1
|
Belardi R, Pacifici F, Baldetti M, Velocci S, Minieri M, Pieri M, Campione E, Della-Morte D, Tisone G, Anselmo A, Novelli G, Bernardini S, Terrinoni A. Trends in Precision Medicine and Pharmacogenetics as an Adjuvant in Establishing a Correct Immunosuppressive Therapy for Kidney Transplant: An Up-to-Date Historical Overview. Int J Mol Sci 2025; 26:1960. [PMID: 40076585 PMCID: PMC11900248 DOI: 10.3390/ijms26051960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Kidney transplantation is currently the treatment of choice for patients with end-stage kidney diseases. Although significant advancements in kidney transplantation have been achieved over the past decades, the host's immune response remains the primary challenge, often leading to potential graft rejection. Effective management of the immune response is essential to ensure the long-term success of kidney transplantation. To address this issue, immunosuppressives have been developed and are now fully integrated into the clinical management of transplant recipients. However, the considerable inter- and intra-patient variability in pharmacokinetics (PK) and pharmacodynamics (PD) of these drugs represents the primary cause of graft rejection. This variability is primarily attributed to the polymorphic nature (genetic heterogeneity) of genes encoding xenobiotic-metabolizing enzymes, transport proteins, and, in some cases, drug targets. These genetic differences can influence drug metabolism and distribution, leading to either toxicity or reduced efficacy. The main objective of the present review is to report an historical overview of the pharmacogenetics of immunosuppressants, shedding light on the most recent findings and also suggesting how relevant is the research and investment in developing validated NGS-based commercial panels for pharmacogenetic profiling in kidney transplant recipients. These advancements will enable the implementation of precision medicine, optimizing immunosuppressive therapies to improve graft survival and kidney transplanted patient outcomes.
Collapse
Affiliation(s)
- Riccardo Belardi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Matteo Baldetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Silvia Velocci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Elena Campione
- Dermatology Unit, Policlinico Tor Vergata, System Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Giuseppe Tisone
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Alessandro Anselmo
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| |
Collapse
|
2
|
Medina HR, Rangel DEN. Light enhances the production of conidia and influences their hydrophobicity in Tolypocladium inflatum. Fungal Biol 2025; 129:101483. [PMID: 39826973 DOI: 10.1016/j.funbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 01/22/2025]
Abstract
Insect fungal pathogens such as Beauveria bassiana, Metarhizium robertsii, and Tolypocladium inflatum have been used as insect biocontrol agents. Their infection mechanism involves non-specific adhesion to the host cuticle, which is controlled by hydrophobins, small proteins that form an amphipathic monolayer with rodlet morphology on diverse fungal structures. Light is an abiotic factor that may influence a wide range of cellular processes, including conidiogenesis, stress tolerance, and metabolite biosynthesis. Although its effects have been studied in many fungi, little is known about the effects of light on the hydrophobic properties of conidia. The aim of this work was to investigate the influence of visible light on the conidial hydrophobicity of three entomopathogenic fungal species. For this, conidia of B. bassiana, M. robertsii, and T. inflatum were grown either under light or in the dark, drop profiles of water and diiodomethane on conidial surfaces were analyzed, and conidial hydrophobicity was estimated from contact angle measurements. Moreover, conidial production was determined, and their genome was screened with sequences for hydrophobins. Conidia of B. bassiana and M. robertsii are more hydrophobic than conidia of T. inflatum. The light modified the surface tension of T. inflatum; therefore, conidia of T. inflatum became hydrophilic. However, light did not affect the conidial hydrophobicity of B. bassiana and M. robertsii. In addition, light modified the conidial production of B. bassiana and T. inflatum cultures, but it had no effect on the conidial production of M. robertsii. The T. inflatum genome contains two predicted proteins whose sequence is akin to that of proven class II hydrophobins from other ascomycetes. Presumably, these proteins are responsible for the conidial hydrophobicity properties in this fungus. Our study helps elucidate how light affects the conidial hydrophobicity of entomopathogenic fungi.
Collapse
Affiliation(s)
- Humberto R Medina
- Fungal Stress Laboratory, Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, PR, 85660-000, Brazil; Laboratory of Molecular Biology, Tecnológico Nacional de México, Celaya, Gto, 38010, Mexico
| | - Drauzio E N Rangel
- Fungal Stress Laboratory, Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, PR, 85660-000, Brazil.
| |
Collapse
|
3
|
Yoon SH, Kim EC, You IC, Choi CY, Kim JY, Song JS, Hyon JY, Kim HK, Seo KY. Clinical efficacy of 0.1% cyclosporine A in dry eye patients with inadequate responses to 0.05% cyclosporine A: a switching, prospective, open-label, multicenter study. BMC Ophthalmol 2025; 25:37. [PMID: 39844141 PMCID: PMC11752847 DOI: 10.1186/s12886-025-03862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
PURPOSE To assess the clinical efficacy of 0.1% cyclosporine A (CsA) in dry eye patients who have shown inadequate responses to previous treatment with 0.05% CsA. DESIGN This study was designed as a switching, prospective, multicenter, 12-week, open-label study. METHODS Patients with dry eye disease (DED), who experienced inadequate responses to at least 3 months of treatment with 0.05% cyclosporine, were enrolled in this study. Clinical evaluations included the National Eye Institute (NEI) corneal and conjunctival staining scores, tear film break-up time (TF-BUT), Symptom Assessment in Dry Eye (SANDE), ocular discomfort scale (ODS), and tear volume. These parameters were assessed at baseline, and again at 4, 8, and 12 weeks after switching to 0.1% CsA. RESULTS Ninety-one patients were enrolled in the study, and 70 patients completed the trial. Statistical analysis was performed on the full analysis set (FAS) using the Markov Chain Monte Carlo (MCMC) method to account for missing data. After switching to 0.1% CsA, subjective symptoms assessed by the Symptom Assessment in Dry Eye (SANDE) and Ocular Discomfort Scale (ODS) showed improvement (p < 0.0001). Objective signs of dry eye, including the National Eye Institute (NEI) score, tear film break-up time (TF-BUT), and tear volume also improved (p < 0.0001). CONCLUSIONS In patients with dry eye disease (DED) who exhibited inadequate responses to 0.05% cyclosporine A (CsA), switching to 0.1% CsA resulted in significant improvements in both subjective symptoms and objective clinical signs. This finding suggests that higher concentrations of CsA may be more effective in treating individuals with moderate to severe DED.
Collapse
Affiliation(s)
- Sook Hyun Yoon
- Department of Ophthalmology, Daegu Catholic University of Medicine, Daegu, Republic of Korea
| | - Eun Chul Kim
- Department of Ophthalmology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - In-Cheon You
- Department of Ophthalmology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Chul Young Choi
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Seoul Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, Korea.
| | - Kyoung Yul Seo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Sharma N, Venugopal R, Nagpal R, K P, Verma K, Verma KK, Biswas NR, Velpandian T, Sen S, Dwivedi SN, Tandon R, Titiyal JS, Vajpayee R. Evaluation of adjuvant role of topical cyclosporine 1% in acute Stevens-Johnson syndrome: a randomised control trial. Br J Ophthalmol 2024; 109:10-14. [PMID: 38802169 DOI: 10.1136/bjo-2023-324901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE To evaluate the role of topical cyclosporine A 1% (CsA) as an adjuvant therapy in patients with acute Stevens-Johnson syndrome (SJS). METHODS This is a randomised controlled trial in which 44 patients (88 eyes) with acute SJS, presenting within 3 months from the onset of the disease, were enrolled and randomised. Group A (n=44 eyes) patients received treatment with topical CsA 1% along with standard therapy consisting of topical corticosteroids, antibiotics and lubricants. Group B (n=44 eyes) patients received topical saline drops in combination with standard therapy. Various ocular surface parameters were assessed at baseline and the 6-month follow-up. RESULTS The mean age of patients (years) was 23.9±15.1 in the CsA group and 26.0±18.7 in the control group (p=0.6840). The mean time from disease onset to presentation (days) was 17.0±14.0 and 12.9±11.3 in CsA and control groups, respectively (p=0.1568). At presentation, the mean grades of severity scores of various parameters were comparable. At 6 months, both groups showed a significant improvement in the mean severity grades of conjunctival hyperaemia (A, p=0.001; B, p=0.0001), mucocutaneous junction involvement (A, p=0.001; B, p=0.0001) and meibomian gland involvement (A, p=0.0471; B, p=0.006). Compared with baseline, the grades of corneal keratinisation (baseline, 0.48±0.7; 6 months, 1.02±0.8; p=0.0015) and neovascularisation (baseline, 1.07±1.2; 6 months, 1.57±1.0; p=0.0412) worsened after 6 months of CsA therapy. Intergroup comparison of grades of various parameters however did not reveal any significant difference at 6 months. CONCLUSIONS Adjuvant treatment with topical CsA is not superior to standard therapy, in cases of acute SJS.
Collapse
Affiliation(s)
- Namrata Sharma
- Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Venugopal
- Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Nagpal
- Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Sciences, New Delhi, India
| | - Priyadarshini K
- Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Sciences, New Delhi, India
| | - Kamna Verma
- Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Sciences, New Delhi, India
| | - Kaushal K Verma
- Department of Dermatology, All India institute of Medical Sciences, New Delhi, Delhi, India
| | - N R Biswas
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Seema Sen
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - S N Dwivedi
- Department of Biostatistics, All India institute of Medical Sciences, New Delhi, Delhi, India
| | - Radhika Tandon
- Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Sciences, New Delhi, India
| | - Jeewan S Titiyal
- Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Sciences, New Delhi, India
| | - Rasik Vajpayee
- University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Nguyen TTT, Lee HB. Descriptions of 19 Unrecorded Species Belonging to Sordariomycetes in Korea. MYCOBIOLOGY 2024; 52:405-438. [PMID: 39845177 PMCID: PMC11749255 DOI: 10.1080/12298093.2024.2426840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 01/24/2025]
Abstract
A survey of fungal diversity in soil and freshwater habitats in Korea isolated several species of the class Sordariomycetes. Morphological characteristics and multigene phylogenetic analyses showed that these species represented new records for Korea. Herein, we report the descriptions, illustrations, and molecular phylogeny of 19 species previously undescribed in Korea, including Achaetomiella virescens, Arxotrichum gangligerum, Caespitomonium euphorbiae, Comoclathris typhicola, Gamsia aggregata, Luteonectria nematophila, Paramyrothecium sinense, Parasarocladium debruynii, Pleurocordyceps agarica, Pyrenochaetopsis sinensis, Scedosporium boydii, Scedosporium dehoogii, Scedosporium minutisporum, Striatibotrys rhabdosporus, Trichocladium crispatum, Trichoderma azevedoi, Trichoderma longifialidicum, Xepicula leucotricha, and Xylomelasma sordida.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Yin M, Xie L, Chen K, Zhang L, Yue Q, Wang C, Zeng J, Hao X, Gu X, Molnár I, Xu Y. Re-Engineering Fungal Nonribosomal Peptide Synthetases by Module Dissection and Duplicated Thiolation Domains. Angew Chem Int Ed Engl 2024; 63:e202406360. [PMID: 38822735 DOI: 10.1002/anie.202406360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Unnatural product (uNP) nonribosomal peptides promise to be a valuable source of pharmacophores for drug discovery. However, the extremely large size and complexity of the nonribosomal peptide synthetase (NRPS) enzymes pose formidable challenges to the production of such uNPs by combinatorial biosynthesis and synthetic biology. Here we report a new NRPS dissection strategy that facilitates the engineering and heterologous production of these NRPSs. This strategy divides NRPSs into "splitting units", each forming an enzyme subunit that contains catalytically independent modules. Functional collaboration between the subunits is then facilitated by artificially duplicating, at the N-terminus of the downstream subunit, the linker - thiolation domain - linker fragment that is resident at the C-terminus of the upstream subunit. Using the suggested split site that follows a conserved motif in the linker connecting the adenylation and the thiolation domains allows cognate or chimeric splitting unit pairs to achieve productivities that match, and in many cases surpass those of hybrid chimeric enzymes, and even those of intact NRPSs, upon production in a heterologous chassis. Our strategy provides facile options for the rational engineering of fungal NRPSs and for the combinatorial reprogramming of nonribosomal peptide production.
Collapse
Affiliation(s)
- Miaomiao Yin
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Linan Xie
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Kang Chen
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Liwen Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Qun Yue
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Chen Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Juntian Zeng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Xiaoyang Hao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Xiaofeng Gu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - István Molnár
- VTT Technical Research Centre of Finland, Espoo, 02150, Finland
| | - Yuquan Xu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| |
Collapse
|
8
|
Tiwari P, Park KI. Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? J Fungi (Basel) 2024; 10:506. [PMID: 39057391 PMCID: PMC11278089 DOI: 10.3390/jof10070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The present era has witnessed an unprecedented scenario with extreme climate changes, depleting natural resources and rising global food demands and its widespread societal impact. From providing bio-based resources to fulfilling socio-economic necessities, tackling environmental challenges, and ecosystem restoration, microbes exist as integral members of the ecosystem and influence human lives. Microbes demonstrate remarkable potential to adapt and thrive in climatic variations and extreme niches and promote environmental sustainability. It is important to mention that advances in fungal biotechnologies have opened new avenues and significantly contributed to improving human lives through addressing socio-economic challenges. Microbe-based sustainable innovations would likely contribute to the United Nations sustainable development goals (SDGs) by providing affordable energy (use of agro-industrial waste by microbial conversions), reducing economic burdens/affordable living conditions (new opportunities by the creation of bio-based industries for a sustainable living), tackling climatic changes (use of sustainable alternative fuels for reducing carbon footprints), conserving marine life (production of microbe-based bioplastics for safer marine life) and poverty reduction (microbial products), among other microbe-mediated approaches. The article highlights the emerging trends and future directions into how fungal biotechnologies can provide feasible and sustainable solutions to achieve SDGs and address global issues.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | |
Collapse
|
9
|
Yu Y, van der Donk WA. PEARL-Catalyzed Peptide Bond Formation after Chain Reversal by Ureido-Forming Condensation Domains. ACS CENTRAL SCIENCE 2024; 10:1242-1250. [PMID: 38947204 PMCID: PMC11212132 DOI: 10.1021/acscentsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites produced by the BGC, and the omission of selected biosynthetic enzymes revealed the biosynthetic pathway toward these compounds. The final product is a bisarginyl ureidopeptide with an enone electrophile. The putative lantibiotic dehydratase catalyzes peptide bond formation to a Thr that extends the peptide scaffold opposite to the NRPS and PKS biosynthetic direction. The condensation domain of the NRPS SnaA catalyzes the formation of a ureido group, and bioinformatics analysis revealed a distinct active site signature EHHXXHDG of ureido-generating condensation (Curea) domains. This work demonstrates that the annotated lantibiotic dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the biosynthesis of both ribosomal and nonribosomal natural products.
Collapse
Affiliation(s)
- Yue Yu
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Ding Y, Lambden E, Peate J, Picken LJ, Rees TW, Perez-Ortiz G, Newgas SA, Spicer LAR, Hicks T, Hess J, Ulmschneider MB, Müller MM, Barry SM. Rapid Peptide Cyclization Inspired by the Modular Logic of Nonribosomal Peptide Synthetases. J Am Chem Soc 2024; 146:16787-16801. [PMID: 38842580 PMCID: PMC11191687 DOI: 10.1021/jacs.4c04711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Nonribosomal cyclic peptides (NRcPs) are structurally complex natural products and a vital pool of therapeutics, particularly antibiotics. Their structural diversity arises from the ability of the multidomain enzyme assembly lines, nonribosomal peptide synthetases (NRPSs), to utilize bespoke nonproteinogenic amino acids, modify the linear peptide during elongation, and catalyze an array of cyclization modes, e.g., head to tail, side chain to tail. The study and drug development of NRcPs are often limited by a lack of easy synthetic access to NRcPs and their analogues, with selective macrolactamization being a major bottleneck. Herein, we report a generally applicable chemical macrocyclization method of unprecedented speed and selectivity. Inspired by biosynthetic cyclization, it combines the deprotected linear biosynthetic precursor peptide sequence with a highly reactive C-terminus to produce NRcPs and analogues in minutes. The method was applied to several NRcPs of varying sequences, ring sizes, and cyclization modes including rufomycin, colistin, and gramicidin S with comparable success. We thus demonstrate that the linear order of modules in NRPS enzymes that determines peptide sequence encodes the key structural information to produce peptides conformationally biased toward macrocyclization. To fully exploit this conformational bias synthetically, a highly reactive C-terminal acyl azide is also required, alongside carefully balanced pH and solvent conditions. This allows for consistent, facile cyclization of exceptional speed, selectivity, and atom efficiency. This exciting macrolactamization method represents a new enabling technology for the biosynthetic study of NRcPs and their development as therapeutics.
Collapse
Affiliation(s)
- Yaoyu Ding
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Edward Lambden
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jessica Peate
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Lewis J. Picken
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Thomas W. Rees
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Gustavo Perez-Ortiz
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Sophie A. Newgas
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Lucy A. R. Spicer
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Thomas Hicks
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Jeannine Hess
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Martin B. Ulmschneider
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Manuel M. Müller
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Sarah M. Barry
- Department
of Chemistry, Faculty of Natural, Mathematical, and Engineering Sciences, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
11
|
Chai L, Li J, Guo L, Zhang S, Chen F, Zhu W, Li Y. Genomic and Transcriptome Analysis Reveals the Biosynthesis Network of Cordycepin in Cordyceps militaris. Genes (Basel) 2024; 15:626. [PMID: 38790255 PMCID: PMC11120935 DOI: 10.3390/genes15050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cordycepin is the primary active compound of Cordyceps militaris. However, the definitive genetic mechanism governing cordycepin synthesis in fruiting body growth and development remains elusive, necessitating further investigation. This study consists of 64 C. militaris strains collected from northeast China. The high-yielding cordycepin strain CMS19 was selected for the analysis of cordycepin production and the genetic basis of cordycepin anabolism. First, the whole-genome sequencing of CMS19 yielded a final size of 30.96 Mb with 8 contigs and 9781 protein-coding genes. The genome component revealed the presence of four additional secondary metabolite gene clusters compared with other published genomes, suggesting the potential for the production of new natural products. The analyses of evolutionary and genetic differentiation revealed a close relationship between C. militaris and Beauveria bassiana. The population of strains distributed in northeast China exhibited the significant genetic variation. Finally, functional genes associated with cordycepin synthesis were identified using a combination of genomic and transcriptomic analyses. A large number of functional genes associated with energy and purine metabolism were significantly enriched, facilitating the reconstruction of a hypothetical cordycepin metabolic pathway. Therefore, our speculation of the cordycepin metabolism pathway involved 24 genes initiating from the glycolysis and pentose phosphate pathways, progressing through purine metabolism, and culminating in the core region of cordycepin synthesis. These findings could offer fundamental support for scientific utilizations of C. militaris germplasm resources and standardized cultivation for cordycepin production.
Collapse
Affiliation(s)
- Linshan Chai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Jianmei Li
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Lingling Guo
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Shuyu Zhang
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Fei Chen
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Wanqin Zhu
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
12
|
Owens SL, Ahmed SR, Lang RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L. Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R. Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M. Lang
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E. Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
13
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
14
|
Han H, Peng S, Wang Q, Wang H, Wang P, Li C, Qi J, Liu C. Biochemical characterization of a multiple prenyltransferase from Tolypocladium inflatum. Appl Microbiol Biotechnol 2024; 108:275. [PMID: 38530470 PMCID: PMC10965706 DOI: 10.1007/s00253-024-13113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, β-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, β-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.
Collapse
Affiliation(s)
- Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Shuang Peng
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Qian Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Hongwei Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150040, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
15
|
Gryganskyi AP, Hajek AE, Voloshchuk N, Idnurm A, Eilenberg J, Manfrino RG, Bushley KE, Kava L, Kutovenko VB, Anike F, Nie Y. Potential for Use of Species in the Subfamily Erynioideae for Biological Control and Biotechnology. Microorganisms 2024; 12:168. [PMID: 38257994 PMCID: PMC10820730 DOI: 10.3390/microorganisms12010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA;
| | - Nataliya Voloshchuk
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine; (N.V.); (L.K.)
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jørgen Eilenberg
- Department of Plant & Environmental Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark;
| | - Romina G. Manfrino
- CEPAVE—Center for Parasitological & Vector Studies, CONICET-National Scientific & Technical Research Council, UNLP-National University of La Plata, La Plata 1900, Buenos Aires, Argentina;
| | | | - Liudmyla Kava
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine; (N.V.); (L.K.)
| | - Vira B. Kutovenko
- Agrobiological Faculty of Plant Protection, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine;
| | - Felicia Anike
- Department of Natural Resources & Environmental Design, North Carolina Agricultural & Technical State University, Greensboro, NC 27401, USA;
| | - Yong Nie
- School of Civil Engineering & Architecture, Anhui University of Technology, Ma’anshan 243002, China;
| |
Collapse
|
16
|
Yu Y, van der Donk WA. PEARL-catalyzed peptide bond formation after chain reversal during the biosynthesis of non-ribosomal peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573212. [PMID: 38187666 PMCID: PMC10769383 DOI: 10.1101/2023.12.23.573212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites produced by the BGC, and the omission of selected biosynthetic enzymes revealed the biosynthetic sequence towards these compounds. The putative lantibiotic dehydratase catalyzes peptide bond formation that extends the peptide scaffold opposite to the NRPS and PKS biosynthetic direction. The condensation domain of the NRPS catalyzes the formation of a ureido group, and bioinformatics analysis revealed distinct active site residues of ureido-generating condensation (UreaC) domains. This work demonstrates that the annotated lantibiotic dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the biosynthesis of both ribosomal and non-ribosomal natural products.
Collapse
Affiliation(s)
- Yue Yu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
17
|
Wang J, Liu M, Mao C, Li S, Zhou J, Fan Y, Guo L, Yu H, Yang X. Comparative proteomics reveals the mechanism of cyclosporine production and mycelial growth in Tolypocladium inflatum affected by different carbon sources. Front Microbiol 2023; 14:1259101. [PMID: 38163081 PMCID: PMC10757567 DOI: 10.3389/fmicb.2023.1259101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Cyclosporine A (CsA) is a secondary cyclopeptide metabolite produced by Tolypocladium inflatum that is widely used clinically as an immunosuppressant. CsA production and mycelial growth differed when T. inflatum was cultured in different carbon source media. During early fermentation, CsA was preferred to be produced in fructose medium, while the mycelium preferred to accumulate in sucrose medium. On the sixth day, the difference was most pronounced. In this study, high-throughput comparative proteomics methods were applied to analyze differences in protein expression of mycelial samples on day 6, revealing the proteins and mechanisms that positively regulate CsA production related to carbon metabolism. The differences included small molecule acid metabolism, lipid metabolism, organic catabolism, exocrine secretion, CsA substrate Bmt synthesis, and transcriptional regulation processes. The proteins involved in the regulation of mycelial growth related to carbon metabolism were also revealed and were associated with waste reoxidation processes or coenzyme metabolism, small molecule synthesis or metabolism, the stress response, genetic information or epigenetic changes, cell component assembly, cell wall integrity, membrane metabolism, vesicle transport, intramembrane localization, and the regulation of filamentous growth. This study provides a reliable reference for CsA production from high-efficiency fermentation. This study provides key information for obtaining more CsA high-yielding strains through metabolic engineering strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuqing Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
18
|
Dunbar KL, Perlatti B, Liu N, Cornelius A, Mummau D, Chiang YM, Hon L, Nimavat M, Pallas J, Kordes S, Ng HL, Harvey CJB. Resistance gene-guided genome mining reveals the roseopurpurins as inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci U S A 2023; 120:e2310522120. [PMID: 37983497 PMCID: PMC10691236 DOI: 10.1073/pnas.2310522120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 11/22/2023] Open
Abstract
With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sina Kordes
- Proteros Biostructures GmbH, PlaneggD-82152, Germany
| | | | | |
Collapse
|
19
|
Sharma A, Kaur E, Joshi R, Kumari P, Khatri A, Swarnkar MK, Kumar D, Acharya V, Nadda G. Systematic analyses with genomic and metabolomic insights reveal a new species, Ophiocordyceps indica sp. nov. from treeline area of Indian Western Himalayan region. Front Microbiol 2023; 14:1188649. [PMID: 37547690 PMCID: PMC10399244 DOI: 10.3389/fmicb.2023.1188649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 μg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.
Collapse
Affiliation(s)
- Aakriti Sharma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ekjot Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Gireesh Nadda
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Prescott TAK, Hill R, Mas-Claret E, Gaya E, Burns E. Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules 2023; 13:986. [PMID: 37371566 DOI: 10.3390/biom13060986] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal-derived drugs include some of the most important medicines ever discovered, and have proved pivotal in treating chronic diseases. Not only have they saved millions of lives, but they have in some cases changed perceptions of what is medically possible. However, now the low-hanging fruit have been discovered it has become much harder to make the kind of discoveries that have characterised past eras of fungal drug discovery. This may be about to change with new commercial players entering the market aiming to apply novel genomic tools to streamline the discovery process. This review examines the discovery history of approved fungal-derived drugs, and those currently in clinical trials for chronic diseases. For key molecules, we discuss their possible ecological functions in nature and how this relates to their use in human medicine. We show how the conservation of drug receptors between fungi and humans means that metabolites intended to inhibit competitor fungi often interact with human drug receptors, sometimes with unintended benefits. We also plot the distribution of drugs, antimicrobial compounds and psychoactive mushrooms onto a fungal tree and compare their distribution to those of all fungal metabolites. Finally, we examine the phenomenon of self-resistance and how this can be used to help predict metabolite mechanism of action and aid the drug discovery process.
Collapse
Affiliation(s)
| | - Rowena Hill
- Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | | | - Ester Gaya
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| |
Collapse
|
21
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
22
|
Yılmaz TM, Mungan MD, Berasategui A, Ziemert N. FunARTS, the Fungal bioActive compound Resistant Target Seeker, an exploration engine for target-directed genome mining in fungi. Nucleic Acids Res 2023:7173779. [PMID: 37207330 DOI: 10.1093/nar/gkad386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
There is an urgent need to diversify the pipeline for discovering novel natural products due to the increase in multi-drug resistant infections. Like bacteria, fungi also produce secondary metabolites that have potent bioactivity and rich chemical diversity. To avoid self-toxicity, fungi encode resistance genes which are often present within the biosynthetic gene clusters (BGCs) of the corresponding bioactive compounds. Recent advances in genome mining tools have enabled the detection and prediction of BGCs responsible for the biosynthesis of secondary metabolites. The main challenge now is to prioritize the most promising BGCs that produce bioactive compounds with novel modes of action. With target-directed genome mining methods, it is possible to predict the mode of action of a compound encoded in an uncharacterized BGC based on the presence of resistant target genes. Here, we introduce the 'fungal bioactive compound resistant target seeker' (FunARTS) available at https://funarts.ziemertlab.com. This is a specific and efficient mining tool for the identification of fungal bioactive compounds with interesting and novel targets. FunARTS rapidly links housekeeping and known resistance genes to BGC proximity and duplication events, allowing for automated, target-directed mining of fungal genomes. Additionally, FunARTS generates gene cluster networking by comparing the similarity of BGCs from multi-genomes.
Collapse
Affiliation(s)
- Turgut Mesut Yılmaz
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Mehmet Direnç Mungan
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Aileen Berasategui
- University of Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Nadine Ziemert
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Liu Z, Cong Y, Sossah FL, Lu Y, Kang J, Li Y. Characterization and Genome Analysis of Cladobotryum mycophilum, the Causal Agent of Cobweb Disease of Morchella sextelata in China. J Fungi (Basel) 2023; 9:jof9040411. [PMID: 37108865 PMCID: PMC10145569 DOI: 10.3390/jof9040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Cobweb disease is a fungal disease that can cause serious damage to edible mushrooms worldwide. To investigate cobweb disease in Morchella sextelata in Guizhou Province, China, we isolated and purified the pathogen responsible for the disease. Through morphological and molecular identification and pathogenicity testing on infected M. sextelata, we identified Cladobotryum mycophilum as the cause of cobweb disease in this region. This is the first known occurrence of this pathogen causing cobweb disease in M. sextelata anywhere in the world. We then obtained the genome of C. mycophilum BJWN07 using the HiFi sequencing platform, resulting in a high-quality genome assembly with a size of 38.56 Mb, 10 contigs, and a GC content of 47.84%. We annotated 8428 protein-coding genes in the genome, including many secreted proteins, host interaction-related genes, and carbohydrate-active enzymes (CAZymes) related to the pathogenesis of the disease. Our findings shed new light on the pathogenesis of C. mycophilum and provide a theoretical basis for developing potential prevention and control strategies for cobweb disease.
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang 550025, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yunlong Cong
- Research Institute of Science and Technology, Guizhou University, Guiyang 550025, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi P.O. Box 245, Ghana
| | - Yongzhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Jichuan Kang
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang 550025, China
- Correspondence: (J.K.); (Y.L.)
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.K.); (Y.L.)
| |
Collapse
|
24
|
Mondal H, Kim HJ, Mohanto N, Jee JP. A Review on Dry Eye Disease Treatment: Recent Progress, Diagnostics, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15030990. [PMID: 36986851 PMCID: PMC10051136 DOI: 10.3390/pharmaceutics15030990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Dry eye disease is a multifactorial disorder of the eye and tear film with potential damage to the ocular surface. Various treatment approaches for this disorder aim to alleviate disease symptoms and restore the normal ophthalmic environment. The most widely used dosage form is eye drops of different drugs with 5% bioavailability. The use of contact lenses to deliver drugs increases bioavailability by up to 50%. Cyclosporin A is a hydrophobic drug loaded onto contact lenses to treat dry eye disease with significant improvement. The tear is a source of vital biomarkers for various systemic and ocular disorders. Several biomarkers related to dry eye disease have been identified. Contact lens sensing technology has become sufficiently advanced to detect specific biomarkers and predict disease conditions accurately. This review focuses on dry eye disease treatment with cyclosporin A-loaded contact lenses, contact lens biosensors for ocular biomarkers of dry eye disease, and the possibility of integrating sensors in therapeutic contact lenses.
Collapse
Affiliation(s)
- Himangsu Mondal
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Nijaya Mohanto
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Pil Jee
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
25
|
Yamaguchi S, Fujioka T, Yoshimi A, Kumagai T, Umemura M, Abe K, Machida M, Kawai K. Discovery of a gene cluster for the biosynthesis of novel cyclic peptide compound, KK-1, in Curvularia clavata. FRONTIERS IN FUNGAL BIOLOGY 2023; 3:1081179. [PMID: 37746209 PMCID: PMC10512319 DOI: 10.3389/ffunb.2022.1081179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 09/26/2023]
Abstract
KK-1, a cyclic depsipeptide with 10 residues produced by a filamentous fungus Curvularia clavata BAUA-2787, is a promising pesticide active compound with high activity against many plant pathogens, especially Botrytis cinerea. As a first step toward the future mass production of KK-1 through synthetic biological approaches, we aimed to identify the genes responsible for the KK-1 biosynthesis. To achieve this, we conducted whole genome sequencing and transcriptome analysis of C. clavata BAUA-2787 to predict the KK-1 biosynthetic gene cluster. We then generated the overexpression and deletion mutants for each cluster gene using our originally developed transformation system for this fungus, and analyzed the KK-1 production and the cluster gene expression levels to confirm their involvement in KK-1 biosynthesis. As a result of these, a region of approximately 71 kb was found, containing 10 open reading frames, which were co-induced during KK-1 production, as a biosynthetic gene cluster. These include kk1B, which encodes nonribosomal peptide synthetase with a domain structure that is consistent with the structural features of KK-1, and kk1F, which encodes a transcription factor. The overexpression of kk1F increased the expression of the entire cluster genes and, consequently, improved KK-1 production, whereas its deletion decreased the expression of the entire cluster genes and almost eliminated KK-1 production, demonstrating that the protein encoded by kk1F regulates the expressions of the other nine cluster genes cooperatively as the pathway-specific transcription factor. Furthermore, the deletion of each cluster gene caused a reduction in KK-1 productivity, indicating that each gene is involved in KK-1 production. The genes kk1A, kk1D, kk1H, and kk1I, which showed a significant decrease in KK-1 productivity due to deletion, were presumed to be directly involved in KK-1 structure formation, including the biosynthesis of the constituent residues. kk1C, kk1E, kk1G, and kk1J, which maintained a certain level of KK-1 productivity despite deletion, were possibly involved in promoting or assisting KK-1 production, such as extracellular transportation and the removal of aberrant units incorporated into the peptide chain.
Collapse
Affiliation(s)
- Shigenari Yamaguchi
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Tomonori Fujioka
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Maiko Umemura
- Bio-system Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masayuki Machida
- Bio-system Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Graduate School of Engineering, Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Kiyoshi Kawai
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| |
Collapse
|
26
|
Das K, Ryu JJ, Hong SM, Lim SK, Lee SY, Jung HY. Molecular Phylogeny and Morphology of Tolypocladium globosum sp. nov. Isolated from Soil in Korea. MYCOBIOLOGY 2023; 51:79-86. [PMID: 37122679 PMCID: PMC10142388 DOI: 10.1080/12298093.2023.2192614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, fungal strains designated as KNUF-22-14A and KNUF-22-15A were isolated from soil samples in Korea. These two strains were identified based on cultural and morphological characteristics as well as phylogenetic analyses and were found to be morphologically and phylogenetically identical. Upon their morphological comparison with closely related species, such as Tolypocladium album, T. amazonense, T. endophyticum, T. pustulatum, and T. tropicale, a difference in the size of short phialides [0.6-2.4(-9.3) × 0.8-1.4 µm] was observed. Meanwhile, these strains had larger conidia (1.2-3.0 × 1.2-3.0 µm) than T. album, T. amazonense, T. endophyticum, and T. tropicale and smaller conidia than T. pustulatum. Phylogenetic analyses using a multi-locus datasets based on ITS, LSU, and SSU showed that KNUF-22-14A and KNUF-22-15A formed a distinct cluster from previously identified Tolypocladium species. Thus, these fungal strains isolated from soil in Korea are proposed as a novel species according to their characteristics and are named Tolypocladium globosum sp. nov.
Collapse
Affiliation(s)
- Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Jung-Joo Ryu
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Soo-Min Hong
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seong-Keun Lim
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
- CONTACT Hee-Young Jung
| |
Collapse
|
27
|
Thrombolytic Potential of Micromycetes from the Genus Tolypocladium, Obtained from White Sea Soils: Screening of Producers and Exoproteinases Properties. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Thrombotherapy is an important approach in treatment of various diseases associated with pathologies of the cardiovascular and human hemostasis systems. Screening for producers of modern, specific, and safe thrombolytic substances is an important task for medicine and biotechnology. The aim of this study was to characterize thrombolytic potential of seven strains of micromycete belonging to the genus Tolypocladium, which was obtained from White Sea soils. The Tolypocladium inflatum 62a strain was considered the most promising producer of thrombolytic agent activities suitable for possible use in thrombotherapy or diagnostics of hemostasis pathologies. It demonstrated a high radial growth rate and was characterized not only by a sufficiently high value of enzymatic index in media with fibrin and fibrinogen but also by the highest specificity for fibrillar proteins among all strains. The preparation obtained from it demonstrated pronounced thrombolytic effectiveness and substrate specificity.
Collapse
|
28
|
Sweany RR, Breunig M, Opoku J, Clay K, Spatafora JW, Drott MT, Baldwin TT, Fountain JC. Why Do Plant-Pathogenic Fungi Produce Mycotoxins? Potential Roles for Mycotoxins in the Plant Ecosystem. PHYTOPATHOLOGY 2022; 112:2044-2051. [PMID: 35502928 DOI: 10.1094/phyto-02-22-0053-sym] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).
Collapse
Affiliation(s)
- Rebecca R Sweany
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Food and Feed Safety Research Unit, Southern Regional Research Center, New Orleans, LA 70124
| | - Mikaela Breunig
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 78824
| | - Joseph Opoku
- USDA-ARS Pest Management and Biological Control Research Unit, U.S. Arid-Land Agricultural Research Center, Tucson, AZ 85701
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333
| | - Milton T Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Thomas T Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Jake C Fountain
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762
| |
Collapse
|
29
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
30
|
Senadeera SPD, Wang D, Kim CK, Smith EA, Durrant DE, Alexander PA, Wendt KL, Stephen AG, Morrison DK, Cichewicz RH, Henrich CJ, Beutler JA. Tolypocladamides A-G: Cytotoxic Peptaibols from Tolypocladium inflatum. JOURNAL OF NATURAL PRODUCTS 2022; 85:1603-1616. [PMID: 35696348 PMCID: PMC10616963 DOI: 10.1021/acs.jnatprod.2c00240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 μM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.
Collapse
Affiliation(s)
- Sarath P. D. Senadeera
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Chang-Kwon Kim
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Emily A. Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory of Cancer Research, Frederick, Maryland 21702-1201, United States
| | - David E. Durrant
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Patrick A. Alexander
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701, United States
| | - Karen L. Wendt
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, and Natural Products Discovery Group and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701, United States
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, and Natural Products Discovery Group and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Curtis J. Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory of Cancer Research, Frederick, Maryland 21702-1201, United States
| | - John A. Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
31
|
Tehan R, Blount RR, Goold RL, Mattos DR, Spatafora NR, Tabima JF, Gazis R, Wang C, Ishmael JE, Spatafora JW, McPhail KL. Tolypocladamide H and the Proposed Tolypocladamide NRPS in Tolypocladium Species. JOURNAL OF NATURAL PRODUCTS 2022; 85:1363-1373. [PMID: 35500108 PMCID: PMC9150700 DOI: 10.1021/acs.jnatprod.2c00153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 05/04/2023]
Abstract
The genome of entomopathogenic fungus Tolypocladium inflatum Gams encodes 43 putative biosynthetic gene clusters for specialized metabolites, although genotype-phenotype linkages have been reported only for the cyclosporins and fumonisins. T. inflatum was cultured in defined minimal media, supplemented with or without one of nine different amino acids. Acquisition of LC-MS/MS data for molecular networking and manual analysis facilitated annotation of putative known and unknown metabolites. These data led us to target a family of peptaibols and guided the isolation and purification of tolypocladamide H (1), which showed modest antibacterial activity and toxicity to mammalian cells at micromolar concentrations. HRMS/MS, NMR, and advanced Marfey's analysis were used to assign the structure of 1 as a peptaibol containing 4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt), a hallmark structural motif of the cyclosporins. LC-MS detection of homologous tolypocladamide metabolites and phylogenomic analyses of peptaibol biosynthetic genes in other cultured Tolypocladium species allowed assignment of a putative tolypocladamide nonribosomal peptide synthetase gene.
Collapse
Affiliation(s)
- Richard
M. Tehan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Rheannon R. Blount
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ryan L. Goold
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Daphne R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nicolas R. Spatafora
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Javier F. Tabima
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department
of Biology, Clark University, Worcester, Massachusetts 01610, United States
| | - Romina Gazis
- Department
of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, Florida 33031, United States
| | - Chengshu Wang
- Key
Laboratory of Insect Developmental and Evolutionary Biology, CAS Center
for Excellence in Molecular Plant Sciences, Shanghai Institute of
Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, People’s Republic
of China
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joseph W. Spatafora
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
32
|
Brown DW, Kim HS, McGovern A, Probyn C, Proctor RH. Genus-wide analysis of Fusarium polyketide synthases reveals broad chemical potential. Fungal Genet Biol 2022; 160:103696. [DOI: 10.1016/j.fgb.2022.103696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022]
|
33
|
Tolypocladium reniformisporum sp. nov. and Tolypocladium cylindrosporum (Ophiocordycipitaceae, Hypocreales) co-occurring on Ophiocordyceps sinensis. Mycol Prog 2022. [DOI: 10.1007/s11557-021-01675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Hirabayashi T, Shibato J, Kimura A, Yamashita M, Takenoya F, Shioda S. Potential Therapeutic Role of Pituitary Adenylate Cyclase-Activating Polypeptide for Dry Eye Disease. Int J Mol Sci 2022; 23:664. [PMID: 35054857 PMCID: PMC8775530 DOI: 10.3390/ijms23020664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/27/2022] Open
Abstract
Dry eye disease (DED) is caused by a reduction in the volume or quality of tears. The prevalence of DED is estimated to be 100 million in the developed world. As aging is a risk factor for DED, the prevalence of DED is expected to grow at a rapid pace in aging populations, thus creating an increased need for new therapies. This review summarizes DED medications currently in clinical use. Most current medications for DED focus on stimulating tear secretion, mucin secretion, or suppressing inflammation, rather than simply replenishing the ocular surface with moisture to improve symptoms. We recently reported that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) induces tear secretion and suppresses corneal injury caused by a reduction in tears. Moreover, it has been reported that a PACAP in water and a 0.9% saline solution at +4 °C showed high stability and achieved 80-90% effectiveness after 2 weeks of treatment. These results reveal PACAP as a candidate DED medication. Further research on the clinical applications of PACAP in DED is necessary.
Collapse
Affiliation(s)
- Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Junko Shibato
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Ai Kimura
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Michio Yamashita
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Fumiko Takenoya
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| |
Collapse
|
35
|
Fungi: Essential Elements in the Ecosystems. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Impact of Fungi on Agriculture Production, Productivity, and Sustainability. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Chakraborty P. Gene cluster from plant to microbes: Their role in genome architecture, organism's development, specialized metabolism and drug discovery. Biochimie 2021; 193:1-15. [PMID: 34890733 DOI: 10.1016/j.biochi.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Plants and microbes fulfil our daily requirements through different high-value chemicals, e.g., nutraceuticals, pharmaceuticals, cosmetics, and through varieties of fruits, crops, vegetables, and many more. Utmost care would therefore be taken for growth, development and sustainability of these important crops and medicinal plants and microbes. Homeobox genes and HOX clusters and their recently characterized expanded family members, including newly discovered homeobox, WOX gene from medicinal herb, Panax ginseng, significantly contributes in the growth and development of these organisms. On the other hand, secondary metabolites produced through secondary metabolism of plants and microbes are used as organisms defense as well as drugs/drug-like molecules for humans. Both the developmental HOX cluster and the biosynthetic gene-cluster (BGC) for secondary metabolites are organised in organisms genome. Genome mining and genomewide analysis of these clusters will definitely identify and characterize many more important molecules from unexplored plants and microbes and underexplored human microbiota and the evolution studies of these clusters will indicate their source of origin. Although genomics revolution now continues at a pace, till date only few hundred plant genome sequences are available. However, next-generation sequencing (NGS) technology now in market and may be applied even for plants with recalcitrant genomes, eventually may discover genomic potential towards production of secondary metabolites of diverse plants and micro-organisms present in the environment and microbiota. Additionally, the development of tools for genome mining e.g., antiSMASH, plantiSMASH, and more and more computational approaches that predicts hundreds of secondary metabolite BGCs will be discussed.
Collapse
Affiliation(s)
- Prasanta Chakraborty
- Kalpana Chawla Center for Space and Nanoscience, Kolkata, Indian Institute of Chemical Biology (retd.), Kolkata, 700032, India.
| |
Collapse
|
38
|
Comprehensive Review of Tolypocladium and Description of a Novel Lineage from Southwest China. Pathogens 2021; 10:pathogens10111389. [PMID: 34832545 PMCID: PMC8620668 DOI: 10.3390/pathogens10111389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Tolypocladium, a diverse genus of fungicolous fungi belonging to Ophiocordycipitaceae, includes saprotrophic soil inhabitants, plant endophytes and pathogens of insects, nematodes, rotifers, and parasites of truffle-like fungi. Here, we review the research progress achieved for Tolypocladium regarding its taxonomy, species diversity, geographic distribution, host affiliations and ecological diversity. Furthermore, an undescribed taxon from China was established using morphology and multi-gene phylogeny. Tolypocladium inusitaticapitatum is introduced as a new species parasitizing ectomycorrhizal Elaphomyces species. It is diagnosed by its irregularly enlarged fertile heads and lemon, yellow-to-dark-brown, smooth and nearly cylindrical stipe. Phylogenetic analyses based on SSU, LSU, ITS, TEF1-α and RPB2 sequence data showed T. inusitaticapitatum to be an independent lineage separated from T. flavonigrum in the clade comprising T. capitatum, T. fractum and T. longisegmentatum. A key for identifying the sexual Tolypocladium species is also provided.
Collapse
|
39
|
Zhang L, Yue Q, Wang C, Xu Y, Molnár I. Secondary metabolites from hypocrealean entomopathogenic fungi: genomics as a tool to elucidate the encoded parvome. Nat Prod Rep 2021; 37:1164-1180. [PMID: 32211677 DOI: 10.1039/d0np00007h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 2014 up to the third quarter of 2019 Hypocrealean entomopathogenic fungi (HEF) produce a large variety of secondary metabolites (SMs) that are prominent virulence factors or mediate various interactions in the native niches of these organisms. Many of these SMs show insecticidal, immune system modulatory, antimicrobial, cytotoxic and other bioactivities of clinical or agricultural significance. Recent advances in whole genome sequencing technologies and bioinformatics have revealed many biosynthetic gene clusters (BGCs) potentially involved in SM production in HEF. Some of these BGCs are now well characterized, with the structures of the cognate product congeners elucidated, and the proposed biosynthetic functions of key enzymes validated. However, the vast majority of HEF BGCs are still not linked to SM products ("orphan" BGCs), including many clusters that are not expressed (silent) under routine laboratory conditions. Thus, investigations into the encoded parvome (the secondary metabolome predicted from the genome) of HEF allows the discovery of BGCs for known SMs; uncovers novel metabolites based on the BGCs; and catalogues the predicted SM biosynthetic potential of these fungi. Herein, we summarize new developments of the field, and survey the polyketide, nonribosomal peptide, terpenoid and hybrid SM BGCs encoded in the currently available 40 HEF genome sequences. Studying the encoded parvome of HEF will increase our understanding of the multifaceted roles that SMs play in biotic and abiotic interactions and will also reveal biologically active SMs that can be exploited for the discovery of human and veterinary drugs or crop protection agents.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| |
Collapse
|
40
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
41
|
David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A Perspective on Synthetic Biology in Drug Discovery and Development-Current Impact and Future Opportunities. SLAS DISCOVERY 2021; 26:581-603. [PMID: 33834873 DOI: 10.1177/24725552211000669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.
Collapse
Affiliation(s)
- Florian David
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew M Davis
- Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Michael Gossing
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Hayes
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elvira Romero
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louis H Scott
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
42
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
43
|
Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021; 38:1072-1099. [PMID: 33710221 DOI: 10.1039/d1np00004g] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
44
|
Periman LM, Mah FS, Karpecki PM. A Review of the Mechanism of Action of Cyclosporine A: The Role of Cyclosporine A in Dry Eye Disease and Recent Formulation Developments. Clin Ophthalmol 2020; 14:4187-4200. [PMID: 33299295 PMCID: PMC7719434 DOI: 10.2147/opth.s279051] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease of the ocular surface and tear film that has gained awareness as a public health problem. Characteristics of DED include tear film instability, hyperosmolarity, and ocular surface inflammation, which can occur independently or may be a sequela of numerous ocular diseases, ocular surgery or contact lens wear. Much has been learned about the impact of the disease to help affected individuals who report symptoms of poor vision, pain, and tearing. Recently, new research highlights the importance of the role of ocular surface inflammation and damage in DED-leading to a vicious cycle of inflammation as well as loss of tear film homeostasis. DED immunopathophysiology is characterized by four stages: initiation, amplification, recruitment, and re-initiation. Cyclosporine is proven to be a valuable ophthalmic therapeutic for DED through its immunomodulatory actions and regulation of the adaptive immune response. Cyclosporine mechanism of action is well described in the published literature and the myriad of benefits in all four stages lend a broad-based immunomodulatory function particularly suitable for addressing DED. Furthermore, cyclosporine has unique goblet cell density improvement capabilities as well as anti-apoptotic properties. Topical formulations of cyclosporine are centered around addressing the highly lipophilic nature of the molecule. The poor aqueous solubility of cyclosporine traditionally presented technical challenges in drug delivery to the ocular surface. Newer formulations such as cationic emulsions and nanomicellar aqueous solutions address formulation, tissue concentration, and drug delivery challenges.
Collapse
|
45
|
Salloum T, Moussa R, Rahy R, Al Deek J, Khalifeh I, El Hajj R, Hall N, Hirt RP, Tokajian S. Expanded genome-wide comparisons give novel insights into population structure and genetic heterogeneity of Leishmania tropica complex. PLoS Negl Trop Dis 2020; 14:e0008684. [PMID: 32946436 PMCID: PMC7526921 DOI: 10.1371/journal.pntd.0008684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/30/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania tropica is one of the main causative agents of cutaneous leishmaniasis (CL). Population structures of L. tropica appear to be genetically highly diverse. However, the relationship between L. tropica strains genomic diversity, protein coding gene evolution and biogeography are still poorly understood. In this study, we sequenced the genomes of three new clinical L. tropica isolates, two derived from a recent outbreak of CL in camps hosting Syrian refugees in Lebanon and one historical isolate from Azerbaijan to further refine comparative genome analyses. In silico multilocus microsatellite typing (MLMT) was performed to integrate the current diversity of genome sequence data in the wider available MLMT genetic population framework. Single nucleotide polymorphism (SNPs), gene copy number variations (CNVs) and chromosome ploidy were investigated across the available 18 L. tropica genomes with a main focus on protein coding genes. MLMT divided the strains in three populations that broadly correlated with their geographical distribution but not populations defined by SNPs. Unique SNPs profiles divided the 18 strains into five populations based on principal component analysis. Gene ontology enrichment analysis of the protein coding genes with population specific SNPs profiles revealed various biological processes, including iron acquisition, sterols synthesis and drug resistance. This study further highlights the complex links between L. tropica important genomic heterogeneity and the parasite broad geographic distribution. Unique sequence features in protein coding genes identified in distinct populations reveal potential novel markers that could be exploited for the development of more accurate typing schemes to further improve our knowledge of the evolution and epidemiology of the parasite as well as highlighting protein variants of potential functional importance underlying L. tropica specific biology.
Collapse
Affiliation(s)
- Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Rim Moussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ryan Rahy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Jospin Al Deek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Neil Hall
- Earlham Institute, Norwich research Park, University of East Anglia, Norwich, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (RPH); (ST)
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- * E-mail: (RPH); (ST)
| |
Collapse
|
46
|
Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, Basidiobolus. G3-GENES GENOMES GENETICS 2020; 10:3417-3433. [PMID: 32727924 PMCID: PMC7466969 DOI: 10.1534/g3.120.401516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research into secondary metabolism (SM) production by fungi has resulted in the discovery of diverse, biologically active compounds with significant medicinal applications. The fungi rich in SM production are taxonomically concentrated in the subkingdom Dikarya, which comprises the phyla Ascomycota and Basidiomycota. Here, we explore the potential for SM production in Mucoromycota and Zoopagomycota, two phyla of nonflagellated fungi that are not members of Dikarya, by predicting and identifying core genes and gene clusters involved in SM. The majority of non-Dikarya have few genes and gene clusters involved in SM production except for the amphibian gut symbionts in the genus Basidiobolus. Basidiobolus genomes exhibit an enrichment of SM genes involved in siderophore, surfactin-like, and terpene cyclase production, all these with evidence of constitutive gene expression. Gene expression and chemical assays also confirm that Basidiobolus has significant siderophore activity. The expansion of SMs in Basidiobolus are partially due to horizontal gene transfer from bacteria, likely as a consequence of its ecology as an amphibian gut endosymbiont.
Collapse
|
47
|
Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 2020; 37:868-878. [PMID: 31898704 PMCID: PMC7332410 DOI: 10.1039/c9np00045c] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: up to 2019Fungi produce a remarkable diversity of secondary metabolites: small, bioactive molecules not required for growth but which are essential to their ecological interactions with other organisms. Genes that participate in the same secondary metabolic pathway typically reside next to each other in fungal genomes and form biosynthetic gene clusters (BGCs). By synthesizing state-of-the-art knowledge on the evolution of BGCs in fungi, we propose that fungal chemodiversity stems from three molecular evolutionary processes involving BGCs: functional divergence, horizontal transfer, and de novo assembly. We provide examples of how these processes have contributed to the generation of fungal chemodiversity, discuss their relative importance, and outline major, outstanding questions in the field.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
48
|
Kwak Y. Complete Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma atroviride: Genomic Features, Comparative Analysis and Insight Into the Mitochondrial Evolution in Trichoderma. Front Microbiol 2020; 11:785. [PMID: 32457712 PMCID: PMC7228111 DOI: 10.3389/fmicb.2020.00785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The improvement of biopesticides for use in the agriculture industry requires an understanding of the biological- and ecological principles underlying their behavior in natural environments. The nuclear genomes of members of the genus Trichoderma, which are representative fungal biocontrol agents, have been actively studied in relation to the unique characteristics of these species as effective producers of CAZymes/secondary metabolites and biopesticides, but their mitochondrial genomes have received much less attention. In this study, the mitochondrial genome of Trichoderma atroviride (Hypocreales, Sordariomycetes), which targets wood-decaying fungal pathogens and has the ability to degrade chemical fungicides, was assembled de novo. A 32,758 bp circular DNA molecule was revealed with specific features, such as a few more protein CDS and trn genes, two homing endonucleases (LAGLIDADG-/GIY-YIG-type), and even a putative overlapping tRNA gene, on a closer phylogenetic relationship with T. gamsii among hypocrealean fungi. Particularly, introns were observed with several footprints likely to be evolutionarily associated with the intron dynamics of the Trichoderma mitochondrial genomes. This study is the first to report the complete de novo mitochondrial genome of T. atroviride, while comparative analyses of Trichoderma mitochondrial genomes were also conducted from the perspective of mitochondrial evolution for the first time.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, Orsay, France
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
49
|
Draft Genome Assembly of Floccularia luteovirens, an Edible and Symbiotic Mushroom on Qinghai-Tibet Plateau. G3-GENES GENOMES GENETICS 2020; 10:1167-1173. [PMID: 32098800 PMCID: PMC7144084 DOI: 10.1534/g3.120.401037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Floccularia luteovirens, also known as "Yellow mushroom", is an edible ectomycorrhizal fungus widely distributed in the Qinghai-Tibet Plateau alpine meadow. So far, little genomic information is known about F. luteovirens, which is not conductive to the protection and utilization of it. In this manuscript, we present a first draft genome assembly and annotation of F. luteovirens The fruiting body of F. luteovirens was sequenced with PacBio Sequel and Illumina Hiseq 2500 system. The assembled genome size was 28.8 Mb, and comprising 183 contigs with a N50 contig size of 571 kb. A total of 8,333 protein-coding genes were predicted and 7,999 genes were further assigned to different public protein databases. Besides, 400 CAZymes were identified in F. luteovirens Phylogenetic analysis suggested that F. luteovirens should belong to the Agaricaceae family. Time tree result showed that the speciation of F. luteovirens happened approximately 170 Million years ago. Furthermore, 357 species-specific gene families were annotated against KEGG and GO database. This genome assembly and annotation should be an essential genomic foundation for understanding the phylogenetic, metabolic and symbiotic traits of F. luteovirens.
Collapse
|
50
|
Haridas S, Albert R, Binder M, Bloem J, LaButti K, Salamov A, Andreopoulos B, Baker SE, Barry K, Bills G, Bluhm BH, Cannon C, Castanera R, Culley DE, Daum C, Ezra D, González JB, Henrissat B, Kuo A, Liang C, Lipzen A, Lutzoni F, Magnuson J, Mondo SJ, Nolan M, Ohm RA, Pangilinan J, Park HJ, Ramírez L, Alfaro M, Sun H, Tritt A, Yoshinaga Y, Zwiers LH, Turgeon BG, Goodwin SB, Spatafora JW, Crous PW, Grigoriev IV. 101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens. Stud Mycol 2020; 96:141-153. [PMID: 32206138 PMCID: PMC7082219 DOI: 10.1016/j.simyco.2020.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species.
Collapse
Key Words
- Aulographales Crous, Spatafora, Haridas & Grigoriev
- Coniosporiaceae Crous, Spatafora, Haridas & Grigoriev
- Coniosporiales Crous, Spatafora, Haridas & Grigoriev
- Eremomycetales Crous, Spatafora, Haridas & Grigoriev
- Fungal evolution
- Genome-based prediction
- Lineolataceae Crous, Spatafora, Haridas & Grigoriev
- Lineolatales Crous, Spatafora, Haridas & Grigoriev
- Machine-learning
- New taxa
- Rhizodiscinaceae Crous, Spatafora, Haridas & Grigoriev
Collapse
Affiliation(s)
- S Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R Albert
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - M Binder
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J Bloem
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - K LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - B Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S E Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - K Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - G Bills
- University of Texas Health Science Center, Houston, TX, USA
| | - B H Bluhm
- University of Arkansas, Fayelletville, AR, USA
| | - C Cannon
- Texas Tech University, Lubbock, TX, USA
| | - R Castanera
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - D E Culley
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - C Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - D Ezra
- Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - J B González
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - B Henrissat
- CNRS, Aix-Marseille Université, Marseille, France.,INRA, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - C Liang
- College of Agronomy and Plant Protection, Qingdao Agricultural University, China
| | - A Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - F Lutzoni
- Department of Biology, Duke University, Durham, NC, USA
| | - J Magnuson
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - S J Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO, USA
| | - M Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R A Ohm
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - H-J Park
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - L Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - M Alfaro
- Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - H Sun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Tritt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Y Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - L-H Zwiers
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B G Turgeon
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - S B Goodwin
- U.S. Department of Agriculture-Agricultural Research Service, 915 W. State Street, West Lafayette, IN, USA
| | - J W Spatafora
- Department of Botany & Plant Pathology, Oregon State University, Oregon State University, Corvallis, OR, USA
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - I V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|