, we find that desmosome gene knockdown in keratinocytes yields markedly increased proliferation of adjacent melanoma cells in keratinocyte and melanoma cocultures. Similar increases in melanoma proliferation are observed in media preconditioned with desmosome-deficient keratinocytes. Thus, gradual accumulation of desmosome mutations in neighboring cells may prime melanoma cells for neoplastic transformation.
Collapse
Affiliation(s)
- Maayan Baron
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mohita Tagore
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick Wall
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Fan Zheng
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dalia Barkley
- Institute for Computational Medicine, NYU School of Medicine, New York, NY, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU School of Medicine, New York, NY, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Maija Kiuru
- Department of Dermatology, University of California Davis, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Nuffield Department of Medicine, Ludwig Cancer Research, University of Oxford, Oxford, UK.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Tacelli M, Gentiluomo M, Biamonte P, Castano JP, Berković MC, Cives M, Kapitanović S, Marinoni I, Marinovic S, Nikas I, Nosáková L, Pedraza-Arevalo S, Pellè E, Perren A, Strosberg J, Campa D, Capurso G. Pancreatic neuroendocrine neoplasms (pNENs): Genetic and environmental biomarkers for risk of occurrence and prognosis. Semin Cancer Biol 2025; 112:112-125. [PMID: 40158764 DOI: 10.1016/j.semcancer.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are rare and heterogeneous tumors arising from neuroendocrine cells, representing approximately 10 % of all Gastro-Entero-Pancreatic neuroendocrine neoplasms. While most pNENs are sporadic, a subset is associated with genetic syndromes such as multiple endocrine neoplasia type 1 (MEN1) or von Hippel-Lindau disease (VHL). pNENs are further classified into functioning and non-functioning tumors, with distinct clinical behaviors, prognoses, and treatment approaches. This review explores genetic and environmental biomarkers that influence the risk, prognosis, and therapeutic responses in pNENs. The epidemiology of pNENs reveals an increasing incidence, primarily due to advancements in imaging techniques. Genetic factors play a pivotal role, with germline mutations in MEN1, VHL, and other genes contributing to familial pNENs. Somatic mutations, including alterations in the mTOR pathway and DNA maintenance genes such as DAXX and ATRX, are critical in sporadic pNENs. These mutations, along with epigenetic dysregulation and transcriptomic alterations, underpin the diverse clinical and molecular phenotypes of pNENs. Emerging evidence suggests that epigenetic changes, including DNA methylation profiles, can stratify pNEN subtypes and predict disease progression. Environmental and lifestyle factors, such as diabetes, smoking, and chronic pancreatitis, have been linked to an increased risk of sporadic pNENs. While the association between these factors and tumor progression is still under investigation, their potential role in influencing therapeutic outcomes warrants further study. Advances in systemic therapies, including somatostatin analogs, mTOR inhibitors, and tyrosine kinase inhibitors, have improved disease management. Biomarkers such as Ki-67, somatostatin receptor expression, and O6-methylguanine-DNA methyltransferase (MGMT) status are being evaluated for their predictive value. Novel approaches, including the use of circulating biomarkers (NETest, circulating tumor cells, and ctDNA) and polygenic risk scores, offer promising avenues for non-invasive diagnosis and monitoring. Despite these advancements, challenges remain, including the need for large, well-annotated datasets and validated biomarkers. Future research should integrate multi-omics approaches and leverage liquid biopsy technologies to refine diagnostic, prognostic, and therapeutic strategies. Interdisciplinary collaborations and global consortia are crucial for overcoming current limitations and translating research findings into clinical practice. These insights hold promise for improving prevention, early detection, and tailored treatments, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Matteo Tacelli
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Biamonte
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Justo P Castano
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Maja Cigrovski Berković
- Department for Sport and Exercise Medicine, Faculty of Kinesiology University of Zagreb, Zagreb 10000, Croatia
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb 10000, Croatia
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Sonja Marinovic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb 10000, Croatia
| | - Ilias Nikas
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Lenka Nosáková
- Clinic of Internal Medicine - Gastroenterology, JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Bratislava, Slovakia
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Eleonora Pellè
- Department of GI Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jonathan Strosberg
- Department of GI Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
3
|
Wang J, Tran-Huynh AM, Kim BJ, Chan DW, Holt MV, Fandino D, Yu X, Qi X, Wang J, Zhang W, Wu YH, Anurag M, Zhang XHF, Zhang B, Cheng C, Foulds CE, Ellis MJ. Death-associated protein kinase 3 modulates migration and invasion of triple-negative breast cancer cells. PNAS NEXUS 2024; 3:pgae401. [PMID: 39319326 PMCID: PMC11421662 DOI: 10.1093/pnasnexus/pgae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pull-down assay (KIPA), leading to the observation that death-associated protein kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple-negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with down-regulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by a mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that leucine-zipper protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a newly discovered regulator of EMT/desmosome components that promote TNBC cell migration.
Collapse
Affiliation(s)
- Junkai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anh M Tran-Huynh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoli Qi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Hurtado-Monzón EG, Valencia-Mayoral P, Silva-Olivares A, Bañuelos C, Velázquez-Guadarrama N, Betanzos A. The Helicobacter pylori infection alters the intercellular junctions on the pancreas of gerbils (Meriones unguiculatus). World J Microbiol Biotechnol 2024; 40:273. [PMID: 39030443 PMCID: PMC11271430 DOI: 10.1007/s11274-024-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, β-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.
Collapse
Affiliation(s)
- Edgar G Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, CINVESTAV-IPN, Ciudad de Mexico, México
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México.
| |
Collapse
|
5
|
Geay J, Margaron Y, Gentien D, Reyal F, Puisieux A, Blanchoin L, Guyon L, Théry M. Plakins are involved in the regulation of centrosome position in polarized epithelial cells. Biol Cell 2024; 116:e2400048. [PMID: 38850178 DOI: 10.1111/boc.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND INFORMATION The control of epithelial cell polarity is key to their function. Its dysregulation is a major cause of tissue transformation. In polarized epithelial cells,the centrosome is off-centred toward the apical pole. This asymmetry determines the main orientation of the microtubule network and intra-cellular traffic. However, the mechanism regulating centrosome positioning at the apical pole of polarized epithelial cells is still poorly undertood. RESULTS In this study we used transcriptomic data from breast cancer cells to identify molecular changes associated with the different stages of tumour transformation. We correlated these changes with variations in centrosome position or with cell progression along the epithelial-to-mesenchymal transition (EMT), a process that involves centrosome repositioning. We found that low levels of epiplakin, desmoplakin and periplakin correlated with centrosome mispositioning in cells that had progressed through EMT or tissue transformation. We further tested the causal role of these plakins in the regulation of centrosome position by knocking down their expression in a non-tumorigenic breast epithelial cell line (MCF10A). The downregulation of periplakin reduced the length of intercellular junction, which was not affected by the downregulation of epiplakin or desmoplakin. However, down-regulating any of them disrupted centrosome polarisation towards the junction without affecting microtubule stability. CONCLUSIONS Altogether, these results demonstrated that epiplakin, desmoplakin and periplakin are involved in the maintenance of the peripheral position of the centrosome close to inter-cellular junctions. They also revealed that these plakins are downregulated during EMT and breast cancer progression, which are both associated with centrosome mispositioning. SIGNIFICANCE These results revealed that the down-regulation of plakins and the consequential centrosome mispositioning are key signatures of disorganised cytoskeleton networks, inter-cellular junction weakening, shape deregulation and the loss of polarity in breast cancer cells. These metrics could further be used as a new readouts for early phases of tumoral development.
Collapse
Affiliation(s)
- Juliana Geay
- Université de Paris, CEA/INSERM/AP-HP, Institut de Recherche Saint Louis, UMR976, HIPI, CytoMorpho Lab, Hopital Saint Louis, Paris, France
| | - Yoran Margaron
- Université Grenoble-Alpes, CEA/INRA/CNRS, Interdisciplinary Research Institute of Grenoble, UMR5168, LPCV, CytoMorpho Lab, Grenoble, France
| | - David Gentien
- Université PSL, Department of Translational Research, Institut Curie, Genomics Platform, Paris, France
| | - Fabien Reyal
- Université Paris Cité, Université PSL, INSERM U932, Breast Gynecological and Reconstructive Surgery, Institut Curie, Paris, France
| | - Alain Puisieux
- Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
- Université PSL, Institut Curie, Université Versailles Saint-Quentin, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Laurent Blanchoin
- Université de Paris, CEA/INSERM/AP-HP, Institut de Recherche Saint Louis, UMR976, HIPI, CytoMorpho Lab, Hopital Saint Louis, Paris, France
- Université Grenoble-Alpes, CEA/INRA/CNRS, Interdisciplinary Research Institute of Grenoble, UMR5168, LPCV, CytoMorpho Lab, Grenoble, France
| | - Laurent Guyon
- Université Grenoble Alpes, CEA/INSERM, Interdisciplinary Research Institute of Grenoble, BioSanté UMR_S 1292, Grenoble, France
| | - Manuel Théry
- Université de Paris, CEA/INSERM/AP-HP, Institut de Recherche Saint Louis, UMR976, HIPI, CytoMorpho Lab, Hopital Saint Louis, Paris, France
- Université Grenoble-Alpes, CEA/INRA/CNRS, Interdisciplinary Research Institute of Grenoble, UMR5168, LPCV, CytoMorpho Lab, Grenoble, France
| |
Collapse
|
6
|
Xu QR, Du XH, Huang TT, Zheng YC, Li YL, Huang DY, Dai HQ, Li EM, Fang WK. Role of Cell-Cell Junctions in Oesophageal Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12101378. [PMID: 36291586 PMCID: PMC9599896 DOI: 10.3390/biom12101378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cell-cell junctions comprise various structures, including adherens junctions, tight junctions, desmosomes, and gap junctions. They link cells to each other in tissues and regulate tissue homeostasis in critical cellular processes. Recent advances in cell-cell junction research have led to critical discoveries. Cell-cell adhesion components are important for the invasion and metastasis of tumour cells, which are not only related to cell-cell adhesion changes, but they are also involved in critical molecular signal pathways. They are of great significance, especially given that relevant molecular mechanisms are being discovered, there are an increasing number of emerging biomarkers, targeted therapies are becoming a future therapeutic concern, and there is an increased number of therapeutic agents undergoing clinical trials. Oesophageal squamous cell carcinoma (ESCC), the most common histological subtype of oesophageal cancer, is one of the most common cancers to affect epithelial tissue. ESCC progression is accompanied by the abnormal expression or localisation of components at cell-cell junctions. This review will discuss the recent scientific developments related to the molecules at cell-cell junctions and their role in ESCC to offer valuable insights for readers, provide a global view of the relationships between position, construction, and function, and give a reference for future mechanistic studies, diagnoses, and therapeutic developments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - En-Min Li
- Correspondence: (E.-M.L.); (W.-K.F.)
| | | |
Collapse
|
7
|
Sivagurunathan S, Vahabikashi A, Yang H, Zhang J, Vazquez K, Rajasundaram D, Politanska Y, Abdala-Valencia H, Notbohm J, Guo M, Adam SA, Goldman RD. Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells. Front Cell Dev Biol 2022; 10:929495. [PMID: 36200046 PMCID: PMC9527304 DOI: 10.3389/fcell.2022.929495] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.
Collapse
Affiliation(s)
- Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haiqian Yang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Jun Zhang
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kelly Vazquez
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuliya Politanska
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hiam Abdala-Valencia
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob Notbohm
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Ming Guo
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Stephen A Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
9
|
Ni N, Fang X, Mullens DA, Cai JJ, Ivanov I, Bartholin L, Li Q. Transcriptomic Profiling of Gene Expression Associated with Granulosa Cell Tumor Development in a Mouse Model. Cancers (Basel) 2022; 14:2184. [PMID: 35565312 PMCID: PMC9105549 DOI: 10.3390/cancers14092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are rare sex cord-stromal tumors, accounting for ~5% ovarian tumors. The etiology of GCTs remains poorly defined. Genetically engineered mouse models are potentially valuable for understanding the pathogenesis of GCTs. Mice harboring constitutively active TGFβ signaling (TGFBR1-CA) develop ovarian GCTs that phenocopy several hormonal and molecular characteristics of human GCTs. To determine molecular alterations in the ovary upon TGFβ signaling activation, we performed transcriptomic profiling of gene expression associated with GCT development using ovaries from 1-month-old TGFBR1-CA mice and age-matched controls. RNA-sequencing and bioinformatics analysis coupled with the validation of select target genes revealed dysregulations of multiple cellular events and signaling molecules/pathways. The differentially expressed genes are enriched not only for known GCT-related pathways and tumorigenic events but also for signaling events potentially mediated by neuroactive ligand-receptor interaction, relaxin signaling, insulin signaling, and complements in TGFBR1-CA ovaries. Additionally, a comparative analysis of our data in mice with genes dysregulated in human GCTs or granulosa cells overexpressing a mutant FOXL2, the genetic hallmark of adult GCTs, identified some common genes altered in both conditions. In summary, this study has revealed the molecular signature of ovarian GCTs in a mouse model that harbors the constitutive activation of TGFBR1. The findings may be further exploited to understand the pathogenesis of a class of poorly defined ovarian tumors.
Collapse
Affiliation(s)
- Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Destiny A. Mullens
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - Laurent Bartholin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, F-69000 Lyon, France;
- Centre Léon Bérard, F-69008 Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| |
Collapse
|
10
|
Saxena M, Hisano M, Neutzner M, Diepenbruck M, Ivanek R, Sharma K, Kalathur RKR, Bürglin TR, Risoli S, Christofori G. The long non-coding RNA ET-20 mediates EMT by impairing desmosomes in breast cancer cells. J Cell Sci 2021; 134:272428. [PMID: 34633031 DOI: 10.1242/jcs.258418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
The vast majority of breast cancer-associated deaths are due to metastatic spread of cancer cells, a process aided by epithelial-to-mesenchymal transition (EMT). Mounting evidence has indicated that long non-coding RNAs (lncRNAs) also contribute to tumor progression. We report the identification of 114 novel lncRNAs that change their expression during TGFβ-induced EMT in murine breast cancer cells (referred to as EMT-associated transcripts; ETs). Of these, the ET-20 gene localizes in antisense orientation within the tenascin C (Tnc) gene locus. TNC is an extracellular matrix protein that is critical for EMT and metastasis formation. Both ET-20 and Tnc are regulated by the EMT master transcription factor Sox4. Notably, ablation of ET-20 lncRNA effectively blocks Tnc expression and with it EMT. Mechanistically, ET-20 interacts with desmosomal proteins, thereby impairing epithelial desmosomes and promoting EMT. A short transcript variant of ET-20 is shown to be upregulated in invasive human breast cancer cell lines, where it also promotes EMT. Targeting ET-20 appears to be a therapeutically attractive lead to restrain EMT and breast cancer metastasis in addition to its potential utility as a biomarker for invasive breast cancer.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Mizue Hisano
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Melanie Neutzner
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Maren Diepenbruck
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Kirti Sharma
- Proteomics Kymera Therapeutics Basel Cambridge, MA 02472, USA
| | - Ravi K R Kalathur
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.,Murdoch Children's Research Institute, Royal Children's Hospital, 3052 Parkville, Australia
| | - Thomas R Bürglin
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Salvatore Risoli
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | |
Collapse
|
11
|
Wesley T, Berzins S, Kannourakis G, Ahmed N. The attributes of plakins in cancer and disease: perspectives on ovarian cancer progression, chemoresistance and recurrence. Cell Commun Signal 2021; 19:55. [PMID: 34001250 PMCID: PMC8127266 DOI: 10.1186/s12964-021-00726-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites microenvironment, which may contribute to the sustenance and progression of the disease. In this review, attempts have been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovarian cancer. Video Abstract
Collapse
Affiliation(s)
- Tamsin Wesley
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Stuart Berzins
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia. .,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia. .,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3052, Australia. .,Centre for Reproductive Health, The Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Melbourne, VIC, 3168, Australia.
| |
Collapse
|
12
|
Origgi FC, Otten P, Lohmann P, Sattler U, Wahli T, Lavazza A, Gaschen V, Stoffel MH. Herpesvirus-Associated Proliferative Skin Disease in Frogs and Toads: Proposed Pathogenesis. Vet Pathol 2021; 58:713-729. [PMID: 33813961 DOI: 10.1177/03009858211006385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A comparative study was carried out on common and agile frogs (Rana temporaria and R. dalmatina) naturally infected with ranid herpesvirus 3 (RaHV3) and common toads (Bufo bufo) naturally infected with bufonid herpesvirus 1 (BfHV1) to investigate common pathogenetic pathways and molecular mechanisms based on macroscopic, microscopic, and ultrastructural pathology as well as evaluation of gene expression. Careful examination of the tissue changes, supported by in situ hybridization, at different stages of development in 6 frogs and 14 toads revealed that the skin lesions are likely transient, and part of a tissue cycle necessary for viral replication in the infected hosts. Transcriptomic analysis, carried out on 2 naturally infected and 2 naïve common frogs (Rana temporaria) and 2 naturally infected and 2 naïve common toads (Bufo bufo), revealed altered expression of genes involved in signaling and cell remodeling in diseased animals. Finally, virus transcriptomics revealed that both RaHV3 and BfHV1 had relatively high expression of a putative immunomodulating gene predicted to encode a decoy receptor for tumor necrosis factor in the skin of the infected hosts. Thus, the comparable lesions in infected frogs and toads appear to reflect a concerted epidermal and viral cycle, with presumptive involvement of signaling and gene remodeling host and immunomodulatory viral genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Lavazza
- 18207Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emila Romagna, Brescia, Italy
| | | | | |
Collapse
|
13
|
Emad A, Sinha S. Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study. NPJ Syst Biol Appl 2021; 7:9. [PMID: 33558504 PMCID: PMC7870953 DOI: 10.1038/s41540-021-00169-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Reconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic (or clinical) properties of the samples. Therefore, they may confound regulatory mechanisms that are specifically related to a phenotypic property with more general mechanisms underlying the full complement of the analyzed samples. In this study, we develop a method called InPheRNo to identify "phenotype-relevant" TRNs. This method is based on a probabilistic graphical model that models the simultaneous effects of multiple transcription factors (TFs) on their target genes and the statistical relationship between the target genes' expression and the phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas reveals that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis reveals that the activity level of TFs with many target genes could distinguish patients with poor prognosis from those with better prognosis.
Collapse
Affiliation(s)
- Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada.
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
14
|
Yang T, Gu X, Jia L, Guo J, Tang Q, Zhu J, Zhao W, Feng Z. DSG2 expression is low in colon cancer and correlates with poor survival. BMC Gastroenterol 2021; 21:7. [PMID: 33407183 PMCID: PMC7789404 DOI: 10.1186/s12876-020-01588-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background Desmoglein2 (DSG2) is a transmembrane protein that helps regulate intercellular connections and contributes to desmosome assembly. Desmosome are associated with cell adhesion junctions, which play an important role in cancer progression specially cancer cell migration and invasion. However, DSG2 expression in colon cancer (CC) and its association with CC patients’ overall survival (OS) are still unclear. Methods We collected 587 CC samples, 41 colitis tissues and 114 pericarcinomatous tissues, as well as corresponding clinicopathological data about the patients who contributed them. All samples were tested immunohistochemically in tissue microarrays. Kaplan–Meier method was used for calculating patient survival. Univariate and multivariate analyses was used for investigating DGS2 link with CC patient’s clinicopathological factors. Bioinformatics analysis was also used in study. Results The results showed that DSG2 expression was lower in CC tissues than in pericarcinomatous tissues (P < 0.001). DSG2 expression was associated with differentiation (P = 0.033), lymph node metastasis (P = 0.045), distant metastasis (P = 0.006) and AJCC stage (P < 0.001). Univariate analysis indicated that poor OS in patients with CC was associated with low DSG2 expression (P < 0.001), tumor size (P < 0.001), lymph node metastasis (P < 0.001), distant metastasis (P < 0.001), AJCC stage (P < 0.001) and venous invasion (P < 0.001). In multivariate analysis, low DSG2 expression (P < 0.001), distant metastasis (P < 0.001), AJCC stage (P = 0.002), venous invasion (P < 0.001) were independent prognostic factors for CC patients. Bioinformatics analysis indicated that low DSG2 expression affects protein activation, regulates the P53-related pathway in CC, and activates the EGFR pathway. Conclusions The results suggest that low DSG2 expression is associated with poor survival for CC patients. DSG2 could be a prognostic biomarker for CC.
Collapse
Affiliation(s)
- Tingting Yang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Xuan Gu
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Lizhou Jia
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaojiao Guo
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Tang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| | - Jin Zhu
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.,Huadong Medical Institute of Biotechniques, Nanjing, 210000, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Zhenqing Feng
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China. .,Department of Pathology, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab. of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Novel lncRNA UPLA1 mediates tumorigenesis and prognosis in lung adenocarcinoma. Cell Death Dis 2020; 11:999. [PMID: 33221813 PMCID: PMC7680460 DOI: 10.1038/s41419-020-03198-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
With the development of molecular biotechnology and sequencing techniques, long non-coding RNAs (lncRNAs) have been shown to play a vital role in a variety of cancers including lung cancer. In our previous study, we used RNA sequencing and high-content screening proliferation screening data to identify lncRNAs that were significantly associated with tumour biological functions such as LINC01426. Herein, based on previous work, we report a novel lncRNA UPLA1 (upregulation promoting LUAD-associated transcript-1), which has not been explored or reported in any previous studies. Our results showed that UPLA1 is highly expressed and regulates important biological functions in lung adenocarcinoma. In vitro experiments revealed that UPLA1 promoted the migration, invasion, and proliferation abilities, and is related to cell cycle arrest, in lung adenocarcinoma cells. Moreover, the upregulation of UPLA1 significantly improved the growth of tumours in vivo. We identified that UPLA1 was mainly located in the nucleus using fluorescence in situ hybridisation, and that it promoted Wnt/β-catenin signalling by binding to desmoplakin using RNA pulldown assay and mass spectrometry. Additionally, luciferase reporter assay revealed that YY1 is the transcription factor of UPLA1 and suppressed the expression of UPLA1 as a transcriptional inhibitor. This finding provides important evidence regarding the two roles of YY1 in cancer. Furthermore, in situ hybridisation assay results showed that UPLA1 was closely related to the prognosis and tumour, node, metastasis (TNM) stage of lung adenocarcinoma. In summary, our results suggest that the novel lncRNA UPLA1 promotes the progression of lung adenocarcinoma and may be used as a prognostic marker, and thus, has considerable clinical significance.
Collapse
|
16
|
Nath A, Oak A, Chen KY, Li I, Splichal RC, Portis J, Foster S, Walton SP, Chan C. Palmitate-Induced IRE1-XBP1-ZEB Signaling Represses Desmoplakin Expression and Promotes Cancer Cell Migration. Mol Cancer Res 2020; 19:240-248. [PMID: 33106375 DOI: 10.1158/1541-7786.mcr-19-0480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 04/23/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Elevated uptake of saturated fatty acid palmitate is associated with metastatic progression of cancer cells; however, the precise signaling mechanism behind the phenomenon is unclear. The loss of cell adhesion proteins, such as desmoplakin (DSP), is a key driving event in the transformation of cancer cells to more aggressive phenotypes. Here, we investigated the mechanism by which palmitate induces the loss of DSP in liver and breast cancer cells. We propose that palmitate activates the IRE1-XBP1 branch of the endoplasmic reticulum (ER) stress pathway to upregulate the ZEB transcription factor, leading to transcriptional repression of DSP. Using liver and breast cancer cells treated with palmitate, we found loss of DSP leads to increased cell migration independent of E-cadherin. We report that the ZEB family of transcription factors function as direct transcriptional repressors of DSP. CRISPR-mediated knockdown of IRE1 confirmed that the transcription of ZEB, loss of DSP, and enhanced migration in the presence of palmitate is dependent on the IRE1-XBP1 pathway. In addition, by analyzing the somatic expression and copy number variation profiles of over 11,000 tumor samples, we corroborate our hypothesis and establish the clinical relevance of DSP loss via ZEB in human cancers. IMPLICATIONS: Provides mechanistic link on palmitate-induced activation of IRE1α to cancer cell migration.
Collapse
Affiliation(s)
- Aritro Nath
- Genetics Program, Michigan State University, East Lansing, Michigan
| | - Amrita Oak
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Kevin Y Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Irene Li
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - R Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Jason Portis
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Sean Foster
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - S Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Christina Chan
- Genetics Program, Michigan State University, East Lansing, Michigan. .,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, Chen Y, An Y, Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Am J Cancer Res 2020; 10:8880-8902. [PMID: 32754285 PMCID: PMC7392009 DOI: 10.7150/thno.47548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.
Collapse
|
18
|
Sabater-Molina M, Navarro-Peñalver M, Muñoz-Esparza C, Esteban-Gil Á, Santos-Mateo JJ, Gimeno JR. Genetic Factors Involved in Cardiomyopathies and in Cancer. J Clin Med 2020; 9:E1702. [PMID: 32498335 PMCID: PMC7356401 DOI: 10.3390/jcm9061702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer therapy-induced cardiomyopathy (CCM) manifests as left ventricular (LV) dysfunction and heart failure (HF). It is associated withparticular pharmacological agents and it is typically dose dependent, but significant individual variability has been observed. History of prior cardiac disease, abuse of toxics, cardiac overload conditions, age, and genetic predisposing factors modulate the degree of the cardiac reserve and the response to the injury. Genetic/familial cardiomyopathies (CMY) are increasingly recognized in general populations with an estimated prevalence of 1:250. Association between cardiac and oncologic diseases regarding genetics involves not only the toxicity process, but pathogenicity. Genetic variants in germinal cells that cause CMY (LMNA, RAS/MAPK) can increase susceptibility for certain types of cancer. The study of mutations found in cancer cells (somatic) has revealed the implication of genes commonly associated with the development of CMY. In particular, desmosomal mutations have been related to increased undifferentiation and invasiveness of cancer. In this article, the authors review the knowledge on the relevance of environmental and genetic background in CCM and give insights into the shared genetic role in the pathogenicity of the cancer process and development of CMY.
Collapse
Affiliation(s)
- María Sabater-Molina
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
- Red de investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina Navarro-Peñalver
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
| | - Carmen Muñoz-Esparza
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
- Red de investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángel Esteban-Gil
- Biomedical Informatics & Bioinformatics Platform, Institute for Biomedical Research of Murcia (IMIB)/Foundation for Healthcare Training & Research of the Region of Murcia (FFIS), 30003 Murcia, Spain;
| | - Juan Jose Santos-Mateo
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
| | - Juan R. Gimeno
- Unidad de Cardiopatías Hereditarias, Servicio de Cardiología, Hospital Universitario Virgen dela Arrixaca, El Palmar, 30120 Murcia, Spain; (M.S.-M.); (M.N.-P.); (C.M.-E.); (J.R.G.)
- Universidad de Murcia, El Palmar, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), European Commission, 30120 Murcia, Spain
- Red de investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Hamyeh M, Bernex F, Larive RM, Naldi A, Urbach S, Simony-Lafontaine J, Puech C, Bakhache W, Solassol J, Coopman PJ, Hendriks WJ, Freiss G. PTPN13 induces cell junction stabilization and inhibits mammary tumor invasiveness. Am J Cancer Res 2020; 10:1016-1032. [PMID: 31938048 PMCID: PMC6956795 DOI: 10.7150/thno.38537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical data suggest that the protein tyrosine phosphatase PTPN13 exerts an anti-oncogenic effect. Its exact role in tumorigenesis remains, however, unclear due to its negative impact on FAS receptor-induced apoptosis. Methods: We crossed transgenic mice deleted for PTPN13 phosphatase activity with mice that overexpress human HER2 to assess the exact role of PTPN13 in tumor development and aggressiveness. To determine the molecular mechanism underlying the PTPN13 tumor suppressor activity we developed isogenic clones of the aggressive human breast cancer cell line MDA-MB-231 overexpressing either wild type or a catalytically-inactive mutant PTPN13 and subjected these to phosphoproteomic and gene ontology analyses. We investigated the PTPN13 consequences on cell aggressiveness using wound healing and Boyden chamber assays, on intercellular adhesion using videomicroscopy, cell aggregation assay and immunofluorescence. Results: The development, growth and invasiveness of breast tumors were strongly increased by deletion of the PTPN13 phosphatase activity in transgenic mice. We observed that PTPN13 phosphatase activity is required to inhibit cell motility and invasion in the MDA-MB-231 cell line overexpressing PTPN13. In vivo, the negative PTPN13 effect on tumor invasiveness was associated with a mesenchymal-to-epithelial transition phenotype in athymic mice xenografted with PTPN13-overexpressing MDA-MB-231 cells, as well as in HER2-overexpressing mice with wild type PTPN13, compared to HER2-overexpressing mice that lack PTPN13 phosphatase activity. Phosphoproteomic and gene ontology analyses indicated a role of PTPN13 in the regulation of intercellular junction-related proteins. Finally, protein localization studies in MDA-MB-231 cells and HER2-overexpressing mice tumors confirmed that PTPN13 stabilizes intercellular adhesion and promotes desmosome formation. Conclusions: These data provide the first evidence for the negative role of PTPN13 in breast tumor invasiveness and highlight its involvement in cell junction stabilization.
Collapse
|
20
|
LncRNA MIR4435-2HG targets desmoplakin and promotes growth and metastasis of gastric cancer by activating Wnt/β-catenin signaling. Aging (Albany NY) 2019; 11:6657-6673. [PMID: 31484163 PMCID: PMC6756883 DOI: 10.18632/aging.102164] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of gastric cancer; however, their mechanisms of action remain largely unknown. The aim of this study was to identify lncRNAs involved in the tumorigenesis of gastric cancer and to investigate the signaling pathways they affect. Using microarray and RT-qPCR analyses, candidate lncRNAs were screened in paired gastric cancer tissues. The analysis revealed MIR4435-2HG to be markedly up-regulated in gastric cancer samples compared to normal stomach specimens. Increased MIR4435-2HG expression was associated with aggressive clinicopathologic features and unfavorable tumor stage. Functional experiments showed that MIR4435-2HG up-regulation enhanced gastric cancer cell proliferation, clonogenicity, and migration and invasion in vitro, as well as tumorigenicity in mice. Using RNA pull-down and mass-spectrometry analyses we found and verified a direct and novel interaction between MIR4435-2HG and desmoplakin (DSP), the most abundant desmosomal protein. Overexpression and knockdown experiments revealed opposing roles for DSP and MIR4435-2HG, unmasking a cascade through which MIR4435-2HG binds to and inhibits DSP, leading to activation of WNT/β-catenin signaling and epithelial-mesenchymal transition in gastric cancer cells. We propose that the MIR4435-2HG/DSP/WNT axis serves as a critical effector of carcinogenesis and progression of gastric cancer, and could be exploited therapeutically to improve patients' outcomes.
Collapse
|
21
|
Sun C, Wang L, Yang XX, Jiang YH, Guo XL. The aberrant expression or disruption of desmocollin2 in human diseases. Int J Biol Macromol 2019; 131:378-386. [DOI: 10.1016/j.ijbiomac.2019.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
|
22
|
Ostermann AL, Wunderlich CM, Schneiders L, Vogt MC, Woeste MA, Belgardt BF, Niessen CM, Martiny B, Schauss AC, Frommolt P, Nikolaev A, Hövelmeyer N, Sears RC, Koch PJ, Günzel D, Brüning JC, Wunderlich FT. Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer. Nat Metab 2019; 1:371-389. [PMID: 32694718 DOI: 10.1038/s42255-019-0037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.
Collapse
Affiliation(s)
- A L Ostermann
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
| | - C M Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - L Schneiders
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M C Vogt
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M A Woeste
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - B F Belgardt
- Max Planck Institute for Metabolism Research, Cologne, Germany
- German Diabetes Center (DDZ), Düsseldorf, Germany
| | - C M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - B Martiny
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A C Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - P Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A Nikolaev
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - N Hövelmeyer
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - R C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, USA
| | - P J Koch
- Department of Dermatology, Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, CO, USA
| | - D Günzel
- Institute for Clinical Physiology, Charité, Berlin, Germany
| | - J C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - F T Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany.
| |
Collapse
|
23
|
Desmoplakin Harnesses Rho GTPase and p38 Mitogen-Activated Protein Kinase Signaling to Coordinate Cellular Migration. J Invest Dermatol 2018; 139:1227-1236. [PMID: 30579854 DOI: 10.1016/j.jid.2018.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Desmoplakin (DP) is an obligate component of desmosomal cell-cell junctions that links the adhesion plaque to the cytoskeletal intermediate filament network. While a central role for DP in maintaining the structure and stability of the desmosome is well established, recent work has indicated that DP's functions may extend beyond cell-cell adhesion. In our study, we show that loss of DP results in a significant increase in cellular migration, as measured by scratch wound assays, Transwell migration assays, and invasion assays. Loss of DP causes dramatic changes in actin cytoskeleton morphology, including enhanced protrusiveness, and an increase in filopodia length and number. Interestingly, these changes are also observed in single cells, indicating that control of actin morphology is a cell-cell adhesion-independent function of DP. An investigation of cellular signaling pathways uncovered aberrant Rac and p38 mitogen-activated protein kinase (MAPK) activity in DP knockdown cells, restoration of which is sufficient to rescue DP-dependent changes in both cell migration and actin cytoskeleton morphology. Taken together, these data highlight a previously uncharacterized role for the desmosomal cytolinker DP in coordinating cellular migration via p38 MAPK and Rac signaling.
Collapse
|
24
|
Bowlt Blacklock K, Birand Z, Biasoli D, Fineberg E, Murphy S, Flack D, Bass J, Di Palma S, Blackwood L, McKay J, Whitbread T, Fox R, Eve T, Beaver S, Starkey M. Identification of molecular genetic contributants to canine cutaneous mast cell tumour metastasis by global gene expression analysis. PLoS One 2018; 13:e0208026. [PMID: 30566430 PMCID: PMC6300220 DOI: 10.1371/journal.pone.0208026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cutaneous mast cell tumours are one of the most common canine cancers. Approximately 25% of the tumours metastasise. Activating c-kit mutations are present in about 20% of tumours, but metastases occur in the absence of mutations. Tumour metastasis is associated with significantly diminished survival in spite of adjuvant chemotherapy. Available prognostic tests do not reliably predict whether a tumour will metastasise. In this study we compared the global expression profiles of 20 primary cutaneous mast cell tumours that metastasised with those of 20 primary tumours that did not metastasise. The objective was to identify genes associated with mast cell tumour metastatic progression that may represent targets for therapeutic intervention and biomarkers for prediction of tumour metastasis. Canine Gene 1.1 ST Arrays were employed for genome-wide expression analysis of formalin-fixed, paraffin-embedded biopsies of mast cell tumours borne by dogs that either died due to confirmed mast cell tumour metastasis, or were still alive more than 1000 days post-surgery. Decreased gene expression in the metastasising tumours appears to be associated with a loss of cell polarity, reduced cell-cell and cell-ECM adhesion, and increased cell deformability and motility. Dysregulated gene expression may also promote extracellular matrix and base membrane degradation, suppression of cell cycle arrest and apoptosis, and angiogenesis. Down-regulation of gene expression in the metastasising tumours may be achieved at least in part by small nucleolar RNA-derived RNA and microRNA-effected gene silencing. Employing cross-validation, a linear discriminant analysis-based classifier featuring 19 genes that displayed two-fold differences in expression between metastasising and non-metastasising tumours was estimated to classify metastasising and non-metastasising tumours with accuracies of 90-100% and 70-100%, respectively. The differential expression of 9 of the discriminator genes was confirmed by quantitative reverse transcription-PCR.
Collapse
Affiliation(s)
| | - Zeynep Birand
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | | | | | - Sue Murphy
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Debs Flack
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Joyce Bass
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | | | - Laura Blackwood
- Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Jenny McKay
- IDEXX Laboratories, Ltd, Wetherby, United Kingdom
| | | | - Richard Fox
- Finn Pathologists, Harleston, United Kingdom
| | - Tom Eve
- Finn Pathologists, Harleston, United Kingdom
| | - Stuart Beaver
- Nationwide Laboratory Services, Poulton-le-Fylde, United Kingdom
| | - Mike Starkey
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
25
|
Jimenez-Caliani AJ, Pillich R, Yang W, Diaferia GR, Meda P, Crisa L, Cirulli V. αE-Catenin Is a Positive Regulator of Pancreatic Islet Cell Lineage Differentiation. Cell Rep 2018; 20:1295-1306. [PMID: 28793255 PMCID: PMC5611824 DOI: 10.1016/j.celrep.2017.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
The development and function of epithelia depend on the establishment and maintenance of cell-cell adhesion and intercellular junctions, which operate as mechanosensor hubs for the transduction of biochemical signals regulating cell proliferation, differentiation, survival, and regeneration. Here, we show that αE-catenin, a key component of adherens junctions, functions as a positive regulator of pancreatic islet cell lineage differentiation by repressing the sonic hedgehog pathway (SHH). Thus, deletion of αE-catenin in multipotent pancreatic progenitors resulted in (1) loss of adherens junctions, (2) constitutive activation of SHH, (3) decrease in islet cell lineage differentiation, and (4) accumulation of immature Sox9+ progenitors. Pharmacological blockade of SHH signaling in pancreatic organ cultures and in vivo rescued this defect, allowing αE-catenin-null Sox9+ pancreatic progenitors to differentiate into endocrine cells. The results uncover crucial functions of αE-catenin in pancreatic islet development and harbor significant implications for the design of β cell replacement and regeneration therapies in diabetes.
Collapse
Affiliation(s)
- Antonio J Jimenez-Caliani
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Dermatology, Rheumatology, Diabetology, University of Bremen, Bremen, Germany
| | - Rudolf Pillich
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wendy Yang
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Laura Crisa
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| | - Vincenzo Cirulli
- Department of Medicine, UW Diabetes Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Bruner HC, Derksen PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer. Cold Spring Harb Perspect Biol 2018; 10:a029330. [PMID: 28507022 PMCID: PMC5830899 DOI: 10.1101/cshperspect.a029330] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention.
Collapse
Affiliation(s)
- Heather C Bruner
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
27
|
Affiliation(s)
- Nicole A. Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221
| |
Collapse
|
28
|
Zhou G, Yang L, Gray A, Srivastava AK, Li C, Zhang G, Cui T. The role of desmosomes in carcinogenesis. Onco Targets Ther 2017; 10:4059-4063. [PMID: 28860814 PMCID: PMC5565390 DOI: 10.2147/ott.s136367] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Desmosomes, which are intercellular adhesive complexes, are essential for the maintenance of epithelial homeostasis. They are located at the cell membrane, where they act as anchors for intermediate filaments. Downregulation of desmosome proteins in various cancers promotes tumor progression. However, the role of desmosomes in carcinogenesis is still being elucidated. Recent studies revealed that desmosome family members play a crucial role in tumor suppression or tumor promotion. This review focuses on studies that provide insights into the role of desmosomes in carcinogenesis and address their molecular functions.
Collapse
Affiliation(s)
- Guangxin Zhou
- Department of Oncology, Central Hospital of Binzhou, Binzhou Medical College, Binzhou, People's Republic of China
| | - Linlin Yang
- Department of Radiation Oncology, Arthur G James Hospital/Ohio State Comprehensive Cancer Center
| | | | - Amit Kumar Srivastava
- Division of Radiobiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Gongwen Zhang
- Department of Cardiac Surgery, Central Hospital of Binzhou, Binzhou Medical College, Binzhou, People's Republic of China
| | - Tiantian Cui
- Department of Radiation Oncology, Arthur G James Hospital/Ohio State Comprehensive Cancer Center
| |
Collapse
|
29
|
Sadanandam A, Wullschleger S, Lyssiotis CA, Grötzinger C, Barbi S, Bersani S, Körner J, Wafy I, Mafficini A, Lawlor RT, Simbolo M, Asara JM, Bläker H, Cantley LC, Wiedenmann B, Scarpa A, Hanahan D. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics. Cancer Discov 2015; 5:1296-313. [PMID: 26446169 DOI: 10.1158/2159-8290.cd-15-0068] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation-enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy.
Collapse
Affiliation(s)
- Anguraj Sadanandam
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland. Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland. Division of Molecular Pathology, Institute of Cancer Research (ICR), London, United Kingdom.
| | - Stephan Wullschleger
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland
| | | | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charite, Campus Virchow-Klinikum, University Medicine Berlin, Berlin, Germany
| | - Stefano Barbi
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Samantha Bersani
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Jan Körner
- Department of Hepatology and Gastroenterology, Charite, Campus Virchow-Klinikum, University Medicine Berlin, Berlin, Germany
| | - Ismael Wafy
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Mafficini
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Simbolo
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Hendrik Bläker
- Institut für Pathologie, Charite, Campus Virchow-Klinikum, University Medicine, Berlin, Germany
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charite, Campus Virchow-Klinikum, University Medicine Berlin, Berlin, Germany
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
30
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
31
|
Abstract
Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement integrates adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, which occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on the way in which human diseases can inform our understanding of basic desmosome biology and in turn, the means by which fundamental advances in the cell biology of desmosomes might lead to new treatments for acquired diseases of the desmosome.
Collapse
|
32
|
Broussard JA, Getsios S, Green KJ. Desmosome regulation and signaling in disease. Cell Tissue Res 2015; 360:501-12. [PMID: 25693896 DOI: 10.1007/s00441-015-2136-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Desmosomes are cell-cell adhesive organelles with a well-known role in forming strong intercellular adhesion during embryogenesis and in adult tissues subject to mechanical stress, such as the heart and skin. More recently, desmosome components have also emerged as cell signaling regulators. Loss of expression or interference with the function of desmosome molecules results in diseases of the heart and skin and contributes to cancer progression. However, the underlying molecular mechanisms that result in inherited and acquired disorders remain poorly understood. To address this question, researchers are directing their studies towards determining the functions that occur inside and outside of the junctions and the extent to which functions are adhesion-dependent or independent. This review focuses on recent discoveries that provide insights into the role of desmosomes and desmosome components in cell signaling and disease; wherever possible, we address molecular functions within and outside of the adhesive structure.
Collapse
Affiliation(s)
- Joshua A Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | |
Collapse
|
33
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
34
|
Galoian K, Qureshi A, Wideroff G, Temple HT. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells. Mol Clin Oncol 2014; 3:171-178. [PMID: 25469290 DOI: 10.3892/mco.2014.445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
Disruption of cell-cell junctions and the concomitant loss of polarity, downregulation of tumor-suppressive adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to tumorigenesis. In this study, we aimed to determine the status of intercellular junction proteins expression in JJ012 human malignant chondrosarcoma cells and investigate the effect of the antitumorigenic cytokine, proline-rich polypeptide-1 (PRP-1) on their expression. The cell junction pathway array data indicated downregulation of desmosomal proteins, such as desmoglein (1,428-fold), desmoplakin (620-fold) and plakoglobin (442-fold). The tight junction proteins claudin 11 and E-cadherin were also downregulated (399- and 52-fold, respectively). Among the upregulated proteins were the characteristic for tumors gap junction β-5 protein (connexin 31.1) and the pro-inflammatory pathway protein intercellular adhesion molecule (upregulated 129- and 43-fold, respectively). We demonstrated that PRP-1 restored the expression of the abovementioned downregulated in chondrosarcoma desmosomal proteins. PRP-1 inhibited H3K9-specific histone demethylase activity in chondrosarcoma cells in a dose-dependent manner (0.5 µg/ml PRP, 63%; 1 µg/ml PRP, 74%; and 10 µg/ml PRP, 91% inhibition). Members of the H3K9 family were shown to transcriptionally repress tumor suppressor genes and contribute to cancer progression. Our experimental data indicated that PRP-1 restores tumor suppressor desmosomal protein expression in JJ012 human chondrosarcoma cells and inhibits H3K9 demethylase activity, contributing to the suppression of tumorigenic potential in chondrosarcoma cells.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Amir Qureshi
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gina Wideroff
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - H T Temple
- University of Miami Tissue Bank Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
35
|
Walia V, Prickett TD, Kim JS, Gartner JJ, Lin JC, Zhou M, Rosenberg SA, Elble RC, Solomon DA, Waldman T, Samuels Y. Mutational and functional analysis of the tumor-suppressor PTPRD in human melanoma. Hum Mutat 2014; 35:1301-10. [PMID: 25113440 DOI: 10.1002/humu.22630] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/17/2014] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine-protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a "substrate trap" form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell-cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers.
Collapse
Affiliation(s)
- Vijay Walia
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pan J, Chen Y, Mo C, Wang D, Chen J, Mao X, Guo S, Zhuang J, Qiu S. Association of DSC3 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis. PLoS One 2014; 9:e92815. [PMID: 24664224 PMCID: PMC3963953 DOI: 10.1371/journal.pone.0092815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/26/2014] [Indexed: 01/21/2023] Open
Abstract
Background Desmocollin 3 (DSC3), a member of the cadherin gene superfamily, is associated with pathogenesis of some cancers, but its role in prostate cancer (PCa) remains largely unknown. Methods DSC3 gene expression level in available PCa microarray dataset was examined using the Oncomine database. DSC3 transcript expression in prostate cell line panel and an independent tissue cohort (n = 52) was estimated by quantitative PCR (Q-PCR). Epigenetic status of DSC3 gene promoter in PCa was investigated by uploading three dataset (ENCODE Infinium 450K array data and two methylation sequencing) in UCSC genome browser. While pyrosequencing analysis measured promoter DNA methylation, Q-PCR estimates were obtained for DSC3 transcript re-expression after 5-Aza-deoxycytidine (5-Aza) treatment. Clinical relevance of DSC3 expression was studied by Kaplan-Meier survival analysis. Finally, functional studies monitoring cell proliferation, migration and invasion were performed in prostate cell lines after siRNA mediated DSC3 knockdown or following 5-Aza induced re-expression. EMT markers Vimentin and E-cadherin expression was measured by Western Blot. Results Microarray data analyses revealed a significant decrease in DSC3 transcript expression in PCa, compared to benign samples. Q-PCR analysis of an independent cohort revealed DSC3 transcript down-regulation, both in PCa cell lines and tumor tissues but not in their benign counterpart. Examination of available NGS and Infinium data identified a role for epigenetic regulation DSC3 mRNA reduction in PCa. Pyrosequencing confirmed the increased DSC3 promoter methylation in cancer cell lines and restoration of transcript expression upon 5-Aza treatment further corroborated this epigenetic silencing mechanism. Importantly Kaplan-Meier analysis of an outcome cohort showed an association between loss of DSC3 expression and significantly increased risk of biochemical recurrence. Functional studies indicate a role for epithelial–mesenchymal transition in DSC3 regulated cell migration/invasion. Conclusion Taken together, our data suggests that DNA methylation contributes to down-regulation of DSC3 in prostate cancer, and loss of DSC3 predicts poor clinical outcome.
Collapse
MESH Headings
- Cell Line, Tumor
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Desmocollins/biosynthesis
- Desmocollins/genetics
- Down-Regulation/genetics
- Epigenesis, Genetic/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Promoter Regions, Genetic
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/mortality
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Jincheng Pan
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengqiang Mo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Daohu Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengjie Guo
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaopeng Qiu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
37
|
Thumbigere-Math V, Michalowicz BS, de Jong EP, Griffin TJ, Basi DL, Hughes PJ, Tsai ML, Swenson KK, Rockwell L, Gopalakrishnan R. Salivary proteomics in bisphosphonate-related osteonecrosis of the jaw. Oral Dis 2013; 21:46-56. [PMID: 24286378 DOI: 10.1111/odi.12204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/15/2013] [Accepted: 10/17/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of this study was to identify differentially expressed salivary proteins in bisphosphonate-related osteonecrosis of the jaw (BRONJ) patients that could serve as biomarkers for BRONJ diagnosis. SUBJECTS AND METHODS Whole saliva obtained from 20 BRONJ patients and 20 controls were pooled within groups. The samples were analyzed using iTRAQ-labeled two-dimensional liquid chromatography-tandem mass spectrometry. RESULTS Overall, 1340 proteins were identified. Of these, biomarker candidates were selected based on P-value (<0.001), changes in protein expression (≥1.5-fold increase or decrease), and unique peptides identified (≥2). Three comparisons made between BRONJ and control patients identified 200 proteins to be differentially expressed in BRONJ patients. A majority of these proteins were predicted to have a role in drug metabolism and immunological and dermatological diseases. Of all the differentially expressed proteins, we selected metalloproteinase-9 and desmoplakin for further validation. Immunoassays confirmed increased expression of metalloproteinase-9 in individual saliva (P = 0.048) and serum samples (P = 0.05) of BRONJ patients. Desmoplakin was undetectable in saliva. However, desmoplakin levels tended to be lower in BRONJ serum than controls (P = 0.157). CONCLUSIONS Multiple pathological reactions are involved in BRONJ development. One or more proteins identified by this study may prove to be useful biomarkers for BRONJ diagnosis. The role of metalloproteinase-9 and desmoplakin in BRONJ requires further investigation.
Collapse
Affiliation(s)
- V Thumbigere-Math
- Division of Periodontology, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fang WK, Liao LD, Li LY, Xie YM, Xu XE, Zhao WJ, Wu JY, Zhu MX, Wu ZY, Du ZP, Wu BL, Xie D, Guo MZ, Xu LY, Li EM. Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol 2013; 231:257-70. [PMID: 23836524 DOI: 10.1002/path.4236] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/20/2013] [Accepted: 06/30/2013] [Indexed: 02/05/2023]
Abstract
In contrast to the well-recognized loss of adherens junctions in cancer progression, the role of desmosomal components in cancer development has not been well explored. We previously demonstrated that desmocollin-2 (DSC2), a desmosomal cadherin protein, is reduced in oesophageal squamous cell carcinoma (ESCC), and is associated with enhanced tumour metastasis and poor prognosis. Here, we report that restoration of DSC2 in ESCC cells impeded cell migration and invasion both in vitro and in vivo, whereas siRNA-mediated suppression of DSC2 expression increased cell motility. In E-cadherin-expressing ESCC cells, DSC2 restoration strengthened E-cadherin-mediated adherens junctions and promoted the localization of β-catenin at these junctions, which indirectly inhibited β-catenin-dependent transcription. These effects of DSC2 were not present in EC109 cells that lacked E-cadherin expression. ESCC patients with tumours that had reduced E-cadherin and negative DSC2 had poorer clinical outcomes than patients with tumours that lacked either E-cadherin or DSC2, implying that the invasive potential of ESCC cells was restricted by both DSC2 and E-cadherin-dependent junctions. Further studies revealed that DSC2 was a downstream target of miR-25. Enhanced miR-25 promoted ESCC cell invasiveness, whereas restoration of DSC2 abolished these effects. Collectively, our work suggests that miR-25-mediated down-regulation of DSC2 promotes ESCC cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling.
Collapse
Affiliation(s)
- Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell 2013; 153:86-100. [PMID: 23540692 DOI: 10.1016/j.cell.2013.02.051] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/08/2013] [Accepted: 02/21/2013] [Indexed: 01/18/2023]
Abstract
Glutamate and its receptor N-methyl-D-aspartate receptor (NMDAR) have been associated with cancer, although their functions are not fully understood. Herein, we implicate glutamate-driven NMDAR signaling in a mouse model of pancreatic neuroendocrine tumorigenesis (PNET) and in selected human cancers. NMDAR was upregulated at the periphery of PNET tumors, particularly invasive fronts. Moreover, elevated coexpression of NMDAR and glutamate exporters correlated with poor prognosis in cancer patients. Treatment of a tumor-derived cell line with NMDAR antagonists impaired cancer cell proliferation and invasion. Flow conditions mimicking interstitial fluid pressure induced autologous glutamate secretion, activating NMDAR and its downstream MEK-MAPK and CaMK effectors, thereby promoting invasiveness. Congruently, pharmacological inhibition of NMDAR in mice with PNET reduced tumor growth and invasiveness. Therefore, beyond its traditional role in neurons, NMDAR may be activated in human tumors by fluid flow consequent to higher interstitial pressure, inducing an autocrine glutamate signaling circuit with resultant stimulation of malignancy.
Collapse
|
40
|
König K, Meder L, Kröger C, Diehl L, Florin A, Rommerscheidt-Fuss U, Kahl P, Wardelmann E, Magin TM, Buettner R, Heukamp LC. Loss of the keratin cytoskeleton is not sufficient to induce epithelial mesenchymal transition in a novel KRAS driven sporadic lung cancer mouse model. PLoS One 2013; 8:e57996. [PMID: 23536778 PMCID: PMC3594220 DOI: 10.1371/journal.pone.0057996] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/30/2013] [Indexed: 01/30/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), the phenotypical change of cells from an epithelial to a mesenchymal type, is thought to be a key event in invasion and metastasis of adenocarcinomas. These changes involve loss of keratin expression as well as loss of cell polarity and adhesion. We here aimed to determine whether the loss of keratin expression itself drives increased invasion and metastasis in adenocarcinomas and whether keratin loss leads to the phenotypic changes associated with EMT. Therefore, we employed a recently described murine model in which conditional deletion of the Keratin cluster II by Cre-recombinase leads to the loss of the entire keratinmultiprotein family. These mice were crossed into a newly generated Cre-recombinase inducible KRAS-driven murine lung cancer model to examine the effect of keratin loss on morphology, invasion and metastasis as well as expression of EMT related genes in the resulting tumors. We here clearly show that loss of a functional keratin cytoskeleton did not significantly alter tumor morphology or biology in terms of invasion, metastasis, proliferation or tumor burden and did not lead to induction of EMT. Further, tumor cells did not induce synchronously expression of vimentin, which is often seen in EMT, to compensate for keratin loss. In summary, our data suggest that changes in cell shape and migration that underlie EMT are dependent on changes in signaling pathways that cause secondary changes in keratin expression and organization. Thus, we conclude that loss of the keratin cytoskeleton per se is not sufficient to causally drive EMT in this tumor model.
Collapse
Affiliation(s)
- Katharina König
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Lydia Meder
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Cornelia Kröger
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Linda Diehl
- Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | | | | | - Philip Kahl
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Eva Wardelmann
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Thomas M. Magin
- Translational Centre for Regenerative Medicine and Institute of Biology, University of Leipzig, Leipzig, Germany
| | | | - Lukas C. Heukamp
- Institute of Pathology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
41
|
Kowalczyk AP, Green KJ. Structure, function, and regulation of desmosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:95-118. [PMID: 23481192 DOI: 10.1016/b978-0-12-394311-8.00005-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desmosomes are adhesive intercellular junctions that mechanically integrate adjacent cells by coupling adhesive interactions mediated by desmosomal cadherins to the intermediate filament cytoskeletal network. Desmosomal cadherins are connected to intermediate filaments by densely clustered cytoplasmic plaque proteins comprising members of the armadillo gene family, including plakoglobin and plakophilins, and members of the plakin family of cytolinkers, such as desmoplakin. The importance of desmosomes in tissue integrity is highlighted by human diseases caused by mutations in desmosomal genes, autoantibody attack of desmosomal cadherins, and bacterial toxins that selectively target desmosomal cadherins. In addition to reviewing the well-known roles of desmosomal proteins in tissue integrity, this chapter also highlights the growing appreciation for how desmosomal proteins are integrated with cell signaling pathways to contribute to vertebrate tissue organization and differentiation.
Collapse
Affiliation(s)
- Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|
42
|
Maynadier M, Chambon M, Basile I, Gleizes M, Nirde P, Gary-Bobo M, Garcia M. Estrogens promote cell-cell adhesion of normal and malignant mammary cells through increased desmosome formation. Mol Cell Endocrinol 2012; 364:126-33. [PMID: 22963885 DOI: 10.1016/j.mce.2012.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
Abstract
The association of estrogen receptor alpha (ERα) expression with differentiated breast tumors presenting a lower metastasis risk could be explained by the estrogen modulation of cell adhesion, motility and invasiveness. Since desmosomes play a crucial role in cell-cell adhesion and may interfere in tumor progression, we studied their regulation by estrogens in human breast cancer and normal mammary cells. Estrogens increased the formation of desmosomes in normal and malignant cells. Furthermore, four desmosomal proteins (desmocollin, γ-catenin, plakophilin and desmoplakin) appeared significantly up-regulated by estrogens in three ERα-expressing cancer cell lines and this effect was reversed by a pure antiestrogen. Finally, silencing of ERα or desmoplakin expression by specific siRNA revealed that estrogen-modulated desmosomal proteins are essential for the estrogenic control of intercellular adhesion. This estrogen modulation of desmosome formation could contribute to the lower invasiveness of ERα-positive tumors and to the integrity of epithelial layers in estrogen target tissues.
Collapse
Affiliation(s)
- Marie Maynadier
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Yang L, Chen Y, Cui T, Knösel T, Zhang Q, Albring KF, Huber O, Petersen I. Desmoplakin acts as a tumor suppressor by inhibition of the Wnt/β-catenin signaling pathway in human lung cancer. Carcinogenesis 2012; 33:1863-70. [PMID: 22791817 DOI: 10.1093/carcin/bgs226] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Desmosomes are intercellular junctions that confer strong cell-cell adhesion, thus conferring resistance against mechanical stress on epithelial tissues. A body of evidence indicates that decreased expression of desmosomal proteins is associated with poor prognosis in various cancers. As a key component of desmosomal plaque proteins, the functional role of desmoplakin (DSP) in cancer is not yet elucidated. Here, we reported the anti-tumorigenic activity of DSP in non-small cell lung cancer (NSCLC). We found by DSP DNA methylation that DSP expression was downregulated in 8 out of 11 lung cancer cell lines and in 34 out of 56 primary lung tumors . Ectopic expression of DSP in the NSCLC cell line H157 significantly inhibited cell proliferation, anchorage-independent growth, migration and invasion and also increased the sensitivity of NSCLC cells to apoptosis induced by an anticancer drug, gemcitabine. Furthermore, overexpression of DSP enhanced expression of plakoglobin (γ-catenin), resulting in decreased T-cell factor/lymphoid enhancer factor (TCF/LEF)-dependent transcriptional activity and reduced expression of the Wnt/β-catenin target genes Axin2 and matrix metalloproteinase MMP14. In accordance, DSP suppression by small interfering RNA resulted in downregulation of plakoglobin and upregulation of β-catenin and MMP14. Taken together, these data suggest that DSP is inactivated in lung cancer by an epigenetic mechanism, increases the sensitivity to anticancer drug-induced apoptosis and has tumor-suppressive function, possibly through inhibition of the Wnt/β-catenin signaling pathway in NSCLC cells. The epigenetic regulation of DSP and its ability to increase the sensitivity to anticancer drug-induced apoptosis has potential implications for clinical application.
Collapse
Affiliation(s)
- Linlin Yang
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena Ziegelmühlenweg 1, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dusek RL, Bascom JL, Vogel H, Baron S, Borowsky AD, Bissell MJ, Attardi LD. Deficiency of the p53/p63 target Perp alters mammary gland homeostasis and promotes cancer. Breast Cancer Res 2012; 14:R65. [PMID: 22515648 PMCID: PMC3446400 DOI: 10.1186/bcr3171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 04/20/2012] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Perp is a transcriptional target of both p53 during DNA damage-induced apoptosis and p63 during stratified epithelial development. Perp-/- mice exhibit postnatal lethality associated with dramatic blistering of the epidermis and oral mucosa, reflecting a critical role in desmosome-mediated intercellular adhesion in keratinocytes. However, the role of Perp in tissue homeostasis in other p63-dependent stratified epithelial tissues is poorly understood. Given that p63 is essential for proper mammary gland development and that cell adhesion is fundamental for ensuring the proper architecture and function of the mammary epithelium, here we investigate Perp function in the mammary gland. METHODS Immunofluorescence and Western blot analysis were performed to characterize Perp expression and localization in the mouse mammary epithelium throughout development. The consequences of Perp deficiency for mammary epithelial development and homeostasis were examined by using in vivo mammary transplant assays. Perp protein levels in a variety of human breast cancer cell lines were compared with those in untransformed cells with Western blot analysis. The role of Perp in mouse mammary tumorigenesis was investigated by aging cohorts of K14-Cre/+;p53fl/fl mice that were wild-type or deficient for Perp. Mammary tumor latency was analyzed, and tumor-free survival was assessed using Kaplan-Meier analysis. RESULTS We show that Perp protein is expressed in the mammary epithelium, where it colocalizes with desmosomes. Interestingly, although altering desmosomes through genetic inactivation of Perp does not dramatically impair mammary gland ductal development, Perp loss affects mammary epithelial homeostasis by causing the accumulation of inflammatory cells around mature mammary epithelium. Moreover, we show reduced Perp expression in many human breast cancer cell lines compared with untransformed cells. Importantly, Perp deficiency also promotes the development of mouse mammary cancer. CONCLUSIONS Together, these observations demonstrate an important role for Perp in normal mammary tissue function and in mammary cancer suppression. In addition, our findings highlight the importance of desmosomes in cancer suppression and suggest the merit of evaluating Perp as a potential prognostic indicator or molecular target in breast cancer therapy.
Collapse
Affiliation(s)
- Rachel L Dusek
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Center for Clinical Sciences Research Room 1255, 269 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Heterogeneity among RIP-Tag2 insulinomas allows vascular endothelial growth factor-A independent tumor expansion as revealed by studies in Shb mutant mice: implications for tumor angiogenesis. Mol Oncol 2012; 6:333-46. [PMID: 22336752 DOI: 10.1016/j.molonc.2012.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 11/22/2022] Open
Abstract
The Shb adapter protein is a signaling intermediate that operates downstream of vascular endothelial growth factor receptor-2 (VEGFR-2) in endothelial cells. The Shb knockout mouse displays a dysfunctional microvasculature and impaired growth of subcutaneously implanted tumor cells. We decided to investigate tumor growth and angiogenesis in the absence of Shb in an inheritable tumor model, the RIP-Tag2 mouse, which produces insulinomas in a manner highly dependent on de novo angiogenesis. We observed a reduced tumor incidence and burden in both RIP-Tag2 Shb-/- and RIP-Tag2 Shb+/- mice. This correlated with a reduced microvascular density, measured as a percentage of insulinoma area positive for CD31 staining, and altered vascular morphology. However, treatment with a VEGF-A blocking antibody was without effect on the Shb mutant tumor volume whereas it significantly inhibited tumor volume in the wild-type mice, suggesting that in mice with reduced Shb expression tumor angiogenesis was primarily sustained by VEGF-A independent pathway(s). This notion was further substantiated by gene expression analysis of angiogenic markers showing reduced VEGF-A expression in Shb-deficient tumors. Considerable heterogeneity with respect to the gene expression profiles of other angiogenic markers and the signal-transduction characteristics was observed between different tumors, suggesting that multiple "rescue" pathways could be operating. The numbers of invasive tumors or metastases were unchanged in the Shb mutant. It is concluded that the Shb mutant background reduces tumor frequency by chronically suppressing VEGF-A dependent angiogenesis. However, VEGF-A independent angiogenesis supports a significant degree of tumor expansion in Shb-deficient mice, indicating heterogeneity in the mechanisms by which tumor expansion is promoted. Interference with Shb signaling may provide novel means for future cancer therapy.
Collapse
|
46
|
Knights AJ, Funnell APW, Crossley M, Pearson RCM. Holding Tight: Cell Junctions and Cancer Spread. TRENDS IN CANCER RESEARCH 2012; 8:61-69. [PMID: 23450077 PMCID: PMC3582402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cell junctions are sites of intercellular adhesion that maintain the integrity of epithelial tissue and regulate signalling between cells. These adhesive junctions are comprised of protein complexes that serve to establish an intercellular cytoskeletal network for anchoring cells, in addition to regulating cell polarity, molecular transport and communication. The expression of cell adhesion molecules is tightly controlled and their downregulation is essential for epithelial-mesenchymal transition (EMT), a process that facilitates the generation of morphologically and functionally diverse cell types during embryogenesis. The characteristics of EMT are a loss of cell adhesion and increased cellular mobility. Hence, in addition to its normal role in development, dysregulated EMT has been linked to cancer progression and metastasis, the process whereby primary tumors migrate to invasive secondary sites in the body. This paper will review the current understanding of cell junctions and their role in cancer, with reference to the abnormal regulation of junction protein genes. The potential use of cell junction molecules as diagnostic and prognostic markers will also be discussed, as well as possible therapies for adhesive dysregulation.
Collapse
Affiliation(s)
| | | | | | - Richard C. M. Pearson
- Corresponding author: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia, Tel: +61 2 9385 8586, Fax: +61 2 9385 1483,
| |
Collapse
|
47
|
Wroblewski LE, Peek RM. "Targeted disruption of the epithelial-barrier by Helicobacter pylori". Cell Commun Signal 2011; 9:29. [PMID: 22044698 PMCID: PMC3225297 DOI: 10.1186/1478-811x-9-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/01/2011] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
48
|
Abstract
Adherens junctions, which are intercellular adhesive complexes that are crucial for maintaining epithelial homeostasis, are downregulated in many cancers to promote tumour progression. However, the role of desmosomes - adhesion complexes that are related to adherens junctions - in carcinogenesis has remained elusive. Recent studies using mouse genetic approaches have uncovered a role for desmosomes in tumour suppression, demonstrating that desmosome downregulation occurs before that of adherens junctions to drive tumour development and early invasion, suggesting a two-step model of adhesion dysfunction in cancer progression.
Collapse
Affiliation(s)
- Rachel L Dusek
- Department of Radiation Oncology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
49
|
Polymorphic genetic control of tumor invasion in a mouse model of pancreatic neuroendocrine carcinogenesis. Proc Natl Acad Sci U S A 2010; 107:17268-73. [PMID: 20855625 DOI: 10.1073/pnas.1012705107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cancer is a disease subject to both genetic and environmental influences. In this study, we used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to identify a genetic locus that influences tumor progression to an invasive growth state. RT2 mice inbred into the C57BL/6 (B6) background develop both noninvasive pancreatic neuroendocrine tumors (PNET) and invasive carcinomas with varying degrees of aggressiveness. In contrast, RT2 mice inbred into the C3HeB/Fe (C3H) background are comparatively resistant to the development of invasive tumors, as are RT2 C3HB6(F1) hybrid mice. Using linkage analysis, we identified a 13-Mb locus on mouse chromosome 17 with significant linkage to the development of highly invasive PNETs. A gene residing in this locus, the anaplastic lymphoma kinase (Alk), was expressed at significantly lower levels in PNETs from invasion-resistant C3H mice compared with invasion-susceptible B6 mice, and pharmacological inhibition of Alk led to reduced tumor invasiveness in RT2 B6 mice. Collectively, our results demonstrate that tumor invasion is subject to polymorphic genetic control and identify Alk as a genetic modifier of invasive tumor growth.
Collapse
|