1
|
Singh S, Gola C, Singh B, Agrawal V, Chaba R. D-galactonate metabolism in enteric bacteria: a molecular and physiological perspective. Curr Opin Microbiol 2024; 81:102524. [PMID: 39137493 DOI: 10.1016/j.mib.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
D-galactonate, a widely prevalent sugar acid, was first reported as a nutrient source for enteric bacteria in the 1970s. Since then, decades of research enabled a description of the modified Entner-Doudoroff pathway involved in its degradation and reported the structural and biochemical features of its metabolic enzymes, primarily in Escherichia coli K-12. However, only in the last few years, the D-galactonate transporter has been characterized, and the regulation of the dgo operon, encoding the structural genes for the transporter and enzymes of D-galactonate metabolism, has been detailed. Notably, in recent years, multiple evolutionary studies have identified the dgo operon as a dominant target for adaptation of E. coli in the mammalian gut. Despite considerable research on dgo operon, numerous fundamental questions remain to be addressed. The emerging relevance of the dgo operon in host-bacterial interactions further necessitates the study of D-galactonate metabolism in other enterobacterial strains.
Collapse
Affiliation(s)
- Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Chetna Gola
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Bhupinder Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Vishal Agrawal
- Amity School of Biological Sciences, Amity University Punjab, Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
2
|
Baaziz H, Makhlouf R, McClelland M, Hsu BB. Bacterial resistance to temperate phage is influenced by the frequency of lysogenic establishment. iScience 2024; 27:109595. [PMID: 38623331 PMCID: PMC11016777 DOI: 10.1016/j.isci.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Temperate phages can shape bacterial community dynamics and evolution through lytic and lysogenic life cycles. In response, bacteria that resist phage infection can emerge. This study explores phage-based factors that influence bacterial resistance using a model system of temperate P22 phage and Salmonella both inside and outside the mammalian host. Phages that remained functional despite gene deletions had minimal impact on lysogeny and phage resistance except for deletions in the immI region that substantially reduced lysogeny and increased phage resistance to levels comparable to that observed with an obligately lytic P22. This immI deletion does not make the lysogen less competitive but instead increases the frequency of bacterial lysis. Thus, subtle changes in the balance between lysis and lysogeny during the initial stages of infection can significantly influence the extent of phage resistance in the bacterial population. Our work highlights the complex nature of the phage-bacteria-mammalian host triad.
Collapse
Affiliation(s)
- Hiba Baaziz
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bryan B. Hsu
- Department of Biological Sciences, Fralin Life Sciences Institute, Center for Emerging, and Zoonotic, Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Tang-Siegel GG, Chen C, Mintz KP. Increased sensitivity of Aggregatibacter actinomycetemcomitans to human serum is mediated by induction of a bacteriophage. Mol Oral Microbiol 2023; 38:58-70. [PMID: 35833243 PMCID: PMC10087258 DOI: 10.1111/omi.12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a Gram-negative oral pathobiont causing aggressive periodontitis and systemic infections, demonstrates serum resistance. We have identified a dsDNA-tailed bacteriophage, S1249, which was found to convert from this microorganism inducible by human serum into a lytic state to kill the bacterium. This phage demonstrated active transcripts when exposed to human serum: 20% of genes were upregulated more than 10-fold, and 45% of them were upregulated 5-10-fold when the bacterium was grown in the presence of human serum compared to without the presence of human serum. Transcriptional activation when grown in equine serum was less pronounced. This phage demonstrated a tail with inner rigid tubes and an outer contractile sheath, features of Myoviridae spp. Further characterization revealed that the lysogenized integration of the phage in the chromosome of A. actinomycetemcomitans occurred between the genes encoding cold-shock DNA-binding domain-containing protein (csp) and glutamyl-tRNA synthetase (gltX). Both phage DNA integrated lysogeny and nonintegrated pseudolysogeny were identified in the infected bacterium. A newly generated, lysogenized strain using this phage displayed similar attributes, including 63% growth inhibition compared to its isogenic phage-free strain when in the presence of human serum. Our data suggest that bacteriophage S1249 can be induced in the presence of human serum and enters the lytic cycle, which reduces the viability of infected bacteria in vivo.
Collapse
Affiliation(s)
- Gaoyan G Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Casey Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
4
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
5
|
Chen J, Gissendanner CR, Tikhe CV, Li HF, Sun Q, Husseneder C. Genomics and Geographic Diversity of Bacteriophages Associated With Endosymbionts in the Guts of Workers and Alates of Coptotermes Species (Blattodea: Rhinotermitidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.881538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Subterranean termites depend nutritionally on their gut microbiota, which includes protozoa as well as taxonomically and functionally diverse bacteria. Our previous metavirome study revealed a high diversity and novel families of bacteriophages in the guts of Coptotermes formosanus workers from New Orleans, Louisiana, United States. Two assembled bacteriophage genomes (Phages TG-crAlp-04 and 06, family Podoviridae) existed in all colonies and showed similarity to a prophage (ProJPt-Bp1) previously sequenced from a bacterial endosymbiont (Candidatus Azobacteroides pseudotrichonymphae, CAP) of protozoa in the gut of a termite species of the genus Prorhinotermes from Taiwan. In this study the genomes of Phage TG-crAlp-04 and 06 were subjected to detailed functional annotation. Both phage genomes contained conserved genes for DNA packaging, head and tail morphogenesis, and phage replication. Approximately 30% of the amino acid sequences derived from genes in both genomes matched to those of ProJPt-Bp1 phage or other phages from the crAss-like phage group. No integrase was identified; the lack of a lysogeny module is a characteristic of crAss-like phages. Primers were designed to sequence conserved genes of the two phages and their putative host bacterium (CAP) to detect their presence in different termite species from native and introduced distribution ranges. Related strains of the host bacterium were found across different termite genera and geographic regions. Different termite species had separate CAP strains, but intraspecific geographical variation was low. These results together with the fact that CAP is an important intracellular symbiont of obligate cellulose-digesting protozoa, suggest that CAP is a core gut bacterium and co-evolved across several subterranean termite species. Variants of both crAss-like phages were detected in different Coptotermes species from the native and introduced range, but they did not differentiate by species or geographic region. Since similar phages were detected in different termite species, we propose the existence of a core virome associated with core bacterial endosymbionts of protozoa in the guts of subterranean termites. This work provides a strong basis for further study of the quadripartite relationship of termites, protozoa, bacteria, and bacteriophages.
Collapse
|
6
|
Staes I, Bäcker LE, Simoens K, De Winter K, Marolt G, Cenens W, Wolput S, Vazquez AR, Goos P, Lavigne R, Bernaerts K, Aertsen A. Superinfection exclusion factors drive a history-dependent switch from vertical to horizontal phage transmission. Cell Rep 2022; 39:110804. [PMID: 35545039 DOI: 10.1016/j.celrep.2022.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022] Open
Abstract
Temperate bacterial viruses are commonly thought to favor vertical (lysogenic) transmission over horizontal (lytic) transmission when the virion-to-host-cell ratio is high and available host cells become scarce. In P22-infected Salmonella Typhimurium populations, however, we find that host subpopulations become lytically consumed despite high phage-to-host ratios that would normally favor lysogeny. These subpopulations originate from the proliferation of P22-free siblings that spawn off from P22-carrier cells from which they cytoplasmically inherit P22-borne superinfection exclusion factors (SEFs). In fact, we demonstrate that the gradual dilution of these SEFs in the growing subpopulation of P22-free siblings restricts the number of incoming phages, thereby imposing the perception of a low phage-to-host ratio that favors lytic development. Although their role has so far been neglected, our data indicate that phage-borne SEFs can spur complex infection dynamics and a history-dependent switch from vertical to horizontal transmission in the face of host-cell scarcity.
Collapse
Affiliation(s)
- Ines Staes
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Kenneth Simoens
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Kjerstin De Winter
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Gasper Marolt
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium; Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - William Cenens
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Sanne Wolput
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Alan R Vazquez
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Peter Goos
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Rob Lavigne
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Hendrix H, Zimmermann-Kogadeeva M, Zimmermann M, Sauer U, De Smet J, Muchez L, Lissens M, Staes I, Voet M, Wagemans J, Ceyssens PJ, Noben JP, Aertsen A, Lavigne R. Metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation. Cell Rep 2022; 38:110372. [PMID: 35172131 DOI: 10.1016/j.celrep.2022.110372] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
The Pseudomonas quinolone signal (PQS) is a multifunctional quorum sensing molecule of key importance to P. aeruginosa. Here, we report that the lytic Pseudomonas bacterial virus LUZ19 targets this population density-dependent signaling system by expressing quorum sensing targeting protein (Qst) early during infection. We demonstrate that Qst interacts with PqsD, a key host quinolone signal biosynthesis pathway enzyme, resulting in decreased levels of PQS and its precursor 2-heptyl-4(1H)-quinolone. The lack of a functional PqsD enzyme impairs LUZ19 infection but is restored by external supplementation of 2-heptyl-4(1H)-quinolone, suggesting that LUZ19 exploits the PQS system for successful infection. We establish a broad functional interaction network of Qst, which includes enzymes of cofactor biosynthesis pathways (CoaC/ThiD) and a non-ribosomal peptide synthetase pathway (PA1217). Qst therefore represents an exquisite example of intricate reprogramming of the bacterium by a phage, which may be further exploited as tool to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
- Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | | | - Michael Zimmermann
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Laurens Muchez
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Maries Lissens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Ines Staes
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium.
| |
Collapse
|
8
|
Transcriptional Organization of the Salmonella Typhimurium Phage P22 pid ORFan Locus. Int J Mol Sci 2022; 23:ijms23031253. [PMID: 35163175 PMCID: PMC8835761 DOI: 10.3390/ijms23031253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5′ untranslated region that is instructive for a secondary pid mRNA species, and has a 3′ Rho-independent termination loop that is responsible for stability of the pid transcript.
Collapse
|
9
|
Owen SV, Wenner N, Dulberger CL, Rodwell EV, Bowers-Barnard A, Quinones-Olvera N, Rigden DJ, Rubin EJ, Garner EC, Baym M, Hinton JCD. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 2021; 29:1620-1633.e8. [PMID: 34597593 PMCID: PMC8585504 DOI: 10.1016/j.chom.2021.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/23/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Temperate phages are pervasive in bacterial genomes, existing as vertically inherited islands termed prophages. Prophages are vulnerable to predation of their host bacterium by exogenous phages. Here, we identify BstA, a family of prophage-encoded phage-defense proteins in diverse Gram-negative bacteria. BstA localizes to sites of exogenous phage DNA replication and mediates abortive infection, suppressing the competing phage epidemic. During lytic replication, the BstA-encoding prophage is not itself inhibited by BstA due to self-immunity conferred by the anti-BstA (aba) element, a short stretch of DNA within the bstA locus. Inhibition of phage replication by distinct BstA proteins from Salmonella, Klebsiella, and Escherichia prophages is generally interchangeable, but each possesses a cognate aba element. The specificity of the aba element ensures that immunity is exclusive to the replicating prophage, preventing exploitation by variant BstA-encoding phages. The BstA protein allows prophages to defend host cells against exogenous phage attack without sacrificing the ability to replicate lytically. BstA is an abortive infection protein found in prophages of Gram-negative bacteria aba, a short DNA sequence within the bstA locus, acts as a self-immunity element aba gives BstA-encoding prophages immunity to BstA-driven abortive infection Variant BstA proteins have distinct and cognate aba elements
Collapse
Affiliation(s)
- Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Nicolas Wenner
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Charles L Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Ella V Rodwell
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Arthur Bowers-Barnard
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021; 11:210188. [PMID: 34520699 PMCID: PMC8440029 DOI: 10.1098/rsob.210188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The canonical lytic-lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms 'pseudolysogeny' and 'productive or non-productive chronic infection', and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage-host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Elina Laanto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA,Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
11
|
Shkoporov AN, Khokhlova EV, Stephens N, Hueston C, Seymour S, Hryckowian AJ, Scholz D, Ross RP, Hill C. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol 2021; 19:163. [PMID: 34407825 PMCID: PMC8375218 DOI: 10.1186/s12915-021-01084-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The crAss-like phages are ubiquitous and highly abundant members of the human gut virome that infect commensal bacteria of the order Bacteroidales. Although incapable of lysogeny, these viruses demonstrate long-term persistence in the human gut microbiome, dominating the virome in some individuals. RESULTS Here we show that rapid phase variation of alternate capsular polysaccharides in Bacteroides intestinalis cultures plays an important role in a dynamic equilibrium between phage sensitivity and resistance, allowing phage and bacteria to multiply in parallel. The data also suggests the role of a concomitant phage persistence mechanism associated with delayed lysis of infected cells, similar to carrier state infection. From an ecological and evolutionary standpoint, this type of phage-host interaction is consistent with the Piggyback-the-Winner model, which suggests a preference towards lysogenic or other "benign" forms of phage infection when the host is stably present at high abundance. CONCLUSION Long-term persistence of bacteriophage and host could result from mutually beneficial mechanisms driving bacterial strain-level diversity and phage survival in complex environments.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | | | - Niamh Stephens
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cara Hueston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Samuel Seymour
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrew J Hryckowian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Dimitri Scholz
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Reply to Jobling, "Lysogeny of Escherichia coli by the Obligately Lytic Bacteriophage T1: Not Proven". mBio 2021; 12:mBio.01007-21. [PMID: 33947764 PMCID: PMC8262844 DOI: 10.1128/mbio.01007-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
De Smet J, Wagemans J, Hendrix H, Staes I, Visnapuu A, Horemans B, Aertsen A, Lavigne R. Bacteriophage-mediated interference of the c-di-GMP signalling pathway in Pseudomonas aeruginosa. Microb Biotechnol 2021; 14:967-978. [PMID: 33314648 PMCID: PMC8085984 DOI: 10.1111/1751-7915.13728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/22/2020] [Indexed: 01/10/2023] Open
Abstract
C-di-GMP is a key signalling molecule which impacts bacterial motility and biofilm formation and is formed by the condensation of two GTP molecules by a diguanylate cyclase. We here describe the identification and characterization of a family of bacteriophage-encoded peptides that directly impact c-di-GMP signalling in Pseudomonas aeruginosa. These phage proteins target Pseudomonas diguanylate cyclase YfiN by direct protein interaction (termed YIPs, YfiN Interacting Peptides). YIPs induce an increase of c-di-GMP production in the host cell, resulting in a decrease in motility and an increase in biofilm mass in P. aeruginosa. A dynamic analysis of the biofilm morphology indicates a denser biofilm structure after induction of the phage protein. This intracellular signalling interference strategy by a lytic phage constitutes an unexplored phage-based mechanism of metabolic regulation and could potentially serve as inspiration for the development of molecules that interfere with biofilm formation in P. aeruginosa and other pathogens.
Collapse
Affiliation(s)
- Jeroen De Smet
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
- Present address:
Lab4FoodDepartment of Microbial and Molecular Systems (M2S)KU Leuven Campus GeelGeel2440Belgium
| | - Jeroen Wagemans
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| | - Hanne Hendrix
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| | - Ines Staes
- Laboratory of Food MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenHeverlee3001Belgium
| | - Annegrete Visnapuu
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| | - Benjamin Horemans
- Department of Earth and Environmental SciencesKU LeuvenHeverlee3001Belgium
| | - Abram Aertsen
- Laboratory of Food MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenHeverlee3001Belgium
| | - Rob Lavigne
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| |
Collapse
|
14
|
Does over a century of aerobic phage work provide a solid framework for the study of phages in the gut? Anaerobe 2021; 68:102319. [PMID: 33465423 DOI: 10.1016/j.anaerobe.2021.102319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial viruses (bacteriophages, phages) of the gut have increasingly become a focus in microbiome studies, with an understanding that they are likely key players in health and disease. However, characterization of the virome remains largely based on bioinformatic approaches, with the impact of these viromes inferred based on a century of knowledge from aerobic phage work. Studying the phages infecting anaerobes is difficult, as they are often technically demanding to isolate and propagate. In this review, we primarily discuss the phages infecting three well-studied anaerobes in the gut: Bifidobacterium, Clostridia and Bacteroides, with a particular focus on the challenges in isolating and characterizing these phages. We contrast the lessons learned from these to other anaerobic work on phages infecting facultative anaerobes of the gut: Enterococcus and Lactobacillus. Phages from the gut do appear to adhere to the lessons learned from aerobic work, but the additional challenges of working on them has required ingenious new approaches to enable their study. This, in turn, has uncovered remarkable biology likely underpinning phage-host relationships in many stable environments.
Collapse
|
15
|
Dragoš A, Priyadarshini B, Hasan Z, Strube ML, Kempen PJ, Maróti G, Kaspar C, Bose B, Burton BM, Bischofs IB, Kovács ÁT. Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME JOURNAL 2020; 15:1344-1358. [PMID: 33343000 DOI: 10.1038/s41396-020-00854-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - B Priyadarshini
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Zahraa Hasan
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | - Charlotte Kaspar
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
16
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
17
|
Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, Dundar M, Bertelli M. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020024. [PMID: 33170167 PMCID: PMC8023132 DOI: 10.23750/abm.v91i13-s.10819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | | | | | | | | | | | | | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Matteo Bertelli
- EBTNA-LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy.
| |
Collapse
|
18
|
Gayán E, Van den Bergh B, Michiels J, Michiels CW, Aertsen A. Synthetic reconstruction of extreme high hydrostatic pressure resistance in Escherichia coli. Metab Eng 2020; 62:287-297. [PMID: 32979485 DOI: 10.1016/j.ymben.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Although high hydrostatic pressure (HHP) is an interesting parameter to be applied in bioprocessing, its potential is currently limited by the lack of bacterial chassis capable of surviving and maintaining homeostasis under pressure. While several efforts have been made to genetically engineer microorganisms able to grow at sublethal pressures, there is little information for designing backgrounds that survive more extreme pressures. In this investigation, we analyzed the genome of an extreme HHP-resistant mutant of E. coli MG1655 (designated as DVL1), from which we identified four mutations (in the cra, cyaA, aceA and rpoD loci) causally linked to increased HHP resistance. Analysing the functional effect of these mutations we found that the coupled effect of downregulation of cAMP/CRP, Cra and the glyoxylate shunt activity, together with the upregulation of RpoH and RpoS activity, could mechanistically explain the increased HHP resistance of the mutant. Using combinations of three mutations, we could synthetically engineer E. coli strains able to comfortably survive pressures of 600-800 MPa, which could serve as genetic backgrounds for HHP-based biotechnological applications.
Collapse
Affiliation(s)
- Elisa Gayán
- Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001, Leuven, Belgium.
| | - Bram Van den Bergh
- Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001, Leuven, Belgium; VIB Center for Microbiology, Flanders Institute for Biotechnology, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Jan Michiels
- Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001, Leuven, Belgium; VIB Center for Microbiology, Flanders Institute for Biotechnology, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Chris W Michiels
- Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001, Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001, Leuven, Belgium.
| |
Collapse
|
19
|
Owen SV, Canals R, Wenner N, Hammarlöf DL, Kröger C, Hinton JCD. A window into lysogeny: revealing temperate phage biology with transcriptomics. Microb Genom 2020; 6:e000330. [PMID: 32022660 PMCID: PMC7067206 DOI: 10.1099/mgen.0.000330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Prophages are integrated phage elements that are a pervasive feature of bacterial genomes. The fitness of bacteria is enhanced by prophages that confer beneficial functions such as virulence, stress tolerance or phage resistance, and these functions are encoded by 'accessory' or 'moron' loci. Whilst the majority of phage-encoded genes are repressed during lysogeny, accessory loci are often highly expressed. However, it is challenging to identify novel prophage accessory loci from DNA sequence data alone. Here, we use bacterial RNA-seq data to examine the transcriptional landscapes of five Salmonella prophages. We show that transcriptomic data can be used to heuristically enrich for prophage features that are highly expressed within bacterial cells and represent functionally important accessory loci. Using this approach, we identify a novel antisense RNA species in prophage BTP1, STnc6030, which mediates superinfection exclusion of phage BTP1. Bacterial transcriptomic datasets are a powerful tool to explore the molecular biology of temperate phages.
Collapse
Affiliation(s)
- Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Present address: GSK Vaccines Institute for Global Health, Siena, Italy
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Disa L. Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Science for Life Laboratory, KTH, Stockholm, Sweden
| | - Carsten Kröger
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Olszak T, Danis-Wlodarczyk K, Arabski M, Gula G, Maciejewska B, Wasik S, Lood C, Higgins G, Harvey BJ, Lavigne R, Drulis-Kawa Z. Pseudomonas aeruginosa PA5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence. Viruses 2019; 11:E1089. [PMID: 31771160 PMCID: PMC6950013 DOI: 10.3390/v11121089] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
The emergence of phage-resistant mutants is a key aspect of lytic phages-bacteria interaction and the main driver for the co-evolution between both organisms. Here, we analyze the impact of PA5oct jumbo phage treatment on planktonic/cell line associated and sessile P. aeruginosa population. Besides its broad-spectrum activity and efficient bacteria reduction in both airway surface liquid (ASL) model, and biofilm matrix degradation, PA5oct appears to persist in most of phage-resistant clones. Indeed, a high percentage of resistance (20/30 clones) to PA5oct is accompanied by the presence of phage DNA within bacterial culture. Moreover, the maintenance of this phage in the bacterial population correlates with reduced P. aeruginosa virulence, coupled with a sensitization to innate immune mechanisms, and a significantly reduced growth rate. We observed rather unusual consequences of PA5oct infection causing an increased inflammatory response of monocytes to P. aeruginosa. This phenomenon, combined with the loss or modification of the phage receptor, makes most of the phage-resistant clones significantly less pathogenic in in vivo model. These findings provide new insights into the general knowledge of giant phages biology and the impact of their application in phage therapy.
Collapse
Affiliation(s)
- Tomasz Olszak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| | - Katarzyna Danis-Wlodarczyk
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
- Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; (C.L.); (R.L.)
| | - Michal Arabski
- Department of Biochemistry and Genetics, Institute of Biology, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland;
| | - Grzegorz Gula
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| | - Slawomir Wasik
- Department of Molecular Physics, Institute of Physics, The Jan Kochanowski University in Kielce, 25-406 Kielce, Poland;
| | - Cédric Lood
- Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; (C.L.); (R.L.)
- Laboratory of Computational Systems Biology, KU Leuven, 3000 Leuven, Belgium
| | - Gerard Higgins
- National Children Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland;
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, 9 Dublin, Ireland;
| | - Brian J. Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, 9 Dublin, Ireland;
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Heverlee, Belgium; (C.L.); (R.L.)
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland; (T.O.); (K.D.-W.); (G.G.); (B.M.)
| |
Collapse
|
21
|
Passaris I, Tadesse WM, Gayán E, Aertsen A. Construction and validation of the Tn5-P LtetO-1-msfGFP transposon as a tool to probe protein expression and localization. J Microbiol Methods 2019; 161:56-62. [PMID: 31004623 DOI: 10.1016/j.mimet.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
In this study we report the design, construction and validation of a novel transposon aimed to systematically screen for protein localization and expression patterns in prokaryotes using fluorescence microscopy. Upon random insertion in an open reading frame in the proper frame and orientation, the transposon creates an N-terminal fluorescent protein fusion to the msfGFP reporter. Moreover, in order to examine the localization of fusion proteins whose native expression might be too low or absent, the transposon was fitted with a PLtetO-1 promoter that makes the expression of the generated fluorescent protein fusions controllable by anhydrotetracycline. Importantly, upon flipping out the PLtetO-1 promoter and neighboring antibiotic resistance marker, an in-frame "sandwich" msfGFP fusion is created in which the N- and C-terminal portions of the targeted protein are again controlled by its native promoter.
Collapse
Affiliation(s)
- Ioannis Passaris
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium
| | - Wubishet M Tadesse
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium
| | - Elisa Gayán
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven. Faculty of Bioscience Engineering, Kasteelpark Arenberg 22, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Orphan Genes Shared by Pathogenic Genomes Are More Associated with Bacterial Pathogenicity. mSystems 2019; 4:mSystems00290-18. [PMID: 30801025 PMCID: PMC6372840 DOI: 10.1128/msystems.00290-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022] Open
Abstract
Recent pangenome analyses of numerous bacterial species have suggested that each genome of a single species may have a significant fraction of its gene content unique or shared by a very few genomes (i.e., ORFans). We selected nine bacterial genera, each containing at least five pathogenic and five nonpathogenic genomes, to compare their ORFans in relation to pathogenicity-related genes. Pathogens in these genera are known to cause a number of common and devastating human diseases such as pneumonia, diphtheria, melioidosis, and tuberculosis. Thus, they are worthy of in-depth systems microbiology investigations, including the comparative study of ORFans between pathogens and nonpathogens. We provide direct evidence to suggest that ORFans shared by more pathogens are more associated with pathogenicity-related genes and thus are more important targets for development of new diagnostic markers or therapeutic drugs for bacterial infectious diseases. Orphan genes (also known as ORFans [i.e., orphan open reading frames]) are new genes that enable an organism to adapt to its specific living environment. Our focus in this study is to compare ORFans between pathogens (P) and nonpathogens (NP) of the same genus. Using the pangenome idea, we have identified 130,169 ORFans in nine bacterial genera (505 genomes) and classified these ORFans into four groups: (i) SS-ORFans (P), which are only found in a single pathogenic genome; (ii) SS-ORFans (NP), which are only found in a single nonpathogenic genome; (iii) PS-ORFans (P), which are found in multiple pathogenic genomes; and (iv) NS-ORFans (NP), which are found in multiple nonpathogenic genomes. Within the same genus, pathogens do not always have more genes, more ORFans, or more pathogenicity-related genes (PRGs)—including prophages, pathogenicity islands (PAIs), virulence factors (VFs), and horizontal gene transfers (HGTs)—than nonpathogens. Interestingly, in pathogens of the nine genera, the percentages of PS-ORFans are consistently higher than those of SS-ORFans, which is not true in nonpathogens. Similarly, in pathogens of the nine genera, the percentages of PS-ORFans matching the four types of PRGs are also always higher than those of SS-ORFans, but this is not true in nonpathogens. All of these findings suggest the greater importance of PS-ORFans for bacterial pathogenicity. IMPORTANCE Recent pangenome analyses of numerous bacterial species have suggested that each genome of a single species may have a significant fraction of its gene content unique or shared by a very few genomes (i.e., ORFans). We selected nine bacterial genera, each containing at least five pathogenic and five nonpathogenic genomes, to compare their ORFans in relation to pathogenicity-related genes. Pathogens in these genera are known to cause a number of common and devastating human diseases such as pneumonia, diphtheria, melioidosis, and tuberculosis. Thus, they are worthy of in-depth systems microbiology investigations, including the comparative study of ORFans between pathogens and nonpathogens. We provide direct evidence to suggest that ORFans shared by more pathogens are more associated with pathogenicity-related genes and thus are more important targets for development of new diagnostic markers or therapeutic drugs for bacterial infectious diseases.
Collapse
|
23
|
Wahl A, Battesti A, Ansaldi M. Prophages in Salmonella enterica: a driving force in reshaping the genome and physiology of their bacterial host? Mol Microbiol 2018; 111:303-316. [PMID: 30466179 PMCID: PMC7380047 DOI: 10.1111/mmi.14167] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
Thanks to the exponentially increasing number of publicly available bacterial genome sequences, one can now estimate the important contribution of integrated viral sequences to the diversity of bacterial genomes. Indeed, temperate bacteriophages are able to stably integrate the genome of their host through site‐specific recombination and transmit vertically to the host siblings. Lysogenic conversion has been long acknowledged to provide additional functions to the host, and particularly to bacterial pathogen genomes where prophages contribute important virulence factors. This review aims particularly at highlighting the current knowledge and questions about lysogeny in Salmonella genomes where functional prophages are abundant, and where genetic interactions between host and prophages are of particular importance for human health considerations.
Collapse
Affiliation(s)
- Astrid Wahl
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Aurélia Battesti
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| |
Collapse
|
24
|
vB_LspM-01: a novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41. Appl Microbiol Biotechnol 2018; 102:10691-10702. [PMID: 30362075 DOI: 10.1007/s00253-018-9424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Lysinibacillus sphaericus has great application potential not only in the biocontrol of mosquitoes but also in the bioremediation of toxic metals. Phages contribute to the genetic diversity and niche adaptation of bacteria, playing essential roles in their life cycle, but may also cause economic damage for industrially important bacteria through phage contamination during fermentation. In this study, the L. sphaericus phage vB_LspM-01, which belongs to the Myoviridae family, was isolated and characterized. Results showed that vB_LspM-01 could specifically infect most tested L. sphaericus isolates but was not active against isolates belonging to other species. Furthermore, phage-born endolysin exhibited a broader antimicrobial spectrum than the host range of the phage. The vB_LspM-01 genome had no obvious similarity with that of its host, and ca. 22.6% of putative ORFs could not get a match with the public databases. Phylogenic analysis based on the putative terminase large subunit showed high similarity with the phages identified with pac-type headful packaging. The vB_LspM-01 encoding genes were only detected in a tiny percentage of L. sphaericus C3-41 individual cells in the wild population, whereas they showed much higher frequency in the resistant population grown within the plaques; however, the phage genes could not be stably inherited during host cell division. Additionally, the vB_LspM-01 encoding genes were only detected in the host population during the logarithmic growth phase. The mitomycin C induction helped the propagation and lysogeny-lysis switch of vB_LspM-01. The study demonstrated that vB_LspM-01 can be present in a pseudolysogenic state in L. sphaericus C3-41 populations.
Collapse
|
25
|
Passaris I, Cambré A, Govers SK, Aertsen A. Bimodal Expression of the Salmonella Typhimurium spv Operon. Genetics 2018; 210:621-635. [PMID: 30143595 PMCID: PMC6216589 DOI: 10.1534/genetics.118.300822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/14/2018] [Indexed: 02/03/2023] Open
Abstract
The well-studied spv operon of Salmonellatyphimurium is important for causing full virulence in mice and both the regulation and function of the Spv proteins have been characterized extensively over the past several decades. Using quantitative single-cell fluorescence microscopy, we demonstrate the spv regulon to display a bimodal expression pattern that originates in the bimodal expression of the SpvR activator. The spv expression pattern is influenced by growth conditions and the specific Styphimurium strain used, but does not require Salmonella-specific virulence regulators. By monitoring real-time promoter kinetics, we reveal that SpvA has the ability to impart negative feedback on spvABCD expression without affecting spvR expression. Together, our data suggest that the SpvA protein counteracts the positive feedback loop imposed by SpvR, and could thus be responsible for dampening spvABCD expression and coordinating virulence protein production in time. The results presented here yield new insights in the intriguing regulation of the spv operon and adds this operon to the growing list of virulence factors exhibiting marked expression heterogeneity in Styphimurium.
Collapse
Affiliation(s)
- Ioannis Passaris
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems (MS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium
| |
Collapse
|
26
|
Shao Q, Trinh JT, Zeng L. High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda. J Biol Chem 2018; 294:3343-3349. [PMID: 30242122 DOI: 10.1074/jbc.tm118.003209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.
Collapse
Affiliation(s)
- Qiuyan Shao
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Jimmy T Trinh
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Lanying Zeng
- From the Department of Biochemistry and Biophysics and .,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
27
|
Abstract
In its third year of existence, the French Phage Network (Phages.fr) is pursuing its expansion. With more than 25 groups, mostly based in France, working on the various aspects of phage research, the network has increased its visibility, interactivity, and activity. The third meeting of the Phages.fr network, held on November 2017 at the Gif-sur-Yvette Centre National de la Recherche Scientifique (CNRS) campus, was a great opportunity for many young scientists to present their work and interact with more senior scientists, amongst which several were invited from abroad. Here we provide a summary of the work presented at this occasion during the oral presentations and poster sessions.
Collapse
|
28
|
Kim J, Kim M, Kim S, Ryu S. Sensitive detection of viable Escherichia coli O157:H7 from foods using a luciferase-reporter phage phiV10lux. Int J Food Microbiol 2017; 254:11-17. [PMID: 28511109 DOI: 10.1016/j.ijfoodmicro.2017.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
Escherichia coli O157:H7, a major foodborne pathogen, is a major public health concern associated with life-threatening diseases such as hemolytic uremic syndrome. To alleviate this burden, a sensitive and rapid system is required to detect this pathogen in various kinds of foods. Herein, we propose a phage-based pathogen detection method to replace laborious and time-consuming conventional methods. We engineered an E. coli O157:H7-specific phage phiV10 to rapidly and sensitively detect this notorious pathogen. The luxCDABE operon was introduced into the phiV10 genome and allowed the engineered phage phiV10lux to generate bioluminescence proportional to the number of viable E. coli O157:H7 cells without any substrate addition. The phage phiV10lux was able to detect at least 1CFU/ml of E. coli O157:H7 in a pure culture within 40min after 5h of pre-incubation. In artificially contaminated romaine lettuce, apple juice (pH3.51), and ground beef, the reporter phage could detect approximately 10CFU/cm2, 13CFU/ml, and 17CFU/g of E. coli O157:H7, respectively. Taken together, the constructed reporter phage phiV10lux could be applied as a powerful tool for rapid and sensitive detection of live E. coli O157:H7 in foods.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsik Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seongmi Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
29
|
|
30
|
Argov T, Azulay G, Pasechnek A, Stadnyuk O, Ran-Sapir S, Borovok I, Sigal N, Herskovits AA. Temperate bacteriophages as regulators of host behavior. Curr Opin Microbiol 2017; 38:81-87. [PMID: 28544996 DOI: 10.1016/j.mib.2017.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022]
Abstract
Bacteriophages are ubiquitous and affect most facets of life, from evolution of bacteria, through ecology and global biochemical cycling to human health. The interactions between phages and bacteria often lead to biological novelty and an important milestone in this process is the ability of phages to regulate their host's behavior. In this review article, we will focus on newly reported cases that demonstrate how temperate phages regulate bacterial gene expression and behavior in a variety of bacterial species, pathogenic and environmental. This regulation is mediated by diverse mechanisms such as transcription factors, sRNAs, DNA rearrangements, and even controlled bacterial lysis. The outcome is mutualistic relationships that enable adaptively enhanced communal phage-host fitness under specific conditions.
Collapse
Affiliation(s)
- Tal Argov
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Gil Azulay
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Anna Pasechnek
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Olga Stadnyuk
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Shai Ran-Sapir
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Nadejda Sigal
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Anat A Herskovits
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
31
|
Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME JOURNAL 2017; 11:1511-1520. [PMID: 28291233 DOI: 10.1038/ismej.2017.16] [Citation(s) in RCA: 413] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/04/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023]
Abstract
Viruses that infect bacteria (phages) can influence bacterial community dynamics, bacterial genome evolution and ecosystem biogeochemistry. These influences differ depending on whether phages establish lytic, chronic or lysogenic infections. Although the first two produce virion progeny, with lytic infections resulting in cell destruction, phages undergoing lysogenic infections replicate with cells without producing virions. The impacts of lysogeny are numerous and well-studied at the cellular level, but ecosystem-level consequences remain underexplored compared to those of lytic infections. Here, we review lysogeny from molecular mechanisms to ecological patterns to emerging approaches of investigation. Our goal is to highlight both its diversity and importance in complex communities. Altogether, using a combined viral ecology toolkit that is applied across broad model systems and environments will help us understand more of the diverse lifestyles and ecological impacts of lysogens in nature.
Collapse
|
32
|
Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, Aertsen A, Feasey NA, Hinton JCD. Characterization of the Prophage Repertoire of African Salmonella Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1. Front Microbiol 2017; 8:235. [PMID: 28280485 PMCID: PMC5322425 DOI: 10.3389/fmicb.2017.00235] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 01/30/2023] Open
Abstract
In the past 30 years, Salmonella bloodstream infections have become a significant health problem in sub-Saharan Africa and are responsible for the deaths of an estimated 390,000 people each year. The disease is predominantly caused by a recently described sequence type of Salmonella Typhimurium: ST313, which has a distinctive set of prophage sequences. We have thoroughly characterized the ST313-associated prophages both genetically and experimentally. ST313 representative strain D23580 contains five full-length prophages: BTP1, Gifsy-2D23580, ST64BD23580, Gifsy-1D23580, and BTP5. We show that common S. Typhimurium prophages Gifsy-2, Gifsy-1, and ST64B are inactivated in ST313 by mutations. Prophage BTP1 was found to be a functional novel phage, and the first isolate of the proposed new species "Salmonella virus BTP1", belonging to the P22virus genus. Surprisingly, ∼109 BTP1 virus particles per ml were detected in the supernatant of non-induced, stationary-phase cultures of strain D23580, representing the highest spontaneously induced phage titer so far reported for a bacterial prophage. High spontaneous induction is shown to be an intrinsic property of prophage BTP1, and indicates the phage-mediated lysis of around 0.2% of the lysogenic population. The fact that BTP1 is highly conserved in ST313 poses interesting questions about the potential fitness costs and benefits of novel prophages in epidemic S. Typhimurium ST313.
Collapse
Affiliation(s)
- Siân V Owen
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Angela Makumi
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Disa L Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University Uppsala, Sweden
| | - Melita A Gordon
- Institute of Infection and Global Health, University of LiverpoolLiverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammeBlantyre, Malawi
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | | | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| |
Collapse
|
33
|
'Artilysation' of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Sci Rep 2016; 6:35382. [PMID: 27775093 PMCID: PMC5075790 DOI: 10.1038/srep35382] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/23/2016] [Indexed: 11/08/2022] Open
Abstract
Endolysins constitute a promising class of antibacterials against Gram-positive bacteria. Recently, endolysins have been engineered with selected peptides to obtain a new generation of lytic proteins, Artilysins, with specific activity against Gram-negative bacteria. Here, we demonstrate that artilysation can also be used to enhance the antibacterial activity of endolysins against Gram-positive bacteria and to reduce the dependence on external conditions. Art-240, a chimeric protein of the anti-streptococcal endolysin λSa2lys and the polycationic peptide PCNP, shows a similar species specificity as the parental endolysin, but the bactericidal activity against streptococci increases and is less affected by elevated NaCl concentrations and pH variations. Time-kill experiments and time-lapse microscopy demonstrate that the killing rate of Art-240 is approximately two-fold higher compared to wildtype endolysin λSa2lys, with a reduction in viable bacteria of 3 log units after 10 min. In addition, lower doses of Art-240 are required to achieve the same bactericidal effect.
Collapse
|
34
|
Efficacy of Artilysin Art-175 against Resistant and Persistent Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:3480-8. [PMID: 27021321 DOI: 10.1128/aac.00285-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/17/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-encoded endolysins have shown promise as a novel class of antibacterials with a unique mode of action, i.e., peptidoglycan degradation. However, Gram-negative pathogens are generally not susceptible due to their protective outer membrane. Artilysins overcome this barrier. Artilysins are optimized, engineered fusions of selected endolysins with specific outer membrane-destabilizing peptides. Artilysin Art-175 comprises a modified variant of endolysin KZ144 with an N-terminal fusion to SMAP-29. Previously, we have shown the high susceptibility of Pseudomonas aeruginosa to Art-175. Here, we report that Art-175 is highly bactericidal against stationary-phase cells of multidrug-resistant Acinetobacter baumannii, even resulting in a complete elimination of large inocula (≥10(8) CFU/ml). Besides actively dividing cells, Art-175 also kills persisters. Instantaneous killing of A. baumannii upon contact with Art-175 could be visualized after immobilization of the bacteria in a microfluidic flow cell. Effective killing of a cell takes place through osmotic lysis after peptidoglycan degradation. The killing rate is enhanced by the addition of 0.5 mM EDTA. No development of resistance to Art-175 under selection pressure and no cross-resistance with existing resistance mechanisms could be observed. In conclusion, Art-175 represents a highly active Artilysin against both A. baumannii and P. aeruginosa, two of the most life-threatening pathogens of the order Pseudomonadales.
Collapse
|
35
|
Hooton SPT, Brathwaite KJ, Connerton IF. The Bacteriophage Carrier State of Campylobacter jejuni Features Changes in Host Non-coding RNAs and the Acquisition of New Host-derived CRISPR Spacer Sequences. Front Microbiol 2016; 7:355. [PMID: 27047470 PMCID: PMC4804229 DOI: 10.3389/fmicb.2016.00355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Incorporation of self-derived CRISPR DNA protospacers in Campylobacter jejuni PT14 occurs in the presence of bacteriophages encoding a CRISPR-like Cas4 protein. This phenomenon was evident in carrier state infections where both bacteriophages and host are maintained for seemingly indefinite periods as stable populations following serial passage. Carrier state cultures of C. jejuni PT14 have greater aerotolerance in nutrient limited conditions, and may have arisen as an evolutionary response to selective pressures imposed during periods in the extra-intestinal environment. A consequence of this is that bacteriophage and host remain associated and able to survive transition periods where the chances of replicative success are greatly diminished. The majority of the bacteriophage population do not commit to lytic infection, and conversely the bacterial population tolerates low-level bacteriophage replication. We recently examined the effects of Campylobacter bacteriophage/C. jejuni PT14 CRISPR spacer acquisition using deep sequencing strategies of DNA and RNA-Seq to analyze carrier state cultures. This approach identified de novo spacer acquisition in C. jejuni PT14 associated with Class III Campylobacter phages CP8/CP30A but spacer acquisition was oriented toward the capture of host DNA. In the absence of bacteriophage predation the CRISPR spacers in uninfected C. jejuni PT14 cultures remain unchanged. A distinct preference was observed for incorporation of self-derived protospacers into the third spacer position of the C. jejuni PT14 CRISPR array, with the first and second spacers remaining fixed. RNA-Seq also revealed the variation in the synthesis of non-coding RNAs with the potential to bind bacteriophage genes and/or transcript sequences.
Collapse
Affiliation(s)
- Steven P T Hooton
- Division of Food Sciences, School of Biosciences, University of Nottingham Loughborough, UK
| | - Kelly J Brathwaite
- Division of Food Sciences, School of Biosciences, University of Nottingham Loughborough, UK
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham Loughborough, UK
| |
Collapse
|
36
|
Cenens W, Makumi A, Govers SK, Lavigne R, Aertsen A. Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association. PLoS Genet 2015; 11:e1005770. [PMID: 26720743 PMCID: PMC4697819 DOI: 10.1371/journal.pgen.1005770] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host. Extensive co-evolution with their host has shaped bacterial viruses into the most abundant and sophisticated pathogens known to date. However, how these important viral pathogens manage to safely exploit their host without jeopardizing stable co-existence remains a central question, since horizontal (lytic) transmission can reduce the number of susceptible host cells and cause pathogen extinction, while vertical (lysogenic) transmission impairs pathogen abundance. Scrutinizing transmission of temperate phage P22 throughout a bacterial population at single cell resolution now revealed that this phage is able to disseminate immunity factors that allow the emergence of transiently resistant subpopulations of host cells. The continued fostering and consumption of such subpopulations points to an entirely new strategy by which viruses could manage to sustain an active infection with their host.
Collapse
Affiliation(s)
- William Cenens
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Angela Makumi
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Sander K. Govers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
37
|
Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci Rep 2015; 5:17257. [PMID: 26607832 PMCID: PMC4660466 DOI: 10.1038/srep17257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022] Open
Abstract
The increasing emergence of multi-drug resistant streptococci poses a serious threat to public health worldwide. Bacteriophage lysins are promising alternatives to antibiotics; however, their narrow lytic spectrum restricted to closely related species is a central shortcoming to their translational development. Here, we describe an efficient method for rapid screening of engineered chimeric lysins and report a unique “chimeolysin”, ClyR, with robust activity and an extended-spectrum streptococcal host range against most streptococcal species, including S. pyogenes, S. agalactiae, S. dysgalactiae, S. equi, S. mutans, S. pneumoniae, S. suis and S. uberis, as well as representative enterococcal and staphylococcal species (including MRSA and VISA). ClyR is the first lysin that demonstrates activity against the dominant dental caries-causing pathogen as well as the first lysin that kills all four of the bovine mastitis-causing pathogens. This study demonstrates the success of the screening method resulting in a powerful lysin with potential for treating most streptococcal associated infections.
Collapse
Affiliation(s)
- Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Sara B Linden
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Jing Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.,Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
38
|
Wagemans J, Delattre AS, Uytterhoeven B, De Smet J, Cenens W, Aertsen A, Ceyssens PJ, Lavigne R. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein. Front Microbiol 2015; 6:1242. [PMID: 26594207 PMCID: PMC4635203 DOI: 10.3389/fmicb.2015.01242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
The functional elucidation of small unknown phage proteins (‘ORFans’) presents itself as one of the major challenges of bacteriophage molecular biology. In this work, we mined the Pseudomonas aeruginosa-infecting phage LUZ24 proteome for antibacterial and antibiofilm proteins against its host. Subsequently, their putative host target was identified. In one example, we observed an interaction between LUZ24 gp4 and the host transcriptional regulator MvaT. The polymerization of MvaT across AT-rich DNA strands permits gene silencing of foreign DNA, thereby limiting any potentially adverse effects of such DNA. Gel shift assays proved the inhibitory effect of LUZ24 gp4 on MvaT DNA binding activity. Therefore, we termed this gene product as Mip, the MvaT inhibiting protein. We hypothesize Mip prevents the AT-rich LUZ24 DNA from being physically blocked by MvaT oligomers right after its injection in the host cell, thereby allowing phage transcription and thus completion of the phage infection cycle.
Collapse
Affiliation(s)
- Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Anne-Sophie Delattre
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Birgit Uytterhoeven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - William Cenens
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven Leuven, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven Leuven, Belgium
| |
Collapse
|
39
|
The zeamine antibiotics affect the integrity of bacterial membranes. Appl Environ Microbiol 2014; 81:1139-46. [PMID: 25452285 DOI: 10.1128/aem.03146-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zeamines (zeamine, zeamine I, and zeamine II) constitute an unusual class of cationic polyamine-polyketide-nonribosomal peptide antibiotics produced by Serratia plymuthica RVH1. They exhibit potent bactericidal activity, killing a broad range of Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Examination of their specific mode of action and molecular target revealed that the zeamines affect the integrity of cell membranes. The zeamines provoke rapid release of carboxyfluorescein from unilamellar vesicles with different phospholipid compositions, demonstrating that they can interact directly with the lipid bilayer in the absence of a specific target. DNA, RNA, fatty acid, and protein biosynthetic processes ceased simultaneously at subinhibitory levels of the antibiotics, presumably as a direct consequence of membrane disruption. The zeamine antibiotics also facilitated the uptake of small molecules, such as 1-N-phenylnaphtylamine, indicating their ability to permeabilize the Gram-negative outer membrane (OM). The valine-linked polyketide moiety present in zeamine and zeamine I was found to increase the efficiency of this process. In contrast, translocation of the large hydrophilic fluorescent peptidoglycan binding protein PBDKZ-GFP was not facilitated, suggesting that the zeamines cause subtle perturbation of the OM rather than drastic alterations or defined pore formation. At zeamine concentrations above those required for growth inhibition, membrane lysis occurred as indicated by time-lapse microscopy. Together, these findings show that the bactericidal activity of the zeamines derives from generalized membrane permeabilization, which likely is initiated by electrostatic interactions with negatively charged membrane components.
Collapse
|
40
|
Díaz-Muñoz SL, Koskella B. Bacteria-phage interactions in natural environments. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:135-83. [PMID: 25131402 DOI: 10.1016/b978-0-12-800259-9.00004-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phages are considered the most abundant and diverse biological entities on Earth and are notable not only for their sheer abundance, but also for their influence on bacterial hosts. In nature, bacteria-phage relationships are complex and have far-reaching consequences beyond particular pairwise interactions, influencing everything from bacterial virulence to eukaryotic fitness to the carbon cycle. In this review, we examine bacteria and phage distributions in nature first by highlighting biogeographic patterns and nonhost environmental influences on phage distribution, then by considering the ways in which phages and bacteria interact, emphasizing phage life cycles, bacterial responses to phage infection, and the complex patterns of phage host specificity. Finally, we discuss phage impacts on bacterial abundance, genetics, and physiology, and further aim to clarify distinctions between current theoretical models and point out areas in need of future research.
Collapse
Affiliation(s)
- Samuel L Díaz-Muñoz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA; Department of Integrative Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt Koskella
- Department of Biosciences, University of Exeter, Penryn Campus, Tremough, Cornwall, United Kingdom.
| |
Collapse
|
41
|
Van den Bossche A, Ceyssens PJ, De Smet J, Hendrix H, Bellon H, Leimer N, Wagemans J, Delattre AS, Cenens W, Aertsen A, Landuyt B, Minakhin L, Severinov K, Noben JP, Lavigne R. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa. J Proteome Res 2014; 13:4446-56. [PMID: 25185497 DOI: 10.1021/pr500796n] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Addressing the functionality of predicted genes remains an enormous challenge in the postgenomic era. A prime example of genes lacking functional assignments are the poorly conserved, early expressed genes of lytic bacteriophages, whose products are involved in the subversion of the host metabolism. In this study, we focused on the composition of important macromolecular complexes of Pseudomonas aeruginosa involved in transcription, DNA replication, fatty acid biosynthesis, RNA regulation, energy metabolism, and cell division during infection with members of seven distinct clades of lytic phages. Using affinity purifications of these host protein complexes coupled to mass spectrometric analyses, 37 host complex-associated phage proteins could be identified. Importantly, eight of these show an inhibitory effect on bacterial growth upon episomal expression, suggesting that these phage proteins are potentially involved in hijacking the host complexes. Using complementary protein-protein interaction assays, we further mapped the inhibitory interaction of gp12 of phage 14-1 to the α subunit of the RNA polymerase. Together, our data demonstrate the powerful use of interactomics to unravel the biological role of hypothetical phage proteins, which constitute an enormous untapped source of novel antibacterial proteins. (Data are available via ProteomeXchange with identifier PXD001199.).
Collapse
|
42
|
Wagemans J, Blasdel BG, Van den Bossche A, Uytterhoeven B, De Smet J, Paeshuyse J, Cenens W, Aertsen A, Uetz P, Delattre AS, Ceyssens PJ, Lavigne R. Functional elucidation of antibacterial phage ORFans targetingPseudomonas aeruginosa. Cell Microbiol 2014; 16:1822-35. [DOI: 10.1111/cmi.12330] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Jeroen Wagemans
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Bob G. Blasdel
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - An Van den Bossche
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Birgit Uytterhoeven
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Jeroen De Smet
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Jan Paeshuyse
- Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Minderbroedersstraat 10 - box 1030 3000 Leuven Belgium
| | - William Cenens
- Department of Microbial and Molecular Systems; Katholieke Universiteit Leuven; Kasteelpark Arenberg 22 - box 2457 3001 Leuven Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems; Katholieke Universiteit Leuven; Kasteelpark Arenberg 22 - box 2457 3001 Leuven Belgium
| | - Peter Uetz
- Centre for the Study of Biological Complexity; Virginia Commonwealth University; 1000 West Cary Street - room 333 Richmond VA 23284 USA
| | - Anne-Sophie Delattre
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| | - Pieter-Jan Ceyssens
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
- Bacterial Diseases Division; Scientific Institute of Public Health (WIV-ISP); J. Wytsmanstraat 14 1050 Brussels Belgium
| | - Rob Lavigne
- Division of Gene Technology; Katholieke Universiteit Leuven; Kasteelpark Arenberg 21 - box 2462 3001 Leuven Belgium
| |
Collapse
|
43
|
Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone. Curr Opin Microbiol 2014; 20:125-30. [DOI: 10.1016/j.mib.2014.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/21/2023]
|
44
|
Makumi A, Cenens W, Lavigne R, Aertsen A. P22 mediated recombination of frt-sites. Virology 2014; 462-463:340-2. [PMID: 25019493 DOI: 10.1016/j.virol.2014.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/08/2014] [Accepted: 06/16/2014] [Indexed: 01/21/2023]
Abstract
Flp mediated site specific recombination of frt-sites is frequently used in genetic engineering to excise, insert or invert DNA-cassettes in the chromosome. While constructs flanked by frt-sites are generally considered to be stable in the absence of the Flp enzyme, we observed that P22 chromosomes exceeding wild-type length tend to lose frt-flanked insertions via Flp independent recombination of frt-sites during phage propagation. This spontaneous recombination should be considered when engineering the chromosome of P22 and perhaps of other phages as well.
Collapse
Affiliation(s)
- Angela Makumi
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium
| | - William Cenens
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium.
| |
Collapse
|
45
|
Abstract
The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.
Collapse
|
46
|
Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J Virol 2014; 88:10501-10. [PMID: 24965474 DOI: 10.1128/jvi.01347-14] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa bacteriophage ϕKZ is the type representative of the giant phage genus, which is characterized by unusually large virions and genomes. By unraveling the transcriptional map of the ∼ 280-kb ϕKZ genome to single-nucleotide resolution, we combine 369 ϕKZ genes into 134 operons. Early transcription is initiated from highly conserved AT-rich promoters distributed across the ϕKZ genome and located on the same strand of the genome. Early transcription does not require phage or host protein synthesis. Transcription of middle and late genes is dependent on protein synthesis and mediated by poorly conserved middle and late promoters. Unique to ϕKZ is its ability to complete its infection in the absence of bacterial RNA polymerase (RNAP) enzyme activity. We propose that transcription of the ϕKZ genome is performed by the consecutive action of two ϕKZ-encoded, noncanonical multisubunit RNAPs, one of which is packed within the virion, another being the product of early genes. This unique, rifampin-resistant transcriptional machinery is conserved within the diverse giant phage genus. IMPORTANCE The data presented in this paper offer, for the first time, insight into the complex transcriptional scheme of giant bacteriophages. We show that Pseudomonas aeruginosa giant phage ϕKZ is able to infect and lyse its host cell and produce phage progeny in the absence of functional bacterial transcriptional machinery. This unique property can be attributed to two phage-encoded putative RNAP enzymes, which contain very distant homologues of bacterial β and β'-like RNAP subunits.
Collapse
|
47
|
Kim S, Kim M, Ryu S. Development of an engineered bioluminescent reporter phage for the sensitive detection of viable Salmonella typhimurium. Anal Chem 2014; 86:5858-64. [PMID: 24806327 DOI: 10.1021/ac500645c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Because foodborne illnesses continuously threaten public health, rapid and sensitive detection of pathogens in food has become an important issue. As an alternative to time-consuming and laborious conventional detection methods, a technique using recombinant reporter phages has been developed. Here, we developed an advanced bioluminescent reporter phage SPC32H-CDABE by inserting a bacterial luxCDABE operon into the Salmonella temperate phage SPC32H genome. Whole SPC32H genome sequencing enabled the selection of nonessential genes, which can be replaced with approximately 6-kb luxCDABE operon, which provides both luciferase (LuxAB) and its substrate, fatty aldehyde, as generated by fatty acid reductase (LuxCDE). Thus, the SPC32H-CDABE detection assay is simpler and more efficient compared to the luxAB-based assay because the substrate addition step is excluded. At least 20 CFU/mL of pure S. Typhimurium culture was detectable using SPC32H-CDABE within 2 h, and the signals increased proportionally to the number of cells contaminated in lettuce, sliced pork, and milk. These results thereby demonstrate that this phage successfully detects live Salmonella without appreciable interference from food components. Furthermore, the presented data suggest that SPC32H-CDABE represents a promising easy-to-use diagnostic tool for the detection of Salmonella contamination in food.
Collapse
Affiliation(s)
- Seongmi Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University , Seoul 151-921, South Korea
| | | | | |
Collapse
|
48
|
Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:3774-84. [PMID: 24752267 DOI: 10.1128/aac.02668-14] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼ 5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
Collapse
|
49
|
Passaris I, Ghosh A, Cenens W, Michiels CW, Lammertyn J, Aertsen A. Isolation and validation of an endogenous fluorescent nucleoid reporter in Salmonella Typhimurium. PLoS One 2014; 9:e93785. [PMID: 24695782 PMCID: PMC3973593 DOI: 10.1371/journal.pone.0093785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/10/2014] [Indexed: 01/24/2023] Open
Abstract
In this study we adapted a Mud-based delivery system to construct a random yfp reporter gene (encoding the yellow fluorescent protein) insertion library in the genome of Salmonella Typhimurium LT2, and used fluorescence activated cell sorting and fluorescence microscopy to screen for translational fusions that were able to clearly and specifically label the bacterial nucleoid. Two such fusions were obtained, corresponding to a translational yfp insertion in iscR and iolR, respectively. Both fusions were further validated, and the IscR::YFP fluorescent nucleoid reporter together with time-lapse fluorescence microscopy was subsequently used to monitor nucleoid dynamics in response to the filamentation imposed by growth of LT2 at high hydrostatic pressure (40-45 MPa). As such, we were able to reveal that upon decompression the apparently entangled LT2 chromosomes in filamentous cells rapidly and efficiently segregate, after which septation of the filament occurs. In the course of the latter process, however, cells with a "trilobed" nucleoid were regularly observed, indicative for an imbalance between septum formation and chromosome segregation.
Collapse
Affiliation(s)
- Ioannis Passaris
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Anirban Ghosh
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - William Cenens
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Chris W. Michiels
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBios, Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Micobiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, University of Leuven, Belgium
- * E-mail:
| |
Collapse
|
50
|
Siringan P, Connerton PL, Cummings NJ, Connerton IF. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni. Open Biol 2014; 4:130200. [PMID: 24671947 PMCID: PMC3971406 DOI: 10.1098/rsob.130200] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/28/2014] [Indexed: 01/23/2023] Open
Abstract
Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.
Collapse
Affiliation(s)
| | | | | | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|