1
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2025; 599:190-208. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
2
|
Ren L, Ma W, Wang Y. Predicting RNA polymerase II transcriptional elongation pausing and associated histone code. Brief Bioinform 2024; 25:bbae246. [PMID: 38783706 PMCID: PMC11116834 DOI: 10.1093/bib/bbae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
RNA Polymerase II (Pol II) transcriptional elongation pausing is an integral part of the dynamic regulation of gene transcription in the genome of metazoans. It plays a pivotal role in many vital biological processes and disease progression. However, experimentally measuring genome-wide Pol II pausing is technically challenging and the precise governing mechanism underlying this process is not fully understood. Here, we develop RP3 (RNA Polymerase II Pausing Prediction), a network regularized logistic regression machine learning method, to predict Pol II pausing events by integrating genome sequence, histone modification, gene expression, chromatin accessibility, and protein-protein interaction data. RP3 can accurately predict Pol II pausing in diverse cellular contexts and unveil the transcription factors that are associated with the Pol II pausing machinery. Furthermore, we utilize a forward feature selection framework to systematically identify the combination of histone modification signals associated with Pol II pausing. RP3 is freely available at https://github.com/AMSSwanglab/RP3.
Collapse
Affiliation(s)
- Lixin Ren
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wanbiao Ma
- School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, 55 Zhongguancun East Road, Haidian District, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Wuhua District, Kunming 650223, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 1 Xiangshan Zhi Nong, West Lake District, Hangzhou 330106, China
| |
Collapse
|
3
|
Rittenhouse NL, Dowen JM. Cohesin regulation and roles in chromosome structure and function. Curr Opin Genet Dev 2024; 85:102159. [PMID: 38382406 PMCID: PMC10947815 DOI: 10.1016/j.gde.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.
Collapse
Affiliation(s)
- Natalie L Rittenhouse
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill M Dowen
- Department of Biophysics & Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
6
|
Wu X, Xie Y, Zhao K, Lu J. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Adv Cancer Res 2023; 158:387-421. [PMID: 36990537 DOI: 10.1016/bs.acr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription activation is associated with tumor development and resistance derived from chemotherapy or target therapy. The super elongation complex (SEC) is an important complex regulating gene transcription and expression in metazoans closely related to physiological activities. In normal transcriptional regulation, SEC can trigger promoter escape, limit proteolytic degradation of transcription elongation factors and increase the synthesis of RNA polymerase II (POL II), and regulate many normal human genes to stimulate RNA elongation. Dysregulation of SEC accompanied by multiple transcription factors in cancer promotes rapid transcription of oncogenes and induce cancer development. In this review, we summarized recent progress in understanding the mechanisms of SEC in regulating normal transcription, and importantly its roles in cancer development. We also highlighted the discovery of SEC complex target related inhibitors and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
7
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
8
|
Tanemoto F, Nangaku M, Mimura I. Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Front Mol Biosci 2022; 9:1003227. [PMID: 36213117 PMCID: PMC9532834 DOI: 10.3389/fmolb.2022.1003227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic memory, which refers to the ability of cells to retain and transmit epigenetic marks to their daughter cells, maintains unique gene expression patterns. Establishing programmed epigenetic memory at each stage of development is required for cell differentiation. Moreover, accumulating evidence shows that epigenetic memory acquired in response to environmental stimuli may be associated with diverse diseases. In the field of kidney diseases, the “memory” of acute kidney injury (AKI) leads to progression to chronic kidney disease (CKD); epidemiological studies show that patients who recover from AKI are at high risk of developing CKD. The underlying pathological processes include nephron loss, maladaptive epithelial repair, inflammation, and endothelial injury with vascular rarefaction. Further, epigenetic alterations may contribute as well to the pathophysiology of this AKI-to-CKD transition. Epigenetic changes induced by AKI, which can be recorded in cells, exert long-term effects as epigenetic memory. Considering the latest findings on the molecular basis of epigenetic memory and the pathophysiology of AKI-to-CKD transition, we propose here that epigenetic memory contributing to AKI-to-CKD transition can be classified according to the presence or absence of persistent changes in the associated regulation of gene expression, which we designate “driving” memory and “priming” memory, respectively. “Driving” memory, which persistently alters the regulation of gene expression, may contribute to disease progression by activating fibrogenic genes or inhibiting renoprotective genes. This process may be involved in generating the proinflammatory and profibrotic phenotypes of maladaptively repaired tubular cells after kidney injury. “Priming” memory is stored in seemingly successfully repaired tubular cells in the absence of detectable persistent phenotypic changes, which may enhance a subsequent transcriptional response to the second stimulus. This type of memory may contribute to AKI-to-CKD transition through the cumulative effects of enhanced expression of profibrotic genes required for wound repair after recurrent AKI. Further understanding of epigenetic memory will identify therapeutic targets of future epigenetic intervention to prevent AKI-to-CKD transition.
Collapse
|
9
|
Cheng J, Xu L, Bergér V, Bruckmann A, Yang C, Schubert V, Grasser KD, Schnittger A, Zheng B, Jiang H. H3K9 demethylases IBM1 and JMJ27 are required for male meiosis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 235:2252-2269. [PMID: 35638341 DOI: 10.1111/nph.18286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Dimethylation of histone H3 lysine 9 (H3K9me2), a crucial modification for heterochromatin formation and transcriptional silencing, is essential for proper meiotic prophase progression in mammals. We analyzed meiotic defects and generated genome-wide profiles of H3K9me2 and transcriptomes for the mutants of H3K9 demethylases. Moreover, we also identified proteins interacting with H3K9 demethylases. H3K9me2 is usually found at transposable elements and repetitive sequences but is absent from the bodies of protein-coding genes. In this study, we show that the Arabidopsis thaliana H3K9 demethylases IBM1 and JMJ27 cooperatively regulate crossover formation and chromosome segregation. They protect thousands of protein-coding genes from ectopic H3K9me2, including genes essential for meiotic prophase progression. In addition to removing H3K9me2, IBM1 and JMJ27 interact with the Precocious Dissociation of Sisters 5 (PDS5) cohesin complex cofactors. The pds5 mutant shared similar transcriptional alterations with ibm1 jmj27, including meiosis-essential genes, yet without affecting H3K9me2 levels. Hence, PDS5s, together with IBM1 and JMJ27, regulate male meiosis and gene expression independently of H3K9 demethylation. These findings uncover a novel role of H3K9me2 removal in meiosis and a new function of H3K9 demethylases and cohesin cofactors in meiotic transcriptional regulation.
Collapse
Affiliation(s)
- Jinping Cheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Linhao Xu
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Valentin Bergér
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Regensburg, 93053, Germany
| | - Astrid Bruckmann
- Department of Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, 93053, Germany
| | - Chao Yang
- Department of Developmental Biology, University of Hamburg, Hamburg, 20146, Germany
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Regensburg, 93053, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 20146, Germany
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| |
Collapse
|
10
|
Pallotta MM, Di Nardo M, Sarogni P, Krantz ID, Musio A. Disease-associated c-MYC downregulation in human disorders of transcriptional regulation. Hum Mol Genet 2022; 31:1599-1609. [PMID: 34849865 PMCID: PMC9122636 DOI: 10.1093/hmg/ddab348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multiorgan developmental disorder caused by pathogenic variants in cohesin genes. It is a genetically and clinically heterogeneous dominant (both autosomal and X-linked) rare disease. Increasing experimental evidence indicates that CdLS is caused by a combination of factors, such as gene expression dysregulation, accumulation of cellular damage and cellular aging, which collectively contribute to the CdLS phenotype. The CdLS phenotype overlaps with a number of related diagnoses such as KBG syndrome and Rubinstein-Taybi syndrome both caused by variants in chromatin-associated factors other than cohesin. The molecular basis underlying these overlapping phenotypes is not clearly defined. Here, we found that cells from individuals with CdLS and CdLS-related diagnoses are characterized by global transcription disturbance and share common dysregulated pathways. Intriguingly, c-MYC (subsequently referred to as MYC) is downregulated in all cell lines and represents a convergent hub lying at the center of dysregulated pathways. Subsequent treatment with estradiol restores MYC expression by modulating cohesin occupancy at its promoter region. In addition, MYC activation leads to modification in expression in hundreds of genes, which in turn reduce the oxidative stress level and genome instability. Together, these results show that MYC plays a pivotal role in the etiopathogenesis of CdLS and CdLS-related diagnoses and represents a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Maria M Pallotta
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Maddalena Di Nardo
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Patrizia Sarogni
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Department of Pediatrics, The Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Musio
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
11
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
12
|
Di Nardo M, Pallotta MM, Musio A. The multifaceted roles of cohesin in cancer. J Exp Clin Cancer Res 2022; 41:96. [PMID: 35287703 PMCID: PMC8919599 DOI: 10.1186/s13046-022-02321-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
The cohesin complex controls faithful chromosome segregation by pairing sister chromatids after DNA replication until mitosis. In addition, it is crucial for hierarchal three-dimensional organization of the genome, transcription regulation and maintaining DNA integrity. The core complex subunits SMC1A, SMC3, STAG1/2, and RAD21 as well as its modulators, have been found to be recurrently mutated in human cancers. The mechanisms by which cohesin mutations trigger cancer development and disease progression are still poorly understood. Since cohesin is involved in a range of chromosome-related processes, the outcome of cohesin mutations in cancer is complex. Herein, we discuss recent discoveries regarding cohesin that provide new insight into its role in tumorigenesis.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Maria M. Pallotta
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| |
Collapse
|
13
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
14
|
Richart L, Lapi E, Pancaldi V, Cuenca-Ardura M, Pau ECDS, Madrid-Mencía M, Neyret-Kahn H, Radvanyi F, Rodríguez JA, Cuartero Y, Serra F, Le Dily F, Valencia A, Marti-Renom MA, Real FX. STAG2 loss-of-function affects short-range genomic contacts and modulates the basal-luminal transcriptional program of bladder cancer cells. Nucleic Acids Res 2021; 49:11005-11021. [PMID: 34648034 PMCID: PMC8565347 DOI: 10.1093/nar/gkab864] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cohesin exists in two variants containing STAG1 or STAG2. STAG2 is one of the most mutated genes in cancer and a major bladder tumor suppressor. Little is known about how its inactivation contributes to tumorigenesis. Here, we analyze the genomic distribution of STAG1 and STAG2 and perform STAG2 loss-of-function experiments using RT112 bladder cancer cells; we then analyze the genomic effects by integrating gene expression and chromatin interaction data. Functional compartmentalization exists between the cohesin complexes: cohesin-STAG2 displays a distinctive genomic distribution and mediates short and mid-ranged interactions that engage genes at higher frequency than those established by cohesin-STAG1. STAG2 knockdown results in down-regulation of the luminal urothelial signature and up-regulation of the basal transcriptional program, mirroring differences between STAG2-high and STAG2-low human bladder tumors. This is accompanied by rewiring of DNA contacts within topological domains, while compartments and domain boundaries remain refractive. Contacts lost upon depletion of STAG2 are assortative, preferentially occur within silent chromatin domains, and are associated with de-repression of lineage-specifying genes. Our findings indicate that STAG2 participates in the DNA looping that keeps the basal transcriptional program silent and thus sustains the luminal program. This mechanism may contribute to the tumor suppressor function of STAG2 in the urothelium.
Collapse
Affiliation(s)
- Laia Richart
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.,Center for Biomedical Research Network (CIBERONC), 28029 Madrid, Spain
| | - Vera Pancaldi
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, ERL5294 CNRS, 31037 Toulouse, France.,University Paul Sabatier III, Toulouse, France
| | - Mirabai Cuenca-Ardura
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | | | - Miguel Madrid-Mencía
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 Inserm, ERL5294 CNRS, 31037 Toulouse, France.,University Paul Sabatier III, Toulouse, France
| | - Hélène Neyret-Kahn
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France.,Sorbonne Université, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France.,Sorbonne Université, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Juan Antonio Rodríguez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Yasmina Cuartero
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - François Serra
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - François Le Dily
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.,Center for Biomedical Research Network (CIBERONC), 28029 Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
15
|
Moretti C, Stévant I, Ghavi-Helm Y. 3D genome organisation in Drosophila. Brief Funct Genomics 2021; 19:92-100. [PMID: 31796947 DOI: 10.1093/bfgp/elz029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ever since Thomas Hunt Morgan's discovery of the chromosomal basis of inheritance by using Drosophila melanogaster as a model organism, the fruit fly has remained an essential model system in studies of genome biology, including chromatin organisation. Very much as in vertebrates, in Drosophila, the genome is organised in territories, compartments and topologically associating domains (TADs). However, these domains might be formed through a slightly different mechanism than in vertebrates due to the presence of a large and potentially redundant set of insulator proteins and the minor role of dCTCF in TAD boundary formation. Here, we review the different levels of chromatin organisation in Drosophila and discuss mechanisms and factors that might be involved in TAD formation. The dynamics of TADs and enhancer-promoter interactions in the context of transcription are covered in the light of currently conflicting results. Finally, we illustrate the value of polymer modelling approaches to infer the principles governing the three-dimensional organisation of the Drosophila genome.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| |
Collapse
|
16
|
Carico ZM, Stefan HC, Justice M, Yimit A, Dowen JM. A cohesin cancer mutation reveals a role for the hinge domain in genome organization and gene expression. PLoS Genet 2021; 17:e1009435. [PMID: 33760811 PMCID: PMC7990204 DOI: 10.1371/journal.pgen.1009435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The cohesin complex spatially organizes interphase chromatin by bringing distal genomic loci into close physical proximity, looping out the intervening DNA. Mutation of cohesin complex subunits is observed in cancer and developmental disorders, but the mechanisms through which these mutations may contribute to disease remain poorly understood. Here, we investigate a recurrent missense mutation to the hinge domain of the cohesin subunit SMC1A, observed in acute myeloid leukemia. Engineering this mutation into murine embryonic stem cells caused widespread changes in gene expression, including dysregulation of the pluripotency gene expression program. This mutation reduced cohesin levels at promoters and enhancers, decreased DNA loops and interactions across short genomic distances, and weakened insulation at CTCF-mediated DNA loops. These findings provide insight into how altered cohesin function contributes to disease and identify a requirement for the cohesin hinge domain in three-dimensional chromatin structure.
Collapse
Affiliation(s)
- Zachary M. Carico
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Holden C. Stefan
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Megan Justice
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Askar Yimit
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jill M. Dowen
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
17
|
Li X, Yu Y, Lang F, Chen G, Wang E, Li L, Li Z, Yang L, Cao X, Fraser NW, Zhou J. Cohesin promotes HSV-1 lytic transcription by facilitating the binding of RNA Pol II on viral genes. Virol J 2021; 18:26. [PMID: 33485391 PMCID: PMC7825184 DOI: 10.1186/s12985-021-01495-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Herpes Simplex Virus type I (HSV-1) is a large double-stranded DNA virus that enters productive infection in epithelial cells and reorganizes the host nucleus. Cohesin, a major constituent of interphase and mitotic chromosomes comprised of SMC1, SMC3, and SCC1 (Mcd1/Rad21), SCC3 (SA1/SA2), have diverse functions, including sister chromatid cohesion, DNA double-stranded breaks repair, and transcriptional control. Little is known about the role of cohesin in HSV-1 lytic infection. METHODS We measured the effect on HSV-1 transcription, genome copy number, and viral titer by depleting cohesin components SMC1 or Rad21 using RNAi, followed by immunofluorescence, qPCR, and ChIP experiments to gain insight into cohesin's function in HSV-1 transcription and replication. RESULTS Here, we report that cohesion subunits SMC1 and Rad21 are recruited to the lytic HSV-1 replication compartment. The knockdown results in decreased viral transcription, protein expression, and maturation of viral replication compartments. SMC1 and Rad21 knockdown leads to the reduced overall RNA pol II occupancy level but increased RNA pol II ser5 phosphorylation binding on viral genes. Consistent with this, the knockdown increased H3K27me3 modification on these genes. CONCLUSIONS These results suggest that cohesin facilitates HSV-1 lytic transcription by promoting RNA Pol II transcription activity and preventing chromatin's silencing on the viral genome.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Yafen Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
- Institute of Health Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Fengchao Lang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Erlin Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Lihong Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Zhuoran Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Xia Cao
- Key Laboratory of Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
| |
Collapse
|
18
|
Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020; 758:144966. [PMID: 32687945 PMCID: PMC7949736 DOI: 10.1016/j.gene.2020.144966] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.
Collapse
Affiliation(s)
- Haizi Cheng
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nenggang Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Debananda Pati
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
19
|
Zraly CB, Zakkar A, Perez JH, Ng J, White KP, Slattery M, Dingwall AK. The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Res 2020; 48:3476-3495. [PMID: 32052053 PMCID: PMC7144903 DOI: 10.1093/nar/gkaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers depending on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.
Collapse
Affiliation(s)
- Claudia B Zraly
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abdul Zakkar
- Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - John Hertenstein Perez
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jeffrey Ng
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Andrew K Dingwall
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
20
|
Perea-Resa C, Bury L, Cheeseman IM, Blower MD. Cohesin Removal Reprograms Gene Expression upon Mitotic Entry. Mol Cell 2020; 78:127-140.e7. [PMID: 32035037 PMCID: PMC7178822 DOI: 10.1016/j.molcel.2020.01.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 01/02/2023]
Abstract
As cells enter mitosis, the genome is restructured to facilitate chromosome segregation, accompanied by dramatic changes in gene expression. However, the mechanisms that underlie mitotic transcriptional regulation are unclear. In contrast to transcribed genes, centromere regions retain transcriptionally active RNA polymerase II (Pol II) in mitosis. Here, we demonstrate that chromatin-bound cohesin is necessary to retain elongating Pol II at centromeres. We find that WAPL-mediated removal of cohesin from chromosome arms during prophase is required for the dissociation of Pol II and nascent transcripts, and failure of this process dramatically alters mitotic gene expression. Removal of cohesin/Pol II from chromosome arms in prophase is important for accurate chromosome segregation and normal activation of gene expression in G1. We propose that prophase cohesin removal is a key step in reprogramming gene expression as cells transition from G2 through mitosis to G1.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Leah Bury
- Whitehead Institute for Biomedical Research, 455 Main St., Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main St., Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Khaminets A, Ronnen-Oron T, Baldauf M, Meier E, Jasper H. Cohesin controls intestinal stem cell identity by maintaining association of Escargot with target promoters. eLife 2020; 9:e48160. [PMID: 32022682 PMCID: PMC7002041 DOI: 10.7554/elife.48160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain regenerative capacity of the intestinal epithelium. Their function and activity are regulated by transcriptional changes, yet how such changes are coordinated at the genomic level remains unclear. The Cohesin complex regulates transcription globally by generating topologically-associated DNA domains (TADs) that link promotor regions with distant enhancers. We show here that the Cohesin complex prevents premature differentiation of Drosophila ISCs into enterocytes (ECs). Depletion of the Cohesin subunit Rad21 and the loading factor Nipped-B triggers an ISC to EC differentiation program that is independent of Notch signaling, but can be rescued by over-expression of the ISC-specific escargot (esg) transcription factor. Using damID and transcriptomic analysis, we find that Cohesin regulates Esg binding to promoters of differentiation genes, including a group of Notch target genes involved in ISC differentiation. We propose that Cohesin ensures efficient Esg-dependent gene repression to maintain stemness and intestinal homeostasis.
Collapse
Affiliation(s)
| | | | - Maik Baldauf
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Elke Meier
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Heinrich Jasper
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Buck Institute for Research on AgingNovatoUnited States
- Immunology DiscoveryGenentech, IncSouth San FranciscoUnited States
| |
Collapse
|
22
|
Avagliano L, Parenti I, Grazioli P, Di Fede E, Parodi C, Mariani M, Kaiser FJ, Selicorni A, Gervasini C, Massa V. Chromatinopathies: A focus on Cornelia de Lange syndrome. Clin Genet 2020; 97:3-11. [PMID: 31721174 DOI: 10.1111/cge.13674] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023]
Abstract
In recent years, many genes have been associated with chromatinopathies classified as "Cornelia de Lange Syndrome-like." It is known that the phenotype of these patients becomes less recognizable, overlapping to features characteristic of other syndromes caused by genetic variants affecting different regulators of chromatin structure and function. Therefore, Cornelia de Lange syndrome diagnosis might be arduous due to the seldom discordance between unexpected molecular diagnosis and clinical evaluation. Here, we review the molecular features of Cornelia de Lange syndrome, supporting the hypothesis that "CdLS-like syndromes" are part of a larger "rare disease family" sharing multiple clinical features and common disrupted molecular pathways.
Collapse
Affiliation(s)
- Laura Avagliano
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Parenti
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, Lübeck, Germany
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Paolo Grazioli
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Frank J Kaiser
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, Lübeck, Germany
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | - Cristina Gervasini
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
23
|
Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 2019; 18:2828-2848. [PMID: 31516082 PMCID: PMC6791706 DOI: 10.1080/15384101.2019.1658476] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-β in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-β: Transforming Growth Factor β; TGFBR: Transforming Growth Factor β receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Patrick Piet Van Vliet
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
| | - Michel Pucéat
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
- INSERM U-1251, MMG,Aix-Marseille University, Marseille, 13885, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
24
|
Cheutin T, Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit Rev Biochem Mol Biol 2019; 54:399-417. [PMID: 31698957 DOI: 10.1080/10409238.2019.1679082] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins silence master regulatory genes required to properly confer cell identity during the development of both Drosophila and mammals. They may act through chromatin compaction and higher-order folding of chromatin inside the cell nucleus. During the last decade, analysis on interphase chromosome architecture discovered self-interacting regions named topologically associated domains (TADs). TADs result from the 3D chromatin folding of a succession of transcribed and repressed epigenomic domains and from loop extrusion mediated by cohesin/CTCF in mammals. Polycomb silenced chromatin constitutes one type of repressed epigenomic domains which form compacted nano-compartments inside cell nuclei. Recruitment of canonical PcG proteins on chromatin relies on initial binding to discrete elements and further spreading into large chromatin domains covered with H3K27me3. Some of these discrete elements have a bivalent nature both in mammals and Drosophila and are dynamically regulated during development. Loops can occur between them, suggesting that their interaction plays both functional and structural roles. Formation of large chromatin domains covered by H3K27me3 seems crucial for PcG silencing and PcG proteins might exert their function through compaction of these domains in both mammals and flies, rather than by directly controlling the nucleosomal accessibility of discrete regulatory elements. In addition, PcG chromatin domains interact over long genomic distances, shaping a higher-order chromatin network. Therefore, PcG silencing might rely on multiscale chromatin folding to maintain cell identity during differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2019; 19:464-478. [PMID: 29740129 DOI: 10.1038/s41580-018-0010-5] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dynamic regulation of transcription elongation by RNA polymerase II (Pol II) is an integral part of the implementation of gene expression programmes during development. In most metazoans, the majority of transcribed genes exhibit transient pausing of Pol II at promoter-proximal regions, and the release of Pol II into gene bodies is controlled by many regulatory factors that respond to environmental and developmental cues. Misregulation of the elongation stage of transcription is implicated in cancer and other human diseases, suggesting that mechanistic understanding of transcription elongation control is therapeutically relevant. In this Review, we discuss the features, establishment and maintenance of Pol II pausing, the transition into productive elongation, the control of transcription elongation by enhancers and by factors of other cellular processes, such as topoisomerases and poly(ADP-ribose) polymerases (PARPs), and the potential of therapeutic targeting of the elongation stage of transcription by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edwin R Smith
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
26
|
Isoda T, Morio T, Takagi M. Noncoding RNA transcription at enhancers and genome folding in cancer. Cancer Sci 2019; 110:2328-2336. [PMID: 31228211 PMCID: PMC6676135 DOI: 10.1111/cas.14107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Changes of nuclear localization of lineage-specific genes from a transcriptionally inert to permissive environment are a crucial step in establishing the identity of a cell. Noncoding RNA transcription-mediated genome folding and activation of target gene expression have been found in a variety of cell types. Noncoding RNA ThymoD (thymocyte differentiation factor) transcription at superenhancers is essential for mouse T-cell lineage commitment. The cessation of ThymoD transcription abolishes transcription-mediated demethylation, recruiting looping factors such as the cohesin complex, CCCTC-binding factor (CTCF), ultimately leading to the phenotype of severe combined immunodeficiency and T-cell leukemia/lymphoma. In this review, we describe the functional role of RNA polymerase II-mediated transcription at enhancers and in genome folding. We also highlight the involvement of faulty activation or suppression of enhancer transcription and enhancer-promoter interaction in cancer development.
Collapse
Affiliation(s)
- Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
27
|
Dorsett D. The Many Roles of Cohesin in Drosophila Gene Transcription. Trends Genet 2019; 35:542-551. [PMID: 31130395 PMCID: PMC6571051 DOI: 10.1016/j.tig.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
The cohesin protein complex mediates sister chromatid cohesion to ensure accurate chromosome segregation, and also influences gene transcription in higher eukaryotes. Modest deficits in cohesin function that do not alter chromosome segregation cause significant birth defects. The mechanisms by which cohesin participates in gene regulation have been studied in Drosophila, revealing that it is involved in gene activation by transcriptional enhancers and epigenetic gene silencing mediated by Polycomb group proteins. Recent studies reveal that early DNA replication origins are important for determining which genes associate with cohesin, and suggest that cohesin at replication origins is important for establishing both sister chromatid cohesion and enhancer-promoter communication.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
28
|
Arya R, Gyonjyan S, Harding K, Sarkissian T, Li Y, Zhou L, White K. A Cut/cohesin axis alters the chromatin landscape to facilitate neuroblast death. Development 2019; 146:dev166603. [PMID: 30952666 PMCID: PMC6526717 DOI: 10.1242/dev.166603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
Abstract
Precise control of cell death in the nervous system is essential for development. Spatial and temporal factors activate the death of Drosophila neural stem cells (neuroblasts) by controlling the transcription of multiple cell death genes through a shared enhancer. The activity of this enhancer is controlled by abdominal A and Notch, but additional inputs are needed for proper specificity. Here, we show that the Cut DNA binding protein is required for neuroblast death, regulating reaper and grim downstream of the shared enhancer and of abdominal A expression. The loss of cut accelerates the temporal progression of neuroblasts from a state of low overall levels of H3K27me3 to a higher H3K27me3 state. This is reflected in an increase in H3K27me3 modifications in the cell death gene locus in the CNS on Cut knockdown. We also show that cut regulates the expression of the cohesin subunit Stromalin. Stromalin and the cohesin regulatory subunit Nipped-B are required for neuroblast death, and knockdown of Stromalin increases H3K27me3 levels in neuroblasts. Thus, Cut and cohesin regulate apoptosis in the developing nervous system by altering the chromatin landscape.
Collapse
Affiliation(s)
- Richa Arya
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Seda Gyonjyan
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Katherine Harding
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Tatevik Sarkissian
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| | - Ying Li
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, College of Medicine/UF Health Cancer Center/UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
29
|
Pherson M, Misulovin Z, Gause M, Dorsett D. Cohesin occupancy and composition at enhancers and promoters are linked to DNA replication origin proximity in Drosophila. Genome Res 2019; 29:602-612. [PMID: 30796039 PMCID: PMC6442380 DOI: 10.1101/gr.243832.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
Cohesin consists of the SMC1-SMC3-Rad21 tripartite ring and the SA protein that interacts with Rad21. The Nipped-B protein loads cohesin topologically around chromosomes to mediate sister chromatid cohesion and facilitate long-range control of gene transcription. It is largely unknown how Nipped-B and cohesin associate specifically with gene promoters and transcriptional enhancers, or how sister chromatid cohesion is established. Here, we use genome-wide chromatin immunoprecipitation in Drosophila cells to show that SA and the Fs(1)h (BRD4) BET domain protein help recruit Nipped-B and cohesin to enhancers and DNA replication origins, whereas the MED30 subunit of the Mediator complex directs Nipped-B and Vtd in Drosophila (also known as Rad21) to promoters. All enhancers and their neighboring promoters are close to DNA replication origins and bind SA with proportional levels of cohesin subunits. Most promoters are far from origins and lack SA but bind Nipped-B and Rad21 with subproportional amounts of SMC1, indicating that they bind cohesin rings only part of the time. Genetic data show that Nipped-B and Rad21 function together with Fs(1)h to facilitate Drosophila development. These findings show that Nipped-B and cohesin are differentially targeted to enhancers and promoters, and suggest models for how SA and DNA replication help establish sister chromatid cohesion and facilitate enhancer-promoter communication. They indicate that SA is not an obligatory cohesin subunit but a factor that controls cohesin location on chromosomes.
Collapse
Affiliation(s)
- Michelle Pherson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| |
Collapse
|
30
|
Rowley MJ, Lyu X, Rana V, Ando-Kuri M, Karns R, Bosco G, Corces VG. Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization. Cell Rep 2019; 26:2890-2903.e3. [PMID: 30865881 PMCID: PMC6424357 DOI: 10.1016/j.celrep.2019.01.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 12/22/2022] Open
Abstract
Interaction domains in Drosophila chromosomes form by segregation of active and inactive chromatin in the absence of CTCF loops, but the role of transcription versus other architectural proteins in chromatin organization is unclear. Here, we find that positioning of RNAPII via transcription elongation is essential in the formation of gene loops, which in turn interact to form compartmental domains. Inhibition of transcription elongation or depletion of cohesin decreases gene looping and formation of active compartmental domains. In contrast, depletion of condensin II, which also localizes to active chromatin, causes increased gene looping, formation of compartmental domains, and stronger intra-chromosomal compartmental interactions. Condensin II has a similar role in maintaining inter-chromosomal interactions responsible for pairing between homologous chromosomes, whereas inhibition of transcription elongation or cohesin depletion has little effect on homolog pairing. The results suggest distinct roles for cohesin and condensin II in the establishment of 3D nuclear organization in Drosophila.
Collapse
Affiliation(s)
- M Jordan Rowley
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Xiaowen Lyu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Vibhuti Rana
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Masami Ando-Kuri
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Rachael Karns
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Recurrent loss of function mutations within genes of the cohesin complex have been identified in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). STAG2 is the most commonly mutated cohesin member in AML as well as solid tumors. STAG2 is recurrently, mutated in Ewing's Sarcoma, bladder cancer, and glioblastoma, and is one of only ten genes known to be recurrently mutated in over four distinct tissue types of human cancer RECENT FINDINGS: The cohesin complex, a multiprotein ring, is canonically known to align and stabilize replicated chromosomes prior to cell division. Although initially thought to lead to unequal chromosomal separation in dividing cells, data in myeloid malignancies show this is not observed in cohesin mutant MDS/AML, either in large patient cohorts or mouse models. Mounting evidence supports a potential alternate mechanism whereby drivers of cell-type specific gene expression and hematopoietic development are impaired through alteration in three-dimensional nuclear organization and gene structure. SUMMARY Understanding the functional consequences of cohesin mutations in regulating lineage-specific and signal-dependent defects and in myeloid transformation will identify novel pathophysiologic mechanisms of disease and inform the development of novel therapeutic targets.
Collapse
MESH Headings
- Animals
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Hematologic Neoplasms/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Cohesins
Collapse
Affiliation(s)
- Aaron D Viny
- Human Oncology & Pathogenesis Program, Center for Hematologic Malignancies, and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | | |
Collapse
|
32
|
Misulovin Z, Pherson M, Gause M, Dorsett D. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet 2018; 14:e1007225. [PMID: 29447171 PMCID: PMC5831647 DOI: 10.1371/journal.pgen.1007225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/28/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin's diverse functions.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
33
|
NIPBL +/- haploinsufficiency reveals a constellation of transcriptome disruptions in the pluripotent and cardiac states. Sci Rep 2018; 8:1056. [PMID: 29348408 PMCID: PMC5773608 DOI: 10.1038/s41598-018-19173-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a complex disorder with multiple structural and developmental defects caused by mutations in structural and regulatory proteins involved in the cohesin complex. NIPBL, a cohesin regulatory protein, has been identified as a critical protein responsible for the orchestration of transcriptomic regulatory networks necessary for embryonic development. Mutations in NIPBL are responsible for the majority of cases of CdLS. Through RNA-sequencing of human induced pluripotent stem cells and in vitro-derived cardiomyocytes, we identified hundreds of mRNAs, pseudogenes, and non-coding RNAs with altered expression in NIPBL+/− patient-derived cells. We demonstrate that NIPBL haploinsufficiency leads to upregulation of gene sets identified in functions related to nucleosome, chromatin assembly, RNA modification and downregulation of Wnt signaling, cholesterol biosynthesis and vesicular transport in iPSC and cardiomyocytes. Mutations in NIPBL result in the dysregulation of many genes responsible for normal heart development likely resulting in the variety of structural cardiac defects observed in the CdLS population.
Collapse
|
34
|
Dorsett D, Misulovin Z. Measuring Sister Chromatid Cohesion Protein Genome Occupancy in Drosophila melanogaster by ChIP-seq. Methods Mol Biol 2018; 1515:125-139. [PMID: 27797077 DOI: 10.1007/978-1-4939-6545-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This chapter presents methods to conduct and analyze genome-wide chromatin immunoprecipitation of the cohesin complex and the Nipped-B cohesin loading factor in Drosophila cells using high-throughput DNA sequencing (ChIP-seq). Procedures for isolation of chromatin, immunoprecipitation, and construction of sequencing libraries for the Ion Torrent Proton high throughput sequencer are detailed, and computational methods to calculate occupancy as input-normalized fold-enrichment are described. The results obtained by ChIP-seq are compared to those obtained by ChIP-chip (genomic ChIP using tiling microarrays), and the effects of sequencing depth on the accuracy are analyzed. ChIP-seq provides similar sensitivity and reproducibility as ChIP-chip, and identifies the same broad regions of occupancy. The locations of enrichment peaks, however, can differ between ChIP-chip and ChIP-seq, and low sequencing depth can splinter broad regions of occupancy into distinct peaks.
Collapse
Affiliation(s)
- Dale Dorsett
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO, 63104, USA.
| | - Ziva Misulovin
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO, 63104, USA
| |
Collapse
|
35
|
Song SH, Kim TY. CTCF, Cohesin, and Chromatin in Human Cancer. Genomics Inform 2017; 15:114-122. [PMID: 29307136 PMCID: PMC5769866 DOI: 10.5808/gi.2017.15.4.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly clear that eukaryotic genomes are subjected to higher-order chromatin organization by the CCCTC-binding factor/cohesin complex. Their dynamic interactions in three dimensions within the nucleus regulate gene transcription by changing the chromatin architecture. Such spatial genomic organization is functionally important for the spatial disposition of chromosomes to control cell fate during development and differentiation. Thus, the dysregulation of proper long-range chromatin interactions may influence the development of tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Sang-Hyun Song
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Tae-You Kim
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
36
|
Büchel G, Carstensen A, Mak KY, Roeschert I, Leen E, Sumara O, Hofstetter J, Herold S, Kalb J, Baluapuri A, Poon E, Kwok C, Chesler L, Maric HM, Rickman DS, Wolf E, Bayliss R, Walz S, Eilers M. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle. Cell Rep 2017; 21:3483-3497. [PMID: 29262328 PMCID: PMC5746598 DOI: 10.1016/j.celrep.2017.11.090] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.
Collapse
Affiliation(s)
- Gabriele Büchel
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anne Carstensen
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ka-Yan Mak
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Isabelle Roeschert
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eoin Leen
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; University of Leicester, Leicester LE1 9HN, UK
| | - Olga Sumara
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Steffi Herold
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacqueline Kalb
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Colin Kwok
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd., Belmont, Sutton, Surrey SM2 5NG, UK
| | - Hans Michael Maric
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David S Rickman
- Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Elmar Wolf
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Richard Bayliss
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; University of Leicester, Leicester LE1 9HN, UK
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
37
|
Toth Z, Smindak RJ, Papp B. Inhibition of the lytic cycle of Kaposi's sarcoma-associated herpesvirus by cohesin factors following de novo infection. Virology 2017; 512:25-33. [PMID: 28898712 PMCID: PMC5653454 DOI: 10.1016/j.virol.2017.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023]
Abstract
Establishment of Kaposi's sarcoma-associated herpesvirus (KSHV) latency following infection is a multistep process, during which polycomb proteins are recruited onto the KSHV genome, which is crucial for the genome-wide repression of lytic genes during latency. Strikingly, only a subset of lytic genes are expressed transiently in the early phase of infection prior to the binding of polycomb proteins onto the KSHV genome, which raises the question what restricts lytic gene expression in the first hours of infection. Here, we demonstrate that both CTCF and cohesin chromatin organizing factors are rapidly recruited to the viral genome prior to the binding of polycombs during de novo infection, but only cohesin is required for the genome-wide inhibition of lytic genes. We propose that cohesin is required for the establishment of KSHV latency by initiating the repression of lytic genes following infection, which is an essential step in persistent infection of humans.
Collapse
Affiliation(s)
- Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA; UF Genetics Institute, USA; UF Health Cancer Center, USA.
| | - Richard J Smindak
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA; UF Genetics Institute, USA; UF Health Cancer Center, USA
| |
Collapse
|
38
|
Newkirk DA, Chen YY, Chien R, Zeng W, Biesinger J, Flowers E, Kawauchi S, Santos R, Calof AL, Lander AD, Xie X, Yokomori K. The effect of Nipped-B-like (Nipbl) haploinsufficiency on genome-wide cohesin binding and target gene expression: modeling Cornelia de Lange syndrome. Clin Epigenetics 2017; 9:89. [PMID: 28855971 PMCID: PMC5574093 DOI: 10.1186/s13148-017-0391-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder frequently associated with heterozygous loss-of-function mutations of Nipped-B-like (NIPBL), the human homolog of Drosophila Nipped-B. NIPBL loads cohesin onto chromatin. Cohesin mediates sister chromatid cohesion important for mitosis but is also increasingly recognized as a regulator of gene expression. In CdLS patient cells and animal models, expression changes of multiple genes with little or no sister chromatid cohesion defect suggests that disruption of gene regulation underlies this disorder. However, the effect of NIPBL haploinsufficiency on cohesin binding, and how this relates to the clinical presentation of CdLS, has not been fully investigated. Nipbl haploinsufficiency causes CdLS-like phenotype in mice. We examined genome-wide cohesin binding and its relationship to gene expression using mouse embryonic fibroblasts (MEFs) from Nipbl+/- mice that recapitulate the CdLS phenotype. RESULTS We found a global decrease in cohesin binding, including at CCCTC-binding factor (CTCF) binding sites and repeat regions. Cohesin-bound genes were found to be enriched for histone H3 lysine 4 trimethylation (H3K4me3) at their promoters; were disproportionately downregulated in Nipbl mutant MEFs; and displayed evidence of reduced promoter-enhancer interaction. The results suggest that gene activation is the primary cohesin function sensitive to Nipbl reduction. Over 50% of significantly dysregulated transcripts in mutant MEFs come from cohesin target genes, including genes involved in adipogenesis that have been implicated in contributing to the CdLS phenotype. CONCLUSIONS Decreased cohesin binding at the gene regions is directly linked to disease-specific expression changes. Taken together, our Nipbl haploinsufficiency model allows us to analyze the dosage effect of cohesin loading on CdLS development.
Collapse
Affiliation(s)
- Daniel A. Newkirk
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: ResearchDx Inc., 5 Mason, Irvine, CA 92618 USA
| | - Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: Thermo Fisher Scientific, Inc., 180 Oyster Point Blvd South, San Francisco, CA 94080 USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697 USA
| | - Jacob Biesinger
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
- Current address: Verily Life Scienceds, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
| | - Ebony Flowers
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- California State University Long Beach, Long Beach, CA 90840 USA
- Current address: UT Southwestern Medical Center, 5323 Harry Hines Blvd, NA8.124, Dallas, TX 75390 USA
| | - Shimako Kawauchi
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Rosaysela Santos
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Anne L. Calof
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Arthur D. Lander
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697 USA
| | - Xiaohui Xie
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
| |
Collapse
|
39
|
Pherson M, Misulovin Z, Gause M, Mihindukulasuriya K, Swain A, Dorsett D. Polycomb repressive complex 1 modifies transcription of active genes. SCIENCE ADVANCES 2017; 3:e1700944. [PMID: 28782042 PMCID: PMC5540264 DOI: 10.1126/sciadv.1700944] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/28/2017] [Indexed: 05/21/2023]
Abstract
This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences.
Collapse
|
40
|
Lehalle D, Mosca-Boidron AL, Begtrup A, Boute-Benejean O, Charles P, Cho MT, Clarkson A, Devinsky O, Duffourd Y, Duplomb-Jego L, Gérard B, Jacquette A, Kuentz P, Masurel-Paulet A, McDougall C, Moutton S, Olivié H, Park SM, Rauch A, Revencu N, Rivière JB, Rubin K, Simonic I, Shears DJ, Smol T, Taylor Tavares AL, Terhal P, Thevenon J, Van Gassen K, Vincent-Delorme C, Willemsen MH, Wilson GN, Zackai E, Zweier C, Callier P, Thauvin-Robinet C, Faivre L. STAG1 mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. J Med Genet 2017; 54:479-488. [PMID: 28119487 DOI: 10.1136/jmedgenet-2016-104468] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cohesinopathies are rare neurodevelopmental disorders arising from a dysfunction in the cohesin pathway, which enables chromosome segregation and regulates gene transcription. So far, eight genes from this pathway have been reported in human disease. STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. This work aimed to identify the phenotype ascribed to STAG1 mutations. METHODS Among patients referred for intellectual disability (ID) in genetics departments worldwide, array-comparative genomic hybridisation (CGH), gene panel, whole-exome sequencing or whole-genome sequencing were performed following the local diagnostic standards. RESULTS A mutation in STAG1 was identified in 17 individuals from 16 families, 9 males and 8 females aged 2-33 years. Four individuals harboured a small microdeletion encompassing STAG1; three individuals from two families had an intragenic STAG1 deletion. Six deletions were identified by array-CGH, one by whole-exome sequencing. Whole-exome sequencing found de novo heterozygous missense or frameshift STAG1 variants in eight patients, a panel of genes involved in ID identified a missense and a frameshift variant in two individuals. The 17 patients shared common facial features, with wide mouth and deep-set eyes. Four individuals had mild microcephaly, seven had epilepsy. CONCLUSIONS We report an international series of 17 individuals from 16 families presenting with syndromic unspecific ID that could be attributed to a STAG1 deletion or point mutation. This first series reporting the phenotype ascribed to mutation in STAG1 highlights the importance of data sharing in the field of rare disorders.
Collapse
Affiliation(s)
- Daphné Lehalle
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Amber Begtrup
- GeneDx, 207 Perry Parkway, Gaithersburg, Maryland, USA
| | | | - Perrine Charles
- Genetic Department, University Hospital La Pitié Salpêtrière, Paris, France
| | - Megan T Cho
- GeneDx, 207 Perry Parkway, Gaithersburg, Maryland, USA
| | - Amanda Clarkson
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
| | - Orrin Devinsky
- Epilepsy Center, NYU Langone Medical Center, New York, New York, USA
| | - Yannis Duffourd
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Duplomb-Jego
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Bénédicte Gérard
- Laboratoire de biologie moléculaire, CHU Strasbourg, Strasbourg, France
| | - Aurélia Jacquette
- Genetic Department, University Hospital La Pitié Salpêtrière, Paris, France
| | - Paul Kuentz
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Alice Masurel-Paulet
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Carey McDougall
- Clinical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Hilde Olivié
- Department of Human Genetics and Centre for Developmental Disabilities, KU University Hospital Leuven, Leuven, Belgium
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland
| | - Nicole Revencu
- Centre for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Rivière
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Karol Rubin
- University of Minnesota Children's Hospital, Minneapolis, Minnesota, USA
| | - Ingrid Simonic
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
| | - Deborah J Shears
- Oxford Centre for Genomic Medicine Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE
| | - Thomas Smol
- Service de génétique clinique, CHU Lille, Lille, France
- Univ. Lille, RADEME (Research team on rare developmental and metabolic diseases), Lille, France
| | | | - Paulien Terhal
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julien Thevenon
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Koen Van Gassen
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Marjolein H Willemsen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, Texas, USA
| | | | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Patrick Callier
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Laboratoire de Cytogénétique, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Christel Thauvin-Robinet
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe GAD, EA4271, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
41
|
Chavda AP, Ang K, Ivanov D. The torments of the cohesin ring. Nucleus 2017; 8:261-267. [PMID: 28453390 PMCID: PMC5499920 DOI: 10.1080/19491034.2017.1295200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022] Open
Abstract
Cohesin is a ring-shaped protein complex which comprises the Smc1, Smc3 and Scc1 subunits. It topologically embraces chromosomal DNA to connect sister chromatids and stabilize chromatin loops. It is required for proper chromosomal segregation, DNA repair and transcriptional regulation. We have recently reported that cohesin rings can adopt a "collapsed" rod-like conformation which is driven by the interaction between the Smc1 and Smc3 coiled coil arms and is regulated by post-translational modifications. The "collapsed" conformation plays a role in cohesin ring assembly and its loading on the DNA. Here we speculate about the mechanism of cohesin's conformational transitions in relation to its loading on the DNA and draw parallels with other Smc-like complexes.
Collapse
Affiliation(s)
| | - Keven Ang
- Bioinformatics Institute, A*STAR, Singapore
| | - Dmitri Ivanov
- Bioinformatics Institute, A*STAR, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
- Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany
- Department of Physics, National University of Singapore, Singapore
| |
Collapse
|
42
|
Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, Peters JM. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 2017; 544:503-507. [PMID: 28424523 PMCID: PMC6080695 DOI: 10.1038/nature22063] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
Mammalian genomes are spatially organized by CCCTC-binding factor (CTCF) and cohesin into chromatin loops and topologically associated domains, which have important roles in gene regulation and recombination. By binding to specific sequences, CTCF defines contact points for cohesin-mediated long-range chromosomal cis-interactions. Cohesin is also present at these sites, but has been proposed to be loaded onto DNA elsewhere and to extrude chromatin loops until it encounters CTCF bound to DNA. How cohesin is recruited to CTCF sites, according to this or other models, is unknown. Here we show that the distribution of cohesin in the mouse genome depends on transcription, CTCF and the cohesin release factor Wings apart-like (Wapl). In CTCF-depleted fibroblasts, cohesin cannot be properly recruited to CTCF sites but instead accumulates at transcription start sites of active genes, where the cohesin-loading complex is located. In the absence of both CTCF and Wapl, cohesin accumulates in up to 70 kilobase-long regions at 3'-ends of active genes, in particular if these converge on each other. Changing gene expression modulates the position of these 'cohesin islands'. These findings indicate that transcription can relocate mammalian cohesin over long distances on DNA, as previously reported for yeast cohesin, that this translocation contributes to positioning cohesin at CTCF sites, and that active genes can be freed from cohesin either by transcription-mediated translocation or by Wapl-mediated release.
Collapse
Affiliation(s)
- Georg A. Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Roman R. Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Petra van der Lelij
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Elin Axelsson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Antonio Tedeschi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| |
Collapse
|
43
|
Li Z, Zhang P, Yan A, Guo Z, Ban Y, Li J, Chen S, Yang H, He Y, Li J, Guo Y, Zhang W, Hajiramezanali E, An H, Fajardo D, Harbour JW, Ruan Y, Nimer SD, Yu P, Chen X, Xu M, Yang FC. ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis. SCIENCE ADVANCES 2017; 3:e1601602. [PMID: 28116354 PMCID: PMC5249256 DOI: 10.1126/sciadv.1601602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/30/2016] [Indexed: 05/26/2023]
Abstract
ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells.
Collapse
Affiliation(s)
- Zhaomin Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aimin Yan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jin Li
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yongzheng He
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianping Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wen Zhang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ehsan Hajiramezanali
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Huangda An
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Darlene Fajardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J. William Harbour
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
44
|
Abstract
The cohesin protein complex regulates multiple cellular events including sister chromatid cohesion and gene expression. Several distinct human diseases called cohesinopathies have been associated with genetic mutations in cohesin subunit genes or genes encoding regulators of cohesin function. Studies in different model systems, from yeast to mouse have provided insights into the molecular mechanisms of action of cohesin/cohesin regulators and their implications in the pathogenesis of cohesinopathies. The zebrafish has unique advantages for embryonic analyses and quantitative gene knockdown with morpholinos during the first few days of development, in contrast to knockouts of cohesin regulators in flies or mammals, which are either lethal as homozygotes or dramatically compensated for in heterozygotes. This has been particularly informative for Rad21, where a role in gene expression was first shown in zebrafish, and Nipbl, where the fish work revealed tissue-specific functions in heart, gut, and limbs, and long-range enhancer-promoter interactions that control Hox gene expression in vivo. Here we discuss the utility of the zebrafish in studying the developmental and pathogenic roles of cohesin.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
45
|
Abstract
Cohesin is a large ring-shaped protein complex, conserved from yeast to human, which participates in most DNA transactions that take place in the nucleus. It mediates sister chromatid cohesion, which is essential for chromosome segregation and homologous recombination (HR)-mediated DNA repair. Together with architectural proteins and transcriptional regulators, such as CTCF and Mediator, respectively, it contributes to genome organization at different scales and thereby affects transcription, DNA replication, and locus rearrangement. Although cohesin is essential for cell viability, partial loss of function can affect these processes differently in distinct cell types. Mutations in genes encoding cohesin subunits and regulators of the complex have been identified in several cancers. Understanding the functional significance of these alterations may have relevant implications for patient classification, risk prediction, and choice of treatment. Moreover, identification of vulnerabilities in cancer cells harboring cohesin mutations may provide new therapeutic opportunities and guide the design of personalized treatments.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|
46
|
Papadopoulou T, Richly H. On-site remodeling at chromatin: How multiprotein complexes are rebuilt during DNA repair and transcriptional activation. Bioessays 2016; 38:1130-1140. [PMID: 27599465 DOI: 10.1002/bies.201600094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we discuss a novel on-site remodeling function that is mediated by the H2A-ubiquitin binding protein ZRF1. ZRF1 facilitates the remodeling of multiprotein complexes at chromatin and lies at the heart of signaling processes that occur at DNA damage sites and during transcriptional activation. In nucleotide excision repair ZRF1 remodels E3 ubiquitin ligase complexes at the damage site. During embryonic stem cell differentiation, it contributes to retinoic acid-mediated gene activation by altering the subunit composition of the Mediator complex. We postulate that ZRF1 operates in conjunction with cellular remodeling machines and suggest that on-site remodeling might be a hallmark of many chromatin-associated signaling pathways. We discuss yet unexplored functions of ZRF1-mediated remodeling in replication and double strand break repair. In conclusion, we postulate that on-site remodeling of multiprotein complexes is essential for the timing of chromatin signaling processes.
Collapse
Affiliation(s)
- Thaleia Papadopoulou
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
47
|
Swain A, Misulovin Z, Pherson M, Gause M, Mihindukulasuriya K, Rickels RA, Shilatifard A, Dorsett D. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements. PLoS Genet 2016; 12:e1006331. [PMID: 27662615 PMCID: PMC5035082 DOI: 10.1371/journal.pgen.1006331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.
Collapse
Affiliation(s)
- Amanda Swain
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kathie Mihindukulasuriya
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
48
|
Abstract
RNA polymerase 2 (pol2) associates with enhancers and promoters, followed by transcription initiation and subsequent pausing. Upon release, pol2 proceeds into productive elongation. A wide spread view of transcription holds that during elongation, pol2 and associated factors clear the promoter proximal region to track along the chromatin fiber until a termination site is encountered. However, several studies are compatible with alternative models. One common feature among these models is that transcription elongation results from movement of the gene along a complex consisting of pol2 and associated factors. Such a scenario predicts that active enhancers and promoters that are bound by transcription complexes, including pol2 are in dynamic physical proximity with the gene body in a manner paralleling pol2 processivity. This has indeed been observed by chromosome conformation capture under conditions of synchronous transcription. Here we discuss these observations and their implication for architectural models of transcription elongation.
Collapse
Affiliation(s)
- Kiwon Lee
- a Division of Hematology , The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Gerd A Blobel
- a Division of Hematology , The Children's Hospital of Philadelphia , Philadelphia , PA , USA.,b Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
49
|
Dorsett D. The Drosophila melanogaster model for Cornelia de Lange syndrome: Implications for etiology and therapeutics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:129-37. [PMID: 27097273 DOI: 10.1002/ajmg.c.31490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Discovery of genetic alterations that cause human birth defects provide key opportunities to improve the diagnosis, treatment, and family counseling. Frequently, however, these opportunities are limited by the lack of knowledge about the normal functions of the affected genes. In many cases, there is more information about the gene's orthologs in model organisms, including Drosophila melanogaster. Despite almost a billion years of evolutionary divergence, over three-quarters of genes linked to human diseases have Drosophila homologs. With a short generation time, a twenty-fold smaller genome, and unique genetic tools, the conserved functions of genes are often more easily elucidated in Drosophila than in other organisms. Here we present how this applies to Cornelia de Lange syndrome, as a model for how Drosophila can be used to increase understanding of genetic syndromes caused by mutations with broad effects on gene transcription and exploited to develop novel therapies. © 2016 Wiley Periodicals, Inc.
Collapse
|
50
|
Luo Z, Lin C. Enhancer, epigenetics, and human disease. Curr Opin Genet Dev 2016; 36:27-33. [DOI: 10.1016/j.gde.2016.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/24/2016] [Indexed: 02/09/2023]
|