1
|
Pizzoni A, Zhang X, Altschuler DL. From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J Biol Chem 2024; 300:105497. [PMID: 38016514 PMCID: PMC10788541 DOI: 10.1016/j.jbc.2023.105497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
2
|
Yeo H, Mehta V, Gulati A, Drew D. Structure and electromechanical coupling of a voltage-gated Na +/H + exchanger. Nature 2023; 623:193-201. [PMID: 37880360 PMCID: PMC10620092 DOI: 10.1038/s41586-023-06518-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/04/2023] [Indexed: 10/27/2023]
Abstract
Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.
Collapse
Affiliation(s)
- Hyunku Yeo
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ved Mehta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Zorn A, Baillie G. Phosphodiesterase 7 as a therapeutic target - Where are we now? Cell Signal 2023; 108:110689. [PMID: 37120115 DOI: 10.1016/j.cellsig.2023.110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyse the intracellular second messengers cAMP and cGMP to their inactive forms 5'AMP and 5'GMP. Some members of the PDE family display specificity towards a single cyclic nucleotide messenger, and PDE4, PDE7, and PDE8 specifically hydrolyse cAMP. While the role of PDE4 and its use as a therapeutic target have been well studied, less is known about PDE7 and PDE8. This review aims to collate the present knowledge on human PDE7 and outline its potential use as a therapeutic target. Human PDE7 exists as two isoforms PDE7A and PDE7B that display different expression patterns but are predominantly found in the central nervous system, immune cells, and lymphoid tissue. As a result, PDE7 is thought to play a role in T cell activation and proliferation, inflammation, and regulate several physiological processes in the central nervous system, such as neurogenesis, synaptogenesis, and long-term memory formation. Increased expression and activity of PDE7 has been detected in several disease states, including neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's disease, autoimmune diseases such as multiple sclerosis and COPD, and several types of cancer. Early studies have shown that administration of PDE7 inhibitors may ameliorate the clinical state of these diseases. Targeting PDE7 may therefore provide a novel therapeutic strategy for targeting a broad range of disease and possibly provide a complementary alternative to inhibitors of other cAMP-selective PDEs, such as PDE4, which are severely limited by their side-effects.
Collapse
Affiliation(s)
- Alina Zorn
- University of Glasgow, 535 Wolfson Link Building, G12 8QQ Glasgow, United Kingdom.
| | - George Baillie
- University of Glasgow, 535 Wolfson Link Building, G12 8QQ Glasgow, United Kingdom.
| |
Collapse
|
4
|
Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, Pintus G, Eid AH. Epac as a tractable therapeutic target. Eur J Pharmacol 2023; 945:175645. [PMID: 36894048 DOI: 10.1016/j.ejphar.2023.175645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In 1957, cyclic adenosine monophosphate (cAMP) was identified as the first secondary messenger, and the first signaling cascade discovered was the cAMP-protein kinase A (PKA) pathway. Since then, cAMP has received increasing attention given its multitude of actions. Not long ago, a new cAMP effector named exchange protein directly activated by cAMP (Epac) emerged as a critical mediator of cAMP's actions. Epac mediates a plethora of pathophysiologic processes and contributes to the pathogenesis of several diseases such as cancer, cardiovascular disease, diabetes, lung fibrosis, neurological disorders, and others. These findings strongly underscore the potential of Epac as a tractable therapeutic target. In this context, Epac modulators seem to possess unique characteristics and advantages and hold the promise of providing more efficacious treatments for a wide array of diseases. This paper provides an in-depth dissection and analysis of Epac structure, distribution, subcellular compartmentalization, and signaling mechanisms. We elaborate on how these characteristics can be utilized to design specific, efficient, and safe Epac agonists and antagonists that can be incorporated into future pharmacotherapeutics. In addition, we provide a detailed portfolio for specific Epac modulators highlighting their discovery, advantages, potential concerns, and utilization in the context of clinical disease entities.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | | | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Osennyaya Street 4-1-207, Moscow, 121609, Russia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
5
|
Collins KB, Scott JD. Phosphorylation, compartmentalization, and cardiac function. IUBMB Life 2023; 75:353-369. [PMID: 36177749 PMCID: PMC10049969 DOI: 10.1002/iub.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Protein phosphorylation is a fundamental element of cell signaling. First discovered as a biochemical switch in glycogen metabolism, we now know that this posttranslational modification permeates all aspects of cellular behavior. In humans, over 540 protein kinases attach phosphate to acceptor amino acids, whereas around 160 phosphoprotein phosphatases remove phosphate to terminate signaling. Aberrant phosphorylation underlies disease, and kinase inhibitor drugs are increasingly used clinically as targeted therapies. Specificity in protein phosphorylation is achieved in part because kinases and phosphatases are spatially organized inside cells. A prototypic example is compartmentalization of the cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A through association with A-kinase anchoring proteins. This configuration creates autonomous signaling islands where the anchored kinase is constrained in proximity to activators, effectors, and selected substates. This article primarily focuses on A kinase anchoring protein (AKAP) signaling in the heart with an emphasis on anchoring proteins that spatiotemporally coordinate excitation-contraction coupling and hypertrophic responses.
Collapse
Affiliation(s)
- Kerrie B. Collins
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| | - John D. Scott
- Department of Pharmacology, University of Washington, School of Medicine, 1959 NE Pacific Ave, Seattle WA, 98195
| |
Collapse
|
6
|
Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2208749120. [PMID: 36656863 PMCID: PMC9942871 DOI: 10.1073/pnas.2208749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
7
|
Tabakoff B, Hoffman PL. The role of the type 7 adenylyl cyclase isoform in alcohol use disorder and depression. Front Pharmacol 2022; 13:1012013. [PMID: 36386206 PMCID: PMC9649618 DOI: 10.3389/fphar.2022.1012013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
The translation of extracellular signals to intracellular responses involves a number of signal transduction molecules. A major component of this signal transducing function is adenylyl cyclase, which produces the intracellular "second messenger," cyclic AMP. What was initially considered as a single enzyme for cyclic AMP generation is now known to be a family of nine membrane-bound enzymes, and one cytosolic enzyme. Each member of the adenylyl cyclase family is distinguished by factors that modulate its catalytic activity, by the cell, tissue, and organ distribution of the family members, and by the physiological/behavioral functions that are subserved by particular family members. This review focuses on the Type 7 adenylyl cyclase (AC7) in terms of its catalytic characteristics and its relationship to alcohol use disorder (AUD, alcoholism), and major depressive disorder (MDD). AC7 may be part of the inherited system predisposing an individual to AUD and/or MDD in a sex-specific manner, or this enzyme may change in its expression or activity in response to the progression of disease or in response to treatment. The areas of brain expressing AC7 are related to responses to stress and evidence is available that CRF1 receptors are coupled to AC7 in the amygdala and pituitary. Interestingly, AC7 is the major form of the cyclase contained in bone marrow-derived cells of the immune system and platelets, and in microglia. AC7 is thus, poised to play an integral role in both peripheral and brain immune function thought to be etiologically involved in both AUD and MDD. Both platelet and lymphocyte adenylyl cyclase activity have been proposed as markers for AUD and MDD, as well as prognostic markers of positive response to medication for MDD. We finish with consideration of paths to medication development that may selectively modulate AC7 activity as treatments for MDD and AUD.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Protein interaction, cytotoxic, transcriptomic and proteomic responses to structurally distinct EPAC1 activators in HUVECs. Sci Rep 2022; 12:16505. [PMID: 36198739 PMCID: PMC9534843 DOI: 10.1038/s41598-022-20607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
The N-acylsulfonamide derivative, I942, represents the first non-cyclic nucleotide partial agonist of EPAC1. This was soon followed by the identification of the I942 analogues, PW0381, PW0521 and PWO577 and a series of benzofuran oxoacetic acid EPAC1 activators, SY006, SY007 and SY009. Protein interaction, cytotoxicity and EPAC1 activation assays applied here identify PWO577 and SY007 as being effective EPAC1 binders that are well tolerated in HUVECs at concentrations greater than 100 μM and up to 48 h incubation and are effective activators of transfected EPAC1 in U2OS cells. Using RNAseq in HUVECs we show that PWO577 and SY007 regulate approximately 11,000 shared genes, with only few differential gene changes being “off-target”. The genes significantly regulated by both PWO577 and SY007 included a subset of genes normally associated with endothelial activation, including ICAM1, MMP1 and CCL2. Of these, only the expression of MMP1 was markedly increased at the protein level, as determined by LC–MS-based proteomics. Both PWO577 and SY007 suppressed IL-6-induced STAT3 activation and associated downstream gene expression, including inhibition of SOCS3, STAT3, IL6ST and JAK3 genes. Together these results demonstrate the utility of structurally distinct, specific and non-toxic EPAC1 activators. Future modifications will be aimed at eliminating the few noted off-target effects.
Collapse
|
9
|
Frintrop L, Wiesehöfer C, Stoskus A, Hilken G, Dubicanac M, von Ostau NE, Rode S, Elgeti J, Dankert JT, Wennemuth G. cAMP and the Fibrous Sheath Protein CABYR (Ca2+-Binding Tyrosine-Phosphorylation-Regulated Protein) Is Required for 4D Sperm Movement. Int J Mol Sci 2022; 23:ijms231810607. [PMID: 36142535 PMCID: PMC9502204 DOI: 10.3390/ijms231810607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
A new life starts with successful fertilization whereby one sperm from a pool of millions fertilizes the oocyte. Sperm motility is one key factor for this selection process, which depends on a coordinated flagellar movement. The flagellar beat cycle is regulated by Ca2+ entry via CatSper, cAMP, Mg2+, ADP and ATP. This study characterizes the effects of these parameters for 4D sperm motility, especially for flagellar movement and the conserved clockwise (CW) path chirality of murine sperm. Therefore, we use detergent-extracted mouse sperm and digital holographic microscopy (DHM) to show that a balanced ratio of ATP to Mg2+ in addition with 18 µM cAMP and 1 mM ADP is necessary for controlled flagellar movement, induction of rolling along the long axis and CW path chirality. Rolling along the sperm’s long axis, a proposed mechanism for sperm selection, is absent in sea urchin sperm, lacking flagellar fibrous sheath (FS) and outer-dense fibers (ODFs). In sperm lacking CABYR, a Ca2+-binding tyrosine-phosphorylation regulated protein located in the FS, the swim path chirality is preserved. We conclude that specific concentrations of ATP, ADP, cAMP and Mg2+ as well as a functional CABYR play an important role for sperm motility especially for path chirality.
Collapse
Affiliation(s)
- Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Caroline Wiesehöfer
- Institute of Anatomy, Department of Anatomy, University Duisburg-Essen, 47057 Essen, Germany
| | - Aura Stoskus
- Institute of Anatomy, Department of Anatomy, University Duisburg-Essen, 47057 Essen, Germany
| | - Gero Hilken
- Central Animal Laboratory, University Hospital Essen, 47057 Essen, Germany
| | - Marko Dubicanac
- Central Animal Laboratory, University Hospital Essen, 47057 Essen, Germany
| | | | - Sebastian Rode
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jens Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jaroslaw Thomas Dankert
- Institute of Anatomy, Department of Anatomy, University Duisburg-Essen, 47057 Essen, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, Department of Anatomy, University Duisburg-Essen, 47057 Essen, Germany
- Correspondence:
| |
Collapse
|
10
|
The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010311. [PMID: 35011543 PMCID: PMC8746471 DOI: 10.3390/molecules27010311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3′, 5′-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.
Collapse
|
11
|
Ni Z, Cheng X. Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis. Cells 2021; 10:cells10102750. [PMID: 34685730 PMCID: PMC8534922 DOI: 10.3390/cells10102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and EPAC2. Our study demonstrates that unlike its cousin PKA, EPAC proteins are only present in multicellular Metazoa. Within the EPAC family, EPAC1 is only associated with chordates, while EPAC2 spans the entire animal kingdom. Despite a much more contemporary origin, EPAC1 proteins show much more sequence diversity among species, suggesting that EPAC1 has undergone more selection and evolved faster than EPAC2. Phylogenetic analyses of the individual cAMP binding domain (CBD) and guanine nucleotide exchange (GEF) domain of EPACs, two most conserved regions between the two isoforms, further reveal that EPAC1 and EPAC2 are closely clustered together within both the larger cyclic nucleotide receptor and RAPGEF families. These results support the notion that EPAC1 and EPAC2 share a common ancestor resulting from a fusion between the CBD of PKA and the GEF from RAPGEF1. On the other hand, the two terminal extremities and the RAS-association (RA) domains show the most sequence diversity between the two isoforms. Sequence diversities within these regions contribute significantly to the isoform-specific functions of EPACs. Importantly, unique isoform-specific sequence motifs within the RA domain have been identified.
Collapse
Affiliation(s)
- Zhuofu Ni
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-500-7487
| |
Collapse
|
12
|
Massengill CI, Day-Cooney J, Mao T, Zhong H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. J Neurosci Methods 2021; 362:109298. [PMID: 34339753 PMCID: PMC8659126 DOI: 10.1016/j.jneumeth.2021.109298] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that plays a crucial role in diverse biological functions, ranging from transcription to neuronal plasticity, and from development to learning and memory. In the nervous system, cAMP integrates inputs from many neuromodulators across a wide range of timescales - from seconds to hours - to modulate neuronal excitability and plasticity in brain circuits during different animal behavioral states. cAMP signaling events are both cell-specific and subcellularly compartmentalized. The same stimulus may result in different, sometimes opposite, cAMP dynamics in different cells or subcellular compartments. Additionally, the activity of protein kinase A (PKA), a major cAMP effector, is also spatiotemporally regulated. For these reasons, many laboratories have made great strides toward visualizing the intracellular dynamics of cAMP and PKA. To date, more than 80 genetically encoded sensors, including original and improved variants, have been published. It is starting to become possible to visualize cAMP and PKA signaling events in vivo, which is required to study behaviorally relevant cAMP/PKA signaling mechanisms. Despite significant progress, further developments are needed to enhance the signal-to-noise ratio and practical utility of these sensors. This review summarizes the recent advances and challenges in genetically encoded cAMP and PKA sensors with an emphasis on in vivo imaging in the brain during behavior.
Collapse
Affiliation(s)
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
13
|
Nandagiri A, Gaikwad AS, Potter DL, Nosrati R, Soria J, O'Bryan MK, Jadhav S, Prabhakar R. Flagellar energetics from high-resolution imaging of beating patterns in tethered mouse sperm. eLife 2021; 10:62524. [PMID: 33929317 PMCID: PMC8159377 DOI: 10.7554/elife.62524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
We demonstrate a technique for investigating the energetics of flagella or cilia. We record the planar beating of tethered mouse sperm at high resolution. Beating waveforms are reconstructed using proper orthogonal decomposition of the centerline tangent-angle profiles. Energy conservation is employed to obtain the mechanical power exerted by the dynein motors from the observed kinematics. A large proportion of the mechanical power exerted by the dynein motors is dissipated internally by the motors themselves. There could also be significant dissipation within the passive structures of the flagellum. The total internal dissipation is considerably greater than the hydrodynamic dissipation in the aqueous medium outside. The net power input from the dynein motors in sperm from Crisp2-knockout mice is significantly smaller than in wildtype samples, indicating that ion-channel regulation by cysteine-rich secretory proteins controls energy flows powering the axoneme.
Collapse
Affiliation(s)
- Ashwin Nandagiri
- IITB-Monash Research Academy, Mumbai, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | | | - David L Potter
- Monash Micro-Imaging, Monash University, Clayton, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | - Julio Soria
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| | - Moira K O'Bryan
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Sameer Jadhav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Australia
| |
Collapse
|
14
|
Kim N, Shin S, Bae SW. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins. BIOSENSORS-BASEL 2021; 11:bios11020039. [PMID: 33572585 PMCID: PMC7911721 DOI: 10.3390/bios11020039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) plays a key role in signal transduction pathways as a second messenger. Studies on the cAMP dynamics provided useful scientific insights for drug development and treatment of cAMP-related diseases such as some cancers and prefrontal cortex disorders. For example, modulation of cAMP-mediated intracellular signaling pathways by anti-tumor drugs could reduce tumor growth. However, most early stage tools used for measuring the cAMP level in living organisms require cell disruption, which is not appropriate for live cell imaging or animal imaging. Thus, in the last decades, tools were developed for real-time monitoring of cAMP distribution or signaling dynamics in a non-invasive manner. Genetically-encoded sensors based on fluorescent proteins and luciferases could be powerful tools to overcome these drawbacks. In this review, we discuss the recent genetically-encoded cAMP sensors advances, based on single fluorescent protein (FP), Föster resonance energy transfer (FRET), single luciferase, and bioluminescence resonance energy transfer (BRET) for real-time non-invasive imaging.
Collapse
Affiliation(s)
- Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea;
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
| | - Se Won Bae
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3543
| |
Collapse
|
15
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
16
|
Kent K, Johnston M, Strump N, Garcia TX. Toward Development of the Male Pill: A Decade of Potential Non-hormonal Contraceptive Targets. Front Cell Dev Biol 2020; 8:61. [PMID: 32161754 PMCID: PMC7054227 DOI: 10.3389/fcell.2020.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
With the continued steep rise of the global human population, and the paucity of safe and practical contraceptive options available to men, the need for development of effective and reversible non-hormonal methods of male fertility control is widely recognized. Currently there are several contraceptive options available to men, however, none of the non-hormonal alternatives have been clinically approved. To advance progress in the development of a safe and reversible contraceptive for men, further identification of novel reproductive tract-specific druggable protein targets is required. Here we provide an overview of genes/proteins identified in the last decade as specific or highly expressed in the male reproductive tract, with deletion phenotypes leading to complete male infertility in mice. These phenotypes include arrest of spermatogenesis and/or spermiogenesis, abnormal spermiation, abnormal spermatid morphology, abnormal sperm motility, azoospermia, globozoospermia, asthenozoospermia, and/or teratozoospermia, which are all desirable outcomes for a novel male contraceptive. We also consider other associated deletion phenotypes that could impact the desirability of a potential contraceptive. We further discuss novel contraceptive targets underscoring promising leads with the objective of presenting data for potential druggability and whether collateral effects may exist from paralogs with close sequence similarity.
Collapse
Affiliation(s)
- Katarzyna Kent
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Madelaine Johnston
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Natasha Strump
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Thomas X Garcia
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
POPDC proteins and cardiac function. Biochem Soc Trans 2020; 47:1393-1404. [PMID: 31551355 DOI: 10.1042/bst20190249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023]
Abstract
The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein-protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.
Collapse
|
18
|
The Role of the Popeye Domain Containing Gene Family in Organ Homeostasis. Cells 2019; 8:cells8121594. [PMID: 31817925 PMCID: PMC6952887 DOI: 10.3390/cells8121594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The Popeye domain containing (POPDC) gene family consists of POPDC1 (also known as BVES), POPDC2 and POPDC3 and encodes a novel class of cyclic adenosine monophosphate (cAMP) effector proteins. Despite first reports of their isolation and initial characterization at the protein level dating back 20 years, only recently major advances in defining their biological functions and disease association have been made. Loss-of-function experiments in mice and zebrafish established an important role in skeletal muscle regeneration, heart rhythm control and stress signaling. Patients suffering from muscular dystrophy and atrioventricular block were found to carry missense and nonsense mutations in either of the three POPDC genes, which suggests an important function in the control of striated muscle homeostasis. However, POPDC genes are also expressed in a number of epithelial cells and function as tumor suppressor genes involved in the control of epithelial structure, tight junction formation and signaling. Suppression of POPDC genes enhances tumor cell proliferation, migration, invasion and metastasis in a variety of human cancers, thus promoting a malignant phenotype. Moreover, downregulation of POPDC1 and POPDC3 expression in different cancer types has been associated with poor prognosis. However, high POPDC3 expression has also been correlated to poor clinical prognosis in head and neck squamous cell carcinoma, suggesting that POPDC3 potentially plays different roles in the progression of different types of cancer. Interestingly, a gain of POPDC1 function in tumor cells inhibits cell proliferation, migration and invasion thereby reducing malignancy. Furthermore, POPDC proteins have been implicated in the control of cell cycle genes and epidermal growth factor and Wnt signaling. Work in tumor cell lines suggest that cyclic nucleotide binding may also be important in epithelial cells. Thus, POPDC proteins have a prominent role in tissue homeostasis and cellular signaling in both epithelia and striated muscle.
Collapse
|
19
|
Ahmed A, Boulton S, Shao H, Akimoto M, Natarajan A, Cheng X, Melacini G. Recent Advances in EPAC-Targeted Therapies: A Biophysical Perspective. Cells 2019; 8:E1462. [PMID: 31752286 PMCID: PMC6912387 DOI: 10.3390/cells8111462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
The universal second messenger cAMP regulates diverse intracellular processes by interacting with ubiquitously expressed proteins, such as Protein Kinase A (PKA) and the Exchange Protein directly Activated by cAMP (EPAC). EPAC is implicated in multiple pathologies, thus several EPAC-specific inhibitors have been identified in recent years. However, the mechanisms and molecular interactions underlying the EPAC inhibition elicited by such compounds are still poorly understood. Additionally, being hydrophobic low molecular weight species, EPAC-specific inhibitors are prone to forming colloidal aggregates, which result in non-specific aggregation-based inhibition (ABI) in aqueous systems. Here, we review from a biophysical perspective the molecular basis of the specific and non-specific interactions of two EPAC antagonists-CE3F4R, a non-competitive inhibitor, and ESI-09, a competitive inhibitor of EPAC. Additionally, we discuss the value of common ABI attenuators (e.g., TX and HSA) to reduce false positives at the expense of introducing false negatives when screening aggregation-prone compounds. We hope this review provides the EPAC community effective criteria to evaluate similar compounds, aiding in the optimization of existing drug leads, and informing the development of the next generation of EPAC-specific inhibitors.
Collapse
Affiliation(s)
- Alveena Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Hongzhao Shao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| |
Collapse
|
20
|
Swan AH, Gruscheski L, Boland LA, Brand T. The Popeye domain containing gene family encoding a family of cAMP-effector proteins with important functions in striated muscle and beyond. J Muscle Res Cell Motil 2019; 40:169-183. [PMID: 31197601 PMCID: PMC6726836 DOI: 10.1007/s10974-019-09523-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
The Popeye domain containing (POPDC) gene family encodes a novel class of membrane-bound cyclic AMP effector proteins. POPDC proteins are abundantly expressed in cardiac and skeletal muscle. Consistent with its predominant expression in striated muscle, Popdc1 and Popdc2 null mutants in mouse and zebrafish develop cardiac arrhythmia and muscular dystrophy. Likewise, mutations in POPDC genes in patients have been associated with cardiac arrhythmia and muscular dystrophy phenotypes. A membrane trafficking function has been identified in this context. POPDC proteins have also been linked to tumour formation. Here, POPDC1 plays a role as a tumour suppressor by limiting c-Myc and WNT signalling. Currently, a common functional link between POPDC's role in striated muscle and as a tumour suppressor is lacking. We also discuss several alternative working models to better understand POPDC protein function.
Collapse
Affiliation(s)
- Alexander H Swan
- National Heart and Lung Institute, Imperial College London, 4th Floor ICTEM Building, Du Cane Road, London, W12 0NN, UK
- Institute of Chemical Biology, Imperial College London, London, UK
| | - Lena Gruscheski
- National Heart and Lung Institute, Imperial College London, 4th Floor ICTEM Building, Du Cane Road, London, W12 0NN, UK
| | - Lauren A Boland
- National Heart and Lung Institute, Imperial College London, 4th Floor ICTEM Building, Du Cane Road, London, W12 0NN, UK
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, 4th Floor ICTEM Building, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
21
|
Lim S, Kierzek M, O'Connor AE, Brenker C, Merriner DJ, Okuda H, Volpert M, Gaikwad A, Bianco D, Potter D, Prabhakar R, Strünker T, O'Bryan MK. CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility. Endocrinology 2019; 160:915-924. [PMID: 30759213 DOI: 10.1210/en.2018-01076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
The cysteine-rich secretory proteins (CRISPs) are a group of proteins that show a pronounced expression biased to the male reproductive tract. Although sperm encounter CRISPs at virtually all phases of sperm development and maturation, CRISP2 is the sole CRISP produced during spermatogenesis, wherein it is incorporated into the developing sperm head and tail. In this study we tested the necessity for CRISP2 in male fertility using Crisp2 loss-of-function mouse models. In doing so, we revealed a role for CRISP2 in establishing the ability of sperm to undergo the acrosome reaction and in establishing a normal flagellum waveform. Crisp2-deficient sperm possess a stiff midpiece and are thus unable to manifest the rapid form of progressive motility seen in wild type sperm. As a consequence, Crisp2-deficient males are subfertile. Furthermore, a yeast two-hybrid screen and immunoprecipitation studies reveal that CRISP2 can bind to the CATSPER1 subunit of the Catsper ion channel, which is necessary for normal sperm motility. Collectively, these data define CRISP2 as a determinant of male fertility and explain previous clinical associations between human CRISP2 expression and fertility.
Collapse
Affiliation(s)
- Shuly Lim
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Michelina Kierzek
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anne E O'Connor
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - D Jo Merriner
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Hidenobu Okuda
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Marianna Volpert
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Avinash Gaikwad
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Deborah Bianco
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David Potter
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Moira K O'Bryan
- The Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- The School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Li ZH, Cui D, Qiu CJ, Song XJ. Cyclic nucleotide signaling in sensory neuron hyperexcitability and chronic pain after nerve injury. NEUROBIOLOGY OF PAIN 2019; 6:100028. [PMID: 31223142 PMCID: PMC6565612 DOI: 10.1016/j.ynpai.2019.100028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/08/2022]
Abstract
Activation of cAMP-PKA and cGMP-PKG pathways contributes to injury-induced sensory neuron hyperexcitability. Activation of cAMP and cGMP contributes to the development of bone cancer pain. PAR2 activation mediates injury-induced cAMP-dependent sensory neuron hyperexcitability.
The cyclic nucleotide signaling, including cAMP-PKA and cGMP-PKG pathways, has been well known to play critical roles in regulating cellular growth, metabolism and many other intracellular processes. In recent years, more and more studies have uncovered the roles of cAMP and cGMP in the nervous system. The cAMP and cGMP signaling mediates chronic pain induced by different forms of injury and stress. Here we summarize the roles of cAMP-PKA and cGMP-PKG signaling pathways in the pathogenesis of chronic pain after nerve injury. In addition, acute dissociation and chronic compression of the dorsal root ganglion (DRG) neurons, respectively, leads to neural hyperexcitability possibly through PAR2 activation-dependent activation of cAMP-PKA pathway. Clinically, radiotherapy can effectively alleviate bone cancer pain at least partly through inhibiting the cancer cell-induced activation of cAMP-PKA pathway. Roles of cyclic nucleotide signaling in neuropathic and inflammatory pain are also seen in many other animal models and are involved in many pro-nociceptive mechanisms including the activation of hyperpolarization-activated cyclic nucleotide (HCN)-modulated ion channels and the exchange proteins directly activated by cAMP (EPAC). Further understanding the roles of cAMP and cGMP signaling in the pathogenesis of chronic pain is theoretically significant and clinically valuable for treatment of chronic pain.
Collapse
Affiliation(s)
- Ze-Hua Li
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Dong Cui
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Cheng-Jie Qiu
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xue-Jun Song
- Department of Biology, SUSTech Center for Pain Medicine, and Medical School, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Anesthesiology and Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
23
|
SpermQ⁻A Simple Analysis Software to Comprehensively Study Flagellar Beating and Sperm Steering. Cells 2018; 8:cells8010010. [PMID: 30587820 PMCID: PMC6357160 DOI: 10.3390/cells8010010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Motile cilia, also called flagella, are found across a broad range of species; some cilia propel prokaryotes and eukaryotic cells like sperm, while cilia on epithelial surfaces create complex fluid patterns e.g., in the brain or lung. For sperm, the picture has emerged that the flagellum is not only a motor but also a sensor that detects stimuli from the environment, computing the beat pattern according to the sensory input. Thereby, the flagellum navigates sperm through the complex environment in the female genital tract. However, we know very little about how environmental signals change the flagellar beat and, thereby, the swimming behavior of sperm. It has been proposed that distinct signaling domains in the flagellum control the flagellar beat. However, a detailed analysis has been mainly hampered by the fact that current comprehensive analysis approaches rely on complex microscopy and analysis systems. Thus, knowledge on sperm signaling regulating the flagellar beat is based on custom quantification approaches that are limited to only a few aspects of the beat pattern, do not resolve the kinetics of the entire flagellum, rely on manual, qualitative descriptions, and are only a little comparable among each other. Here, we present SpermQ, a ready-to-use and comprehensive analysis software to quantify sperm motility. SpermQ provides a detailed quantification of the flagellar beat based on common time-lapse images acquired by dark-field or epi-fluorescence microscopy, making SpermQ widely applicable. We envision SpermQ becoming a standard tool in flagellar and motile cilia research that allows to readily link studies on individual signaling components in sperm and distinct flagellar beat patterns.
Collapse
|
24
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
25
|
Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol 2018; 468:111-120. [PMID: 29146556 DOI: 10.1016/j.mce.2017.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research (caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Vera Beckert
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany.
| |
Collapse
|
26
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
27
|
Hernández-Ramírez LC, Trivellin G, Stratakis CA. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease. Mol Cell Endocrinol 2018; 463:72-86. [PMID: 28822849 DOI: 10.1016/j.mce.2017.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
28
|
Romero F, Santana-Calvo C, Sánchez-Guevara Y, Nishigaki T. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP. FEBS Lett 2017; 591:2869-2878. [PMID: 28734016 DOI: 10.1002/1873-3468.12760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/29/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022]
Abstract
The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs.
Collapse
Affiliation(s)
- Francisco Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Carmen Santana-Calvo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Yoloxochitl Sánchez-Guevara
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
29
|
Abstract
Fertilization is exceptionally complex and, depending on the species, happens in entirely different environments. External fertilizers in aquatic habitats, like marine invertebrates or fish, release their gametes into the seawater or freshwater, whereas sperm from most internal fertilizers like mammals cross the female genital tract to make their way to the egg. Various chemical and physical cues guide sperm to the egg. Quite generally, these cues enable signaling pathways that ultimately evoke a cellular Ca2+ response that modulates the waveform of the flagellar beat and, hence, the swimming path. To cope with the panoply of challenges to reach and fertilize the egg, sperm from different species have developed their own unique repertoire of signaling molecules and mechanisms. Here, we review the differences and commonalities for sperm sensory signaling in marine invertebrates (sea urchin), fish (zebrafish), and mammals (mouse, human).
Collapse
Affiliation(s)
- Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Jan F Jikeli
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - U Benjamin Kaupp
- Department Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| |
Collapse
|
30
|
Interrogating cyclic AMP signaling using optical approaches. Cell Calcium 2017; 64:47-56. [PMID: 28274483 DOI: 10.1016/j.ceca.2017.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 11/23/2022]
Abstract
Optical reporters for cAMP represent a fundamental advancement in our ability to investigate the dynamics of cAMP signaling. These fluorescent sensors can measure changes in cAMP in single cells or in microdomains within cells as opposed to whole populations of cells required for other methods of measuring cAMP. The first optical cAMP reporters were FRET-based sensors utilizing dissociation of purified regulatory and catalytic subunits of PKA, introduced by Roger Tsien in the early 1990s. The utility of these sensors was vastly improved by creating genetically encoded versions that could be introduced into cells with transfection, the first of which was published in the year 2000. Subsequently, improved sensors have been developed using different cAMP binding platforms, optimized fluorescent proteins, and targeting motifs that localize to specific microdomains. The most common sensors in use today are FRET-based sensors designed around an Epac backbone. These rely on the significant conformational changes in Epac when it binds cAMP, altering the signal between FRET pairs flanking Epac. Several other strategies for optically interrogating cAMP have been developed, including fluorescent translocation reporters, dimerization-dependent FP based biosensors, BRET (bioluminescence resonance energy transfer)-based sensors, non-FRET single wavelength reporters, and sensors based on bacterial cAMP-binding domains. Other newly described mammalian cAMP-binding proteins such as Popdc and CRIS may someday be exploited in sensor design. With the proliferation of engineered fluorescent proteins and the abundance of cAMP binding targets in nature, the field of optical reporters for cAMP should continue to see rapid refinement in the coming years.
Collapse
|
31
|
The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail. Cell Death Dis 2016; 7:e2472. [PMID: 27831554 PMCID: PMC5260884 DOI: 10.1038/cddis.2016.344] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive 'pill' is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.
Collapse
|
32
|
Amunjela JN, Tucker SJ. POPDC proteins as potential novel therapeutic targets in cancer. Drug Discov Today 2016; 21:1920-1927. [PMID: 27458118 DOI: 10.1016/j.drudis.2016.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
Popeye domain-containing (POPDC) proteins are a novel class of cAMP-binding molecules that affect cancer cell behaviour and correlate with poor clinical outcomes. They are encoded by the POPDC genes POPDC1, POPDC2, and POPDC3. The deletion of POPDC genes and the suppression of POPDC proteins correlate with enhanced cancer cell proliferation, migration, invasion, metastasis, drug resistance, and poor patient survival in various human cancers. Overexpression of POPDC proteins inhibits cancer cell migration and invasion in vitro. POPDC proteins present promising anticancer therapeutic targets and here we review their roles in promoting cancer progression and highlight their potential as anticancer therapeutic targets.
Collapse
Affiliation(s)
- Johanna N Amunjela
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Steven J Tucker
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
33
|
Schindler RF, Scotton C, French V, Ferlini A, Brand T. The Popeye Domain Containing Genes and their Function in Striated Muscle. J Cardiovasc Dev Dis 2016; 3. [PMID: 27347491 PMCID: PMC4918794 DOI: 10.3390/jcdd3020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/06/2023] Open
Abstract
The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle.
Collapse
Affiliation(s)
- Roland Fr Schindler
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Vanessa French
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Thomas Brand
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| |
Collapse
|
34
|
Björkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, Wahlberg N, Huhtaniemi I, Poutanen M, Wachten D, Sipilä P. Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol 2016; 427:143-54. [PMID: 26987518 DOI: 10.1016/j.mce.2016.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
During epididymal maturation, sperm acquire the ability to swim progressively by interacting with proteins secreted by the epididymal epithelium. Beta-defensin proteins, expressed in the epididymis, continue to regulate sperm motility during capacitation and hyperactivation in the female reproductive tract. We characterized the mouse beta-defensin 41 (DEFB41), by generating a mouse model with iCre recombinase inserted into the first exon of the gene. The homozygous Defb41(iCre/iCre) knock-in mice lacked Defb41 expression and displayed iCre recombinase activity in the principal cells of the proximal epididymis. Heterozygous Defb41(iCre/+) mice can be used to generate epididymis specific conditional knock-out mouse models. Homozygous Defb41(iCre/iCre) sperm displayed a defect in sperm motility with the flagella primarily bending in the pro-hook conformation while capacitated wild-type sperm more often displayed the anti-hook conformation. This led to a reduced straight line motility of Defb41(iCre/iCre) sperm and weaker binding to the oocyte. Thus, DEFB41 is required for proper sperm maturation.
Collapse
Affiliation(s)
- Ida Björkgren
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | - Luis Alvarez
- Center of Advanced European Studies and Research (Caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Nelli Blank
- Center of Advanced European Studies and Research (Caesar), Minerva Research Group Molecular Physiology, Bonn, Germany
| | - Melanie Balbach
- Center of Advanced European Studies and Research (Caesar), Minerva Research Group Molecular Physiology, Bonn, Germany
| | - Heikki Turunen
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Doctoral Programme of Biomedical Sciences, Turku, Finland
| | - Teemu Daniel Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jussi Toivanen
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anton Krutskikh
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | | | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Matti Poutanen
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (Caesar), Minerva Research Group Molecular Physiology, Bonn, Germany
| | - Petra Sipilä
- Department of Physiology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
35
|
Sodium-hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility. Cell Death Dis 2016; 7:e2152. [PMID: 27010853 PMCID: PMC4823964 DOI: 10.1038/cddis.2016.65] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/20/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Our previous work identified NHA1, a testis-specific sodium–hydrogen exchanger, is specifically localized on the principal piece of mouse sperm flagellum. Our subsequent study suggested that the number of newborns and fertility rate of NHA1-vaccinated female mice are significantly stepped down. In order to define the physiological function of NHA1 in spermatozoa, we generated Nha1Fx/Fx, Zp3-Cre (hereafter called Nha1 cKO) mice and found that Nha1 cKO males were viable and subfertile with reduced sperm motility. Notably, cyclic AMP (cAMP) synthesis by soluble adenylyl cyclase (sAC) was attenuated in Nha1 cKO spermatozoa and cAMP analogs restored sperm motility. Similar to Nha1 cKO males, Nha2Fx/Fx, Zp3-Cre (hereafter called Nha2 cKO) male mice were subfertile, indicating these two Nha genes may be functionally redundant. Furthermore, we demonstrated that male mice lacking Nha1 and Nha2 genes (hereafter called Nha1/2 dKO mice) were completely infertile, with severely diminished sperm motility owing to attenuated sAC-cAMP signaling. Importantly, principal piece distribution of NHA1 in spermatozoa are phylogenetically conserved in spermatogenesis. Collectively, our data revealed that NHA1 and NHA2 function as a key sodium–hydrogen exchanger responsible for sperm motility after leaving the cauda epididymidis.
Collapse
|
36
|
Schindler RFR, Brand T. The Popeye domain containing protein family--A novel class of cAMP effectors with important functions in multiple tissues. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:28-36. [PMID: 26772438 PMCID: PMC4821176 DOI: 10.1016/j.pbiomolbio.2016.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Popeye domain containing (Popdc) proteins are a unique family, which combine several different properties and functions in a surprisingly complex fashion. They are expressed in multiple tissues and cell types, present in several subcellular compartments, interact with different classes of proteins, and are associated with a variety of physiological and pathophysiological processes. Moreover, Popdc proteins bind the second messenger cAMP with high affinity and it is thought that they act as a novel class of cAMP effector proteins. Here, we will review the most important findings about the Popdc family, which accumulated since its discovery about 15 years ago. We will be focussing on Popdc protein interaction and function in striated muscle tissue. However, as a full picture only emerges if all aspects are taken into account, we will also describe what is currently known about the role of Popdc proteins in epithelial cells and in various types of cancer, and discuss these findings with regard to their relevance for cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Roland F R Schindler
- Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College London, United Kingdom
| | - Thomas Brand
- Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College London, United Kingdom.
| |
Collapse
|
37
|
Gong T, Wei Q, Mao D, Shi F. Expression patterns of taste receptor type 1 subunit 3 and α-gustducin in the mouse testis during development. Acta Histochem 2016; 118:20-30. [PMID: 26589384 DOI: 10.1016/j.acthis.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/04/2023]
Abstract
Taste receptor type 1 subunit 3 (T1R3) and its associated heterotrimeric G protein α-gustducin (Gα) are involved in sweet and umami sensing in taste cells. They are also strongly expressed in the testis and sperm, but their expression patterns and potential roles involved were previously unknown. In present study, we investigated the expression patterns of T1R3 and Gα in the mouse testis at critical stages of postnatal life, and throughout the spermatogenic cycle. Our results indicated that T1R3 and Gα exhibited a stage-dependent expression pattern during mouse development, and a cell-specific pattern during the spermatogenic cycle. Their expressions have been increased significantly from prepubertal to pubertal periods (P<005), and decreased significantly in aged mice (P<005). The changes were mainly attributed to the differential expression of T1R3 or Gα in elongated spermatids and Leydig cells at different stages of the spermatogenic cycle. In addition, the expression of T1R3 and Gα were first observed in residual bodies of spermatozoa and endothelial cells of blood vessels at post-pubertal mice, while Gα was located in apoptotic spermatogonia of postnatal mice. These novel expression patterns suggest a role of T1R3 and Gα in the onset of spermatogenesis, pace of spermatogenic cycle, and aging of the testis.
Collapse
|
38
|
Jansen V, Alvarez L, Balbach M, Strünker T, Hegemann P, Kaupp UB, Wachten D. Controlling fertilization and cAMP signaling in sperm by optogenetics. eLife 2015; 4. [PMID: 25601414 PMCID: PMC4298566 DOI: 10.7554/elife.05161] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization. DOI:http://dx.doi.org/10.7554/eLife.05161.001 Tiny hair-like structures called cilia on the outside of cells play many important roles, including detecting physical and chemical signals from the environment. Special cilia—called flagella—help cells to move around and perhaps the most well-known of these are sperm flagella, which propel sperm in their quest to fertilize the egg. A chemical messenger called cAMP is essential for the movement of sperm flagella. When a sperm cell enters the female reproductive tract, an enzyme called SACY is activated. Within seconds, SACY produces cAMP and, thereby, causes the flagella to beat faster so that the sperm cell speeds toward the egg. cAMP also controls sperm maturation, which is needed to penetrate the egg. However, the precise details of the role of cAMP in sperm cells are not clear. Here, Jansen et al. have investigated this role using a cutting-edge technique—called optogenetics—that was originally developed to study brain cells in living organisms. Jansen et al. genetically engineered a mouse so that exposing sperm to blue light activates a light-sensitive enzyme called bPAC that increases cAMP levels in sperm. In these mice, the activation of bPAC by light accelerated the beating of the flagella so the sperm moved faster, in a way that was similar to the effects that are normally observed after the activation of the SACY enzyme. In mice lacking among other things the SACY enzyme—whose sperm cells are unable to move or fertilize an egg—activating the light-sensitive bPAC enzyme restored sperm motility and enabled the sperm to fertilize an egg. These results show that optogenetics may be a useful tool for studying how flagella and other types of cilia work. DOI:http://dx.doi.org/10.7554/eLife.05161.002
Collapse
Affiliation(s)
- Vera Jansen
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Melanie Balbach
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Timo Strünker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Dagmar Wachten
- Minerva Research Group Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
39
|
Buffone MG, Wertheimer EV, Visconti PE, Krapf D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2610-20. [PMID: 25066614 DOI: 10.1016/j.bbadis.2014.07.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cyclases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Mariano G Buffone
- Instituto de Biología y Medicina Experimental, National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Eva V Wertheimer
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, MA 01003, USA.
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET), UNR, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| |
Collapse
|
40
|
Abstract
3'-5'-cyclic adenosine monophosphate (cAMP) is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs). Initially, it was thought that protein kinase A (PKA) exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC) and hyperpolarizing cyclic nucleotide-gated (HCN) channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc) genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins.
Collapse
|
41
|
Schiffer C, Müller A, Egeberg DL, Alvarez L, Brenker C, Rehfeld A, Frederiksen H, Wäschle B, Kaupp UB, Balbach M, Wachten D, Skakkebaek NE, Almstrup K, Strünker T. Direct action of endocrine disrupting chemicals on human sperm. EMBO Rep 2014; 15:758-65. [PMID: 24820036 DOI: 10.15252/embr.201438869] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synthetic endocrine disrupting chemicals (EDCs), omnipresent in food, household, and personal care products, have been implicated in adverse trends in human reproduction, including infertility and increasing demand for assisted reproduction. Here, we study the action of 96 ubiquitous EDCs on human sperm. We show that structurally diverse EDCs activate the sperm-specific CatSper channel and, thereby, evoke an intracellular Ca(2+) increase, a motility response, and acrosomal exocytosis. Moreover, EDCs desensitize sperm for physiological CatSper ligands and cooperate in low-dose mixtures to elevate Ca(2+) levels in sperm. We conclude that EDCs interfere with various sperm functions and, thereby, might impair human fertilization.
Collapse
Affiliation(s)
- Christian Schiffer
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Astrid Müller
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Dorte L Egeberg
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Luis Alvarez
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Christoph Brenker
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Anders Rehfeld
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Benjamin Wäschle
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Melanie Balbach
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Dagmar Wachten
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| | - Niels E Skakkebaek
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Timo Strünker
- Center of Advanced European Studies and Research, Abteilung Molekulare Neurosensorik, Bonn, Germany
| |
Collapse
|