1
|
Xiao X, Kong L, Xie Z, Liu H, Cai L, Zhao S, Zhou J, Liu S, Wu J, Wu Y, Wu P, James AA, Chen XG. miR-2940-1 is involved in the circadian regulation of oviposition in Aedes albopictus. INSECT SCIENCE 2025; 32:69-79. [PMID: 38556782 PMCID: PMC11439969 DOI: 10.1111/1744-7917.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peilin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine CA 92697-4025, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine CA 92697-3900, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Patop IL, Anduaga AM, Bussi IL, Ceriani MF, Kadener S. Organismal landscape of clock cells and circadian gene expression in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542009. [PMID: 37292867 PMCID: PMC10245886 DOI: 10.1101/2023.05.23.542009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.
Collapse
Affiliation(s)
- Ines L. Patop
- Biology Department, Brandeis University, Waltham, MA, 02454, USA
| | | | - Ivana L. Bussi
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | - M. Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
3
|
The circadian clock gates Drosophila adult emergence by controlling the timecourse of metamorphosis. Proc Natl Acad Sci U S A 2021; 118:2023249118. [PMID: 34183412 PMCID: PMC8271606 DOI: 10.1073/pnas.2023249118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In holometabolous insects, the circadian clock restricts the time of adult emergence. Although this daily gating of behavior is one of the first circadian rhythms to be studied, little is known about the mechanism underlying the gating process itself. Here, we show that the circadian clock imposes a daily rhythmicity to the pattern of adult emergence by controlling the timing of the completion of metamorphosis. Thus, our findings reveal that the basis of gating is a developmental process and not an acute on/off activational switch and fundamentally changes our understanding of how this circadian control is accomplished. It also provides evidence of a mechanism by which the circadian clock imposes a daily rhythmicity to behavior through the control of the pace of development. The daily rhythm of adult emergence of holometabolous insects is one of the first circadian rhythms to be studied. In these insects, the circadian clock imposes a daily pattern of emergence by allowing or stimulating eclosion during certain windows of time and inhibiting emergence during others, a process that has been described as “gating.” Although the circadian rhythm of insect emergence provided many of the key concepts of chronobiology, little progress has been made in understanding the bases of the gating process itself, although the term “gating” suggests that it is separate from the developmental process of metamorphosis. Here, we follow the progression through the final stages of Drosophila adult development with single-animal resolution and show that the circadian clock imposes a daily rhythmicity to the pattern of emergence by controlling when the insect initiates the final steps of metamorphosis itself. Circadian rhythmicity of emergence depends on the coupling between the central clock located in the brain and a peripheral clock located in the prothoracic gland (PG), an endocrine gland whose only known function is the production of the molting hormone, ecdysone. Here, we show that the clock exerts its action by regulating not the levels of ecdysone but that of its actions mediated by the ecdysone receptor. Our findings may also provide insights for understanding the mechanisms by which the daily rhythms of glucocorticoids are produced in mammals, which result from the coupling between the central clock in the suprachiasmatic nucleus and a peripheral clock located in the suprarenal gland.
Collapse
|
4
|
Martin Anduaga A, Evantal N, Patop IL, Bartok O, Weiss R, Kadener S. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. eLife 2019; 8:44642. [PMID: 31702556 PMCID: PMC6890466 DOI: 10.7554/elife.44642] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms are generated by the cyclic transcription, translation, and degradation of clock gene products, including timeless (tim), but how the circadian clock senses and adapts to temperature changes is not completely understood. Here, we show that temperature dramatically changes the splicing pattern of tim in Drosophila. We found that at 18°C, TIM levels are low because of the induction of two cold-specific isoforms: tim-cold and tim-short and cold. At 29°C, another isoform, tim-medium, is upregulated. Isoform switching regulates the levels and activity of TIM as each isoform has a specific function. We found that tim-short and cold encodes a protein that rescues the behavioral defects of tim01 mutants, and that flies in which tim-short and cold is abrogated have abnormal locomotor activity. In addition, miRNA-mediated control limits the expression of some of these isoforms. Finally, data that we obtained using minigenes suggest that tim alternative splicing might act as a thermometer for the circadian clock.
Collapse
Affiliation(s)
| | - Naveh Evantal
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Osnat Bartok
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Weiss
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sebastian Kadener
- Biology Department, Brandeis University, Waltham, United States.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Zhao J, Warman GR, Cheeseman JF. The functional changes of the circadian system organization in aging. Ageing Res Rev 2019; 52:64-71. [PMID: 31048031 DOI: 10.1016/j.arr.2019.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
Abstract
The circadian clock drives periodic oscillations at different levels of an organism from genes to behavior. This timing system is highly conserved across species from insects to mammals and human beings. The question of how the circadian clock is involved in the aging process continues to attract more attention. We aim to characterize the detrimental impact of aging on the circadian clock organization. We review studies on different components of the circadian clock at the central and periperal levels, and their changes in aged rodents and humans, and the fruit fly Drosophila. Intracellular signaling, cellular activity and intercellular coupling in the central pacemaker have been found to decline with advancing age. Evidence of degradation of the molecular clockwork reflected by clock gene expression in both central and peripheral oscillators due to aging is inadequate. The findings on age-associated molecular and functional changes of peripheral clocks are mixed. We conclude that aging can affect the circadian clock organization at various levels, and the impairment of the central network may be a fundamental mechanism of circadian disruption seen in aged species.
Collapse
|
6
|
Boomgarden AC, Sagewalker GD, Shah AC, Haider SD, Patel P, Wheeler HE, Dubowy CM, Cavanaugh DJ. Chronic circadian misalignment results in reduced longevity and large-scale changes in gene expression in Drosophila. BMC Genomics 2019; 20:14. [PMID: 30616504 PMCID: PMC6323780 DOI: 10.1186/s12864-018-5401-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian clocks are found in nearly all organisms, from bacteria to mammals, and ensure that behavioral and physiological processes occur at optimal times of day and in the correct temporal order. It is becoming increasingly clear that chronic circadian misalignment (CCM), such as occurs in shift workers or as a result of aberrant sleeping and eating schedules common to modern society, has profound metabolic and cognitive consequences, but the proximate mechanisms connecting CCM with reduced organismal health are unknown. Furthermore, it has been difficult to disentangle whether the health effects are directly induced by misalignment or are secondary to the alterations in sleep and activity levels that commonly occur with CCM. Here, we investigated the consequences of CCM in the powerful model system of the fruit fly, Drosophila melanogaster. We subjected flies to daily 4-h phase delays in the light-dark schedule and used the Drosophila Activity Monitoring (DAM) system to continuously track locomotor activity and sleep while simultaneously monitoring fly lifespan. RESULTS Consistent with previous results, we find that exposing flies to CCM leads to a ~ 15% reduction in median lifespan in both male and female flies. Importantly, we demonstrate that the reduced longevity occurs independent of changes in overall sleep or activity. To uncover potential molecular mechanisms of CCM-induced reduction in lifespan, we conducted whole body RNA-sequencing to assess differences in gene transcription between control and misaligned flies. CCM caused progressive, large-scale changes in gene expression characterized by upregulation of genes involved in response to toxic substances, aging and oxidative stress, and downregulation of genes involved in regulation of development and differentiation, gene expression and biosynthesis. CONCLUSIONS Many of these gene expression changes mimic those that occur during natural aging, consistent with the idea that CCM results in premature organismal decline, however, we found that genes involved in lipid metabolism are overrepresented among those that are differentially regulated by CCM and aging. This category of genes is also among the earliest to exhibit CCM-induced changes in expression, thus highlighting altered lipid metabolism as a potentially important mediator of the negative health consequences of CCM.
Collapse
Affiliation(s)
- Alex C Boomgarden
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Gabriel D Sagewalker
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Aashaka C Shah
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Sarah D Haider
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Pramathini Patel
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Heather E Wheeler
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA.,Department of Computer Science, Loyola University, Chicago, 60660, USA
| | - Christine M Dubowy
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel J Cavanaugh
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA.
| |
Collapse
|
7
|
Górska-Andrzejak J, Chwastek EM, Walkowicz L, Witek K. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling. Front Physiol 2018; 9:230. [PMID: 29615925 PMCID: PMC5868474 DOI: 10.3389/fphys.2018.00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/01/2018] [Indexed: 02/05/2023] Open
Abstract
We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf0 mutants. The Pdf0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.
Collapse
Affiliation(s)
- Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elżbieta M Chwastek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Kacper Witek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Mezan S, Feuz JD, Deplancke B, Kadener S. PDF Signaling Is an Integral Part of the Drosophila Circadian Molecular Oscillator. Cell Rep 2017; 17:708-719. [PMID: 27732848 PMCID: PMC5081397 DOI: 10.1016/j.celrep.2016.09.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks generate 24-hr rhythms in physiology and behavior. Despite numerous studies, it is still uncertain how circadian rhythms emerge from their molecular and neural constituents. Here, we demonstrate a tight connection between the molecular and neuronal circadian networks. Using fluorescent transcriptional reporters in a Drosophila ex vivo brain culture system, we identified a reciprocal negative regulation between the master circadian regulator CLK and expression of pdf, the main circadian neuropeptide. We show that PDF feedback is required for maintaining normal oscillation pattern in CLK-driven transcription. Interestingly, we found that CLK and neuronal firing suppresses pdf transcription, likely through a common pathway involving the transcription factors DHR38 and SR, establishing a direct link between electric activity and the circadian system. In sum, our work provides evidence for the existence of an uncharacterized CLK-PDF feedback loop that tightly wraps together the molecular oscillator with the circadian neuronal network in Drosophila. Monitoring circadian transcription ex vivo using fluorescent reporters CLK activation in the LNvs provokes downregulation in CLK activity in LNds and DNs Reciprocal negative regulation of CLK activity and pdf transcription and signaling PDF signaling is required for the normal oscillation pattern in CLK activity
Collapse
Affiliation(s)
- Shaul Mezan
- Biological Chemistry Department, Silberman Institute of Life Sciences, the Hebrew University, Jerusalem 91904, Israel
| | - Jean Daniel Feuz
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, the Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
9
|
Gunawardhana KL, Hardin PE. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila. Curr Biol 2017; 27:3442-3453.e4. [PMID: 29103936 DOI: 10.1016/j.cub.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLNv) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms.
Collapse
Affiliation(s)
- Kushan L Gunawardhana
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Abstract
The Drosophila circadian clock keeps time via transcriptional feedback loops. These feedback loops are initiated by CLOCK-CYCLE (CLK-CYC) heterodimers, which activate transcription of genes encoding the feedback repressors PERIOD and TIMELESS. Circadian clocks normally operate in ∼150 brain pacemaker neurons and in many peripheral tissues in the head and body, but can also be induced by expressing CLK in nonclock cells. These ectopic clocks also require cyc, yet CYC expression is restricted to canonical clock cells despite evidence that cyc mRNA is widely expressed. Here we show that CLK binds to and stabilizes CYC in cell culture and in nonclock cells in vivo. Ectopic clocks also require the blue light photoreceptor CRYPTOCHROME (CRY), which is required for both light entrainment and clock function in peripheral tissues. These experiments define the genetic architecture required to initiate circadian clock function in Drosophila, reveal mechanisms governing circadian activator stability that are conserved in perhaps all eukaryotes, and suggest that Clk, cyc, and cry expression is sufficient to drive clock expression in naive cells.
Collapse
|
11
|
Selcho M, Millán C, Palacios-Muñoz A, Ruf F, Ubillo L, Chen J, Bergmann G, Ito C, Silva V, Wegener C, Ewer J. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun 2017; 8:15563. [PMID: 28555616 PMCID: PMC5459987 DOI: 10.1038/ncomms15563] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.
Collapse
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carola Millán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Franziska Ruf
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lilian Ubillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Jiangtian Chen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gregor Bergmann
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Chihiro Ito
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valeria Silva
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| |
Collapse
|
12
|
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S. Translation of CircRNAs. Mol Cell 2017; 66:9-21.e7. [PMID: 28344080 PMCID: PMC5387669 DOI: 10.1016/j.molcel.2017.02.021] [Citation(s) in RCA: 1339] [Impact Index Per Article: 167.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/04/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.
Collapse
Affiliation(s)
- Nagarjuna Reddy Pamudurti
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Marvin Jens
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Reut Ashwal-Fluss
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Christin Stottmeister
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Larissa Ruhe
- Non Coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Mor Hanan
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Emanuel Wyler
- RNA Biology and Posttranscriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Daniel Perez-Hernandez
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Evelyn Ramberger
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Shlomo Shenzis
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Moshe Samson
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Markus Landthaler
- RNA Biology and Posttranscriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Marina Chekulaeva
- Non Coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
13
|
Xiao B, Chen TM, Zhong Y. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish. Biochem Biophys Res Commun 2016; 481:201-205. [DOI: 10.1016/j.bbrc.2016.10.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/22/2016] [Indexed: 12/16/2022]
|
14
|
Lerner I, Bartok O, Wolfson V, Menet JS, Weissbein U, Afik S, Haimovich D, Gafni C, Friedman N, Rosbash M, Kadener S. Clk post-transcriptional control denoises circadian transcription both temporally and spatially. Nat Commun 2015; 6:7056. [PMID: 25952406 DOI: 10.1038/ncomms8056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/26/2015] [Indexed: 02/08/2023] Open
Abstract
The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.
Collapse
Affiliation(s)
- Immanuel Lerner
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Victoria Wolfson
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Jerome S Menet
- Howard Hughes Medical Institute, Biology Department, Brandeis University, 415 South Street, Waltham, Massachusetts 02451, USA
| | - Uri Weissbein
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Shaked Afik
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Haimovich
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.,School of Computer Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Chen Gafni
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Nir Friedman
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.,School of Computer Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Michael Rosbash
- Howard Hughes Medical Institute, Biology Department, Brandeis University, 415 South Street, Waltham, Massachusetts 02451, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Bartok O, Teesalu M, Ashwall-Fluss R, Pandey V, Hanan M, Rovenko BM, Poukkula M, Havula E, Moussaieff A, Vodala S, Nahmias Y, Kadener S, Hietakangas V. The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing. EMBO J 2015; 34:1538-53. [PMID: 25916830 DOI: 10.15252/embj.201591385] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 12/16/2022] Open
Abstract
Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns.
Collapse
Affiliation(s)
- Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mari Teesalu
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Reut Ashwall-Fluss
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Varun Pandey
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanan
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bohdana M Rovenko
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna Poukkula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Essi Havula
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Arieh Moussaieff
- Department of Cell Biology, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sadanand Vodala
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Yaakov Nahmias
- Department of Cell Biology, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ville Hietakangas
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|