1
|
Goig GA, Windels EM, Loiseau C, Stritt C, Biru L, Borrell S, Brites D, Gagneux S. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 2025:10.1038/s41579-025-01159-w. [PMID: 40133503 DOI: 10.1038/s41579-025-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Chloé Loiseau
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Stritt
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Loza Biru
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Wang Q, Barilar I, Minin VM, Modongo C, Moonan PK, Finlay A, Boyd R, Oeltmann JE, Molefi TL, Zetola NM, Brewer TF, Niemann S, Shin SS. Phylodynamic analysis reveals disparate transmission dynamics of Mycobacterium tuberculosis-complex lineages in Botswana. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.31.24316225. [PMID: 39763523 PMCID: PMC11703314 DOI: 10.1101/2024.10.31.24316225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Tuberculosis epidemics have traditionally been conceptualized as arising from a single uniform pathogen. However, Mycobacterium tuberculosis-complex (Mtbc), the pathogen causing tuberculosis in humans, encompasses multiple lineages exhibiting genetic and phenotypic diversity that may be responsible for heterogeneity in TB transmission. We analysed a population-based dataset of 1,354 Mtbc whole-genome sequences collected over four years in Botswana, a country with high HIV and tuberculosis burden. We identified Lineage 4 (L4) as the most prevalent (87.4%), followed by L1 (6.4%), L2 (5.3%), and L3 (0.9%). Within L4, multiple sublineages were identified, with L4.3.4 being the predominant sublineage. Phylodynamic analysis revealed L4.3.4 expanded steadily from late 1800s to early 2000s. Conversely, L1, L4.4, and L4.3.2 showed population trajectories closely aligned with the HIV epidemic. Meanwhile, L2 saw rapid expansion throughout most of the 20th century but declined sharply in early 1990s. Additionally, pairwise genome comparison of Mtbc highlighted differences in clustering proportions due to recent transmission at the sublineage level. These findings emphasize the diverse transmission dynamics of strains of different Mtbc lineages and highlight the potential for phylodynamic analysis of routine sequences to refine our understanding of lineage-specific behaviors.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
| | - Ivan Barilar
- Molecular Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany
| | - Volodymyr M Minin
- Department of Statistics, University of California Irvine, Irvine, CA, USA
| | | | - Patrick K Moonan
- Division of Global HIV and Tuberculosis, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alyssa Finlay
- Division of Tuberculosis Elimination, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rosanna Boyd
- Division of Tuberculosis Elimination, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John E Oeltmann
- Division of Global HIV and Tuberculosis, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tuduetso L Molefi
- National TB Program, Botswana Ministry of Health, Gaborone, Botswana
| | | | - Timothy F Brewer
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Stefan Niemann
- Molecular Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Sanghyuk S Shin
- Sue & Bill Gross School of Nursing, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Palittapongarnpim P, Tantivitayakul P, Aiewsakun P, Mahasirimongkol S, Jaemsai B. Genomic Interactions Between Mycobacterium tuberculosis and Humans. Annu Rev Genomics Hum Genet 2024; 25:183-209. [PMID: 38640230 DOI: 10.1146/annurev-genom-021623-101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Mycobacterium tuberculosis is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including Mycobacterium africanum, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand;
| | - Pakorn Aiewsakun
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand;
| | - Bharkbhoom Jaemsai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| |
Collapse
|
4
|
Esteves LS, Gomes LL, Brites D, Fandinho FCO, Bhering M, Pereira MADS, Conceição EC, Salvato R, da Costa BP, Medeiros RFDM, Caldas PCDS, Redner P, Dalcolmo MP, Eldholm V, Gagneux S, Rossetti ML, Kritski AL, Suffys PN. Genetic Characterization and Population Structure of Drug-Resistant Mycobacterium tuberculosis Isolated from Brazilian Patients Using Whole-Genome Sequencing. Antibiotics (Basel) 2024; 13:496. [PMID: 38927163 PMCID: PMC11200758 DOI: 10.3390/antibiotics13060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The present study aimed to determine the genetic diversity of isolates of Mycobacterium tuberculosis (Mtb) from presumed drug-resistant tuberculosis patients from several states of Brazil. The isolates had been submitted to conventional drug susceptibility testing for first- and second-line drugs. Multidrug-resistant (MDR-TB) (54.8%) was the most frequent phenotypic resistance profile, in addition to an important high frequency of pre-extensive resistance (p-XDR-TB) (9.2%). Using whole-genome sequencing (WGS), we characterized 298 Mtb isolates from Brazil. Besides the analysis of genotype distribution and possible correlations between molecular and clinical data, we determined the performance of an in-house WGS pipeline with other online pipelines for Mtb lineages and drug resistance profile definitions. Sub-lineage 4.3 (52%) was the most frequent genotype, and the genomic approach revealed a p-XDR-TB level of 22.5%. We detected twenty novel mutations in three resistance genes, and six of these were observed in eight phenotypically resistant isolates. A cluster analysis of 170 isolates showed that 43.5% of the TB patients belonged to 24 genomic clusters, suggesting considerable ongoing transmission of DR-TB, including two interstate transmissions. The in-house WGS pipeline showed the best overall performance in drug resistance prediction, presenting the best accuracy values for five of the nine drugs tested. Significant associations were observed between suffering from fatal disease and genotypic p-XDR-TB (p = 0.03) and either phenotypic (p = 0.006) or genotypic (p = 0.0007) ethambutol resistance. The use of WGS analysis improved our understanding of the population structure of MTBC in Brazil and the genetic and clinical data correlations and demonstrated its utility for surveillance efforts regarding the spread of DR-TB, hopefully helping to avoid the emergence of even more resistant strains and to reduce TB incidence and mortality rates.
Collapse
Affiliation(s)
- Leonardo Souza Esteves
- Programa Acadêmico de Tuberculose da Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil;
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Secretaria Estadual de Saúde (SES-RS), Porto Alegre 90450-190, RS, Brazil;
- Laboratório de Biologia Molecular Aplicado à Micobactérias, Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Rio de Janeiro 21040-360, RJ, Brazil; (L.L.G.); (P.N.S.)
| | - Lia Lima Gomes
- Laboratório de Biologia Molecular Aplicado à Micobactérias, Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Rio de Janeiro 21040-360, RJ, Brazil; (L.L.G.); (P.N.S.)
| | - Daniela Brites
- Swiss Tropical and Public Health Institute (Swiss TPH), CH-4123 Allschwil, Switzerland; (D.B.); (S.G.)
- University of Basel, CH-4001 Basel, Switzerland
| | - Fátima Cristina Onofre Fandinho
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Marcela Bhering
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Márcia Aparecida da Silva Pereira
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Emilyn Costa Conceição
- Department of Science and Innovation—National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Richard Salvato
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Secretaria Estadual de Saúde (SES-RS), Porto Alegre 90450-190, RS, Brazil;
| | - Bianca Porphirio da Costa
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Reginalda Ferreira de Melo Medeiros
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Paulo Cesar de Souza Caldas
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Paulo Redner
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Margareth Pretti Dalcolmo
- Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 22780-195, RJ, Brazil; (F.C.O.F.); (M.B.); (M.A.d.S.P.); (B.P.d.C.); (R.F.d.M.M.); (P.C.d.S.C.); (P.R.); (M.P.D.)
| | - Vegard Eldholm
- Norwegian Institute of Public Health, 0213 Oslo, Norway;
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute (Swiss TPH), CH-4123 Allschwil, Switzerland; (D.B.); (S.G.)
- University of Basel, CH-4001 Basel, Switzerland
| | - Maria Lucia Rossetti
- Laboratório de Biologia Molecular, Universidade Luterana do Brasil (ULBRA), Canoas 92425-020, RS, Brazil;
| | - Afrânio Lineu Kritski
- Programa Acadêmico de Tuberculose da Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil;
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicado à Micobactérias, Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Rio de Janeiro 21040-360, RJ, Brazil; (L.L.G.); (P.N.S.)
| |
Collapse
|
5
|
Hiza H, Zwyer M, Hella J, Arbués A, Sasamalo M, Borrell S, Xu ZM, Ross A, Brites D, Fellay J, Reither K, Gagneux S, Portevin D. Bacterial diversity dominates variable macrophage responses of tuberculosis patients in Tanzania. Sci Rep 2024; 14:9287. [PMID: 38653771 DOI: 10.1038/s41598-024-60001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) comprises nine human-adapted lineages that differ in their geographical distribution. Local adaptation of specific MTBC genotypes to the respective human host population has been invoked in this context. We aimed to assess if bacterial genetics governs MTBC pathogenesis or if local co-adaptation translates into differential susceptibility of human macrophages to infection by different MTBC genotypes. We generated macrophages from cryopreserved blood mononuclear cells of Tanzanian tuberculosis patients, from which the infecting MTBC strains had previously been phylogenetically characterized. We infected these macrophages ex vivo with a phylogenetically similar MTBC strain ("matched infection") or with strains representative of other MTBC lineages ("mismatched infection"). We found that L1 infections resulted in a significantly lower bacterial burden and that the intra-cellular replication rate of L2 strains was significantly higher compared the other MTBC lineages, irrespective of the MTBC lineage originally infecting the patients. Moreover, L4-infected macrophages released significantly greater amounts of TNF-α, IL-6, IL-10, MIP-1β, and IL-1β compared to macrophages infected by all other strains. While our results revealed no measurable effect of local adaptation, they further highlight the strong impact of MTBC phylogenetic diversity on the variable outcome of the host-pathogen interaction in human tuberculosis.
Collapse
Affiliation(s)
- Hellen Hiza
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Michaela Zwyer
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ainhoa Arbués
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mohamed Sasamalo
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zhi Ming Xu
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sébastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Allschwil, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Orgeur M, Sous C, Madacki J, Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev 2024; 48:fuae006. [PMID: 38365982 PMCID: PMC10906988 DOI: 10.1093/femsre/fuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.
Collapse
Affiliation(s)
- Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Camille Sous
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Jan Madacki
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Unit for Human Evolutionary Genetics, 75015 Paris, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| |
Collapse
|
7
|
Saavedra Cervera B, López MG, Chiner-Oms Á, García AM, Cancino-Muñoz I, Torres-Puente M, Villamayor L, Madrazo-Moya C, Mambuque E, Sequera GV, Respeito D, Blanco S, Augusto O, López-Varela E, García-Basteiro AL, Comas I. Fine-grain population structure and transmission patterns of Mycobacterium tuberculosis in southern Mozambique, a high TB/HIV burden area. Microb Genom 2022; 8. [PMID: 35787782 PMCID: PMC9455694 DOI: 10.1099/mgen.0.000844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genomic studies of the Mycobacterium tuberculosis complex (MTBC) might shed light on the dynamics of its transmission, especially in high-burden settings, where recent outbreaks are embedded in the complex natural history of the disease. To this end, we conducted a 1 year prospective surveillance-based study in Mozambique. We applied whole-genome sequencing (WGS) to 295 positive cultures. We fully characterized MTBC isolates by phylogenetics and dating evaluation, and carried out a molecular epidemiology analysis to investigate further associations with pre-defined transmission risk factors. The majority of strains (49.5%, 136/275) belonged to lineage (L) 4; 57.8 % of them (159/275) were in genomic transmission clusters (cut-off 5 SNPs), and a strikingly high proportion (45.5%) shared an identical genotype (0 SNP pairwise distance). We found two ‘likely endemic’ clades, comprising 67 strains, belonging to L1.2, which dated back to the late 19th century and were associated with recent spread among people living with human immunodeficiency virus (PLHIV). We describe for the first time the population structure of MTBC in our region, a high tuberculosis (TB)/HIV burden area. Clustering analysis revealed an unforeseen pattern of spread and high rates of progression to active TB, suggesting weaknesses in TB control activities. The long-term presence of local strains in Mozambique, which were responsible for large transmission among HIV/TB-coinfected patients, calls into question the role of HIV in TB transmission.
Collapse
Affiliation(s)
- Belén Saavedra Cervera
- PhD Programin Medicine and Translational Research, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Mariana G López
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | | | - Ana María García
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain.,Universidad de Valencia, Valencia, Spain
| | | | | | | | | | - Edson Mambuque
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Durval Respeito
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Silvia Blanco
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Orvalho Augusto
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Elisa López-Varela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alberto L García-Basteiro
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
8
|
Panaiotov S, Madzharov D, Hodzhev Y. Biodiversity of Mycobacterium tuberculosis in Bulgaria Related to Human Migrations or Ecological Adaptation. Microorganisms 2022; 10:microorganisms10010146. [PMID: 35056596 PMCID: PMC8778017 DOI: 10.3390/microorganisms10010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Bulgaria is among the 18 high-priority countries of the WHO European Region with high rates of tuberculosis. The causative agent of tuberculosis is thought to have emerged in Africa 70,000 years ago, or during the Neolithic age, and colonized the world through human migrations. The established main lineages of tuberculosis correlate highly with geography. The goal of our study was to investigate the biodiversity of Mycobacteriumtuberculosis in Bulgaria in association with human migration history during the last 10 centuries. We analyzed spoligotypes and MIRU-VNTR genotyping data of 655 drug-sensitive and 385 multidrug-resistant M. tuberculosis strains collected in Bulgaria from 2008 to 2018. We assigned the genotype of all isolates using SITVITWEB and MIRU-VNTRplus databases and software. We investigated the major well-documented historical events of immigration to Bulgaria that occurred during the last millennium. Genetic profiles demonstrated that, with the exceptions of 3 strains of Mycobacterium bovis and 18 strains of Lineage 2 (W/Beijing spoligotype), only Lineage 4 (Euro-American) was widely diffused in Bulgaria. Analysis of well-documented immigrations of Roma from the Indian subcontinent during the 10th to the 12th centuries, Turkic peoples from Central Asia in the medieval centuries, and more recently Armenians, Russians, and Africans in the 20th century influenced the biodiversity of M. tuberculosis in Bulgaria but only with genotypes of sublineages within the L4. We hypothesize that these sublineages were more virulent, or that ecological adaptation of imported M. tuberculosis genotypes was the main driver contributing to the current genetic biodiversity of M. tuberculosis in Bulgaria. We also hypothesize that some yet unknown local environmental factors may have been decisive in the success of imported genotypes. The ecological factors leading to local genetic biodiversity in M. tuberculosis are multifactorial and have not yet been fully clarified. The coevolution of long-lasting pathogen hosts should be studied, taking into account environmental and ecological changes.
Collapse
Affiliation(s)
- Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-887-720-061
| | | | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
| |
Collapse
|
9
|
Epidemiology of Mycobacterium tuberculosis lineages and strain clustering within urban and peri-urban settings in Ethiopia. PLoS One 2021; 16:e0253480. [PMID: 34252107 PMCID: PMC8274931 DOI: 10.1371/journal.pone.0253480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly understood. The present study investigated factors associated with M. tb lineage predominance and rate of strain clustering within urban and peri-urban settings in Ethiopia. Methods Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical and demographic data of the patients for further statistical analysis. Results From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns (n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-infection [2.84 (1.61, 5.55)]. Conclusion Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more detailed investigations into the molecular epidemiology of TB and related factors.
Collapse
|
10
|
Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res 2021; 246:126674. [PMID: 33549960 DOI: 10.1016/j.micres.2020.126674] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis complex (MTBC) refers to a group of mycobacteria encompassing nine members of closely related species that causes tuberculosis in animals and humans. Among the nine members, Mycobacterium tuberculosis (M. tuberculosis) remains the main causative agent for human tuberculosis that results in high mortality and morbidity globally. In general, MTBC species are low in diversity but exhibit distinctive biological differences and phenotypes among different MTBC lineages. MTBC species are likely to have evolved from a common ancestor through insertions/deletions processes resulting in species speciation with different degrees of pathogenicity. The pathogenesis of human tuberculosis is complex and remains poorly understood. It involves multi-interactions or evolutionary co-options between host factors and bacterial determinants for survival of the MTBC. Granuloma formation as a protection or survival mechanism in hosts by MTBC remains controversial. Additionally, MTBC species are capable of modulating host immune response and have adopted several mechanisms to evade from host immune attack in order to survive in humans. On the other hand, current diagnostic tools for human tuberculosis are inadequate and have several shortcomings. Numerous studies have suggested the potential of host biomarkers in early diagnosis of tuberculosis, in disease differentiation and in treatment monitoring. "Multi-omics" approaches provide holistic views to dissect the association of MTBC species with humans and offer great advantages in host biomarkers discovery. Thus, in this review, we seek to understand how the genetic variations in MTBC lead to species speciation with different pathogenicity. Furthermore, we also discuss how the host and bacterial players contribute to the pathogenesis of human tuberculosis. Lastly, we provide an overview of the journey of "omics" approaches in host biomarkers discovery in human tuberculosis and provide some interesting insights on the challenges and directions of "omics" approaches in host biomarkers innovation and clinical implementation.
Collapse
Affiliation(s)
- Renuga Devi Kanabalan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Le Jie Lee
- Prima Nexus Sdn. Bhd., Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Rosnah Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia.
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia.
| |
Collapse
|
11
|
Santos-Pereira A, Magalhães C, Araújo PMM, Osório NS. Evolutionary Genetics of Mycobacterium tuberculosis and HIV-1: "The Tortoise and the Hare". Microorganisms 2021; 9:147. [PMID: 33440808 PMCID: PMC7827287 DOI: 10.3390/microorganisms9010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The already enormous burden caused by Mycobacterium tuberculosis and Human Immunodeficiency Virus type 1 (HIV-1) alone is aggravated by co-infection. Despite obvious differences in the rate of evolution comparing these two human pathogens, genetic diversity plays an important role in the success of both. The extreme evolutionary dynamics of HIV-1 is in the basis of a robust capacity to evade immune responses, to generate drug-resistance and to diversify the population-level reservoir of M group viral subtypes. Compared to HIV-1 and other retroviruses, M. tuberculosis generates minute levels of genetic diversity within the host. However, emerging whole-genome sequencing data show that the M. tuberculosis complex contains at least nine human-adapted phylogenetic lineages. This level of genetic diversity results in differences in M. tuberculosis interactions with the host immune system, virulence and drug resistance propensity. In co-infected individuals, HIV-1 and M. tuberculosis are likely to co-colonize host cells. However, the evolutionary impact of the interaction between the host, the slowly evolving M. tuberculosis bacteria and the HIV-1 viral "mutant cloud" is poorly understood. These evolutionary dynamics, at the cellular niche of monocytes/macrophages, are also discussed and proposed as a relevant future research topic in the context of single-cell sequencing.
Collapse
Affiliation(s)
- Ana Santos-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro M. M. Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Spoligotype Diversity of Mycobacterium tuberculosis over Two Decades from Tiruvallur, South India. Int J Microbiol 2020; 2020:8841512. [PMID: 33110429 PMCID: PMC7582057 DOI: 10.1155/2020/8841512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022] Open
Abstract
Geographically, most tuberculosis (TB) cases in 2018 were reported from India. This TB burden is compounded by MDR-TB and XDR-TB. The strategies for the management and control of TB in the community depend on an understanding of the mode of spread of the different strains of TB isolates in the community. To determine the distribution and trends of M. tb strains over the time period in the community due to treatment, we carried out the present study on changes over two decades. Design/Methods. A total of 1218 M. tb isolates (year: 2001-2018) from Tiruvallur, India, were genotyped by spoligotyping after DNA extraction and subjected to anti-TB drug susceptibility testing for the first-line anti-TB drugs. Results. On analysis with the SpolDB4 database, majority (2001-2003: 53.32% and 2015-2018: 46.3%) of the isolates belonged to East African Indian (EAI) lineage, and the orphans designated in comparison to SpolDB4 stood 33% among 2001-2003 strain collection and 46.3% among 2015-2018 strain collection. 10.2% (2001-2003) and 9.26% (2015 to 2018) of isolates were monoresistant to isoniazid (H). MDR strains were less common among EAI strains (3.2%) compared to non-EAI strains (10.32%). Conclusions. EAI is the most predominant lineage in Tiruvallur, despite the presence of highly transmissible lineages like Beijing for the last two decades. The prevalence of MDR-TB is below the national average of 2-3% among the new TB cases in the last two decades. The reason can be attributed to the well-established nature of the locally circulating strains in this region which are not associated with drug resistance.
Collapse
|
13
|
Peters JS, Ismail N, Dippenaar A, Ma S, Sherman DR, Warren RM, Kana BD. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu Rev Genet 2020; 54:511-537. [PMID: 32926793 DOI: 10.1146/annurev-genet-022820-085940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, Mycobacterium tuberculosis, has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of M. tuberculosis isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| | - Nabila Ismail
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; , .,Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2000, Belgium;
| | - Shuyi Ma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Robin M Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Bavesh D Kana
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| |
Collapse
|
14
|
Click ES, Finlay A, Oeltmann JE, Basotli J, Modongo C, Boyd R, Wen XJ, Shepherd J, Moonan PK, Zetola NM. Phylogenetic diversity of Mycobacterium tuberculosis in two geographically distinct locations in Botswana - The Kopanyo Study. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104232. [PMID: 32028055 PMCID: PMC11574728 DOI: 10.1016/j.meegid.2020.104232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis complex (MTBC) is divided into several major phylogenetic lineages, with differential distribution globally. Using population-based data collected over a three year period, we performed 24-locus Mycobacterial Interspersed Repeat Unit - Variable Number Tandem Repeat (MIRU-VNTR) genotyping on all culture isolates from two districts of the country that differ in tuberculosis (TB) incidence (Gaborone, the capital, and Ghanzi in the Western Kalahari). The study objective was to characterize the molecular epidemiology of TB in these districts. Overall phylogenetic diversity mirrored that reported from neighboring Republic of South Africa, but differences in the two districts were marked. All four major lineages of M. tuberculosis were found in Gaborone, but only three of the four major lineages were found in Ghanzi. Strain diversity was lower in Ghanzi, with a large proportion (38%) of all isolates having an identical MIRU-VNTR result, compared to 6% of all isolates in Gaborone with the same MIRU-VNTR result. This study demonstrates localized differences in strain diversity by two districts in Botswana, and contributes to a growing characterization of MTBC diversity globally.
Collapse
Affiliation(s)
- Eleanor S Click
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States of America.
| | - Alyssa Finlay
- TB/HIV Research, Centers for Disease Control and Prevention, Gaborone, Botswana; Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Division of Tuberculosis Elimination, Atlanta, GA, USA
| | - John E Oeltmann
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Joyce Basotli
- TB/HIV Research, Centers for Disease Control and Prevention, Gaborone, Botswana
| | | | - Rosanna Boyd
- TB/HIV Research, Centers for Disease Control and Prevention, Gaborone, Botswana; Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Division of Tuberculosis Elimination, Atlanta, GA, USA
| | - Xiao Jun Wen
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - James Shepherd
- TB/HIV Research, Centers for Disease Control and Prevention, Gaborone, Botswana; Yale University School of Medicine, New Haven, CT, USA
| | - Patrick K Moonan
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | | |
Collapse
|
15
|
Kusejko K, Bachmann N, Chaudron SE, Nguyen H, Braun DL, Hampel B, Battegay M, Bernasconi E, Calmy A, Cavassini M, Hoffmann M, Böni J, Yerly S, Klimkait T, Perreau M, Rauch A, Günthard HF, Kouyos RD. A Systematic Phylogenetic Approach to Study the Interaction of HIV-1 With Coinfections, Noncommunicable Diseases, and Opportunistic Diseases. J Infect Dis 2020; 220:244-253. [PMID: 30835292 DOI: 10.1093/infdis/jiz093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
To systematically test whether coinfections spread along the HIV-1 transmission network and whether similarities in HIV-1 genomes predict AIDS-defining illnesses and comorbidities, we analyzed the distribution of these variables on the HIV phylogeny of the densely sampled Swiss HIV Cohort Study. By combining different statistical methods, we could detect, quantify, and explain the clustering of diseases. Infectious conditions such as hepatitis C, but also Kaposi sarcoma, clustered significantly, suggesting transmission of these infections along the HIV-1 transmission network. The clustering of patients with neurocognitive complaints could not be completely explained by the clustering of patients with similar demographic risk factors, which suggests a potential impact of viral genetics. In summary, the consistent and robust signal for coinfections and comorbidities highlights the strong interaction of HIV-1 and other infections and shows the potential of combining phylogenetic methods to identify disease traits that are likely to be related to virus genetic factors.
Collapse
Affiliation(s)
- Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Nadine Bachmann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Sandra E Chaudron
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Huyen Nguyen
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Benjamin Hampel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Cantonal Hospital St Gallen, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Sabine Yerly
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine-Petersplatz, University of Basel, Switzerland
| | | | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | | |
Collapse
|
16
|
Poonawala H, Kumar N, Peacock SJ. A review of published spoligotype data indicates the diversity of Mycobacterium tuberculosis from India is under-represented in global databases. INFECTION GENETICS AND EVOLUTION 2019; 78:104072. [PMID: 31618692 DOI: 10.1016/j.meegid.2019.104072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (MTBC) lineages differ in clinical presentation, virulence, transmission, drug resistance and immunological responses. Despite having the largest burden of tuberculosis (TB) in the world, strains from India are underrepresented in international databases. We reviewed published spoligotype data to determine the distribution and diversity of MTBC lineages in India. METHODS A Pubmed/MEDLINE search identified 34 M. tuberculosis spoligotyping studies from India. Spoligotype patterns were extracted and the Spoligotype International Type (SIT) number, sub-lineage and lineage determined. Minimum Spanning Trees were used to determine relationships between patterns. RESULTS We identified 1528 spoligotype patterns distributed across 8300 isolates; 6733 isolates belonged to 472 SITs, with 53% of all isolates belonging to 12 SITs with at least 100 isolates each. Lineage 1 and Lineage 3 made up 67% of all isolates, although a lineage could not be assigned for 16% of isolates. Lineage 1 isolates were most common in Southern, Western and Eastern India, and Lineage 3 was most common in Northern and Central India. The RULE, CBN and KBBN lineage prediction algorithms from the TB-lineage tools performed variably, with the correct lineage predicted correctly for only 64% of patterns with known lineage. Using a consensus definition, 64% of the 1359 isolates with unknown lineage were assigned to Lineage 1, and 14% each were assigned to Lineages 3 and 4. With these lineage assignments, 80% of all isolates belonged to either Lineage 1 or Lineage 3. CONCLUSION Our findings indicate significant M. tuberculosis diversity in India. The documentation of 1056 orphan and unreported patterns indicate that this diversity is under-represented in global databases.
Collapse
Affiliation(s)
- Husain Poonawala
- National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; Institute of Public Health, Banashankari, Bangalore 560070, India.
| | - Narender Kumar
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
17
|
Correa-Macedo W, Cambri G, Schurr E. The Interplay of Human and Mycobacterium Tuberculosis Genomic Variability. Front Genet 2019; 10:865. [PMID: 31620169 PMCID: PMC6759583 DOI: 10.3389/fgene.2019.00865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB), caused by the human pathogens Mycobacterium tuberculosis (Mtb) and Mycobacterium africanum, has plagued humanity for millennia and remains the deadliest infectious disease in the modern world. Mycobacterium tuberculosis and M. africanum can be subdivided phylogenetically into seven lineages exhibiting a low but significant degree of genomic diversity and preferential geographic distributions. Human genetic variability impacts all stages of TB pathogenesis ranging from susceptibility to infection with Mtb, progression of infection to disease, and the development of distinct clinical subtypes. The genetic study of severe childhood TB identified strong inborn single-gene errors revealing crucial pathways of vulnerability to TB. However, the identification of major TB-susceptibility genes on the population level has remained elusive. In particular, the replication of findings from candidate and genome-wide association studies across distinct human populations has proven difficult, thus hampering the characterization of reliable host molecular markers of susceptibility. Among the possible confounding factors of genetic association studies is Mtb genomic variability, which generally was not taken into account by human genetic studies. In support of this possibility, Mtb lineage was found to be a contributing factor to clinical presentation of TB and epidemiological spread of Mtb in exposed populations. The confluence of pathogen and human host genetic variability to TB pathogenesis led to the consideration of a possible coadaptation of Mtb strains and their human hosts, which should reveal itself in significant interaction effects between Mtb strain and TB-susceptibility/resistance alleles. Here, we present some of the most consistent findings of genetic susceptibility factors in human TB and review studies that point to genome-to-genome interaction between humans and Mtb lineages. The limited results available so far suggest that analyses considering joint human–Mtb genomic variability may provide improved power for the discovery of pathogenic drivers of the ongoing TB epidemic.
Collapse
Affiliation(s)
- Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Geison Cambri
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Chiner-Oms Á, Berney M, Boinett C, González-Candelas F, Young DB, Gagneux S, Jacobs WR, Parkhill J, Cortes T, Comas I. Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium tuberculosis complex. Nat Commun 2019; 10:3994. [PMID: 31488832 PMCID: PMC6728331 DOI: 10.1038/s41467-019-11948-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) members display different host-specificities and virulence phenotypes. Here, we have performed a comprehensive RNAseq and methylome analysis of the main clades of the MTBC and discovered unique transcriptional profiles. The majority of genes differentially expressed between the clades encode proteins involved in host interaction and metabolic functions. A significant fraction of changes in gene expression can be explained by positive selection on single mutations that either create or disrupt transcriptional start sites (TSS). Furthermore, we show that clinical strains have different methyltransferases inactivated and thus different methylation patterns. Under the tested conditions, differential methylation has a minor direct role on transcriptomic differences between strains. However, disruption of a methyltransferase in one clinical strain revealed important expression differences suggesting indirect mechanisms of expression regulation. Our study demonstrates that variation in transcriptional profiles are mainly due to TSS mutations and have likely evolved due to differences in host characteristics.
Collapse
Affiliation(s)
- Álvaro Chiner-Oms
- Unidad Mixta "Infección y Salud Pública" FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas-I2SysBio, Valencia, Spain.,Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Michael Berney
- Department of Microbiology and Immunology and Department of Molecular Genetics, Albert Einstein College of Medicine, New York, USA
| | - Christine Boinett
- Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Fernando González-Candelas
- Unidad Mixta "Infección y Salud Pública" FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas-I2SysBio, Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Valencia, Spain
| | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - William R Jacobs
- Department of Microbiology and Immunology and Department of Molecular Genetics, Albert Einstein College of Medicine, New York, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Mandingley Road, Cambiddge, CB3 OES, UK
| | - Teresa Cortes
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain. .,CIBER en Epidemiología y Salud Pública, Valencia, Spain.
| |
Collapse
|
19
|
Mekonnen D, Derbie A, Chanie A, Shumet A, Biadglegne F, Kassahun Y, Bobosha K, Mihret A, Wassie L, Munshea A, Nibret E, Yimer SA, Tønjum T, Aseffa A. Molecular epidemiology of M. tuberculosis in Ethiopia: A systematic review and meta-analysis. Tuberculosis (Edinb) 2019; 118:101858. [PMID: 31430694 PMCID: PMC6817397 DOI: 10.1016/j.tube.2019.101858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
The molecular epidemiology of Mycobacterium tuberculosis (M. tuberculosis, Mtb) is poorly documented in Ethiopia. The data that exists has not yet been collected in an overview metadata form. Thus, this review summarizes available literature on the genomic diversity, geospatial distribution and transmission patterns of Mtb lineages (L) and sublineages in Ethiopia. Spoligotyping and Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR) based articles were identified from MEDLINE via PubMed and Scopus. The last date of article search was done on 12th February 2019. Articles were selected following the PRISMA flow diagram. The proportion of (sub)lineages was summarized at national level and further disaggregated by region. Clustering and recent transmission index (RTI) were determined using metan command and random effect meta-analysis model. The meta-analysis was computed using Stata 14 (Stata Corp. College Station, TX, USA). Among 4371 clinical isolates, 99.5% were Mtb and 0.5% were M. bovis. Proportionally, L4, L3, L1 and L7 made up 62.3%, 21.7%, 7.9% and 3.4% of the total isolates, respectively. Among sublineages, L4.2. ETH/SIT149, L4.10/SIT53, L3. ETH1/SIT25 and L4.6/SIT37 were the leading clustered isolates accounting for 14.4%, 9.7%, 7.2% and 5.5%, respectively. Based on MIRU-VNTR, the rate of clustering was 41% and the secondary case rate from a single source case was estimated at 29%. Clustering and recent transmission index was higher in eastern and southwestern Ethiopia compared with the northwestern part of the country. High level of genetic diversity with a high rate of clustering was noted which collectively mirrored the phenomena of micro-epidemics and super-spreading. The largest set of clustered strains deserves special attention and further characterization using whole genome sequencing (WGS) to better understand the evolution, genomic diversity and transmission dynamics of Mtb.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Awoke Derbie
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia.
| | - Asmamaw Chanie
- Institute of Land Administration, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Abebe Shumet
- Felege Hiwot Referral Hospital, Bahir Dar, Ethiopia.
| | - Fantahun Biadglegne
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Yonas Kassahun
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Kidist Bobosha
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Abaineh Munshea
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia; Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Endalkachew Nibret
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia; Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo, PO Box 4950, Nydalen, NO-0424, Oslo, Norway; Coalition for Epidemic Preparedness Innovations, CEPI, P.O. Box 123, Torshov 0412, Oslo, Norway.
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, PO Box 4950, Nydalen, NO-0424, Oslo, Norway.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
20
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
21
|
Mekonnen D, Derbie A, Abeje A, Shumet A, Nibret E, Biadglegne F, Munshae A, Bobosha K, Wassie L, Berg S, Aseffa A. Epidemiology of tuberculous lymphadenitis in Africa: A systematic review and meta-analysis. PLoS One 2019; 14:e0215647. [PMID: 31002716 PMCID: PMC6474617 DOI: 10.1371/journal.pone.0215647] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/06/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Tuberculous lymphadenitis is the most frequent form of extra-pulmonary TB (EPTB) and accounts for a considerable proportion of all EPTB cases. We conducted a systematic review of articles that described the epidemiological features of TBLN in Africa. METHODS Any article that characterized TBLN cases with respect to demographic, exposure and clinical features were included. Article search was restricted to African countries and those published in English language irrespective of publication year. The articles were retrieved from the electronic database of PubMed, Scopus, Cochrane library and Lens.org. Random effect pooled prevalence with 95% CI was computed based on Dersimonian and Laird method. To stabilize the variance, Freeman-Tukey double arcsine root transformation was done. The data were analyzed using Stata 14. RESULTS Of the total 833 articles retrieved, twenty-eight articles from 12 African countries fulfilled the eligibility criteria. A total of 6746 TBLN cases were identified. The majority of the cases, 4762 (70.6%) were from Ethiopia. Over 77% and 88% of identified TBLN were cervical in type and naïve to TB drugs. Among the total number of TBLN cases, 53% were female, 68% were in the age range of 15-44 years, 52% had a history of livestock exposure, 46% had a history of consuming raw milk/meat and 24% had history of BCG vaccination. The proportion of TBLN/HIV co-infection was much lower in Ethiopia (21%) than in other African countries (73%) and the overall African estimate (52%). Fever was recorded in 45%, night sweating in 55%, weight loss in 62% and cough for longer than two weeks in 32% of the TBLN cases. CONCLUSIONS TBLN was more common in females than in males. The high prevalence of TBLN in Ethiopia did not show directional correlation with HIV. Population based prospective studies are warranted to better define the risk factors of TBLN in Africa.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- * E-mail:
| | - Awoke Derbie
- Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Andargachew Abeje
- Geospatial Data and Technology Center, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abebe Shumet
- Amhara Regional State Health Bureau, Felege Hiwot Referral Hospital, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Fantahun Biadglegne
- Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshae
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Stefan Berg
- Animal and Plant Health Agency, Weybridge, the United Kingdom
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Bello-López JM, León-García G, Rojas-Bernabé A, Fernández-Sánchez V, García-Hernández O, Mancilla Rámirez J, Ibáñez-Cervantes G. Morbidity Trends and Risk of Tuberculosis: Mexico 2007-2017. Can Respir J 2019; 2019:8295261. [PMID: 31178943 PMCID: PMC6501252 DOI: 10.1155/2019/8295261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/14/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background To know the current status of the epidemiological and geographic distribution of tuberculosis and its complication meningeal tuberculosis in Mexico, this work analyzes national surveillance data (ten years) issued by the General Directorate of Epidemiology (GDE). Methods An observational and retrospective analysis of monthly and annual reports of pulmonary and meningeal tuberculosis cases from January 2007 to December 2017 was performed on the annual reports issued by the GDE in Mexico. The number of cases and incidence were classified by year, state, age group, gender, and seasons. Results A national case distribution map of pulmonary and meningeal tuberculosis incidence was generated. During this period, a total of 184,003 and 3,388 cases were reported with a median of 16,727.5 and 308 cases per year for pulmonary and meningeal tuberculosis diseases, respectively. The number of cases and incidence of pulmonary and meningeal tuberculosis per year showed that male gender presented a continuous increase in both parameters. The geographic analysis of the distribution of cases of tuberculosis showed that states like Guerrero, Tabasco, and Veracruz presented higher means of tuberculosis cases during this period. Northern states had the highest number of cases in the country compared to other states. In Mexico, pulmonary tuberculosis and meningeal tuberculosis are seasonal. Interestingly, cases of meningeal tuberculosis show an increase during October and November (autumn). Conclusions In Mexico, during the years 2007-2017, there has been an increase in the proportion of male TB patients. It remains necessary to implement strategies to detect TB in the adult population, especially among men, because tuberculosis could be difficult to recognize in an early stage in the population, and the appearance of resistant strains can cause an increase in the incidence of the disease.
Collapse
Affiliation(s)
- Juan Manuel Bello-López
- Unidad de Investigación en Microbiología y Toxicología, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena de las Salinas, 07360 Mexico City, Mexico
| | - Gregorio León-García
- Hospital de la Mujer, SSA, Salvador Díaz Mirón 374, Col. Santo Tomas, 11340 Mexico City, Mexico
- Centro Médico y de Investigaciones Científicas Fundación CIAM ESPERAS, A.C., Felipe Carrillo Puerto 181, Col. Popotla, 11400 Mexico City, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón, Col. Casco de Santo Tomas, 11340 Mexico City, Mexico
| | - Araceli Rojas-Bernabé
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón, Col. Casco de Santo Tomas, 11340 Mexico City, Mexico
| | | | - Omar García-Hernández
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Mancilla Rámirez
- Hospital de la Mujer, SSA, Salvador Díaz Mirón 374, Col. Santo Tomas, 11340 Mexico City, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón, Col. Casco de Santo Tomas, 11340 Mexico City, Mexico
| | - Gabriela Ibáñez-Cervantes
- Hospital de la Mujer, SSA, Salvador Díaz Mirón 374, Col. Santo Tomas, 11340 Mexico City, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón, Col. Casco de Santo Tomas, 11340 Mexico City, Mexico
| |
Collapse
|
23
|
Rutaihwa LK, Menardo F, Stucki D, Gygli SM, Ley SD, Malla B, Feldmann J, Borrell S, Beisel C, Middelkoop K, Carter EJ, Diero L, Ballif M, Jugheli L, Reither K, Fenner L, Brites D, Gagneux S. Multiple Introductions of Mycobacterium tuberculosis Lineage 2–Beijing Into Africa Over Centuries. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Rutaihwa LK, Sasamalo M, Jaleco A, Hella J, Kingazi A, Kamwela L, Kingalu A, Malewo B, Shirima R, Doetsch A, Feldmann J, Reinhard M, Borrell S, Brites D, Reither K, Doulla B, Fenner L, Gagneux S. Insights into the genetic diversity of Mycobacterium tuberculosis in Tanzania. PLoS One 2019; 14:e0206334. [PMID: 30978186 PMCID: PMC6461268 DOI: 10.1371/journal.pone.0206334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human tuberculosis (TB) is caused by seven phylogenetic lineages of the Mycobacterium tuberculosis complex (MTBC), Lineage 1-7. Recent advances in rapid genotyping of MTBC based on single nucleotide polymorphisms (SNP), allow for phylogenetically robust strain classification, paving the way for defining genotype-phenotype relationships in clinical settings. Such studies have revealed that, in addition to host and environmental factors, strain variation in the MTBC influences the outcome of TB infection and disease. In Tanzania, such molecular epidemiological studies of TB however are scarce in spite of a high TB burden. METHODS AND FINDINGS Here we used SNP-typing to characterize a nationwide collection of 2,039 MTBC clinical isolates representative of 1.6% of all new and retreatment TB cases notified in Tanzania during 2012 and 2013. Four lineages, namely Lineage 1-4 were identified within the study population. The distribution and frequency of these lineages varied across regions but overall, Lineage 4 was the most frequent (n = 866, 42.5%), followed by Lineage 3 (n = 681, 33.4%) and 1 (n = 336, 16.5%), with Lineage 2 being the least frequent (n = 92, 4.5%). We found Lineage 2 to be independently associated with female sex (adjusted odds ratio [aOR] 2.14; 95% confidence interval [95% CI] 1.31 - 3.50, p = 0.002) and retreatment cases (aOR 1.67; 95% CI 0.95 - 2.84, p = 0. 065) in the study population. We found no associations between MTBC lineage and patient age or HIV status. Our sublineage typing based on spacer oligotyping on a subset of Lineage 1, 3 and 4 strains revealed the presence of mainly EAI, CAS and LAM families. Finally, we detected low levels of multidrug resistant isolates among a subset of 144 retreatment cases. CONCLUSIONS This study provides novel insights into the MTBC lineages and the possible influence of pathogen-related factors on the TB epidemic in Tanzania.
Collapse
Affiliation(s)
- Liliana K. Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Mohamed Sasamalo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Aladino Jaleco
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Lujeko Kamwela
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Amri Kingalu
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Bryceson Malewo
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Raymond Shirima
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Anna Doetsch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Basra Doulla
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Kone A, Diarra B, Cohen K, Diabate S, Kone B, Diakite MT, Diarra H, Sanogo M, Togo ACG, Sarro YDS, Baya B, Coulibaly N, Kodio O, Achenbach CJ, Murphy RL, Holl JL, Siddiqui S, Doumbia S, Bishai WR, Diallo S, Maiga M. Differential HLA allele frequency in Mycobacterium africanum vs Mycobacterium tuberculosis in Mali. HLA 2019; 93:24-31. [PMID: 30516034 DOI: 10.1111/tan.13448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC), however, the distribution and frequency of MTBC lineages and sublineages vary in different parts of the globe. Mycobacterium africanum, a member of MTBC is responsible for a large percentage of TB cases in West Africa, however, it is rarely identified outside of this part of the World. Whether or not differential HLA polymorphism (an important host factor) is contributing to the geographic restriction of M. africanum to West Africa is unknown. Here, we conducted a cohort study in Mali of newly diagnosed individuals with active pulmonary TB and normal healthy controls. The MTBC isolates were spoligotyped to determine the TB study groups (M. tuberculosis sensu stricto LAM10 and M. africanum), and HLA typing was performed on peripheral blood. Unlike previous reports on other populations, we found that HLA class-I alleles were significantly associated with active TB disease in this population. HLA-B alleles (B*07:02, B*08:01, B*14:02, B*15:03, B*15:10, B*18:01, B*42:01, B*42:02, B*51:01 and B*81:01) were significantly associated with M. africanum (40%-45%) and M. tuberculosis (75%) compared with healthy controls. Many HLA-A alleles (A*02:05, A*34:02, A*66:01 and A*68:02) were also associated with both TB groups (65%-70%). However, many class II HLA-DR variants were found to be associated with M. tuberculosis but not M. africanum with the exception of the DRB1*03:01, which was associated with both groups. The differential HLA distribution observed in this study might be at least partially responsible for the geographical restriction of M. africanum infections to West Africa.
Collapse
Affiliation(s)
- Amadou Kone
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bassirou Diarra
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Keira Cohen
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Seydou Diabate
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bourahima Kone
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mahamane T Diakite
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Hawa Diarra
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Moumine Sanogo
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Antieme C G Togo
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yeya Dit Sadio Sarro
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bocar Baya
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nadie Coulibaly
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ousmane Kodio
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | | | | | - Sophia Siddiqui
- National Institute of Allergic and Infectious Diseases, Rockville, Maryland
| | - Seydou Doumbia
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - William R Bishai
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Souleymane Diallo
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mamoudou Maiga
- University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Sousa J, Saraiva M. Paradigm changing evidence that alter tuberculosis perception and detection: Focus on latency. INFECTION GENETICS AND EVOLUTION 2018; 72:78-85. [PMID: 30576838 DOI: 10.1016/j.meegid.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Tuberculosis remains a devastating disease to Mankind, ranking as the ninth cause of death worldwide. Eliminating tuberculosis as proven much more difficult than once anticipated. In addition to the delay in diagnosis and drug resistance problems that compromise the efficacy of treatment, the enormous reservoir of latently infected individuals continuously feeds the epidemics. However, targeting latency with prophylactic antibiotic administration is not possible at the populational level. Together, these issues call for a better understanding of latency, as well as for a more precise identification of individuals at high risk of reactivation. For this, recent paradigm changing evidence need to be taken into account, most notably, the existence of a tuberculosis spectrum; the genetic diversity of both humans and tuberculosis-causing bacteria; and the changes in the human population that interfere with tuberculosis. Here we discuss latency in the light of these variables and how that understanding can move forward tuberculosis research and elimination.
Collapse
Affiliation(s)
- Jeremy Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
27
|
The arms race between man and Mycobacterium tuberculosis: Time to regroup. INFECTION GENETICS AND EVOLUTION 2018; 66:361-375. [DOI: 10.1016/j.meegid.2017.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022]
|
28
|
Barreira-Silva P, Torrado E, Nebenzahl-Guimaraes H, Kallenius G, Correia-Neves M. Aetiopathogenesis, immunology and microbiology of tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB, Warren R, Dippenaar A, Parsons SDC, Beisel C, Behr MA, Fyfe JA, Coscolla M, Gagneux S. A New Phylogenetic Framework for the Animal-Adapted Mycobacterium tuberculosis Complex. Front Microbiol 2018; 9:2820. [PMID: 30538680 PMCID: PMC6277475 DOI: 10.3389/fmicb.2018.02820] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) affects humans and other animals and is caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Previous studies have shown that there are at least nine members of the MTBC infecting animals other than humans; these have also been referred to as ecotypes. However, the ecology and the evolution of these animal-adapted MTBC ecotypes are poorly understood. Here we screened 12,886 publicly available MTBC genomes and newly sequenced 17 animal-adapted MTBC strains, gathering a total of 529 genomes of animal-adapted MTBC strains. Phylogenomic and comparative analyses confirm that the animal-adapted MTBC members are paraphyletic with some members more closely related to the human-adapted Mycobacterium africanum Lineage 6 than to other animal-adapted strains. Furthermore, we identified four main animal-adapted MTBC clades that might correspond to four main host shifts; two of these clades are hypothesized to reflect independent cattle domestication events. Contrary to what would be expected from an obligate pathogen, MTBC nucleotide diversity was not positively correlated with host phylogenetic distances, suggesting that host tropism in the animal-adapted MTBC seems to be driven by contact rates and demographic aspects of the host population rather by than host relatedness. By combining phylogenomics with ecological data, we propose an evolutionary scenario in which the ancestor of Lineage 6 and all animal-adapted MTBC ecotypes was a generalist pathogen that subsequently adapted to different host species. This study provides a new phylogenetic framework to better understand the evolution of the different ecotypes of the MTBC and guide future work aimed at elucidating the molecular mechanisms underlying host range.
Collapse
Affiliation(s)
- Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna: Centro Nazionale di Referenza per la Tubercolosi Bovina, Brescia, Italy
| | - Robin Warren
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anzaan Dippenaar
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Sven David Charles Parsons
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marcel A Behr
- McGill International TB Centre, Infectious Diseases and Immunity in Global Health, McGill University Health Centre and Research Institute, Montréal, QC, Canada
| | - Janet A Fyfe
- Mycobacterium Reference Laboratory, Victoria Infectious Diseases Reference Laboratory, Peter Doherty Institute, Melbourne, VIC, Australia
| | - Mireia Coscolla
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Wiens KE, Woyczynski LP, Ledesma JR, Ross JM, Zenteno-Cuevas R, Goodridge A, Ullah I, Mathema B, Djoba Siawaya JF, Biehl MH, Ray SE, Bhattacharjee NV, Henry NJ, Reiner RC, Kyu HH, Murray CJL, Hay SI. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med 2018; 16:196. [PMID: 30373589 PMCID: PMC6206891 DOI: 10.1186/s12916-018-1180-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The host, microbial, and environmental factors that contribute to variation in tuberculosis (TB) disease are incompletely understood. Accumulating evidence suggests that one driver of geographic variation in TB disease is the local ecology of mycobacterial genotypes or strains, and there is a need for a comprehensive and systematic synthesis of these data. The objectives of this study were to (1) map the global distribution of genotypes that cause TB disease and (2) examine whether any epidemiologically relevant clinical characteristics were associated with those genotypes. METHODS We performed a systematic review of PubMed and Scopus to create a comprehensive dataset of human TB molecular epidemiology studies that used representative sampling techniques. The methods were developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We extracted and synthesized data from studies that reported prevalence of bacterial genotypes and from studies that reported clinical characteristics associated with those genotypes. RESULTS The results of this study are twofold. First, we identified 206 studies for inclusion in the study, representing over 200,000 bacterial isolates collected over 27 years in 85 countries. We mapped the genotypes and found that, consistent with previously published maps, Euro-American lineage 4 and East Asian lineage 2 strains are widespread, and West African lineages 5 and 6 strains are geographically restricted. Second, 30 studies also reported transmission chains and 4 reported treatment failure associated with genotypes. We performed a meta-analysis and found substantial heterogeneity across studies. However, based on the data available, we found that lineage 2 strains may be associated with increased risk of transmission chains, while lineages 5 and 6 strains may be associated with reduced risk, compared with lineage 4 strains. CONCLUSIONS This study provides the most comprehensive systematic analysis of the evidence for diversity in bacterial strains that cause TB disease. The results show both geographic and epidemiological differences between strains, which could inform our understanding of the global burden of TB. Our findings also highlight the challenges of collecting the clinical data required to inform TB diagnosis and treatment. We urge future national TB programs and research efforts to prioritize and reinforce clinical data collection in study designs and results dissemination.
Collapse
Affiliation(s)
- Kirsten E Wiens
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Lauren P Woyczynski
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Jorge R Ledesma
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Jennifer M Ross
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
- Departments of Global Health and Medicine, University of Washington, Seattle, WA, USA
| | | | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama, Panama
| | - Irfan Ullah
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
- Programmatic Management of Drug-Resistant TB Unit, BSL-II TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Joel Fleury Djoba Siawaya
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique, Libreville, Gabon
- Centre Hospitalier Universitaire Mère-Enfant Fondation Jeanne EBORI, Libreville, Gabon
| | - Molly H Biehl
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Sarah E Ray
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Natalia V Bhattacharjee
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Nathaniel J Henry
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Hmwe H Kyu
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA.
| |
Collapse
|
31
|
Palittapongarnpim P, Ajawatanawong P, Viratyosin W, Smittipat N, Disratthakit A, Mahasirimongkol S, Yanai H, Yamada N, Nedsuwan S, Imasanguan W, Kantipong P, Chaiyasirinroje B, Wongyai J, Toyo-Oka L, Phelan J, Parkhill J, Clark TG, Hibberd ML, Ruengchai W, Palittapongarnpim P, Juthayothin T, Tongsima S, Tokunaga K. Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates. Sci Rep 2018; 8:11597. [PMID: 30072734 PMCID: PMC6072702 DOI: 10.1038/s41598-018-29986-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis presents a global health challenge. Mycobacterium tuberculosis is divided into several lineages, each with a different geographical distribution. M. tuberculosis lineage 1 (L1) is common in the high-burden areas in East Africa and Southeast Asia. Although the founder effect contributes significantly to the phylogeographic profile, co-evolution between the host and M. tuberculosis may also play a role. Here, we reported the genomic analysis of 480 L1 isolates from patients in northern Thailand. The studied bacterial population was genetically diverse, allowing the identification of a total of 18 sublineages distributed into three major clades. The majority of isolates belonged to L1.1 followed by L1.2.1 and L1.2.2. Comparison of the single nucleotide variant (SNV) phylogenetic tree and the clades defined by spoligotyping revealed some monophyletic clades representing EAI2_MNL, EAI2_NTM and EAI6_BGD1 spoligotypes. Our work demonstrates that ambiguity in spoligotype assignment could be partially resolved if the entire DR region is investigated. Using the information to map L1 diversity across Southeast Asia highlighted differences in the dominant strain-types in each individual country, despite extensive interactions between populations over time. This finding supported the hypothesis that there is co-evolution between the bacteria and the host, and have implications for tuberculosis disease control.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand.
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand.
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Wasna Viratyosin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Nat Smittipat
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Areeya Disratthakit
- Department of Medical Sciences, Ministry of Public Health, Tiwanon Road, Nonthaburi, Thailand
| | | | - Hideki Yanai
- TB-HIV Research Foundation, Chiangrai, Thailand
- Fukujuji Hospital, Japan Anti-tuberculosis Association (JATA), Kiyose, Japan
| | - Norio Yamada
- Research Institute of Tuberculosis, JATA, Kiyose, Japan
| | - Supalert Nedsuwan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Worarat Imasanguan
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | - Pacharee Kantipong
- Chiangrai Prachanukroh Hospital, Ministry of Public Health, Chiangrai, Thailand
| | | | | | - Licht Toyo-Oka
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Taane G Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Wuthiwat Ruengchai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | | | - Tada Juthayothin
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Sissades Tongsima
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Phahonyothin Road, Pathumthani, Thailand
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
|
33
|
Brites D, Gagneux S. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:1-26. [DOI: 10.1007/978-3-319-64371-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Abstract
Co-infection with Mycobacterium tuberculosis is the leading cause of death in individuals infected with HIV-1. It has long been known that HIV-1 infection alters the course of M. tuberculosis infection and substantially increases the risk of active tuberculosis (TB). It has also become clear that TB increases levels of HIV-1 replication, propagation and genetic diversity. Therefore, co-infection provides reciprocal advantages to both pathogens. In this Review, we describe the epidemiological associations between the two pathogens, selected interactions of each pathogen with the host and our current understanding of how they affect the pathogenesis of TB and HIV-1/AIDS in individuals with co-infections. We evaluate the mechanisms and consequences of HIV-1 depletion of T cells on immune responses to M. tuberculosis. We also discuss the effect of HIV-1 infection on the control of M. tuberculosis by macrophages through phagocytosis, autophagy and cell death, and we propose models by which dysregulated inflammatory responses drive the pathogenesis of TB and HIV-1/AIDS.
Collapse
|
35
|
Koch AS, Brites D, Stucki D, Evans JC, Seldon R, Heekes A, Mulder N, Nicol M, Oni T, Mizrahi V, Warner DF, Parkhill J, Gagneux S, Martin DP, Wilkinson RJ. The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Mol Biol Evol 2017; 34:1654-1668. [PMID: 28369607 PMCID: PMC5455964 DOI: 10.1093/molbev/msx107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV significantly affects the immunological environment during tuberculosis coinfection, and therefore may influence the selective landscape upon which M. tuberculosis evolves. To test this hypothesis whole genome sequences were determined for 169 South African M. tuberculosis strains from HIV-1 coinfected and uninfected individuals and analyzed using two Bayesian codon-model based selection analysis approaches: FUBAR which was used to detect persistent positive and negative selection (selection respectively favoring and disfavoring nonsynonymous substitutions); and MEDS which was used to detect episodic directional selection specifically favoring nonsynonymous substitutions within HIV-1 infected individuals. Among the 25,251 polymorphic codon sites analyzed, FUBAR revealed that 189-fold more were detectably evolving under persistent negative selection than were evolving under persistent positive selection. Three specific codon sites within the genes celA2b, katG, and cyp138 were identified by MEDS as displaying significant evidence of evolving under directional selection influenced by HIV-1 coinfection. All three genes encode proteins that may indirectly interact with human proteins that, in turn, interact functionally with HIV proteins. Unexpectedly, epitope encoding regions were enriched for sites displaying weak evidence of directional selection influenced by HIV-1. Although the low degree of genetic diversity observed in our M. tuberculosis data set means that these results should be interpreted carefully, the effects of HIV-1 on epitope evolution in M. tuberculosis may have implications for the design of M. tuberculosis vaccines that are intended for use in populations with high HIV-1 infection rates.
Collapse
Affiliation(s)
- Anastasia S Koch
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - David Stucki
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Joanna C Evans
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexa Heekes
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicola Mulder
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mark Nicol
- University of Cape Town, and National Health Laboratory Service, Cape Town, South Africa
| | - Tolu Oni
- Division of Public Health Medicine, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Darren P Martin
- Division of Computational Biology, Department of Integrated Biology Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| |
Collapse
|
36
|
Séraphin MN, Doggett R, Johnston L, Zabala J, Gerace AM, Lauzardo M. Association between Mycobacterium tuberculosis lineage and site of disease in Florida, 2009-2015. INFECTION GENETICS AND EVOLUTION 2017; 55:366-371. [PMID: 28993293 DOI: 10.1016/j.meegid.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis is characterized into four global lineages with strong geographical restriction. To date one study in the United States has investigated M. tuberculosis lineage association with tuberculosis (TB) disease presentation (extra-pulmonary versus pulmonary). We update this analysis using recent (2009-2015) data from the State of Florida to measure lineage association with pulmonary TB, the infectious form of the disease. METHODS M. tuberculosis lineage was assigned based on the spacer oligonucleotide typing (spoligotyping) patterns. TB disease site was defined as exclusively pulmonary or extra-pulmonary. We used ORs to measure the association between M. tuberculosis lineages and pulmonary compared to extra-pulmonary TB. The final multivariable model was adjusted for patient socio-demographics, HIV and diabetes status. RESULTS We analyzed 3061 cases, 83.4% were infected with a Euro-American lineage, 8.4% Indo-Oceanic and 8.2% East-Asian lineage. The majority of the cases (86.0%) were exclusively pulmonary. Compared to the Indo-Oceanic lineage, infection with a Euro-American (AOR=1.87, 95% CI: 1.21, 2.91) or an East-Asian (AOR=2.11, 95% CI: 1.27, 3.50) lineage favored pulmonary disease compared to extra-pulmonary. In a sub-analysis among pulmonary cases, strain lineage was not associated with sputum smear positive status, indicating that the observed association with pulmonary disease is independent of host contagiousness. CONCLUSION As an obligate pathogen, M. tuberculosis' fitness is directly correlated to its transmission potential. In this analysis, we show that M. tuberculosis lineage is associated with pulmonary disease presentation. This association may explain the predominance in a region of certain lineages compared to others.
Collapse
Affiliation(s)
- Marie Nancy Séraphin
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, USA; Emerging Pathogen Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA.
| | - Richard Doggett
- Florida Department of Health, Bureau of Public Health Laboratories, 1217 N. Pearl Street, Jacksonville, FL, 32202, USA.
| | - Lori Johnston
- Florida Department of Health, Bureau of Tuberculosis Control, 4052 Bald Cypress Way, Bin A-20, Tallahassee, FL 32399.
| | - Jose Zabala
- Florida Department of Health, Bureau of Tuberculosis Control, 4052 Bald Cypress Way, Bin A-20, Tallahassee, FL 32399.
| | - Alexandra M Gerace
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, USA; Emerging Pathogen Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA.
| | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, USA; Emerging Pathogen Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA.
| |
Collapse
|
37
|
Abstract
Tuberculosis (TB) remains the most deadly bacterial infectious disease worldwide. Its treatment and control are threatened by increasing numbers of multidrug-resistant (MDR) or nearly untreatable extensively drug-resistant (XDR) strains. New concepts are therefore urgently needed to understand the factors driving the TB epidemics and the spread of different strain populations, especially in association with drug resistance. Classical genotyping and, more recently, whole-genome sequencing (WGS) revealed that the world population of tubercle bacilli is more diverse than previously thought. Several major phylogenetic lineages can be distinguished, which are associated with their sympatric host population. Distinct clonal (sub)populations can even coexist within infected patients. WGS is now used as the ultimate approach for differentiating clinical isolates and for linking phenotypic to genomic variation from lineage to strain levels. Multiple lines of evidence indicate that the genetic diversity of TB strains translates into pathobiological consequences, and key molecular mechanisms probably involved in differential pathoadaptation of some main lineages have recently been identified. Evidence also accumulates on molecular mechanisms putatively fostering the emergence and rapid expansion of particular MDR and XDR strain groups in some world regions. However, further integrative studies will be needed for complete elucidation of the mechanisms that allow the pathogen to infect its host, acquire multidrug resistance, and transmit so efficiently. Such knowledge will be key for the development of the most effective new diagnostics, drugs, and vaccination strategies.
Collapse
|
38
|
Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017; 97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Mycobacteria and Candida species include significant human pathogens that can cause localized or disseminated infections. Although these organisms may appear to have little in common, several shared pathways of immune recognition and response are important for both control and infection-related pathology. In this article, we compare and contrast the innate and adaptive components of the immune system that pertain to these infections in humans and animal models. We also explore a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-established model of Candida infection, Mycobacteria species colonize their human hosts in equilibrium with the immune response. Perturbations in the immune response permit the progression to pathologic disease at the expense of the host. Understanding the immune factors required to maintain commensalism may aid with the development of diagnostic and treatment strategies for both categories of pathogens.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Anna R Huppler
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Children's Hospital and Health System, Children's Research Institute, Milwaukee, WI, USA.
| |
Collapse
|
39
|
Duarte TA, Nery JS, Boechat N, Pereira SM, Simonsen V, Oliveira M, Gomes MGM, Penha-Gonçalves C, Barreto ML, Barbosa T. A systematic review of East African-Indian family of Mycobacterium tuberculosis in Brazil. Braz J Infect Dis 2017; 21:317-324. [PMID: 28238627 PMCID: PMC9427636 DOI: 10.1016/j.bjid.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023] Open
Abstract
Introduction The Mycobacterium tuberculosis East African-Indian (EAI) spoligotyping family (belonging to lineage 1, Indo-Oceanic, defined by the region of deletion RD239) is distributed worldwide, but is more prevalent in Southeast Asia, India, and East Africa. Studies in Latin America have rarely identified EAI. In this study, we describe the occurrence of the EAI family in Brazil. Methods EAI was identified in a systematic literature review of genetic diversity studies pertaining to M. tuberculosis in Brazil, as well as in a survey conducted in Salvador, Bahia, located in the northeastern region of this country. Results The EAI6-BGD1 spoligotyping family and the EAI5 Spoligotype International Type (SIT) 1983 clade were the most frequently reported, with wide distribution of this particular clade described in Brazil. The distribution of other EAI spoligotyping patterns with broader worldwide distribution was restricted to the southeastern region of the country. Conclusions EAI may be endemic at a low frequency in Brazil, with some clades indicating increased fitness with respect to this population.
Collapse
|
40
|
[Characterization of clinical isolates of Mycobacterium tuberculosis from HIV positive individuals in Colombia, 2012]. BIOMEDICA 2017; 37:86-95. [PMID: 28527252 DOI: 10.7705/biomedica.v37i1.3112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/18/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION One third of the increase in tuberculosis cases is attributed to the spread of HIV. In 2012, 1,397 HIV-associated tuberculosis cases were reported in Colombia, i.e., 11.8% of the total cases. Molecular epidemiology tools help to understand the transmission of tuberculosis. OBJECTIVE To characterize clinical isolates of Mycobacterium tuberculosis derived from HIV-infected individuals, received at the Laboratorio Nacional de Referencia in the Instituto Nacional de Salud. MATERIALS AND METHODS This was a descriptive observational study. We analyzed 63 isolates of M. tuberculosis from HIV-infected individuals. Identification, drug susceptibility and genotyping assays were performed. RESULTS Of the new cases evaluated, three (5.0%) were resistant to isoniazid combined with streptomycin; two (3.3%) to rifampicin, and one (1.6%) to isoniazid. Previously treated cases were sensitive. No multidrug resistance was evident. Among the predominant genotypes, 20 isolates were (31.7%) LAM9, eight (12.7%), H1, and seven (11.1%), T1. Nineteen isolates corresponded to orphan patterns. One single grouping was observed among tested isolates. We found no statistically significantdifference between the proportions of the antituberculous drug resistance and genotypes. CONCLUSION We found resistant isolates to the most powerful drugs, rifampicin and isoniazid, among new cases, showing the transmission of resistant strains. Genetic families of M. tuberculosis LAM9, T1 and H1 correspond to those described in the general population. We detected no active transmission among studied isolates. More comprehensive studies are needed to assess the real situation of HIV associated tuberculosis in the country regarding sensitivity and transmission.
Collapse
|
41
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
42
|
Copin R, Wang X, Louie E, Escuyer V, Coscolla M, Gagneux S, Palmer GH, Ernst JD. Within Host Evolution Selects for a Dominant Genotype of Mycobacterium tuberculosis while T Cells Increase Pathogen Genetic Diversity. PLoS Pathog 2016; 12:e1006111. [PMID: 27973588 PMCID: PMC5189959 DOI: 10.1371/journal.ppat.1006111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/27/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.
Collapse
Affiliation(s)
- Richard Copin
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY, United States of America
| | - Xueying Wang
- Department of Mathematics and Statistics, Washington State University, Pullman, WA, United States of America
| | - Eddie Louie
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY, United States of America
| | - Vincent Escuyer
- Microbiology laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| | - Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Joel D. Ernst
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY, United States of America
- Department of Microbiology, New York University School of Medicine, New York, NY, United States of America
- Department of Pathology, New York University School of Medicine, New York, NY, United States of America
| |
Collapse
|
43
|
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Tudo Vilanova G, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Henry Boom W, Basu I, Bower J, Saraiva M, Vaconcellos SEG, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Wangui Ndung'u P, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Jane Carter E, Diero L, Supply P, Comas I, Niemann S, Gagneux S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016; 48:1535-1543. [PMID: 27798628 PMCID: PMC5238942 DOI: 10.1038/ng.3704] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
Collapse
Affiliation(s)
- David Stucki
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leïla Jeljeli
- Forschungszentrum Borstel, Germany.,Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Qingyun Liu
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Liliana Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Gao
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | | | - Marie Ballif
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Matthias Egger
- Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Rita Macedo
- Laboratòrio de Saùde Publica, Lisbon, Portugal
| | - Helmi Mardassi
- Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | | | | | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eddie Wampande
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda.,Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Indira Basu
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - James Bower
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Anastasia Koch
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Robert Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa.,Department of Medicine, Imperial College London, UK.,The Francis Crick Institute Mill Hill Laboratory, London, UK
| | - Linda Gail-Bekker
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Bijaya Malla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Serej D Ley
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, PNG
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Kadri Toit
- Tartu University Hospital United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | | | - Ana Gil-Brusola
- Department of Microbiology, University Hospital La Fe, Valencia, Spain
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Veronique N Penlap Beng
- Institute Laboratory for Tuberculosis Research (LTR), Biotechnology Center (BTC), University of Yaoundé I, Yaoundé, Cameroon
| | - Kathleen Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Issam Alani
- Department of Medical Laboratory Technology, Faculty of Medical Technology, Baghdad, Iraq
| | - Perpetual Wangui Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital (AKUH), Nairobi, Kenya
| | - Florian Gehre
- Insitute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council, Fajara, the Gambia
| | | | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Médicale, Université Marien Gouabi, Brazzaville, Congo
| | - Lynsey Stewart-Isherwood
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyanda E Ntinginya
- National Institute of Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Girts Skenders
- Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Riga, Latvia
| | - Sven Hoffner
- WHO Supranational TB Reference Laboratory, Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden
| | - Daiva Bakonyte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Petras Stakenas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Valeriu Crudu
- National Tuberculosis Reference Laboratory, Phthysiopneumology Institute, Chisinau, Republic of Moldova
| | - Olga Moldovan
- 'Marius Nasta' Pneumophtisiology Institute, Bucharest, Romania
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Larissa Otero
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Barletta
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Jane Carter
- Alpert School of Medicine at Brown University, Providence, Rhode Island, USA.,Moi University School of Medicine, Eldoret, Kenya
| | - Lameck Diero
- Moi University School of Medicine, Eldoret, Kenya
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), 46010, Valencia, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Stefan Niemann
- Forschungszentrum Borstel, Germany.,German Center for Infection Research, Borstel Site, Borstel, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
44
|
Asante-Poku A, Otchere ID, Osei-Wusu S, Sarpong E, Baddoo A, Forson A, Laryea C, Borrell S, Bonsu F, Hattendorf J, Ahorlu C, Koram KA, Gagneux S, Yeboah-Manu D. Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect Dis 2016; 16:385. [PMID: 27506391 PMCID: PMC4977717 DOI: 10.1186/s12879-016-1725-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background Mycobacterium africanum comprises two phylogenetic lineages within the M. tuberculosis complex (MTBC) and is an important cause of human tuberculosis (TB) in West Africa. The reasons for this geographic restriction of M. africanum remain unclear. Here, we performed a prospective study to explore associations between the characteristics of TB patients and the MTBC lineages circulating in Ghana. Method We genotyped 1,211 MTBC isolates recovered from pulmonary TB patients recruited between 2012 and 2014 using single nucleotide polymorphism typing and spoligotyping. Associations between patient and pathogen variables were assessed using univariate and multivariate logistic regression. Results Of the 1,211 MTBC isolates analysed, 71.9 % (871) belonged to Lineage 4; 12.6 % (152) to Lineage 5 (also known as M. africanum West-Africa 1), 9.2 % (112) to Lineage 6 (also known as M. africanum West-Africa 2) and 0.6 % (7) to Mycobacterium bovis. Univariate analysis revealed that Lineage 6 strains were less likely to be isoniazid resistant compared to other strains (odds ratio = 0.25, 95 % confidence interval (CI): 0.05–0.77, P < 0.01). Multivariate analysis showed that Lineage 5 was significantly more common in patients from the Ewe ethnic group (adjusted odds ratio (adjOR): 2.79; 95 % CI: 1.47–5.29, P < 0.001) and Lineage 6 more likely to be found among HIV-co-infected TB patients (adjOR = 2.2; 95 % confidence interval (CI: 1.32–3.7, P < 0.001). Conclusion Our findings confirm the importance of M. africanum in Ghana and highlight the need to differentiate between Lineage 5 and Lineage 6, as these lineages differ in associated patient variables. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1725-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.,Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Esther Sarpong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Akosua Baddoo
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-bu, Accra, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-bu, Accra, Ghana
| | | | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Frank Bonsu
- National Tuberculosis Programme, Ghana health Service, Accra, Ghana
| | - Jan Hattendorf
- University of Basel, Basel, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Collins Ahorlu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| |
Collapse
|
45
|
Brown J, Clark K, Smith C, Hopwood J, Lynard O, Toolan M, Creer D, Barker J, Breen R, Brown T, Cropley I, Lipman M. Variation in C - reactive protein response according to host and mycobacterial characteristics in active tuberculosis. BMC Infect Dis 2016; 16:265. [PMID: 27287260 PMCID: PMC4901496 DOI: 10.1186/s12879-016-1612-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/03/2016] [Indexed: 12/03/2022] Open
Abstract
Background The C - reactive protein (CRP) response is often measured in patients with active tuberculosis (TB) yet little is known about its relationship to clinical features in TB, or whether responses differ between ethnic groups or with different Mycobacterium tuberculosis (M.tb) strain types. We report the relationship between baseline serum CRP prior to treatment and disease characteristics in a metropolitan population with TB resident in a low TB incidence region. Methods People treated for TB at four London, UK sites between 2003 and 2014 were assessed and data collected on the following characteristics: baseline CRP level; demographics (ethnicity, gender and age); HIV status; site of TB disease; sputum smear (in pulmonary cases) and culture results. The effect of TB strain-type was also assessed in culture-positive pulmonary cases using VNTR typing data. Results Three thousands two hundred twenty-two patients were included in the analysis of which 72 % had a baseline CRP at or within 4 weeks prior to starting TB treatment. CRP results were significantly higher in culture positive cases compared to culture negative cases: median 49 mg/L (16–103 mg/L) vs 19 mg/L (IQR 5–72 mg/L), p = <0.001. In those with pulmonary disease, smear positive cases had a higher CRP than smear negative cases: 67 mg/L (31–122 mg/L) vs 24 mg/L (7–72 mg/L), p < 0.001. HIV positive cases had higher baseline CRPs than HIV negative cases: 75 mg/L (26–136 mg/L) vs 37 mg/L (10–88 mg/L), p <0.001. Differing sites of disease were associated with differences in baseline CRP: locations that might be expected to have a high mycobacterial load (e.g. pulmonary disease and disseminated disease) had a significantly higher CRP than those such as skin, lymph node or CNS disease, where the mycobacterial load is typically low in HIV negative subjects. In a multivariable log-scale linear regression model adjusting for host characteristics and M.tb strain type, infection with the East African Indian strain was associated with significantly lower baseline-CRP (fold-change in CRP 0.51 (0.34–0.77), p < 0.01). Conclusions Host and mycobacterial factors are strongly associated with baseline CRP response in tuberculosis. This analysis suggests that there are important differences in innate immune response according to ethnicity, Mtb strain type and site of disease. This may reflect differing mycobacterial loads or host immune responses. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1612-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Brown
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK. .,UCL Respiratory, Division of Medicine, University College London, London, UK.
| | - Kristina Clark
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Colette Smith
- Department of Infection and Population Health, University College London, London, UK
| | - Jennifer Hopwood
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Oliver Lynard
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Michael Toolan
- Department of Respiratory Medicine, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Dean Creer
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Jack Barker
- Department of Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Ronan Breen
- Department of Respiratory Medicine, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Tim Brown
- National Mycobacterial Reference Laboratory, London, UK
| | - Ian Cropley
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Marc Lipman
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, UK.,UCL Respiratory, Division of Medicine, University College London, London, UK
| |
Collapse
|
46
|
Standard Genotyping Overestimates Transmission of Mycobacterium tuberculosis among Immigrants in a Low-Incidence Country. J Clin Microbiol 2016; 54:1862-1870. [PMID: 27194683 DOI: 10.1128/jcm.00126-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
Immigrants from regions with a high incidence of tuberculosis (TB) are a risk group for TB in low-incidence countries such as Switzerland. In a previous analysis of a nationwide collection of 520 Mycobacterium tuberculosis isolates from 2000 to 2008, we identified 35 clusters comprising 90 patients based on standard genotyping (24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat [MIRU-VNTR] typing and spoligotyping). Here, we used whole-genome sequencing (WGS) to revisit these transmission clusters. Genome-based transmission clusters were defined as isolate pairs separated by ≤12 single nucleotide polymorphisms (SNPs). WGS confirmed 17/35 (49%) MIRU-VNTR typing clusters; the other 18 clusters contained pairs separated by >12 SNPs. Most transmission clusters (3/4) of Swiss-born patients were confirmed by WGS, as opposed to 25% (4/16) of the clusters involving only foreign-born patients. The overall clustering proportion was 17% (90 patients; 95% confidence interval [CI], 14 to 21%) by standard genotyping but only 8% (43 patients; 95% CI, 6 to 11%) by WGS. The clustering proportion was 17% (67/401; 95% CI, 13 to 21%) by standard genotyping and 7% (26/401; 95% CI, 4 to 9%) by WGS among foreign-born patients and 19% (23/119; 95% CI, 13 to 28%) and 14% (17/119; 95% CI, 9 to 22%), respectively, among Swiss-born patients. Using weighted logistic regression, we found weak evidence of an association between birth origin and transmission (adjusted odds ratio of 2.2 and 95% CI of 0.9 to 5.5 comparing Swiss-born patients to others). In conclusion, standard genotyping overestimated recent TB transmission in Switzerland compared to WGS, particularly among immigrants from regions with a high TB incidence, where genetically closely related strains often predominate. We recommend the use of WGS to identify transmission clusters in settings with a low incidence of TB.
Collapse
|
47
|
Abstract
The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future 'genome-to-genome' studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines.
Collapse
Affiliation(s)
- Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | | |
Collapse
|
48
|
David S, Mateus ARA, Duarte EL, Albuquerque J, Portugal C, Sancho L, Lavinha J, Gonçalves G. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis. PLoS One 2015; 10:e0140625. [PMID: 26529092 PMCID: PMC4631367 DOI: 10.1371/journal.pone.0140625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023] Open
Abstract
Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants.
Collapse
Affiliation(s)
- Susana David
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
- * E-mail:
| | - A. R. A. Mateus
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Elsa L. Duarte
- Escola de Ciências e Tecnologia/ Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - José Albuquerque
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
| | - Clara Portugal
- Serviço de Patologia Clínica, Hospital Fernando Fonseca, Amadora, Portugal
| | - Luísa Sancho
- Serviço de Patologia Clínica, Hospital Fernando Fonseca, Amadora, Portugal
| | - João Lavinha
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
| | - Guilherme Gonçalves
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| |
Collapse
|
49
|
Rockwood N, Abdullahi LH, Wilkinson RJ, Meintjes G. Risk Factors for Acquired Rifamycin and Isoniazid Resistance: A Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0139017. [PMID: 26406228 PMCID: PMC4583446 DOI: 10.1371/journal.pone.0139017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/07/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Studies looking at acquired drug resistance (ADR) are diverse with respect to geographical distribution, HIV co-infection rates, retreatment status and programmatic factors such as regimens administered and directly observed therapy. Our objective was to examine and consolidate evidence from clinical studies of the multifactorial aetiology of acquired rifamycin and/or isoniazid resistance within the scope of a single systematic review. This is important to inform policy and identify key areas for further studies. METHODS Case-control and cohort studies and randomised controlled trials that reported ADR as an outcome during antitubercular treatment regimens including a rifamycin and examined the association of at least 1 risk factor were included. Post hoc, we carried out random effects Mantel-Haenszel weighted meta-analyses of the impact of 2 key risk factors 1) HIV and 2) baseline drug resistance on the binary outcome of ADR. Heterogeneity was assessed used I2 statistic. As a secondary outcome, we calculated median cumulative incidence of ADR, weighted by the sample size of the studies. RESULTS Meta-analysis of 15 studies showed increased risk of ADR with baseline mono- or polyresistance (RR 4.85 95% CI 3.26 to 7.23, heterogeneity I2 58%, 95% CI 26 to 76%). Meta-analysis of 8 studies showed that HIV co-infection was associated with increased risk of ADR (RR 3.02, 95% CI 1.28 to 7.11); there was considerable heterogeneity amongst these studies (I2 81%, 95% CI 64 to 90%). Non-adherence, extrapulmonary/disseminated disease and advanced immunosuppression in HIV co-infection were other risk factors noted. The weighted median cumulative incidence of acquired multi drug resistance calculated in 24 studies (assuming whole cohort as denominator, regardless of follow up DST) was 0.1% (5th to 95th percentile 0.07 to 3.2%). CONCLUSION Baseline drug resistance and HIV co-infection were significant risk factors for ADR. There was a trend of positive association with non-adherence which is likely to contribute to the outcome of ADR. The multifactorial aetiology of ADR in a programmatic setting should be further evaluated via appropriately designed studies.
Collapse
Affiliation(s)
- Neesha Rockwood
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Leila H. Abdullahi
- Vaccines for Africa Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J. Wilkinson
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute Mill Hill Laboratory, London, United Kingdom
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
50
|
Young DB, Comas I, de Carvalho LPS. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis. Front Mol Biosci 2015; 2:6. [PMID: 25988174 PMCID: PMC4428469 DOI: 10.3389/fmolb.2015.00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/09/2015] [Indexed: 11/13/2022] Open
Abstract
Comparison of genome sequences from clinical isolates of Mycobacterium tuberculosis with phylogenetically-related pathogens Mycobacterium marinum, Mycobacterium kansasii, and Mycobacterium leprae reveals diversity amongst genes associated with vitamin B12-related metabolism. Diversity is generated by gene deletion events, differential acquisition of genes by horizontal transfer, and single nucleotide polymorphisms (SNPs) with predicted impact on protein function and transcriptional regulation. Differences in the B12 synthesis pathway, methionine biosynthesis, fatty acid catabolism, and DNA repair and replication are consistent with adaptations to different environmental niches and pathogenic lifestyles. While there is no evidence of further gene acquisition during expansion of the M. tuberculosis complex, the emergence of other forms of genetic diversity provides insights into continuing host-pathogen co-evolution and has the potential to identify novel targets for disease intervention.
Collapse
Affiliation(s)
- Douglas B Young
- Division of Mycobacterial Research, MRC National Institute for Medical Research London, UK
| | | | - Luiz P S de Carvalho
- Division of Mycobacterial Research, MRC National Institute for Medical Research London, UK
| |
Collapse
|