1
|
Wheatcroft D, Backström N, Dutoit L, McFarlane SE, Mugal CF, Wang M, Ålund M, Ellegren H, Qvarnström A. Divergence in expression of a singing-related neuroplasticity gene in the brains of 2 Ficedula flycatchers and their hybrids. G3 (BETHESDA, MD.) 2025; 15:jkae293. [PMID: 39670717 PMCID: PMC11797017 DOI: 10.1093/g3journal/jkae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Species-specific sexual traits facilitate species-assortative mating by reducing mating across species and reducing hybrid sexual attractiveness. For learned sexual traits, such as song in oscine birds, species distinctiveness can be eroded when species co-occur. Transcriptional regulatory divergence in brain regions involved in sensory learning is hypothesized to maintain species distinctiveness, but relatively few studies have compared gene expression in relevant brain regions between closely related species. Species differences in song are an important premating reproductive barrier between the collared (Ficedula albicollis) and pied flycatcher (F. hypoleuca). Here, we compare brain gene expression in adult males from each species and their naturally occurring F1 hybrids. We report overall conserved expression across species in a portion of the brain containing regions and nuclei known to be involved in song responses and learning. Further, among those genes that were differentially expressed between species, we find largely intermediate expression in hybrids. A single gene, SYT4 (synaptotagmin 4), known to be singing-associated, both was differentially expressed and has a putative upstream transcriptional regulatory factor containing fixed differences between the 2 species. Although a finer-scale investigation limited to song-specific regions may reveal further species differences, our findings provide insight into regulatory divergence in the brain between closely related species.
Collapse
Affiliation(s)
- David Wheatcroft
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Zoology, Stockholm University, 619 95 Stockholm, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
- Department of Biology, York University, M3J 1P3 Toronto, Canada
| | - Carina F Mugal
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology (LBBE), CNRS, UMR 5558, University of Lyon 1, Villeurbanne 69622, France
| | - Mi Wang
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
2
|
Liang Y, Xian L, Pan J, Zhu K, Guo H, Liu B, Zhang N, Ou-Yang Y, Zhang Q, Zhang D. De Novo Genome Assembly of the Whitespot Parrotfish ( Scarus forsteni): A Valuable Scaridae Genomic Resource. Genes (Basel) 2024; 15:249. [PMID: 38397238 PMCID: PMC10888354 DOI: 10.3390/genes15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Scarus forsteni, a whitespot parrotfish from the Scaridae family, is a herbivorous fish inhabiting coral reef ecosystems. The deterioration of coral reefs has highly affected the habitats of the parrotfish. The decline in genetic diversity of parrotfish emphasizes the critical importance of conserving their genetic variability to ensure the resilience and sustainability of marine ecosystems for future generations. In this study, a genome of S. forsteni was assembled de novo through using Illumina and Nanopore sequencing. The 1.71-Gb genome of S. forsteni, was assembled into 544 contigs (assembly level: contig). It exhibited an N50 length of 17.97 Mb and a GC content percentage of 39.32%. Our BUSCO analysis revealed that the complete protein of the S. forsteni genome had 98.10% integrity. Combined with structure annotation data, 34,140 (74.81%) genes were functionally annotated out of 45,638 predicted protein-coding genes. Upon comparing the genome size and TE content of teleost fishes, a roughly linear relationship was observed between these two parameters. However, TE content is not a decisive factor in determining the genome size of S. forsteni. Population history analysis results indicate that S. forsteni experienced two major population expansions, both of which occurred before the last interglacial period. In addition, through a comparative genomic analysis of the evolutionary relationship of other species, it was found that S. forsteni had the closest relationship with Cheilinus undulatus, another member of the Labridae family. Our expansion and contraction analysis of the gene family showed that the expansion genes were mainly associated with immune diseases, organismal systems, and cellular processes. At the same time, cell transcription and translation, sex hormone regulation, and other related pathways were also more prominent in the positive selection genes. The genomic sequence of S. forsteni offers valuable resources for future investigations on the conservation, evolution, and behavior of fish species.
Collapse
Affiliation(s)
- Yu Liang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lin Xian
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jinmin Pan
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Kecheng Zhu
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Huayang Guo
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Baosuo Liu
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Yan Ou-Yang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qin Zhang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Dianchang Zhang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
3
|
Chase MA, Vilcot M, Mugal CF. Evidence that genetic drift not adaptation drives fast-Z and large-Z effects in Ficedula flycatchers. Mol Ecol 2024:e17262. [PMID: 38193599 DOI: 10.1111/mec.17262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The sex chromosomes have been hypothesized to play a key role in driving adaptation and speciation across many taxa. The reason for this is thought to be the hemizygosity of the heteromorphic part of sex chromosomes in the heterogametic sex, which exposes recessive mutations to natural and sexual selection. The exposure of recessive beneficial mutations increases their rate of fixation on the sex chromosomes, which results in a faster rate of evolution. In addition, genetic incompatibilities between sex-linked loci are exposed faster in the genomic background of hybrids of divergent lineages, which makes sex chromosomes contribute disproportionately to reproductive isolation. However, in birds, which show a Z/W sex determination system, the role of adaptation versus genetic drift as the driving force of the faster differentiation of the Z chromosome (fast-Z effect) and the disproportionate role of the Z chromosome in reproductive isolation (large-Z effect) are still debated. Here, we address this debate in the bird genus Ficedula flycatchers based on population-level whole-genome sequencing data of six species. Our analysis provides evidence for both faster lineage sorting and reduced gene flow on the Z chromosome than the autosomes. However, these patterns appear to be driven primarily by the increased role of genetic drift on the Z chromosome, rather than an increased rate of adaptive evolution. Genomic scans of selective sweeps and fixed differences in fact suggest a reduced action of positive selection on the Z chromosome.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Maurine Vilcot
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Laboratory of Biometry and Evolutionary Biology, University of Lyon 1, CNRS UMR 5558, Villeurbanne, France
| |
Collapse
|
4
|
Aardema ML, Schmidt KL, Amato G. Patterns of cytonuclear discordance and divergence between subspecies of the scarlet macaw (Ara macao) in Central America. Genetica 2023; 151:281-292. [PMID: 37612519 PMCID: PMC10654179 DOI: 10.1007/s10709-023-00193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
The scarlet macaw, Ara macao, is a neotropical parrot that contains two described subspecies with broadly discrete geographical distributions. One subspecies, A. m. macao, is found from South America north into southwestern Costa Rica, while the second subspecies, A. m. cyanoptera, is found from eastern Costa Rica north into central Mexico. Our previous research using mitochondrial data to examine phylogeographical divergence across the collective range of these two subspecies concluded that they represent distinct evolutionary entities, with minimal contemporary hybridization between them. Here we further examine phylogenetic relationships and patterns of genetic variation between these two subspecies using a dataset of genetic markers derived from their nuclear genomes. Our analyses show clear nuclear divergence between A. m. macao and A. m. cyanoptera in Central America. Collectively however, samples from this region appear genetically more similar to one another than they do to the examined South American (Brazilian) A. m. macao sample. This observation contradicts our previous assessments based on mitochondrial DNA analyses that A. m. macao in Central and South America represent a single phylogeographical group that is evolutionarily distinct from Central American A. m. cyanoptera. Nonetheless, in agreement with our previous findings, ongoing genetic exchange between the two subspecies appears limited. Rather, our analyses indicate that incomplete lineage sorting is the best supported explanation for cytonuclear discordance within these parrots. High-altitude regions in Central America may act as a reproductive barrier, limiting contemporary hybridization between A. m. macao and A. m. cyanoptera. The phylogeographic complexities of scarlet macaw taxa in this region highlight the need for additional evolutionary examinations of these populations.
Collapse
Affiliation(s)
- Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA.
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
| | - Kari L Schmidt
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - George Amato
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| |
Collapse
|
5
|
Karimi K, Do DN, Wang J, Easley J, Borzouie S, Sargolzaei M, Plastow G, Wang Z, Miar Y. A chromosome-level genome assembly reveals genomic characteristics of the American mink (Neogale vison). Commun Biol 2022; 5:1381. [PMID: 36526733 PMCID: PMC9757699 DOI: 10.1038/s42003-022-04341-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Availability of a contiguous chromosome-level genome assembly is the foundational step to develop genome-based studies in American mink (Neogale vison). The main objective of this study was to provide a high quality chromosome-level genome assembly for American mink. An initial draft of the genome assembly was generated using 2,884,047 PacBio long reads. Integration of Hi-C data into the initial draft led to an assembly with 183 scaffolds and scaffold N50 of 220 Mb. This gap-free genome assembly of American mink (ASM_NN_V1) had a length of 2.68 Gb in which about 98.6% of the whole genome was covered by 15 chromosomes. In total, 25,377 genes were predicted across the American mink genome using the NCBI Eukaryotic Genome Annotation Pipeline. In addition, gene orthology, demographic history, synteny blocks, and phylogenetic relationships were studied in connection with the genomes of other related Carnivora. Furthermore, population-based statistics of 100 sequenced mink were presented using the newly assembled genome. Remarkable improvements were observed in genome contiguity, the number of scaffolds, and annotation compared to the first draft of mink genome assembly (NNQGG.v01). This high-quality genome assembly will support the development of efficient breeding strategies as well as conservation programs for American mink.
Collapse
Affiliation(s)
- Karim Karimi
- grid.55602.340000 0004 1936 8200Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS Canada
| | - Duy Ngoc Do
- grid.55602.340000 0004 1936 8200Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS Canada
| | - Jingy Wang
- grid.55602.340000 0004 1936 8200Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS Canada
| | - John Easley
- Joint Mink Research Committee, Fur Commission USA, Preston, ID USA ,Mink Veterinary Consulting and Research Service, Plymouth, WI USA
| | - Shima Borzouie
- grid.55602.340000 0004 1936 8200Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS Canada
| | - Mehdi Sargolzaei
- grid.34429.380000 0004 1936 8198Department of Pathobiology, University of Guelph, Guelph, ON Canada ,Select Sires Inc., Plain City, OH USA
| | - Graham Plastow
- grid.17089.370000 0001 2190 316XLivestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Zhiquan Wang
- grid.17089.370000 0001 2190 316XLivestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Younes Miar
- grid.55602.340000 0004 1936 8200Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS Canada
| |
Collapse
|
6
|
Grether GF, Okamoto KW. Eco‐evolutionary dynamics of interference competition. Ecol Lett 2022; 25:2167-2176. [DOI: 10.1111/ele.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory F. Grether
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| | | |
Collapse
|
7
|
Kirov I, Kolganova E, Dudnikov M, Yurkevich OY, Amosova AV, Muravenko OV. A Pipeline NanoTRF as a New Tool for De Novo Satellite DNA Identification in the Raw Nanopore Sequencing Reads of Plant Genomes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2103. [PMID: 36015406 PMCID: PMC9413040 DOI: 10.3390/plants11162103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level. However, bioinformatics tools for de novo identification of TRs in raw Nanopore data have not been reported so far. We developed NanoTRF, a new python pipeline for TR repeat identification, characterization and consensus monomer sequence assembly. This new pipeline requires only a raw Nanopore read file from low-depth (<1×) genome sequencing. The program generates an informative html report and figures on TR genome abundance, monomer sequence and monomer length. In addition, NanoTRF performs annotation of transposable elements (TEs) sequences within or near satDNA arrays, and the information can be used to elucidate how TR−TE co-evolve in the genome. Moreover, we validated by FISH that the NanoTRF report is useful for the evaluation of TR chromosome organization—clustered or dispersed. Our findings showed that NanoTRF is a robust method for the de novo identification of satellite repeats in raw Nanopore data without prior read assembly. The obtained sequences can be used in many downstream analyses including genome assembly assistance and gap estimation, chromosome mapping and cytogenetic marker development.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, Moscow 127550, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elizaveta Kolganova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, Moscow 127550, Russia
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, Moscow 127550, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
8
|
De Jode A, Le Moan A, Johannesson K, Faria R, Stankowski S, Westram AM, Butlin RK, Rafajlović M, Fraïsse C. Ten years of demographic modelling of divergence and speciation in the sea. Evol Appl 2022; 16:542-559. [PMID: 36793688 PMCID: PMC9923478 DOI: 10.1111/eva.13428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Understanding population divergence that eventually leads to speciation is essential for evolutionary biology. High species diversity in the sea was regarded as a paradox when strict allopatry was considered necessary for most speciation events because geographical barriers seemed largely absent in the sea, and many marine species have high dispersal capacities. Combining genome-wide data with demographic modelling to infer the demographic history of divergence has introduced new ways to address this classical issue. These models assume an ancestral population that splits into two subpopulations diverging according to different scenarios that allow tests for periods of gene flow. Models can also test for heterogeneities in population sizes and migration rates along the genome to account, respectively, for background selection and selection against introgressed ancestry. To investigate how barriers to gene flow arise in the sea, we compiled studies modelling the demographic history of divergence in marine organisms and extracted preferred demographic scenarios together with estimates of demographic parameters. These studies show that geographical barriers to gene flow do exist in the sea but that divergence can also occur without strict isolation. Heterogeneity of gene flow was detected in most population pairs suggesting the predominance of semipermeable barriers during divergence. We found a weak positive relationship between the fraction of the genome experiencing reduced gene flow and levels of genome-wide differentiation. Furthermore, we found that the upper bound of the 'grey zone of speciation' for our dataset extended beyond that found before, implying that gene flow between diverging taxa is possible at higher levels of divergence than previously thought. Finally, we list recommendations for further strengthening the use of demographic modelling in speciation research. These include a more balanced representation of taxa, more consistent and comprehensive modelling, clear reporting of results and simulation studies to rule out nonbiological explanations for general results.
Collapse
Affiliation(s)
- Aurélien De Jode
- Department of Marine Sciences‐TjärnöUniversity of GothenburgGothenburgSweden
| | - Alan Le Moan
- Department of Marine Sciences‐TjärnöUniversity of GothenburgGothenburgSweden
| | - Kerstin Johannesson
- Department of Marine Sciences‐TjärnöUniversity of GothenburgGothenburgSweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal,BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Sean Stankowski
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
| | - Anja Marie Westram
- Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria,Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Roger K. Butlin
- Department of Marine Sciences‐TjärnöUniversity of GothenburgGothenburgSweden,Ecology and Evolutionary Biology, School of BiosciencesThe University of SheffieldSheffieldUK
| | - Marina Rafajlović
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | | |
Collapse
|
9
|
Brown JI, Hernández F, Engilis A, Hernández-Baños BE, Collins D, Lavretsky P. Genomic and morphological data shed light on the complexities of shared ancestry between closely related duck species. Sci Rep 2022; 12:10212. [PMID: 35715515 PMCID: PMC9205961 DOI: 10.1038/s41598-022-14270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Causes for genomic and morphological similarities among recently radiated species are often multifaceted and are further convoluted among species that readily interbreed. Here, we couple genomic and morphological trait comparisons to test the extent that ancestry and gene flow explain the retention of mallard-like traits within a sister species, the Mexican duck. First, we confirm that these taxa remain genetically structured, and that Mexican ducks exhibit an isolation-by-distance pattern. Despite the assumption of wide-spread hybridization, we found only a few late-stage hybrids, all from the southwestern USA. Next, assessing 23 morphological traits, we developed a genetically-vetted morphological key that is > 97% accurate in distinguishing across sex-age cohorts of Mexican ducks, mallards, and hybrids. During key development, we determined that 25% of genetically pure, immature male Mexican ducks of the northern population naturally displayed mallard-like traits in their formative plumage. In fact, applying this key to 55 museum specimens, we identified that only four of the 14 specimens originally classified as phenotypic hybrids were truly hybrids. We discuss how genomic and morphological comparisons shed light into the mechanism(s) underlying the evolution of complex phenotypic traits in recent radiations, and how misunderstanding the true morphological diversity within Mexican ducks resulted in taxonomic revisions that hindered conservation efforts.
Collapse
Affiliation(s)
- Joshua I Brown
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| | - Flor Hernández
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Andrew Engilis
- Museum of Wildlife and Fish Biology, Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.,Department of Wildlife, Fish and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Blanca E Hernández-Baños
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Distrito Federal, Mexico
| | - Dan Collins
- U.S. Fish and Wildlife Service - Region 2 Migratory Bird Program, Albuquerque, NM, USA
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
10
|
Portinha B, Avril A, Bernasconi C, Helanterä H, Monaghan J, Seifert B, Sousa VC, Kulmuni J, Nouhaud P. Whole-genome analysis of multiple wood ant population pairs supports similar speciation histories, but different degrees of gene flow, across their European ranges. Mol Ecol 2022; 31:3416-3431. [PMID: 35460311 PMCID: PMC9320829 DOI: 10.1111/mec.16481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The application of demographic history modelling and inference to the study of divergence between species has become a cornerstone of speciation genomics. Speciation histories are usually reconstructed by analysing single populations from each species, assuming that the inferred population history represents the actual speciation history. However, this assumption may not be met when species diverge with gene flow, for example, when secondary contact may be confined to specific geographic regions. Here, we tested whether divergence histories inferred from heterospecific populations may vary depending on their geographic locations, using the two wood ant species Formica polyctena and F. aquilonia. We performed whole-genome resequencing of 20 individuals sampled in multiple locations across the European ranges of both species. Then, we reconstructed the histories of distinct heterospecific population pairs using a coalescent-based approach. Our analyses always supported a scenario of divergence with gene flow, suggesting that divergence started in the Pleistocene (c. 500 kya) and occurred with continuous asymmetrical gene flow from F. aquilonia to F. polyctena until a recent time, when migration became negligible (2-19 kya). However, we found support for contemporary gene flow in a sympatric pair from Finland, where the species hybridise, but no signature of recent bidirectional gene flow elsewhere. Overall, our results suggest that divergence histories reconstructed from a few individuals may be applicable at the species level. Nonetheless, the geographical context of populations chosen to represent their species should be taken into account, as it may affect estimates of migration rates between species when gene flow is spatially heterogeneous.
Collapse
Affiliation(s)
- Beatriz Portinha
- Organismal & Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- cE3cCentre for Ecology, Evolution and Environmental changesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Amaury Avril
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | | | | | | | | | - Vitor C. Sousa
- cE3cCentre for Ecology, Evolution and Environmental changesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Jonna Kulmuni
- Organismal & Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Pierre Nouhaud
- Organismal & Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
11
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
12
|
Nadachowska‐Brzyska K, Konczal M, Babik W. Navigating the temporal continuum of effective population size. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Wieslaw Babik
- Jagiellonian University in Kraków Faculty of Biology Institute of Environmental Sciences Kraków Poland
| |
Collapse
|
13
|
Hernández F, Brown JI, Kaminski M, Harvey MG, Lavretsky P. Genomic Evidence for Rare Hybridization and Large Demographic Changes in the Evolutionary Histories of Four North American Dove Species. Animals (Basel) 2021; 11:ani11092677. [PMID: 34573643 PMCID: PMC8468798 DOI: 10.3390/ani11092677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
Introductions and invasions provide opportunities for interaction and hybridization between colonists and closely related native species. We investigate this phenomenon using the mitochondrial DNA COI and 81,416 base-pairs of overlapping nuclear variation to examine the evolutionary histories and signatures of hybridization among introduced feral Rock Pigeon and Eurasian Collared-Dove and native White-winged and Mourning doves in southwestern North America. First, we report all four species to be highly divergent across loci (overall pair-wise species ΦST range = 0.17-0.70) and provide little evidence for gene flow at evolutionary timescales. Despite this, evidence from multiple population genetics analyses supports the presence of six putative contemporary late-stage hybrids among the 182 sampled individuals. These putative hybrids contain various ancestry combinations, but all involve the most populous species, the Mourning Dove. Next, we use a novel method to reconstruct demographic changes through time using partial genome sequence data. We identify recent, species-specific fluctuations in population size that are likely associated with changing environments since the Miocene and suggest that these fluctuations have influenced the genetic diversity of each dove species in ways that may impact their future persistence. Finally, we discuss the importance of using multiple marker types when attempting to infer complex evolutionary histories and propose important considerations when analyzing populations that were recently established or of domestic origins.
Collapse
|
14
|
Patil AB, Vijay N. Repetitive genomic regions and the inference of demographic history. Heredity (Edinb) 2021; 127:151-166. [PMID: 34002046 PMCID: PMC8322061 DOI: 10.1038/s41437-021-00443-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023] Open
Abstract
Inference of demographic histories using whole-genome datasets has provided insights into diversification, adaptation, hybridization, and plant-pathogen interactions, and stimulated debate on the impact of anthropogenic interventions and past climate on species demography. However, the impact of repetitive genomic regions on these inferences has mostly been ignored by masking of repeats. We use the Populus trichocarpa genome (Pop_tri_v3) to show that masking of repeat regions leads to lower estimates of effective population size (Ne) in the distant past in contrast to an increase in Ne estimates in recent times. However, in human datasets, masking of repeats resulted in lower estimates of Ne at all time points. We demonstrate that repeats affect demographic inferences using diverse methods like PSMC, MSMC, SMC++, and the Stairway plot. Our genomic analysis revealed that the biases in Ne estimates were dependent on the repeat class type and its abundance in each atomic interval. Notably, we observed a weak, yet consistently significant negative correlation between the repeat abundance of an atomic interval and the Ne estimates for that interval, which potentially reflects the recombination rate variation within the genome. The rationale for the masking of repeats has been that variants identified within these regions are erroneous. We find that polymorphisms in some repeat classes occur in callable regions and reflect reliable coalescence histories (e.g., LTR Gypsy, LTR Copia). The current demography inference methods do not handle repeats explicitly, and hence the effect of individual repeat classes needs careful consideration in comparative analysis. Deciphering the repeat demographic histories might provide a clear understanding of the processes involved in repeat accumulation.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
15
|
Nadachowska-Brzyska K, Dutoit L, Smeds L, Kardos M, Gustafsson L, Ellegren H. Genomic inference of contemporary effective population size in a large island population of collared flycatchers (Ficedula albicollis). Mol Ecol 2021; 30:3965-3973. [PMID: 34145933 DOI: 10.1111/mec.16025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
Due to its central importance to many aspects of evolutionary biology and population genetics, the long-term effective population size (Ne ) has been estimated for numerous species and populations. However, estimating contemporary Ne is difficult and in practice this parameter is often unknown. In principle, contemporary Ne can be estimated using either analyses of temporal changes in allele frequencies, or the extent of linkage disequilibrium (LD) between unlinked markers. We applied these approaches to estimate contemporary Ne of a relatively recently founded island population of collared flycatchers (Ficedula albicollis). We sequenced the genomes of 85 birds sampled in 1993 and 2015, and applied several temporal methods to estimate Ne at a few thousand (4000-7000). The approach based on LD provided higher estimates of Ne (20,000-32,000) and was associated with high variance, often resulting in infinite Ne . We conclude that whole-genome sequencing data offers new possibilities to estimate high (>1000) contemporary Ne , but also note that such estimates remain challenging, in particular for LD-based methods for contemporary Ne estimation.
Collapse
Affiliation(s)
- Krystyna Nadachowska-Brzyska
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martin Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Lars Gustafsson
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Chase MA, Ellegren H, Mugal CF. Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent Ficedula flycatcher species pairs. Evolution 2021; 75:2179-2196. [PMID: 33851440 DOI: 10.1111/evo.14234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
A current debate within population genomics surrounds the relevance of patterns of genomic differentiation between closely related species for our understanding of adaptation and speciation. Mounting evidence across many taxa suggests that the same genomic regions repeatedly develop elevated differentiation in independent species pairs. These regions often coincide with high gene density and/or low recombination, leading to the hypothesis that the genomic differentiation landscape mostly reflects a history of background selection, and reveals little about adaptation or speciation. A comparative genomics approach with multiple independent species pairs at a timescale where gene flow and ILS are negligible permits investigating whether different evolutionary processes are responsible for generating lineage-specific versus shared patterns of species differentiation. We use whole-genome resequencing data of 195 individuals from four Ficedula flycatcher species comprising two independent species pairs: collared and pied flycatchers, and red-breasted and taiga flycatchers. We found that both shared and lineage-specific FST peaks could partially be explained by selective sweeps, with recurrent selection likely to underlie shared signatures of selection, whereas indirect evidence supports a role of recombination landscape evolution in driving lineage-specific signatures of selection. This work therefore provides evidence for an interplay of positive selection and recombination to genomic landscape evolution.
Collapse
Affiliation(s)
- Madeline A Chase
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| | - Carina F Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala university, Uppsala, SE-75236, Sweden
| |
Collapse
|
17
|
Allio R, Tilak MK, Scornavacca C, Avenant NL, Kitchener AC, Corre E, Nabholz B, Delsuc F. High-quality carnivoran genomes from roadkill samples enable comparative species delineation in aardwolf and bat-eared fox. eLife 2021; 10:e63167. [PMID: 33599612 PMCID: PMC7963486 DOI: 10.7554/elife.63167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
In a context of ongoing biodiversity erosion, obtaining genomic resources from wildlife is essential for conservation. The thousands of yearly mammalian roadkill provide a useful source material for genomic surveys. To illustrate the potential of this underexploited resource, we used roadkill samples to study the genomic diversity of the bat-eared fox (Otocyon megalotis) and the aardwolf (Proteles cristatus), both having subspecies with similar disjunct distributions in Eastern and Southern Africa. First, we obtained reference genomes with high contiguity and gene completeness by combining Nanopore long reads and Illumina short reads. Then, we showed that the two subspecies of aardwolf might warrant species status (P. cristatus and P. septentrionalis) by comparing their genome-wide genetic differentiation to pairs of well-defined species across Carnivora with a new Genetic Differentiation index (GDI) based on only a few resequenced individuals. Finally, we obtained a genome-scale Carnivora phylogeny including the new aardwolf species.
Collapse
Affiliation(s)
- Rémi Allio
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| | - Nico L Avenant
- National Museum and Centre for Environmental Management, University of the Free StateBloemfonteinSouth Africa
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums ScotlandEdinburghUnited Kingdom
| | - Erwan Corre
- CNRS, Sorbonne Université, CNRS, ABiMS, Station Biologique de RoscoffRoscoffFrance
| | - Benoit Nabholz
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de MontpellierMontpellierFrance
| |
Collapse
|
18
|
Sirkiä PM, Qvarnström A. Adaptive coloration in pied flycatchers ( Ficedula hypoleuca)-The devil is in the detail. Ecol Evol 2021; 11:1501-1525. [PMID: 33613985 PMCID: PMC7882974 DOI: 10.1002/ece3.7048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Understanding the origin and persistence of phenotypic variation within and among populations is a major goal in evolutionary biology. However, the eagerness to find unadulterated explanatory models in combination with difficulties in publishing replicated studies may lead to severe underestimations of the complexity of selection patterns acting in nature. One striking example is variation in plumage coloration in birds, where the default adaptive explanation often is that brightly colored individuals signal superior quality across environmental conditions and therefore always should be favored by directional mate choice. Here, we review studies on the proximate determination and adaptive function of coloration traits in male pied flycatchers (Ficedula hypoleuca). From numerous studies, we can conclude that the dark male color phenotype is adapted to a typical northern climate and functions as a dominance signal in male-male competition over nesting sites, and that the browner phenotypes are favored by relaxed intraspecific competition with more dominant male collared flycatchers (Ficedula albicollis) in areas where the two species co-occur. However, the role of avoidance of hybridization in driving character displacement in plumage between these two species may not be as important as initially thought. The direction of female choice on male coloration in pied flycatchers is not simply as opposite in direction in sympatry and allopatry as traditionally expected, but varies also in relation to additional contexts such as climate variation. While some of the heterogeneity in the observed relationships between coloration and fitness probably indicate type 1 errors, we strongly argue that environmental heterogeneity and context-dependent selection play important roles in explaining plumage color variation in this species, which probably also is the case in many other species studied in less detail.
Collapse
Affiliation(s)
- Päivi M. Sirkiä
- Finnish Museum of Natural HistoryZoology UnitUniversity of HelsinkiHelsinkiFinland
- Department of Ecology and GeneticsAnimal EcologyUppsala UniversityUppsalaSweden
| | - Anna Qvarnström
- Department of Ecology and GeneticsAnimal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
19
|
Island songbirds as windows into evolution in small populations. Curr Biol 2021; 31:1303-1310.e4. [PMID: 33476557 DOI: 10.1016/j.cub.2020.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.1,2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3,4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.
Collapse
|
20
|
Abstract
Birds are one of the most recognizable and diverse groups of organisms on earth. This group has played an important role in many fields, including the development of methods in behavioral ecology and evolutionary theory. The use of population genomics took off following the advent of high-throughput sequencing in various taxa. Several features of avian genomes make them particularly amenable for work in this field, including their nucleated red blood cells permitting easy DNA extraction and small, compact genomes. We review the latest findings in the population genomics of birds here, emphasizing questions related to behavior, ecology, evolution, and conservation. Additionally, we include insights in trait mapping and the ability to obtain accurate estimates of important summary statistics for conservation (e.g., genetic diversity and inbreeding). We highlight roadblocks that will need to be overcome in order to advance work on the population genomics of birds and prospects for future work. Roadblocks include the assembly of more contiguous reference genomes using long-reads and optical mapping. Prospects include the integration of population genomics with additional fields (e.g., landscape genetics, phylogeography, and genomic mapping) along with studies beyond genetic variants (e.g., epigenetics).
Collapse
|
21
|
Natesh M, Vinay KL, Ghosh S, Jayapal R, Mukherjee S, Vijay N, Robin VV. Contrasting Trends of Population Size Change for Two Eurasian Owlet Species—Athene brama and Glaucidium radiatum From South Asia Over the Late Quaternary. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.608339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climatic oscillations over the Quaternary have had a lasting impact on species’ distribution, evolutionary history, and genetic composition. Many species show dramatic population size changes coinciding with the last glacial period. However, the extent and direction of change vary across biogeographic regions, species-habitat associations, and species traits. Here we use genomic data to assess population size changes over the late Quaternary using the Pairwise Sequential Markovian Coalescent (PSMC) approach in two Eurasian Owlet species—the Spotted Owlet, Athene brama, and the Jungle Owlet, Glaucidium radiatum. While Spotted Owlets are typically associated with open habitats, Jungle Owlets are found in deciduous forests and scrublands. We find that the effective population size for the Spotted Owlet increased after the Interglacial period till the Last Glacial Maxima and subsequently declined toward the Mid-Holocene. On the other hand, effective population size estimates for the Jungle Owlet increased gradually throughout this period. These observations are in line with climatic niche model-based predictions for range size change for both species from a previous study and suggest that habitat associations at the local scale are important in determining responses to past climatic and vegetational changes. The Spotted Owlet result also aligns well with the expectation of open habitat expansion during the arid Glacial Maxima, whereas for the Jungle Owlet the contrasting expectation does not hold. Therefore, assessing the impacts of glacial history on population trajectories of multiple species with different habitat associations is necessary to understand the impacts of past climate on South Asian taxa.
Collapse
|
22
|
Bi C, Lu N, Huang Z, Chen J, He C, Lu Z. Whole-genome resequencing reveals the pleistocene temporal dynamics of Branchiostoma belcheri and Branchiostoma floridae populations. Ecol Evol 2020; 10:8210-8224. [PMID: 32788973 PMCID: PMC7417228 DOI: 10.1002/ece3.6527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 Branchiostoma individuals by whole-genome resequencing strategy. We detected over 140 million genomic variations for each Branchiostoma individual. In particular, we applied the pairwise sequentially Markovian coalescent (PSMC) method to estimate the trajectories of changes in the effective population size (N e) of Branchiostoma population during the Pleistocene. We evaluated the threshold of sequencing depth for proper inference of demographic histories using PSMC was ≥25×. The PSMC results highlight the role of historical global climatic fluctuations in the long-term population dynamics of Branchiostoma. The inferred ancestral N e of the Branchiostoma belcheri populations from Zhanjiang and Xiamen (China) seawaters was different in amplitude before the first (mutation rate = 3 × 10-9) or third glaciation (mutation rate = 9 × 10-9) of the Pleistocene, indicating that the two populations most probably started to evolve in isolation in their respective seas after the first or third glaciation of the Pleistocene. A pronounced population bottleneck coinciding with the last glacial maximum was observed in all Branchiostoma individuals, followed by a population expansion occurred during the late Pleistocene. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic activities. Recently, the industrial pollution and the exploitation of sea sand have destroyed the harmonious living environment of amphioxus species. In the future, we need to protect the habitat of Branchiostoma and make full use of these detected genetic variations to facilitate the functional study of Branchiostoma for adaptation to local environments.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Na Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhouChina
- Key Laboratory of Special Marine Bio‐resources Sustainable Utilization of Fujian ProvinceFuzhouChina
| | - Junyuan Chen
- Nanjing Institute of Paleontology and GeologyChinese Academy of SciencesNanjingChina
| | - Chunpeng He
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zuhong Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
23
|
Yamasaki YY, Kakioka R, Takahashi H, Toyoda A, Nagano AJ, Machida Y, Møller PR, Kitano J. Genome-wide patterns of divergence and introgression after secondary contact between Pungitius sticklebacks. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190548. [PMID: 32654635 DOI: 10.1098/rstb.2019.0548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Speciation is a continuous process. Although it is known that differential adaptation can initiate divergence even in the face of gene flow, we know relatively little about the mechanisms driving complete reproductive isolation and the genomic patterns of divergence and introgression at the later stages of speciation. Sticklebacks contain many pairs of sympatric species differing in levels of reproductive isolation and divergence history. Nevertheless, most previous studies have focused on young species pairs. Here, we investigated two sympatric stickleback species, Pungitius pungitius and P. sinensis, whose habitats overlap in eastern Hokkaido; these species show hybrid male sterility, suggesting that they may be at a late stage of speciation. Our demographic analysis using whole-genome sequence data showed that these species split 1.73 Ma and came into secondary contact 37 200 years ago after a period of allopatry. This long period of allopatry might have promoted the evolution of intrinsic incompatibility. Although we detected on-going gene flow and signatures of introgression, overall genomic divergence was high, with considerable heterogeneity across the genome. The heterogeneity was significantly associated with variation in recombination rate. This sympatric pair provides new avenues to investigate the late stages of the stickleback speciation continuum. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Ryo Kakioka
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Takahashi
- National Fisheries University, 2-7-1 Nagata-honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Yoshiyasu Machida
- Bihoro Museum, Midori 253-4, Bihoro, Abashiri, Hokkaido 092-0002, Japan
| | - Peter R Møller
- Natural History Museum of Denmark, University of Copenhagen, Universitatetsparken 15, Copenhagen 2100, Denmark
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
24
|
Wang J, Street NR, Park EJ, Liu J, Ingvarsson PK. Evidence for widespread selection in shaping the genomic landscape during speciation of Populus. Mol Ecol 2020; 29:1120-1136. [PMID: 32068935 DOI: 10.1111/mec.15388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome-wide patterns of within- and between- species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole-genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long-term balancing selection have also been crucial components in shaping patterns of genome-wide variation during the speciation process.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Eung-Jun Park
- Department of Bioresources, National Institute of Forest Science, Suwon, Korea
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
25
|
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res 2020; 389:111895. [PMID: 32035948 DOI: 10.1016/j.yexcr.2020.111895] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022]
Abstract
Centromeres are the eukaryotic chromosomal sites at which the kinetochore forms and attaches to spindle microtubules to orchestrate chromosomal segregation in mitosis and meiosis. Although centromeres are essential for cell division, their sequences are not conserved and evolve rapidly. Centromeres vary dramatically in size and organization. Here we categorize their diversity and explore the evolutionary forces shaping them. Nearly all centromeres favor AT-rich DNA that is gene-free and transcribed at a very low level. Repair of frequent centromere-proximal breaks probably contributes to their rapid sequence evolution. Point centromeres are only ~125 bp and are specified by common protein-binding motifs, whereas short regional centromeres are 1-5 kb, typically have unique sequences, and may have pericentromeric repeats adapted to facilitate centromere clustering. Transposon-rich centromeres are often ~100-300 kb and are favored by RNAi machinery that silences transposons, by suppression of meiotic crossovers at centromeres, and by the ability of some transposons to target centromeres. Megabase-length satellite centromeres arise in plants and animals with asymmetric female meiosis that creates centromere competition, and favors satellite monomers one or two nucleosomes in length that position and stabilize centromeric nucleosomes. Holocentromeres encompass the length of a chromosome and may differ dramatically between mitosis and meiosis. We propose a model in which low level transcription of centromeres facilitates the formation of non-B DNA that specifies centromeres and promotes loading of centromeric nucleosomes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
26
|
Liu Y, Liu S, Zhang N, Chen D, Que P, Liu N, Höglund J, Zhang Z, Wang B. Genome Assembly of the Common Pheasant Phasianus colchicus: A Model for Speciation and Ecological Genomics. Genome Biol Evol 2019; 11:3326-3331. [PMID: 31713630 PMCID: PMC7145668 DOI: 10.1093/gbe/evz249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2019] [Indexed: 12/04/2022] Open
Abstract
The common pheasant (Phasianus colchicus) in the order Galliformes and the family Phasianidae, has 30 subspecies distributed across its native range in the Palearctic realm and has been introduced to Europe, North America, and Australia. It is an important game bird often subjected to wildlife management as well as a model species to study speciation, biogeography, and local adaptation. However, the genomic resources for the common pheasant are generally lacking. We sequenced a male individual of the subspecies torquatus of the common pheasant with the Illumina HiSeq platform. We obtained 94.88 Gb of usable sequences by filtering out low-quality reads of the raw data generated. This resulted in a 1.02 Gb final assembly, which equals the estimated genome size. BUSCO analysis using chicken as a model showed that 93.3% of genes were complete. The contig N50 and scaffold N50 sizes were 178 kb and 10.2 Mb, respectively. All these indicate that we obtained a high-quality genome assembly. We annotated 16,485 protein-coding genes and 123.3 Mb (12.05% of the genome) of repetitive sequences by ab initio and homology-based prediction. Furthermore, we applied a RAD-sequencing approach for another 45 individuals of seven representative subspecies in China and identified 4,376,351 novel single nucleotide polymorphism (SNPs) markers. Using this unprecedented data set, we uncovered the geographic population structure and genetic introgression among common pheasants in China. Our results provide the first high-quality reference genome for the common pheasant and a valuable genome-wide SNP database for studying population genomics and demographic history.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Biocontrol, College of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Simin Liu
- State Key Laboratory of Biocontrol, College of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- State Key Laboratory of Biocontrol, College of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - De Chen
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, China
| | - Pinjia Que
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, China
| | - Naijia Liu
- College of Life Sciences and Oceanography, Shenzhen University, China
| | - Jacob Höglund
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Zhengwang Zhang
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, China
| | - Biao Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, Kliver S, Tinker MT, Murray MJ, Johnson J, Lindblad-Toh K, Karlsson EK, Lohmueller KE, Wayne RK. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Mol Biol Evol 2019; 36:2631-2655. [PMID: 31212313 PMCID: PMC7967881 DOI: 10.1093/molbev/msz101] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its recent invasion into the marine realm, the sea otter (Enhydra lutris) has evolved a suite of adaptations for life in cold coastal waters, including limb modifications and dense insulating fur. This uniquely dense coat led to the near-extinction of sea otters during the 18th-20th century fur trade and an extreme population bottleneck. We used the de novo genome of the southern sea otter (E. l. nereis) to reconstruct its evolutionary history, identify genes influencing aquatic adaptation, and detect signals of population bottlenecks. We compared the genome of the southern sea otter with the tropical freshwater-living giant otter (Pteronura brasiliensis) to assess common and divergent genomic trends between otter species, and with the closely related northern sea otter (E. l. kenyoni) to uncover population-level trends. We found signals of positive selection in genes related to aquatic adaptations, particularly limb development and polygenic selection on genes related to hair follicle development. We found extensive pseudogenization of olfactory receptor genes in both the sea otter and giant otter lineages, consistent with patterns of sensory gene loss in other aquatic mammals. At the population level, the southern sea otter and the northern sea otter showed extremely low genomic diversity, signals of recent inbreeding, and demographic histories marked by population declines. These declines may predate the fur trade and appear to have resulted in an increase in putatively deleterious variants that could impact the future recovery of the sea otter.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Gang Li
- College of Life Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Pasha Dobrynin
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Martin T Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | | | - Jeremy Johnson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kerstin Lindblad-Toh
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor K Karlsson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| |
Collapse
|
28
|
Wang X, Maher KH, Zhang N, Que P, Zheng C, Liu S, Wang B, Huang Q, Chen D, Yang X, Zhang Z, Székely T, Urrutia AO, Liu Y. Demographic Histories and Genome-Wide Patterns of Divergence in Incipient Species of Shorebirds. Front Genet 2019; 10:919. [PMID: 31781152 PMCID: PMC6857203 DOI: 10.3389/fgene.2019.00919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022] Open
Abstract
Understanding how incipient species are maintained with gene flow is a fundamental question in evolutionary biology. Whole genome sequencing of multiple individuals holds great potential to illustrate patterns of genomic differentiation as well as the associated evolutionary histories. Kentish (Charadrius alexandrinus) and the white-faced (C. dealbatus) plovers, which differ in their phenotype, ecology and behavior, are two incipient species and parapatrically distributed in East Asia. Previous studies show evidence of genetic diversification with gene flow between the two plovers. Under this scenario, it is of great importance to explore the patterns of divergence at the genomic level and to determine whether specific regions are involved in reproductive isolation and local adaptation. Here we present the first population genomic analysis of the two incipient species based on the de novo Kentish plover reference genome and resequenced populations. We show that the two plover lineages are distinct in both nuclear and mitochondrial genomes. Using model-based coalescence analysis, we found that population sizes of Kentish plover increased whereas white-faced plovers declined during the Last Glaciation Period. Moreover, the two plovers diverged allopatrically, with gene flow occurring after secondary contact. This has resulted in low levels of genome-wide differentiation, although we found evidence of a few highly differentiated genomic regions in both the autosomes and the Z-chromosome. This study illustrates that incipient shorebird species with gene flow after secondary contact can exhibit discrete divergence at specific genomic regions and provides basis to further exploration on the genetic basis of relevant phenotypic traits.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kathryn H. Maher
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Nan Zhang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pinjia Que
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chenqing Zheng
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Bioinformatics, Shenzhen Realomics Biological Technology Ltd, Shenzhen, China
| | - Simin Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Biao Wang
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Qin Huang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - De Chen
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xu Yang
- Department of Bioinformatics, Shenzhen Realomics Biological Technology Ltd, Shenzhen, China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tamás Székely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Araxi O. Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Smith CCR, Flaxman SM. Leveraging whole genome sequencing data for demographic inference with approximate Bayesian computation. Mol Ecol Resour 2019; 20:125-139. [DOI: 10.1111/1755-0998.13092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Chris C. R. Smith
- Department of Ecology and Evolutionary Biology University of Colorado Boulder CO USA
| | - Samuel M. Flaxman
- Department of Ecology and Evolutionary Biology University of Colorado Boulder CO USA
| |
Collapse
|
30
|
Chattopadhyay B, Garg KM, Ray R, Rheindt FE. Fluctuating fortunes: genomes and habitat reconstructions reveal global climate-mediated changes in bats' genetic diversity. Proc Biol Sci 2019; 286:20190304. [PMID: 31530139 PMCID: PMC6784725 DOI: 10.1098/rspb.2019.0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Over the last approximately 2.6 Myr, Earth's climate has been dominated by cyclical ice ages that have profoundly affected species' population sizes, but the impact of impending anthropogenic climate change on species' extinction potential remains a worrying problem. We investigated 11 bat species from different taxonomic, ecological and geographical backgrounds using combined information from palaeoclimatic habitat reconstructions and genomes to analyse biotic impacts of historic climate change. We discover tightly correlated fluctuations between species' historic distribution and effective population size, identify frugivores as particularly susceptible to global warming, pinpoint large insectivores as having overall low effective population size and flag the onset of the Holocene (approx. 10-12 000 years ago) as the period with the generally lowest effective population sizes across the last approximately 1 Myr. Our study shows that combining genomic and palaeoclimatological approaches reveals effects of climatic shifts on genetic diversity and may help predict impacts of future climate change.
Collapse
Affiliation(s)
| | - Kritika M. Garg
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Rajasri Ray
- Center for Ecological Sciences, Indian Institute of Science, Bangalore, 560012 Karnataka, India
- Centre for Studies in Ethnobiology, Biodiversity and Sustainability (CEiBa), BG Road, Mokdumpur, Malda-732103 West Bengal, India
| | - Frank E. Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
31
|
Wang X, Que P, Heckel G, Hu J, Zhang X, Chiang CY, Zhang N, Huang Q, Liu S, Martinez J, Pagani-Núñez E, Dingle C, Leung YY, Székely T, Zhang Z, Liu Y. Genetic, phenotypic and ecological differentiation suggests incipient speciation in two Charadrius plovers along the Chinese coast. BMC Evol Biol 2019; 19:135. [PMID: 31248363 PMCID: PMC6598359 DOI: 10.1186/s12862-019-1449-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Speciation with gene flow is an alternative to the nascence of new taxa in strict allopatric separation. Indeed, many taxa have parapatric distributions at present. It is often unclear if these are secondary contacts, e.g. caused by past glaciation cycles or the manifestation of speciation with gene flow, which hampers our understanding of how different forces drive diversification. Here we studied genetic, phenotypic and ecological aspects of divergence in a pair of incipient shorebird species, the Kentish (Charadrius alexandrinus) and the White-faced Plovers (C. dealbatus), shorebirds with parapatric breeding ranges along the Chinese coast. We assessed divergence based on molecular markers with different modes of inheritance and quantified phenotypic and ecological divergence in aspects of morphometric, dietary and climatic niches. Results Our integrative analyses revealed small to moderate levels of genetic and phenotypic distinctiveness with symmetric gene flow across the contact area at the Chinese coast. The two species diverged approximately half a million years ago in dynamic isolation with secondary contact occurring due to cycling sea level changes between the Eastern and Southern China Sea in the mid-late Pleistocene. We found evidence of character displacement and ecological niche differentiation between the two species, invoking the role of selection in facilitating divergence despite gene flow. Conclusion These findings imply that ecology can indeed counter gene flow through divergent selection and thus contributes to incipient speciation in these plovers. Furthermore, our study highlights the importance of using integrative datasets to reveal the evolutionary history and assist the inference of mechanisms of speciation. Electronic supplementary material The online version of this article (10.1186/s12862-019-1449-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Pinjia Que
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, Genopode, 1015, Lausanne, Switzerland
| | - Junhua Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xuecong Zhang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chung-Yu Chiang
- Department of Environmental Science, Tunhai University, Taichun, Taiwan
| | - Nan Zhang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qin Huang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Simin Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | | | - Emilio Pagani-Núñez
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caroline Dingle
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Yu Yan Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Tamás Székely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA1 7AY, UK
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
32
|
Nadachowska-Brzyska K, Burri R, Ellegren H. Footprints of adaptive evolution revealed by whole Z chromosomes haplotypes in flycatchers. Mol Ecol 2019; 28:2290-2304. [PMID: 30653779 PMCID: PMC6852393 DOI: 10.1111/mec.15021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023]
Abstract
Detecting positive selection using genomic data is critical to understanding the role of adaptive evolution. Of particular interest in this context is sex chromosomes since they are thought to play a special role in local adaptation and speciation. We sought to circumvent the challenges associated with statistical phasing when using haplotype-based statistics in sweep scans by benefitting from that whole chromosome haplotypes of the sex chromosomes can be obtained by resequencing of individuals of the hemizygous sex. We analyzed whole Z chromosome haplotypes from 100 females from several populations of four black and white flycatcher species (in birds, females are ZW and males ZZ). Based on integrated haplotype score (iHS) and number of segregating sites by length (nSL) statistics, we found strong and frequent haplotype structure in several regions of the Z chromosome in each species. Most of these sweep signals were population-specific, with essentially no evidence for regions under selection shared among species. Some completed sweeps were revealed by the cross-population extended haplotype homozygosity (XP-EHH) statistic. Importantly, by using statistically phased Z chromosome data from resequencing of males, we failed to recover the signals of selection detected in analyses based on whole chromosome haplotypes from females; instead, what likely represent false signals of selection were frequently seen. This highlights the power issues in statistical phasing and cautions against conclusions from selection scans using such data. The detection of frequent selective sweeps on the avian Z chromosome supports a large role of sex chromosomes in adaptive evolution.
Collapse
Affiliation(s)
| | - Reto Burri
- Department of Evolutionary Biology, University of Uppsala, Uppsala, Sweden.,Department of Population Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Ellegren
- Department of Evolutionary Biology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
33
|
Rougeux C, Gagnaire PA, Bernatchez L. Model-based demographic inference of introgression history in European whitefish species pairs'. J Evol Biol 2019; 32:806-817. [PMID: 31038776 DOI: 10.1111/jeb.13482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/27/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022]
Abstract
Parallel phenotypic differentiation is generally attributed to parallel adaptive divergence as an evolutionary response to similar environmental contrasts. Such parallelism may actually originate from several evolutionary scenarios ranging from repeated parallel divergence caused by divergent selection to a unique divergence event followed by gene flow. Reconstructing the evolutionary history underlying parallel phenotypic differentiation is thus fundamental to understand the relative contribution of demography and selection on genomic divergence during speciation. In this study, we investigate the divergence history of replicate European whitefish (Coregonus lavaretus), limnetic and benthic species pairs from two lakes in Norway and two lakes in Switzerland. Demographic models accounting for semi-permeability and linked selection were fitted to the unfolded joint allele frequency spectrum built from genome-wide SNPs and compared to each other in each species pair. We found strong support for a model of asymmetrical post-glacial secondary contact between glacial lineages in all four lakes. Moreover, our results suggest that heterogeneous genomic differentiation has been shaped by the joint action of linked selection accelerating lineage sorting during allopatry, and heterogeneous migration eroding divergence at different rates along the genome following secondary contact. Our analyses reveal how the interplay between demography, selection and historical contingency has influenced the levels of diversity observed in previous whitefish phylogeographic studies. This study thus provides new insights into the historical demographic and selective processes that shaped the divergence associated with ecological speciation in European whitefish.
Collapse
Affiliation(s)
- Clément Rougeux
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Québec, Canada
| | | | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Québec, Canada
| |
Collapse
|
34
|
Warmuth VM, Ellegren H. Genotype‐free estimation of allele frequencies reduces bias and improves demographic inference from RADSeq data. Mol Ecol Resour 2019; 19:586-596. [DOI: 10.1111/1755-0998.12990] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Vera M. Warmuth
- Department of Evolutionary Biology, Evolutionary Biology Centre Uppsala University Uppsala Sweden
- Division of Evolutionary Biology, Faculty of Biology Ludwig‐Maximilians‐Universität München Martinsried Germany
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
35
|
Nguyen HN, Lu CW, Chu JH, Grismer LL, Hung CM, Lin SM. Historical demography of four gecko species specializing in boulder cave habitat: Implications in the evolutionary dead end hypothesis and conservation. Mol Ecol 2018; 28:772-784. [PMID: 30580492 DOI: 10.1111/mec.14985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022]
Abstract
Specialization in narrow ecological niches may not only help species to survive in competitive or unique environments but also contribute to their extermination over evolutionary time. Although the "evolutionary dead end" hypothesis has long been debated, empirical evidence from species with detailed information on niche specialization and evolutionary history remains rare. Here we use a group of four closely related Cnemaspis gecko species that depend highly on granite boulder caves in the Mekong Delta to investigate the potential impact of ecological specialization on their evolution and population dynamics. Isolated by unsuitable floodplain habitats, these boulder-dwelling geckos are among the most narrowly distributed Squamata in the world. We applied several coalescence-based approaches combined with the RAD-seq technique to estimate their divergence times, gene flow and demographic fluctuations during the speciation and population differentiation processes. Our results reveal long-term population shrinkage in the four geckos and limited gene flow during their divergence. The results suggest that the erosion and fragmentation of the granite boulder hills have greatly impacted population divergence and declines. The habitat specialization of these geckos has led to fine-scaled speciation in these granite rocky hills; in contrast, specialization might also have pushed these species toward the edge of extinction. Our study also emphasizes the conservation urgency of these vulnerable, cave-dependent geckos.
Collapse
Affiliation(s)
- Hung N Nguyen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department of Zoology, Southern Institute of Ecology, Vietnam Academia of Science and Technology, Ho Chi Minh City, Vietnam.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Hua Chu
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Ming Hung
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Si-Min Lin
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
36
|
Jones W, Kulma K, Bensch S, Cichoń M, Kerimov A, Krist M, Laaksonen T, Moreno J, Munclinger P, Slater FM, Szöllősi E, Visser ME, Qvarnström A. Interspecific transfer of parasites following a range-shift in Ficedula flycatchers. Ecol Evol 2018; 8:12183-12192. [PMID: 30598810 PMCID: PMC6303764 DOI: 10.1002/ece3.4677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/07/2022] Open
Abstract
Human-induced climate change is expected to cause major biotic changes in species distributions and thereby including escalation of novel host-parasite associations. Closely related host species that come into secondary contact are especially likely to exchange parasites and pathogens. Both the Enemy Release Hypothesis (where invading hosts escape their original parasites) and the Novel Weapon Hypothesis (where invading hosts bring new parasites that have detrimental effects on native hosts) predict that the local host will be most likely to experience a disadvantage. However, few studies evaluate the occurrence of interspecific parasite transfer by performing wide-scale geographic sampling of pathogen lineages, both within and far from host contact zones. In this study, we investigate how haemosporidian (avian malaria) prevalence and lineage diversity vary in two, closely related species of passerine birds; the pied flycatcher Ficedula hypoleuca and the collared flycatcher F. albicollis in both allopatry and sympatry. We find that host species is generally a better predictor of parasite diversity than location, but both prevalence and diversity of parasites vary widely among populations of the same bird species. We also find a limited and unidirectional transfer of parasites from pied flycatchers to collared flycatchers in a recent contact zone. This study therefore rejects both the Enemy Release Hypothesis and the Novel Weapon Hypothesis and highlights the complexity and importance of studying host-parasite relationships in an era of global climate change and species range shifts.
Collapse
Affiliation(s)
- William Jones
- Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Katarzyna Kulma
- Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Staffan Bensch
- MEMEG, Molecular Ecology and Evolution Group, Department of BiologyLund UniversityLundSweden
| | - Mariusz Cichoń
- Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Anvar Kerimov
- Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Miloš Krist
- Department of Zoology and Laboratory of Ornithology, Faculty of SciencePalacky UniversityOlomoucCzech Republic
| | - Toni Laaksonen
- Natural Resources Institute Finland (Luke)TurkuFinland
- Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
| | - Juan Moreno
- Departamento de Ecologia EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
| | - Pavel Munclinger
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Eszter Szöllősi
- Department of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
37
|
Beichman AC, Huerta-Sanchez E, Lohmueller KE. Using Genomic Data to Infer Historic Population Dynamics of Nonmodel Organisms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062431] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome sequence data are now being routinely obtained from many nonmodel organisms. These data contain a wealth of information about the demographic history of the populations from which they originate. Many sophisticated statistical inference procedures have been developed to infer the demographic history of populations from this type of genomic data. In this review, we discuss the different statistical methods available for inference of demography, providing an overview of the underlying theory and logic behind each approach. We also discuss the types of data required and the pros and cons of each method. We then discuss how these methods have been applied to a variety of nonmodel organisms. We conclude by presenting some recommendations for researchers looking to use genomic data to infer demographic history.
Collapse
Affiliation(s)
- Annabel C. Beichman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
| | - Emilia Huerta-Sanchez
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Current affiliation: Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
- Interdepartmental Program in Bioinformatics and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
38
|
Nieto-Lugilde M, Werner O, McDaniel SF, Koutecký P, Kučera J, Rizk SM, Ros RM. Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus Ceratodon. AMERICAN JOURNAL OF BOTANY 2018; 105:1009-1020. [PMID: 29957852 DOI: 10.1002/ajb2.1107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY A period of allopatry is widely believed to be essential for the evolution of reproductive isolation. However, strict allopatry may be difficult to achieve in some cosmopolitan, spore-dispersed groups, like mosses. We examined the genetic and genome size diversity in Mediterranean populations of the moss Ceratodon purpureus s.l. to evaluate the role of allopatry and ploidy change in population divergence. METHODS We sampled populations of the genus Ceratodon from mountainous areas and lowlands of the Mediterranean region, and from Western and Central Europe. We performed phylogenetic and coalescent analyses on sequences from five nuclear introns and a chloroplast locus to reconstruct their evolutionary history. We also estimated genome size using flow cytometry (employing propidium iodide) and determined the sex of samples using a sex-linked PCR marker. KEY RESULTS Two well-differentiated clades were resolved, discriminating two homogeneous groups: the widespread C. purpureus and a local group mostly restricted to the mountains in Southern Spain. The latter also possessed a genome size 25% larger than the widespread C. purpureus, and the samples of this group consist entirely of females. We also found hybrids, and some of them had a genome size equivalent to the sum of the C. purpureus and Spanish genome, suggesting that they arose by allopolyploidy. CONCLUSIONS These data suggest that a new species of Ceratodon arose via peripatric speciation, potentially involving a genome size change and a strong female-biased sex ratio. The new species has hybridized in the past with C. purpureus.
Collapse
Affiliation(s)
- Marta Nieto-Lugilde
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Olaf Werner
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Stuart F McDaniel
- Biology Department, University of Florida, Gainesville, Florida, 32611, USA
| | - Petr Koutecký
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05, České Budějovice, Czech Republic
| | - Jan Kučera
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05, České Budějovice, Czech Republic
| | - Samah Mohamed Rizk
- Genetics Department, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shubra, 11241, Cairo, Egypt
| | - Rosa M Ros
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
39
|
Ravinet M, Yoshida K, Shigenobu S, Toyoda A, Fujiyama A, Kitano J. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLoS Genet 2018; 14:e1007358. [PMID: 29791436 PMCID: PMC5988309 DOI: 10.1371/journal.pgen.1007358] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/05/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.
Collapse
Affiliation(s)
- Mark Ravinet
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kohta Yoshida
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
40
|
Martin HC, Batty EM, Hussin J, Westall P, Daish T, Kolomyjec S, Piazza P, Bowden R, Hawkins M, Grant T, Moritz C, Grutzner F, Gongora J, Donnelly P. Insights into Platypus Population Structure and History from Whole-Genome Sequencing. Mol Biol Evol 2018; 35:1238-1252. [PMID: 29688544 PMCID: PMC5913675 DOI: 10.1093/molbev/msy041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10-9/bp/generation (95% CI 4.1 × 10-9-1.2 × 10-8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.
Collapse
Affiliation(s)
- Hilary C Martin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Elizabeth M Batty
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julie Hussin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Portia Westall
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Tasman Daish
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen Kolomyjec
- School of Biological Sciences, Lake Superior State University, Sault Sainte Marie, MI
| | - Paolo Piazza
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Tom Grant
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Craig Moritz
- Research School of Biology and Centre for Biodiversity Analysis, The Australian National University, Acton, ACT, Australia
| | - Frank Grutzner
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jaime Gongora
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Van Belleghem SM, Baquero M, Papa R, Salazar C, McMillan WO, Counterman BA, Jiggins CD, Martin SH. Patterns of Z chromosome divergence among Heliconius species highlight the importance of historical demography. Mol Ecol 2018; 27:3852-3872. [PMID: 29569384 PMCID: PMC6151167 DOI: 10.1111/mec.14560] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
Sex chromosomes are disproportionately involved in reproductive isolation and adaptation. In support of such a “large‐X” effect, genome scans between recently diverged populations and species pairs often identify distinct patterns of divergence on the sex chromosome compared to autosomes. When measures of divergence between populations are higher on the sex chromosome compared to autosomes, such patterns could be interpreted as evidence for faster divergence on the sex chromosome, that is “faster‐X”, barriers to gene flow on the sex chromosome. However, demographic changes can strongly skew divergence estimates and are not always taken into consideration. We used 224 whole‐genome sequences representing 36 populations from two Heliconius butterfly clades (H. erato and H. melpomene) to explore patterns of Z chromosome divergence. We show that increased divergence compared to equilibrium expectations can in many cases be explained by demographic change. Among Heliconius erato populations, for instance, population size increase in the ancestral population can explain increased absolute divergence measures on the Z chromosome compared to the autosomes, as a result of increased ancestral Z chromosome genetic diversity. Nonetheless, we do identify increased divergence on the Z chromosome relative to the autosomes in parapatric or sympatric species comparisons that imply postzygotic reproductive barriers. Using simulations, we show that this is consistent with reduced gene flow on the Z chromosome, perhaps due to greater accumulation of incompatibilities. Our work demonstrates the importance of taking demography into account to interpret patterns of divergence on the Z chromosome, but nonetheless provides evidence to support the Z chromosome as a strong barrier to gene flow in incipient Heliconius butterfly species.
Collapse
Affiliation(s)
- Steven M Van Belleghem
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA.,Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, Puerto Rico.,Smithsonian Tropical Research Institute, Apartado, Panamá, Panama
| | - Margarita Baquero
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Riccardo Papa
- Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera, Bogota, Colombia
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado, Panamá, Panama
| | - Brian A Counterman
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
McFarlane SE, Ålund M, Sirkiä PM, Qvarnström A. Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers. Ecol Evol 2018; 8:4575-4586. [PMID: 29760898 PMCID: PMC5938467 DOI: 10.1002/ece3.3987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden.,Present address: Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Murielle Ålund
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Päivi M Sirkiä
- Finnish Museum of Natural History Zoology Unit University of Helsinki Helsinki Finland.,Section of Ecology Department of Biology University of Turku Turku Finland
| | - Anna Qvarnström
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
43
|
Resolving taxonomic turbulence and uncovering cryptic diversity in the musk turtles (Sternotherus) using robust demographic modeling. Mol Phylogenet Evol 2018; 120:1-15. [DOI: 10.1016/j.ympev.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 01/25/2023]
|
44
|
Blankers T, Vilaça ST, Waurick I, Gray DA, Hennig RM, Mazzoni CJ, Mayer F, Berdan EL. Demography and selection shape transcriptomic divergence in field crickets. Evolution 2018; 72:553-567. [PMID: 29363111 DOI: 10.1111/evo.13435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Gene flow, demography, and selection can result in similar patterns of genomic variation and disentangling their effects is key to understanding speciation. Here, we assess transcriptomic variation to unravel the evolutionary history of Gryllus rubens and Gryllus texensis, cryptic field cricket species with highly divergent mating behavior. We infer their demographic history and screen their transcriptomes for footprints of selection in the context of the inferred demography. We find strong support for a long history of bidirectional gene flow, which ceased during the late Pleistocene, and a bottleneck in G. rubens consistent with a peripatric origin of this species. Importantly, the demographic history has likely strongly shaped patterns of genetic differentiation (empirical FST distribution). Concordantly, FST -based selection detection uncovers a large number of outliers, likely comprising many false positives, echoing recent theoretical insights. Alternative genetic signatures of positive selection, informed by the demographic history of the sibling species, highlighted a smaller set of loci; many of these are candidates for controlling variation in mating behavior. Our results underscore the importance of demography in shaping overall patterns of genetic divergence and highlight that examining both demography and selection facilitates a more complete understanding of genetic divergence during speciation.
Collapse
Affiliation(s)
- Thomas Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Sibelle T Vilaça
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Isabelle Waurick
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - David A Gray
- Department of Biology, California State University Northridge, Northridge, California 91330
| | - R Matthias Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Emma L Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Marine Sciences, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
45
|
Elleouet JS, Aitken SN. Exploring Approximate Bayesian Computation for inferring recent demographic history with genomic markers in nonmodel species. Mol Ecol Resour 2018; 18:525-540. [DOI: 10.1111/1755-0998.12758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Joane S. Elleouet
- Department of Forest and Conservation Sciences; Faculty of Forestry; University of British Columbia; Vancouver BC Canada
| | - Sally N. Aitken
- Department of Forest and Conservation Sciences; Faculty of Forestry; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
46
|
Sirkiä PM, McFarlane SE, Jones W, Wheatcroft D, Ålund M, Rybinski J, Qvarnström A. Climate‐driven build‐up of temporal isolation within a recently formed avian hybrid zone. Evolution 2018; 72:363-374. [DOI: 10.1111/evo.13404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Päivi M. Sirkiä
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
- Finnish Museum of Natural History, Zoology UnitUniversity of Helsinki Helsinki Finland
| | - S. Eryn McFarlane
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - William Jones
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - David Wheatcroft
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - Murielle Ålund
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - Jakub Rybinski
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| | - Anna Qvarnström
- Animal EcologyDepartment of Ecology and Genetics Norbyvägen 18d SE‐752 36 Uppsala Sweden
| |
Collapse
|
47
|
Craig RJ, Suh A, Wang M, Ellegren H. Natural selection beyond genes: Identification and analyses of evolutionarily conserved elements in the genome of the collared flycatcher (Ficedula albicollis). Mol Ecol 2018; 27:476-492. [DOI: 10.1111/mec.14462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rory J. Craig
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
- Institute of Evolutionary Biology; School of Biological Sciences; University of Edinburgh; Edinburgh UK
| | - Alexander Suh
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Mi Wang
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
48
|
Nadeau NJ, Kawakami T. Population Genomics of Speciation and Admixture. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Suh A, Smeds L, Ellegren H. Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol 2017; 27:99-111. [DOI: 10.1111/mec.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
50
|
Martin CH, Höhna S. New evidence for the recent divergence of Devil's Hole pupfish and the plausibility of elevated mutation rates in endangered taxa. Mol Ecol 2017; 27:831-838. [DOI: 10.1111/mec.14404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/18/2017] [Accepted: 09/15/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher H. Martin
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Sebastian Höhna
- Department of Integrative Biology; University of California; Berkeley CA USA
- Department of Statistics; University of California; Berkeley CA USA
- Division of Evolutionary Biology; Ludwig-Maximilians-Universität; München Germany
| |
Collapse
|