1
|
Day KP, Tan MH, He Q, Ruybal-Pesántez S, Zhan Q, Tiedje KE, Pascual M. Var genes, strain hyperdiversity, and malaria transmission dynamics. Trends Parasitol 2025:S1471-4922(25)00104-7. [PMID: 40393890 DOI: 10.1016/j.pt.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
The microbiological paradigm for surveillance of diverse pathogens requires knowledge of the variation of the major surface antigen under the most intense immune selection as immune responses to these antigens drive transmission dynamics. This creates a pathway for population genetics/genomics to be combined with mathematical modelling to describe transmission dynamics to inform public health policy. Here we consider how we can bring population genetics and population dynamics together for a highly recombining pathogen like Plasmodium falciparum. We do this through the lens of what has been recently learnt about the population genetics of the var multigene family encoding the major surface antigen of the blood stages of Plasmodium falciparum, known as PfEMP1.
Collapse
Affiliation(s)
- Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia.
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Mercedes Pascual
- Department of Biology and Department of Environmental Studies, New York University, New York, NY, USA
| |
Collapse
|
2
|
Gyamfi E, Baum J. Malaria parasite phenotypic heterogeneity and the power of single-cell technologies. Trends Parasitol 2025:S1471-4922(25)00100-X. [PMID: 40340169 DOI: 10.1016/j.pt.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025]
Abstract
The two-host life cycle of the malaria parasite, combined with its ability to regulate gene expression and protein translation within a single clonal genotype, results in a remarkable potential for phenotypic heterogeneity. This heterogeneity presents underappreciated challenges to antimalarial interventions such as vaccines, drugs, and diagnostic tools, with parasites able to evolve resistance rapidly. Here we summarise current knowledge of the different mechanisms driving parasite phenotypic heterogeneity both at the gene and protein level. Centred on the most virulent human malaria parasite, Plasmodium falciparum, we explore the consequences of this diversity for antimalarial interventions and how single-cell technologies present an opportunity to study inter- and intra-clonal heterogeneity to better design future-proofed intervention strategies against this ancient disease.
Collapse
Affiliation(s)
- Emmanuel Gyamfi
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jake Baum
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
3
|
Hadjimichael E, Deitsch KW. Variable surface antigen expression, virulence, and persistent infection by Plasmodium falciparum malaria parasites. Microbiol Mol Biol Rev 2025; 89:e0011423. [PMID: 39807932 PMCID: PMC11948492 DOI: 10.1128/mmbr.00114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYThe human malaria parasite Plasmodium falciparum is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen. The parasite's genome encodes approximately 60 antigenically distinct forms of PfEMP1, each encoded by individual members of the multicopy var gene family. This provides the parasite with a repertoire of antigenic types that it systematically cycles through over the course of an infection, thereby maintaining an infection until the repertoire is exhausted. While this model of antigenic variation based on var gene switching explains the dynamics of acute infections in individuals with limited anti-malarial immunity, it fails to explain reports of chronic, asymptomatic infections that can last over a decade. Recent field studies have led to a re-evaluation of previous conclusions regarding the prevalence of chronic infections, and the application of new technologies has provided insights into the molecular mechanisms that enable chronic infections and how these processes evolved.
Collapse
Affiliation(s)
- Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Zhan Q, Tiedje K, Day KP, Pascual M. From multiplicity of infection to force of infection for sparsely sampled Plasmodium falciparum populations at high transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.02.12.24302148. [PMID: 38853963 PMCID: PMC11160831 DOI: 10.1101/2024.02.12.24302148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
High multiplicity of infection or MOI, the number of genetically distinct parasite strains co-infecting a single human host, characterizes infectious diseases including falciparum malaria at high transmission. This high MOI accompanies high asymptomatic Plasmodium falciparum prevalence despite high exposure, creating a large transmission reservoir challenging intervention. High MOI and asymptomatic prevalence are enabled by immune evasion of the parasite achieved via vast antigenic diversity. Force of infection or FOI, the number of new infections acquired by an individual host over a given time interval, is the dynamic sister quantity of MOI, and a key epidemiological parameter for monitoring antimalarial interventions and assessing vaccine or drug efficacy in clinical trials. FOI remains difficult, expensive, and labor-intensive to accurately measure, especially in high-transmission regions, whether directly via cohort studies or indirectly via the fitting of epidemiological models to repeated cross-sectional surveys. We propose here the application of queuing theory to obtain FOI from MOI, in the form of either a two-moment approximation method or Little's Law. We illustrate these two methods with MOI estimates obtained under sparse sampling schemes with the " var coding" approach. The two methods use infection duration data from naive malaria therapy patients with neurosyphilis. Consequently, they are suitable for FOI inference in subpopulations with a similar immune profile and the highest vulnerability, for example, infants or toddlers. Both methods are evaluated with simulation output from a stochastic agent-based model, and are applied to an interrupted time-series study from Bongo District in northern Ghana before and immediately after a three-round transient indoor residual spraying (IRS) intervention. The sampling of the simulation output incorporates limitations representative of those encountered in the collection of field data, including under-sampling of var genes, missing data, and antimalarial drug treatment. We address these limitations in MOI estimates with a Bayesian framework and an imputation bootstrap approach. Both methods yield good and replicable FOI estimates across various simulated scenarios. Applying these methods to the subpopulation of children aged 1-5 years in Ghana field surveys shows over a 70% reduction in annual FOI immediately post-intervention. The proposed methods should be applicable to geographical locations lacking cohort or cross-sectional studies with regular and frequent sampling but having single-time-point surveys under sparse sampling schemes, and for MOI estimates obtained in different ways. They should also be relevant to other pathogens whose immune evasion strategies are based on large antigenic variation resulting in high MOI.
Collapse
|
5
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. PLoS Pathog 2025; 21:e1012813. [PMID: 39903780 PMCID: PMC11793742 DOI: 10.1371/journal.ppat.1012813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025] Open
Abstract
The var multigene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), central to host-parasite interactions. Genome structure studies have identified three major groups of var genes by specific upstream sequences (upsA, B, or C). Var with these ups groups have different chromosomal locations, transcriptional directions, and associations with disease severity. Here we explore temporal and spatial diversity of a region of var genes encoding the DBLα domain of PfEMP1 in Africa. By applying a novel ups classification algorithm (cUps) to publicly-available DBLα sequence datasets, we categorised DBLα according to association with the three ups groups, thereby avoiding the need to sequence complete genes. Data from deep sequencing of DBLα types in a local population in northern Ghana surveyed seven times from 2012 to 2017 found variants with rare-to-moderate-to-extreme frequencies, and the common variants were temporally stable in this local endemic area. Furthermore, we observed that every isolate repertoire, whether mono- or multiclonal, comprised DBLα types occurring with these frequency ranges implying a common genome structure. When comparing African countries of Ghana, Gabon, Malawi, and Uganda, we report that some DBLα types were consistently found at high frequencies in multiple African countries while others were common only at the country level. The implication of these local and pan-Africa population patterns is discussed in terms of advantage to the parasite with regards to within-host adaptation and resilience to malaria control.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Biology, New York University, New York, New York, United States of America
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Pestana K, Ford A, Rama R, Abagero B, Kepple D, Tomida J, Popovici J, Yewhalaw D, Lo E. Copy Number Variations of Plasmodium vivax DBP1, EBP/DBP2, and RBP2b in Ethiopians Who Are Duffy Positive and Duffy Negative. J Infect Dis 2024; 230:1004-1012. [PMID: 39102894 PMCID: PMC11481331 DOI: 10.1093/infdis/jiae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Recent evidence challenges the belief that individuals who are Duffy-negative are resistant to Plasmodium vivax due to lacking the Duffy antigen receptor for chemokines. Erythrocyte-binding protein (EBP/DBP2) has shown moderate binding to Duffy-negative erythrocytes in vitro. Reticulocyte-binding protein 2b (RBP2b) interactions with transferrin receptor 1 suggest involvement in Duffy-negative infections. Gene copy number variations in PvDBP1, PvEBP/DBP2, and PvRBP2b were investigated in Duffy-positive and Duffy-negative P vivax infections from Ethiopia. Among Duffy-positive samples, 34% displayed PvDBP1 duplications (Cambodian type). In Duffy-negative infections, 30% showed duplications, mostly Cambodian type. For PvEBP/DBP2 and PvRBP2b, Duffy-positive samples exhibited higher duplication rates (1-8 copies for PvEBP/DBP2, 46%; 1-5 copies for PvRBP2b, 43%) as compared with Duffy-negative samples (20.8% and 26%, respectively). The range of copy number variations was lower in Duffy-negative infections. Demographic and clinical factors associated with gene multiplications in both Duffy types were explored, enhancing understanding of P vivax evolution in Africans who are Duffy negative.
Collapse
Affiliation(s)
- Kareen Pestana
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Rei Rama
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Beka Abagero
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Daniel Kepple
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Junya Tomida
- Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Jean Popovici
- Malaria Molecular Epidemiology Unit, Malaria Translational Research Unit, Institut Pasteur du Cambodge, Institut Pasteur, Phnom Penh, Cambodia
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Paris, France
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Hathaway NJ, Kim IE, WernsmanYoung N, Hui ST, Crudale R, Liang EY, Nixon CP, Giesbrecht D, Juliano JJ, Parr JB, Bailey JA. Interchromosomal segmental duplication drives translocation and loss of P. falciparum histidine-rich protein 3. eLife 2024; 13:RP93534. [PMID: 39373634 PMCID: PMC11458181 DOI: 10.7554/elife.93534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13-11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.
Collapse
Affiliation(s)
- Nicholas J Hathaway
- Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Isaac E Kim
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Neeva WernsmanYoung
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown UniversityProvidenceUnited States
| | - Sin Ting Hui
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Emily Y Liang
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Christian P Nixon
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - David Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North CarolinaChapel HillUnited States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North CarolinaChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North CarolinaChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| |
Collapse
|
8
|
Smith JE, Wang KJ, Kennedy EM, Hakim JM, So J, Beaver AK, Magesh A, Gilligan-Steinberg SD, Zheng J, Zhang B, Moorthy DN, Akin EH, Mwakibete L, Mugnier MR. DNA damage drives antigen diversification through mosaic Variant Surface Glycoprotein (VSG) formation in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.582209. [PMID: 39253459 PMCID: PMC11383311 DOI: 10.1101/2024.03.22.582209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Antigenic variation, using large genomic repertoires of antigen-encoding genes, allows pathogens to evade host antibody. Many pathogens, including the African trypanosome Trypanosoma brucei, extend their antigenic repertoire through genomic diversification. While evidence suggests that T. brucei depends on the generation of new variant surface glycoprotein (VSG) genes to maintain a chronic infection, a lack of experimentally tractable tools for studying this process has obscured its underlying mechanisms. Here, we present a highly sensitive targeted sequencing approach for measuring VSG diversification. Using this method, we demonstrate that a Cas9-induced DNA double-strand break within the VSG coding sequence can induce VSG recombination with patterns identical to those observed during infection. These newly generated VSGs are antigenically distinct from parental clones and thus capable of facilitating immune evasion. Together, these results provide insight into the mechanisms of VSG diversification and an experimental framework for studying the evolution of antigen repertoires in pathogenic microbes.
Collapse
Affiliation(s)
- Jaclyn E. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kevin J. Wang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Erin M. Kennedy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jill M.C. Hakim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jaime So
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alexander K. Beaver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Aishwarya Magesh
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Shane D. Gilligan-Steinberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Current Affiliation: Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Jessica Zheng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bailin Zhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Current Affiliation: Scripps Research Department of Integrative Structural and Computational Biology, La Jolla, San Diego, California, United States of America
| | - Dharani Narayan Moorthy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Elgin Henry Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lusajo Mwakibete
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Monica R. Mugnier
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Lead contact
| |
Collapse
|
9
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. Nat Commun 2024; 15:7343. [PMID: 39187488 PMCID: PMC11347654 DOI: 10.1038/s41467-024-51468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Intervention efforts against falciparum malaria in high-transmission regions remain challenging, with rapid resurgence typically following their relaxation. Such resilience co-occurs with incomplete immunity and a large transmission reservoir from high asymptomatic prevalence. Incomplete immunity relates to the large antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene and recombinant family known as var. With a stochastic agent-based model, we investigate the existence of a sharp transition in resurgence ability with intervention intensity and identify molecular indicators informative of its proximity. Their application to survey data with deep sampling of var sequences from individual isolates in northern Ghana suggests that the transmission system was brought close to transition by intervention with indoor residual spraying. These results indicate that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, 10003, USA.
- Department of Environmental Studies, New York University, New York, NY, 10003, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
10
|
Tiedje KE, Zhan Q, Ruybal-Pesantez S, Tonkin-Hill G, He Q, Tan MH, Argyropoulos DC, Deed SL, Ghansah A, Bangre O, Oduro AR, Koram KA, Pascual M, Day KP. Measuring changes in Plasmodium falciparum census population size in response to sequential malaria control interventions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.18.23290210. [PMID: 37292908 PMCID: PMC10246142 DOI: 10.1101/2023.05.18.23290210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we introduce a new endpoint ″census population size″ to evaluate the epidemiology and control of Plasmodium falciparum infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOI var ), based on the hyper-diversity of the var multigene family. We present a Bayesian approach to estimate MOI var from sequencing and counting the number of unique DBLα tags (or DBLα types) of var genes, and derive from it census population size by summation of MOI var in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in var diversity, MOI var , and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, var diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the var population genetic characteristics of a high-transmission system (high var diversity; low var repertoire similarity) demonstrating the resilience of P. falciparum to short-term interventions in high-burden countries of sub-Saharan Africa.
Collapse
|
11
|
Chaudhry S, Kojom Foko LP, Narang G, Hawadak J, Arya A, Pande V, Singh V. Genotyping var Gene DBL1α Domain of Severe and Non-severe Plasmodium falciparum Patients. Indian J Microbiol 2024; 64:583-592. [PMID: 39011004 PMCID: PMC11246362 DOI: 10.1007/s12088-024-01200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 07/17/2024] Open
Abstract
This study analysed the genetic diversity of DBL1α domain of Plasmodium falciparum var gene in severe and non-severe malaria patients from Delhi and Mewat in Northern India. After confirming P. falciparum infection, samples were cloned and the var gene DBL1α domain was sequenced. Out of 377 cloned DBL sequences, 194 were from severe samples and 183 from non-severe samples. Proportion of DBL1α sequences belonging to groups 1, 4 and 5 were significantly higher in severe isolates as compared to non-severe isolates-group 1 (4.1% vs 1.09%, P = 0.0333), group 4 (69.58% vs 74.31%, P < 0.0001), and group 5 (19.58% vs 10.38%, P < 0.0001). Conversely, higher proportion of group 2 was observed in non-severe isolates (0% vs 3.82%, P = 0.0350). Highest diversity was seen in PoLV4 motif of severe and non-severe isolates and like other DBL1α sequences reported from several geographical areas (Africa, Americas, Asia, and Oceania). A total of 247 DBL1α domain haplotypes were found in this study where 139 (56.27%) haplotypes are novel and not reported from India till date. These findings could aid in developing effective malaria interventions, including vaccine and drug targets, by understanding the existing antigenic diversity and vulnerabilities in the parasite's genetic makeup. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01200-1.
Collapse
Affiliation(s)
- Shewta Chaudhry
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Loick Pradel Kojom Foko
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Geetika Narang
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Joseph Hawadak
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Aditi Arya
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
12
|
Kwiatkowski D. Modelling transmission dynamics and genomic diversity in a recombining parasite population. Wellcome Open Res 2024; 9:215. [PMID: 39554245 PMCID: PMC11569386 DOI: 10.12688/wellcomeopenres.19092.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 11/19/2024] Open
Abstract
The genomic diversity of a parasite population is shaped by its transmission dynamics but superinfection, cotranmission and recombination make this relationship complex and hard to analyse. This paper aims to simplify the problem by introducing the concept of a genomic transmission graph with three basic parameters: the effective number of hosts, the quantum of transmission and the crossing rate of transmission chains. This enables rapid simulation of coalescence times in a recombining parasite population with superinfection and cotransmission, and it also provides a mathematical framework for analysis of within-host variation. Taking malaria as an example, we use this theoretical model to examine how transmission dynamics and migration affect parasite genomic diversity, including the effective recombination rate and haplotypic metrics of recent common ancestry. We show how key transmission parameters can be inferred from deep sequencing data and as a proof of concept we estimate the Plasmodium falciparum transmission bottleneck. Finally we discuss the potential applications of this novel inferential framework in genomic surveillance for malaria control and elimination. Online tools for exploring the genomic transmission graph are available at d-kwiat.github.io/gtg.
Collapse
|
13
|
Gozashti L, Hartl DL, Corbett-Detig R. Universal signatures of transposable element compartmentalization across eukaryotic genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562820. [PMID: 38585780 PMCID: PMC10996525 DOI: 10.1101/2023.10.17.562820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The evolutionary mechanisms that drive the emergence of genome architecture remain poorly understood but can now be assessed with unprecedented power due to the massive accumulation of genome assemblies spanning phylogenetic diversity1,2. Transposable elements (TEs) are a rich source of large-effect mutations since they directly and indirectly drive genomic structural variation and changes in gene expression3. Here, we demonstrate universal patterns of TE compartmentalization across eukaryotic genomes spanning ~1.7 billion years of evolution, in which TEs colocalize with gene families under strong predicted selective pressure for dynamic evolution and involved in specific functions. For non-pathogenic species these genes represent families involved in defense, sensory perception and environmental interaction, whereas for pathogenic species, TE-compartmentalized genes are highly enriched for pathogenic functions. Many TE-compartmentalized gene families display signatures of positive selection at the molecular level. Furthermore, TE-compartmentalized genes exhibit an excess of high-frequency alleles for polymorphic TE insertions in fruit fly populations. We postulate that these patterns reflect selection for adaptive TE insertions as well as TE-associated structural variants. This process may drive the emergence of a shared TE-compartmentalized genome architecture across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
14
|
Letcher B, Maciuca S, Iqbal Z. Role for gene conversion in the evolution of cell-surface antigens of the malaria parasite Plasmodium falciparum. PLoS Biol 2024; 22:e3002507. [PMID: 38451924 PMCID: PMC10919680 DOI: 10.1371/journal.pbio.3002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
While the malaria parasite Plasmodium falciparum has low average genome-wide diversity levels, likely due to its recent introduction from a gorilla-infecting ancestor (approximately 10,000 to 50,000 years ago), some genes display extremely high diversity levels. In particular, certain proteins expressed on the surface of human red blood cell-infecting merozoites (merozoite surface proteins (MSPs)) possess exactly 2 deeply diverged lineages that have seemingly not recombined. While of considerable interest, the evolutionary origin of this phenomenon remains unknown. In this study, we analysed the genetic diversity of 2 of the most variable MSPs, DBLMSP and DBLMSP2, which are paralogs (descended from an ancestral duplication). Despite thousands of available Illumina WGS datasets from malaria-endemic countries, diversity in these genes has been hard to characterise as reads containing highly diverged alleles completely fail to align to the reference genome. To solve this, we developed a pipeline leveraging genome graphs, enabling us to genotype them at high accuracy and completeness. Using our newly- resolved sequences, we found that both genes exhibit 2 deeply diverged lineages in a specific protein domain (DBL) and that one of the 2 lineages is shared across the genes. We identified clear evidence of nonallelic gene conversion between the 2 genes as the likely mechanism behind sharing, leading us to propose that gene conversion between diverged paralogs, and not recombination suppression, can generate this surprising genealogy; a model that is furthermore consistent with high diversity levels in these 2 genes despite the strong historical P. falciparum transmission bottleneck.
Collapse
Affiliation(s)
- Brice Letcher
- EMBL-EBI, Hinxton, United Kingdom
- Laboratory of Biology and Modelling of the Cell, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | |
Collapse
|
15
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24301818. [PMID: 38370729 PMCID: PMC10871444 DOI: 10.1101/2024.02.01.24301818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intervention against falciparum malaria in high transmission regions remains challenging, with relaxation of control efforts typically followed by rapid resurgence. Resilience to intervention co-occurs with incomplete immunity, whereby children eventually become protected from severe disease but not infection and a large transmission reservoir results from high asymptomatic prevalence across all ages. Incomplete immunity relates to the vast antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene family known as var. Recent deep sampling of var sequences from individual isolates in northern Ghana showed that parasite population structure exhibited persistent features of high-transmission regions despite the considerable decrease in prevalence during transient intervention with indoor residual spraying (IRS). We ask whether despite such apparent limited impact, the transmission system had been brought close to a transition in both prevalence and resurgence ability. With a stochastic agent-based model, we investigate the existence of such a transition to pre-elimination with intervention intensity, and of molecular indicators informative of its approach. We show that resurgence ability decreases sharply and nonlinearly across a narrow region of intervention intensities in model simulations, and identify informative molecular indicators based on var gene sequences. Their application to the survey data indicates that the transmission system in northern Ghana was brought close to transition by IRS. These results suggest that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago; Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University; West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University; New York, NY, 10012, USA
- Department of Environmental Studies, New York University; New York, NY, 10012, USA
- Santa Fe Institute; Santa Fe, NM, 87501, USA
| |
Collapse
|
16
|
Schäfer TM, Pessanha de Carvalho L, Inoue J, Kreidenweiss A, Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin Drug Discov 2024; 19:209-224. [PMID: 38108082 DOI: 10.1080/17460441.2023.2284820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.
Collapse
Affiliation(s)
| | | | - Juliana Inoue
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
17
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
18
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565723. [PMID: 37986738 PMCID: PMC10659346 DOI: 10.1101/2023.11.05.565723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-Ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| |
Collapse
|
19
|
de Roos AM, He Q, Pascual M. An immune memory-structured SIS epidemiological model for hyperdiverse pathogens. Proc Natl Acad Sci U S A 2023; 120:e2218499120. [PMID: 37910552 PMCID: PMC10636369 DOI: 10.1073/pnas.2218499120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
A hyperdiverse class of pathogens of humans and wildlife, including the malaria parasite Plasmodium falciparum, relies on multigene families to encode antigenic variation. As a result, high (asymptomatic) prevalence is observed despite high immunity in local populations under high-transmission settings. The vast diversity of "strains" and genes encoding this variation challenges the application of established models for the population dynamics of such infectious diseases. Agent-based models have been formulated to address theory on strain coexistence and structure, but their complexity can limit application to gain insights into population dynamics. Motivated by P. falciparum malaria, we develop an alternative formulation in the form of a structured susceptible-infected-susceptible population model in continuous time, where individuals are classified not only by age, as is standard, but also by the diversity of parasites they have been exposed to and retain in their specific immune memory. We analyze the population dynamics and bifurcation structure of this system of partial-differential equations, showing the existence of alternative steady states and an associated tipping point with transmission intensity. We attribute the critical transition to the positive feedback between parasite genetic diversity and force of infection. Basins of attraction show that intervention must drastically reduce diversity to prevent a rebound to high infection levels. Results emphasize the importance of explicitly considering pathogen diversity and associated specific immune memory in the population dynamics of hyperdiverse epidemiological systems. This statement is discussed in a more general context for ecological competition systems with hyperdiverse trait spaces.
Collapse
Affiliation(s)
- André M. de Roos
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam1090 GE, The Netherlands
- Santa Fe Institute, Santa Fe, NM87501
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Mercedes Pascual
- Santa Fe Institute, Santa Fe, NM87501
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL60637
| |
Collapse
|
20
|
Stadler E, Maiga M, Friedrich L, Thathy V, Demarta-Gatsi C, Dara A, Sogore F, Striepen J, Oeuvray C, Djimdé AA, Lee MCS, Dembélé L, Fidock DA, Khoury DS, Spangenberg T. Propensity of selecting mutant parasites for the antimalarial drug cabamiquine. Nat Commun 2023; 14:5205. [PMID: 37626093 PMCID: PMC10457284 DOI: 10.1038/s41467-023-40974-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.
Collapse
Affiliation(s)
- Eva Stadler
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Lukas Friedrich
- Medicinal Chemistry & Drug Design Global Research & Development, Discovery Technologies, Merck Healthcare, 64293, Darmstadt, Germany
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Claudia Demarta-Gatsi
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Antoine Dara
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Weill Cornell Medical College, New York, NY, 10021, USA
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Abdoulaye A Djimdé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA, Hinxton, UK
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, DD1 4HN, Scotland, UK
| | - Laurent Dembélé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - David S Khoury
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland.
| |
Collapse
|
21
|
Vydyam P, Roy N, Bhattacharyya MK. Uncovering the role of Rad51 in homologous recombination-mediated antigenic diversification in the human malaria parasite Plasmodium falciparum. Front Mol Biosci 2023; 10:1223682. [PMID: 37593128 PMCID: PMC10427863 DOI: 10.3389/fmolb.2023.1223682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum maintains the chronicity of infections through antigenic variation, a well-coordinated immune evasion mechanism. The most prominent molecular determinant of antigenic variation in this parasite includes the members of the var multigene family. Homologous recombination (HR)-mediated genomic rearrangements have been implicated to play a major role in var gene diversification. However, the key molecular factors involved in the generation of diversity at var loci are less known. Here, we tested the hypothesis that PfRad51 could carry out recombination between var genes that are not homologous but homeologous in nature. We employed the whole-genome sequencing (WGS) approach to investigate recombination events among var sequences over 100 generations and compared the rate of sequence rearrangement at the var loci in both PfRad51-proficient and -deficient parasite lines. This brief report provides evidence that the loss of the key recombinase function renders the parasite with inefficient HR and results in fewer recombination events among the var sequences, thereby impacting the diversification of the var gene repertoire.
Collapse
|
22
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
23
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
24
|
Kümpornsin K, Kochakarn T, Yeo T, Okombo J, Luth MR, Hoshizaki J, Rawat M, Pearson RD, Schindler KA, Mok S, Park H, Uhlemann AC, Jana GP, Maity BC, Laleu B, Chenu E, Duffy J, Moliner Cubel S, Franco V, Gomez-Lorenzo MG, Gamo FJ, Winzeler EA, Fidock DA, Chookajorn T, Lee MCS. Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum. Nat Commun 2023; 14:3059. [PMID: 37244916 DOI: 10.1038/s41467-023-38774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.
Collapse
Affiliation(s)
- Krittikorn Kümpornsin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Calibr, Division of the Scripps Research Institute, La Jolla, CA, USA
| | - Theerarat Kochakarn
- The Laboratory for Molecular Infection Medicine Sweden and Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline R Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gouranga P Jana
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Bikash C Maity
- TCG Lifesciences Private Limited, Salt-lake Electronics Complex, Kolkata, India
| | - Benoît Laleu
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | - Elodie Chenu
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | - James Duffy
- Medicines for Malaria Venture, International Centre Cointrin, Geneva, Switzerland
| | | | - Virginia Franco
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | | | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Thanat Chookajorn
- The Laboratory for Molecular Infection Medicine Sweden and Department of Molecular Biology, Umeå University, Umeå, Sweden
- Genomics and Evolutionary Medicine Unit, Centre of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
| |
Collapse
|
25
|
Claessens A, Stewart LB, Drury E, Ahouidi AD, Amambua-Ngwa A, Diakite M, Kwiatkowski DP, Awandare GA, Conway DJ. Genomic variation during culture adaptation of genetically complex Plasmodium falciparum clinical isolates. Microb Genom 2023; 9:mgen001009. [PMID: 37204422 PMCID: PMC10272863 DOI: 10.1099/mgen.0.001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/06/2023] [Indexed: 05/20/2023] Open
Abstract
Experimental studies on the biology of malaria parasites have mostly been based on laboratory-adapted lines, but there is limited understanding of how these may differ from parasites in natural infections. Loss-of-function mutants have previously been shown to emerge during culture of some Plasmodium falciparum clinical isolates in analyses focusing on single-genotype infections. The present study included a broader array of isolates, mostly representing multiple-genotype infections, which are more typical in areas where malaria is highly endemic. Genome sequence data from multiple time points over several months of culture adaptation of 28 West African isolates were analysed, including previously available sequences along with new genome sequences from additional isolates and time points. Some genetically complex isolates eventually became fixed over time to single surviving genotypes in culture, whereas others retained diversity, although proportions of genotypes varied over time. Drug resistance allele frequencies did not show overall directional changes, suggesting that resistance-associated costs are not the main causes of fitness differences among parasites in culture. Loss-of-function mutants emerged during culture in several of the multiple-genotype isolates, affecting genes (including AP2-HS, EPAC and SRPK1) for which loss-of-function mutants were previously seen to emerge in single-genotype isolates. Parasite clones were derived by limiting dilution from six of the isolates, and sequencing identified de novo variants not detected in the bulk isolate sequences. Interestingly, several of these were nonsense mutants and frameshifts disrupting the coding sequence of EPAC, the gene with the largest number of independent nonsense mutants previously identified in laboratory-adapted lines. Analysis of genomic identity by descent to explore relatedness among clones revealed co-occurring non-identical sibling parasites, illustrative of the natural genetic structure within endemic populations.
Collapse
Affiliation(s)
- Antoine Claessens
- LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, France
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Lindsay B. Stewart
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | | | | | - Alfred Amambua-Ngwa
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mahamadou Diakite
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | | | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - David J. Conway
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| |
Collapse
|
26
|
Opoku Afriyie S, Addison TK, Gebre Y, Mutala AH, Antwi KB, Abbas DA, Addo KA, Tweneboah A, Ayisi-Boateng NK, Koepfli C, Badu K. Accuracy of diagnosis among clinical malaria patients: comparing microscopy, RDT and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. Malar J 2023; 22:76. [PMID: 36870966 PMCID: PMC9985253 DOI: 10.1186/s12936-023-04506-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND The World Health Organization recommends parasitological confirmation of all suspected malaria cases by microscopy or rapid diagnostic tests (RDTs) before treatment. These conventional tools are widely used for point-of-care diagnosis in spite of their poor sensitivity at low parasite density. Previous studies in Ghana have compared microscopy and RDT using standard 18S rRNA PCR as reference with varying outcomes. However, how these conventional tools compare with ultrasensitive varATS qPCR has not been studied. This study, therefore, sought to investigate the clinical performance of microscopy and RDT assuming highly sensitive varATS qPCR as gold standard. METHODS 1040 suspected malaria patients were recruited from two primary health care centers in the Ashanti Region of Ghana and tested for malaria by microscopy, RDT, and varATS qPCR. The sensitivity, specificity, and predictive values were assessed using varATS qPCR as gold standard. RESULTS Parasite prevalence was 17.5%, 24.5%, and 42.1% by microscopy, RDT, and varATS qPCR respectively. Using varATS qPCR as the standard, RDT was more sensitive (55.7% vs 39.3%), equally specific (98.2% vs 98.3%), and reported higher positive (95.7% vs 94.5%) and negative predictive values (75.3% vs 69.0%) than microscopy. Consequently, RDT recorded better diagnostic agreement (kappa = 0.571) with varATS qPCR than microscopy (kappa = 0.409) for clinical detection of malaria. CONCLUSIONS RDT outperformed microscopy for the diagnosis of Plasmodium falciparum malaria in the study. However, both tests missed over 40% of infections that were detected by varATS qPCR. Novel tools are needed to ensure prompt diagnosis of all clinical malaria cases.
Collapse
Affiliation(s)
- Stephen Opoku Afriyie
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Thomas Kwame Addison
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Yilekal Gebre
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Abdul-Hakim Mutala
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Kwasi Baako Antwi
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Dawood Ackom Abbas
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Kofi Agyapong Addo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Austine Tweneboah
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | | | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA.
| | - Kingsley Badu
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
| |
Collapse
|
27
|
Ebel ER, Kim BY, McDew-White M, Egan ES, Anderson TJC, Petrov DA. Antigenic diversity in malaria parasites is maintained on extrachromosomal DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526885. [PMID: 36778235 PMCID: PMC9915586 DOI: 10.1101/2023.02.02.526885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sequence variation among antigenic var genes enables Plasmodium falciparum malaria parasites to evade host immunity. Using long sequence reads from haploid clones from a mutation accumulation experiment, we detect var diversity inconsistent with simple chromosomal inheritance. We discover putatively circular DNA that is strongly enriched for var genes, which exist in multiple alleles per locus separated by recombination and indel events. Extrachromosomal DNA likely contributes to rapid antigenic diversification in P. falciparum.
Collapse
Affiliation(s)
- Emily R Ebel
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
- Present address: Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elizabeth S Egan
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
28
|
Tan MH, Shim H, Chan YB, Day KP. Unravelling var complexity: Relationship between DBLα types and var genes in Plasmodium falciparum. FRONTIERS IN PARASITOLOGY 2023; 1:1006341. [PMID: 36998722 PMCID: PMC10060044 DOI: 10.3389/fpara.2022.1006341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023]
Abstract
The enormous diversity and complexity of var genes that diversify rapidly by recombination has led to the exclusion of assembly of these genes from major genome initiatives (e.g., Pf6). A scalable solution in epidemiological surveillance of var genes is to use a small 'tag' region encoding the immunogenic DBLα domain as a marker to estimate var diversity. As var genes diversify by recombination, it is not clear the extent to which the same tag can appear in multiple var genes. This relationship between marker and gene has not been investigated in natural populations. Analyses of in vitro recombination within and between var genes have suggested that this relationship would not be exclusive. Using a dataset of publicly-available assembled var sequences, we test this hypothesis by studying DBLα-var relationships for four study sites in four countries: Pursat (Cambodia) and Mae Sot (Thailand), representing low malaria transmission, and Navrongo (Ghana) and Chikwawa (Malawi), representing high malaria transmission. In all study sites, DBLα-var relationships were shown to be predominantly 1-to-1, followed by a second largest proportion of 1-to-2 DBLα-var relationships. This finding indicates that DBLα tags can be used to estimate not just DBLα diversity but var gene diversity when applied in a local endemic area. Epidemiological applications of this result are discussed.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
| | - Heejung Shim
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Zhang X, Deitsch KW. The mystery of persistent, asymptomatic Plasmodium falciparum infections. Curr Opin Microbiol 2022; 70:102231. [PMID: 36327690 PMCID: PMC10500611 DOI: 10.1016/j.mib.2022.102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
Plasmodium falciparum causes millions of malaria infections and hundreds of thousands of deaths annually. These parasites avoid the adaptive immune response by systematically cycling through a limited repertoire of variant surface antigens after which the number of circulating parasites drops to extremely low levels, coinciding with a loss of symptoms and eventual clearance of the infection. However, in regions with extended dry seasons or in individuals who no longer reside in endemic areas, asymptomatic infections have been observed to persist for many months or years, potentially serving as reservoirs for transmission. Recent work suggests the possibility that parasites can assume a state in which no variant surface antigens are expressed, thus rendering them virtually invisible to the immune system and enabling them to persist at low levels indefinitely.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
30
|
Catacalos C, Krohannon A, Somalraju S, Meyer KD, Janga SC, Chakrabarti K. Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation. PLoS Pathog 2022; 18:e1010972. [PMID: 36548245 PMCID: PMC9778586 DOI: 10.1371/journal.ppat.1010972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
"Epitranscriptomics" is the new RNA code that represents an ensemble of posttranscriptional RNA chemical modifications, which can precisely coordinate gene expression and biological processes. There are several RNA base modifications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ), etc. that play pivotal roles in fine-tuning gene expression in almost all eukaryotes and emerging evidences suggest that parasitic protists are no exception. In this review, we primarily focus on m6A, which is the most abundant epitranscriptomic mark and regulates numerous cellular processes, ranging from nuclear export, mRNA splicing, polyadenylation, stability, and translation. We highlight the universal features of spatiotemporal m6A RNA modifications in eukaryotic phylogeny, their homologs, and unique processes in 3 unicellular parasites-Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. and some technological advances in this rapidly developing research area that can significantly improve our understandings of gene expression regulation in parasites.
Collapse
Affiliation(s)
- Cassandra Catacalos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Alexander Krohannon
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Sahiti Somalraju
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
31
|
Schneider KA, Salas CJ. Evolutionary genetics of malaria. Front Genet 2022; 13:1030463. [PMID: 36406132 PMCID: PMC9669584 DOI: 10.3389/fgene.2022.1030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 09/08/2024] Open
Abstract
Many standard-textbook population-genetic results apply to a wide range of species. Sometimes, however, population-genetic models and principles need to be tailored to a particular species. This is particularly true for malaria, which next to tuberculosis and HIV/AIDS ranks among the economically most relevant infectious diseases. Importantly, malaria is not one disease-five human-pathogenic species of Plasmodium exist. P. falciparum is not only the most severe form of human malaria, but it also causes the majority of infections. The second most relevant species, P. vivax, is already considered a neglected disease in several endemic areas. All human-pathogenic species have distinct characteristics that are not only crucial for control and eradication efforts, but also for the population-genetics of the disease. This is particularly true in the context of selection. Namely, fitness is determined by so-called fitness components, which are determined by the parasites live-history, which differs between malaria species. The presence of hypnozoites, i.e., dormant liver-stage parasites, which can cause disease relapses, is a distinct feature of P. vivax and P. ovale sp. In P. malariae inactivated blood-stage parasites can cause a recrudescence years after the infection was clinically cured. To properly describe population-genetic processes, such as the spread of anti-malarial drug resistance, these features must be accounted for appropriately. Here, we introduce and extend a population-genetic framework for the evolutionary dynamics of malaria, which applies to all human-pathogenic malaria species. The model focuses on, but is not limited to, the spread of drug resistance. The framework elucidates how the presence of dormant liver stage or inactivated blood stage parasites that act like seed banks delay evolutionary processes. It is shown that, contrary to standard population-genetic theory, the process of selection and recombination cannot be decoupled in malaria. Furthermore, we discuss the connection between haplotype frequencies, haplotype prevalence, transmission dynamics, and relapses or recrudescence in malaria.
Collapse
Affiliation(s)
- Kristan Alexander Schneider
- Department of Applied Computer- and Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Carola Janette Salas
- Department of Parasitology, U.S. Naval Medical Research Unit No 6 (NAMRU-6), Lima, Peru
| |
Collapse
|
32
|
Ruybal-Pesántez S, Tiedje KE, Pilosof S, Tonkin-Hill G, He Q, Rask TS, Amenga-Etego L, Oduro AR, Koram KA, Pascual M, Day KP. Age-specific patterns of DBLα var diversity can explain why residents of high malaria transmission areas remain susceptible to Plasmodium falciparum blood stage infection throughout life. Int J Parasitol 2022; 52:721-731. [PMID: 35093396 PMCID: PMC9339046 DOI: 10.1016/j.ijpara.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.
Collapse
Affiliation(s)
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia
| | - Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, USA,Department of Life Sciences, Ben-Gurion University, Be’er-Sheva, Israel
| | - Gerry Tonkin-Hill
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Bioinformatics Division, Walter and Eliza Hall Institute of Medial Research, Australia
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, USA
| | - Thomas S. Rask
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology and Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Ghana,Navrongo Health Research Centre, Ghana Health Service, Ghana
| | | | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia,Corresponding author. (K.P. Day)
| |
Collapse
|
33
|
Johnson EK, Larremore DB. Bayesian estimation of community size and overlap from random subsamples. PLoS Comput Biol 2022; 18:e1010451. [PMID: 36121879 PMCID: PMC9522272 DOI: 10.1371/journal.pcbi.1010451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Counting the number of species, items, or genes that are shared between two groups, sets, or communities is a simple calculation when sampling is complete. However, when only partial samples are available, quantifying the overlap between two communities becomes an estimation problem. Furthermore, to calculate normalized measures of β-diversity, such as the Jaccard and Sorenson-Dice indices, one must also estimate the total sizes of the communities being compared. Previous efforts to address these problems have assumed knowledge of total community sizes and then used Bayesian methods to produce unbiased estimates with quantified uncertainty. Here, we address communities of unknown size and show that this produces systematically better estimates—both in terms of central estimates and quantification of uncertainty in those estimates. We further show how to use species, item, or gene count data to refine estimates of community size in a Bayesian joint model of community size and overlap.
Collapse
Affiliation(s)
- Erik K. Johnson
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (EKJ); (DBL)
| | - Daniel B. Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail: (EKJ); (DBL)
| |
Collapse
|
34
|
He Q, Pilosof S, Tiedje KE, Day KP, Pascual M. Corrigendum: Frequency-dependent competition between strains imparts persistence to perturbations in a model of Plasmodium falciparum malaria transmission. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.971161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13:3004. [PMID: 35637187 PMCID: PMC9151791 DOI: 10.1038/s41467-022-30605-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Genetically identical cells are known to exhibit differential phenotypes in the same environmental conditions. These phenotypic variants are linked to transcriptional stochasticity and have been shown to contribute towards adaptive flexibility of a wide range of unicellular organisms. Here, we investigate transcriptional heterogeneity and stochastic gene expression in Plasmodium falciparum by performing the quasilinear multiple annealing and looping based amplification cycles (MALBAC) based amplification and single cell RNA sequencing of blood stage schizonts. Our data reveals significant transcriptional variations in the schizont stage with a distinct group of highly variable invasion gene transcripts being identified. Moreover, the data reflects several diversification processes including putative developmental “checkpoint”; transcriptomically distinct parasite sub-populations and transcriptional switches in variable gene families (var, rifin, phist). Most of these features of transcriptional variability are preserved in isogenic parasite cell populations (albeit with a lesser amplitude) suggesting a role of epigenetic factors in cell-to-cell transcriptional variations in human malaria parasites. Lastly, we apply quantitative RT-PCR and RNA-FISH approach and confirm stochastic expression of key invasion genes, such as, msp1, msp3, msp7, eba181 and ama1 which represent prime candidates for invasion-blocking vaccines. Genetically identical cells can be phenotypically diverse to allow adaptive flexibility in a given environment. This phenotypic diversity is driven by epigenetic and transcriptional variability. Here, Tripathi et al. perform scRNA-seq of isogenic and non-isogenic Plasmodium falciparum schizont populations to explore transcriptional heterogeneity and stochastic gene expression during the course of development.
Collapse
|
36
|
Lodde V, Floris M, Muroni MR, Cucca F, Idda ML. Non-coding RNAs in malaria infection. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1697. [PMID: 34651456 PMCID: PMC9286032 DOI: 10.1002/wrna.1697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Malaria is one of the most severe infectious diseases affecting humans and it is caused by protozoan pathogens of the species Plasmodium (spp.). The malaria parasite Plasmodium is characterized by a complex, multistage life cycle that requires tight gene regulation which allows for host invasion and defense against host immune responses. Unfortunately, the mechanisms regulating gene expression during Plasmodium infection remain largely elusive, though several lines of evidence implicate a major involvement of non-coding RNAs (ncRNAs). The ncRNAs have been found to play a key role in regulating transcriptional and post-transcriptional events in a broad range of organisms including Plasmodium. In Plasmodium ncRNAs have been shown to regulate key events in the multistage life cycle and virulence ability. Here we review recent progress involving ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) and their role as regulators of gene expression during Plasmodium infection in human hosts with focus on the possibility of using these molecules as biomarkers for monitoring disease status. We also discuss the surprising function of ncRNAs in mediating the complex interplay between parasite and human host and future perspectives of the field. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Matteo Floris
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Maria Rosaria Muroni
- Department of Medical, Surgical, and Experimental SciencesUniversity of SassariSassariItaly
| | - Francesco Cucca
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR)SassariItaly
| |
Collapse
|
37
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
38
|
Feng Q, Tiedje KE, Ruybal-Pesántez S, Tonkin-Hill G, Duffy MF, Day KP, Shim H, Chan YB. An accurate method for identifying recent recombinants from unaligned sequences. Bioinformatics 2022; 38:1823-1829. [PMID: 35025988 PMCID: PMC8963311 DOI: 10.1093/bioinformatics/btac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/18/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Motivation
Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination.
Results
We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17,335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones.
Availability
Source code is freely available at https://github.com/qianfeng2/detREC_program.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qian Feng
- Melbourne Integrative Genomics/School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kathryn E Tiedje
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, 3000, Australia
| | - Shazia Ruybal-Pesántez
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, 3010, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Burnet Institute, Melbourne, VIC, 3004, Australia
| | - Gerry Tonkin-Hill
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, 3010, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Michael F Duffy
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3004, Australia
| | - Karen P Day
- School of BioSciences, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, 3000, Australia
| | - Heejung Shim
- Melbourne Integrative Genomics/School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Yao-Ban Chan
- Melbourne Integrative Genomics/School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
39
|
Mitesser V, Dzikowski R. Resetting var Gene Transcription in Plasmodium falciparum. Methods Mol Biol 2022; 2470:211-220. [PMID: 35881348 DOI: 10.1007/978-1-0716-2189-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the key mechanisms contributing to the virulence of Plasmodium falciparum is its ability to undergo antigenic switching among antigenically distinct variants of the PfEMP1 adhesive proteins, encoded by the var gene family. To avoid premature exposure of its antigenic repertoire, the parasite transcribes its var genes in a mutually exclusive manner, and switch expression at a very slow rate. This process is epigenetically regulated and it relies on "epigenetic memory," which imprints the single active var gene to remain active for multiple replication cycles. Erasing this epigenetic memory in parasites grown in culture resembles parasites, which egress from the liver. It could therefore be of interest for investigating var switching patterns at the onset of malaria infections. In addition, this procedure could be used for creating heterogeneity of var expression among parasite populations. The methodology described here for resetting of var gene expression is based on promoter titration, also known as molecular sponging.
Collapse
Affiliation(s)
- Vera Mitesser
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
40
|
Grace CA, Forrester S, Silva VC, Carvalho KSS, Kilford H, Chew YP, James S, Costa DL, Mottram JC, Costa CCHN, Jeffares DC. Candidates for Balancing Selection in Leishmania donovani Complex Parasites. Genome Biol Evol 2021; 13:6448231. [PMID: 34865011 PMCID: PMC8717319 DOI: 10.1093/gbe/evab265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
The Leishmania donovani species complex is the causative agent of visceral leishmaniasis, which cause 20–40,000 fatalities a year. Here, we conduct a screen for balancing selection in this species complex. We used 384 publicly available L. donovani and L. infantum genomes, and sequence 93 isolates of L. infantum from Brazil to describe the global diversity of this species complex. We identify five genetically distinct populations that are sufficiently represented by genomic data to search for signatures of selection. We find that signals of balancing selection are generally not shared between populations, consistent with transient adaptive events, rather than long-term balancing selection. We then apply multiple diversity metrics to identify candidate genes with robust signatures of balancing selection, identifying a curated set of 24 genes with robust signatures. These include zeta toxin, nodulin-like, and flagellum attachment proteins. This study highlights the extent of genetic divergence between L. donovani complex parasites and provides genes for further study.
Collapse
Affiliation(s)
- Cooper Alastair Grace
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Sarah Forrester
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Vladimir Costa Silva
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Kátia Silene Sousa Carvalho
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Hannah Kilford
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Yen Peng Chew
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom.,Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally James
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dorcas L Costa
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Carlos C H N Costa
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Daniel C Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
41
|
Dia A, Jett C, Trevino SG, Chu CS, Sriprawat K, Anderson TJC, Nosten F, Cheeseman IH. Single-genome sequencing reveals within-host evolution of human malaria parasites. Cell Host Microbe 2021; 29:1496-1506.e3. [PMID: 34492224 DOI: 10.1016/j.chom.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/17/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023]
Abstract
Population genomics of bulk malaria infections is unable to examine intrahost evolution; therefore, most work has focused on the role of recombination in generating genetic variation. We used single-cell sequencing protocol for low-parasitaemia infections to generate 406 near-complete single Plasmodium vivax genomes from 11 patients sampled during sequential febrile episodes. Parasite genomes contain hundreds of de novo mutations, showing strong signatures of selection, which are enriched in the ApiAP2 family of transcription factors, known targets of adaptation. Comparing 315 P. falciparum single-cell genomes from 15 patients with our P. vivax data, we find broad complementary patterns of de novo mutation at the gene and pathway level, revealing the importance of within-host evolution during malaria infections.
Collapse
Affiliation(s)
- Aliou Dia
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Catherine Jett
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Simon G Trevino
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cindy S Chu
- Disease Intervention and Prevention, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Timothy J C Anderson
- Disease Prevention and Intervention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - François Nosten
- Disease Intervention and Prevention, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ian H Cheeseman
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
42
|
Dia A, Cheeseman IH. Single-cell genome sequencing of protozoan parasites. Trends Parasitol 2021; 37:803-814. [PMID: 34172399 PMCID: PMC8364489 DOI: 10.1016/j.pt.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022]
Abstract
Despite considerable genetic variation within hosts, most parasite genome sequencing studies focus on bulk samples composed of millions of cells. Analysis of bulk samples is biased toward the dominant genotype, concealing cell-to-cell variation and rare variants. To tackle this, single-cell sequencing approaches have been developed and tailored to specific host-parasite systems. These are allowing the genetic diversity and kinship in complex parasite populations to be deciphered and for de novo genetic variation to be captured. Here, we outline the methodologies being used for single-cell sequencing of parasitic protozoans, such as Plasmodium and Leishmania spp., and how these tools are being applied to understand parasite biology.
Collapse
Affiliation(s)
- Aliou Dia
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ian H Cheeseman
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
43
|
Abstract
African apes harbor at least twelve Plasmodium species, some of which have been a source of human infection. It is now well established that Plasmodium falciparum emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while Plasmodium vivax emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new Plasmodium species widespread in chimpanzees, gorillas, and bonobos places the origin of Plasmodium malariae in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective Plasmodium species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
44
|
Murithi JM, Pascal C, Bath J, Boulenc X, Gnädig NF, Pasaje CFA, Rubiano K, Yeo T, Mok S, Klieber S, Desert P, Jiménez-Díaz MB, Marfurt J, Rouillier M, Cherkaoui-Rbati MH, Gobeau N, Wittlin S, Uhlemann AC, Price RN, Wirjanata G, Noviyanti R, Tumwebaze P, Cooper RA, Rosenthal PJ, Sanz LM, Gamo FJ, Joseph J, Singh S, Bashyam S, Augereau JM, Giraud E, Bozec T, Vermat T, Tuffal G, Guillon JM, Menegotto J, Sallé L, Louit G, Cabanis MJ, Nicolas MF, Doubovetzky M, Merino R, Bessila N, Angulo-Barturen I, Baud D, Bebrevska L, Escudié F, Niles JC, Blasco B, Campbell S, Courtemanche G, Fraisse L, Pellet A, Fidock DA, Leroy D. The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to Plasmodium falciparum parasite resistance. Sci Transl Med 2021; 13:13/603/eabg6013. [PMID: 34290058 PMCID: PMC8530196 DOI: 10.1126/scitranslmed.abg6013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria.
Collapse
Affiliation(s)
- James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Cécile Pascal
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sylvie Klieber
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | | | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | | | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Universität Basel, Basel, Switzerland
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA
| | | | - Laura M. Sanz
- Global Health Pharma Research Unit, GSK, Tres Cantos, Madrid, Spain
| | | | | | | | | | | | - Elie Giraud
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Tanguy Bozec
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Thierry Vermat
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Gilles Tuffal
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | - Jérôme Menegotto
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Laurent Sallé
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | - Marie-José Cabanis
- Sanofi R&D, Translational Medicine & Early Development, Montpellier, France
| | | | | | - Rita Merino
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Nadir Bessila
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | | | | | | | | | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Laurent Fraisse
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - Alain Pellet
- Sanofi, Infectious Diseases Therapeutic Area, Marcy l'Etoile, France
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Corresponding author. (D.A.F.); (D.L.)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.,Corresponding author. (D.A.F.); (D.L.)
| |
Collapse
|
45
|
Gross MR, Hsu R, Deitsch KW. Evolution of transcriptional control of antigenic variation and virulence in human and ape malaria parasites. BMC Ecol Evol 2021; 21:139. [PMID: 34238209 PMCID: PMC8265125 DOI: 10.1186/s12862-021-01872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background The most severe form of human malaria is caused by the protozoan parasite Plasmodium falciparum. This unicellular organism is a member of a subgenus of Plasmodium called the Laverania that infects apes, with P. falciparum being the only member that infects humans. The exceptional virulence of this species to humans can be largely attributed to a family of variant surface antigens placed by the parasites onto the surface of infected red blood cells that mediate adherence to the vascular endothelium. These proteins are encoded by a large, multicopy gene family called var, with each var gene encoding a different form of the protein. By changing which var gene is expressed, parasites avoid immune recognition, a process called antigenic variation that underlies the chronic nature of malaria infections. Results Here we show that the common ancestor of the branch of the Laverania lineage that includes the human parasite underwent a remarkable change in the organization and structure of elements linked to the complex transcriptional regulation displayed by the var gene family. Unlike the other members of the Laverania, the clade that gave rise to P. falciparum evolved distinct subsets of var genes distinguishable by different upstream transcriptional regulatory regions that have been associated with different expression profiles and virulence properties. In addition, two uniquely conserved var genes that have been proposed to play a role in coordinating transcriptional switching similarly arose uniquely within this clade. We hypothesize that these changes originated at a time of dramatic climatic change on the African continent that is predicted to have led to significant changes in transmission dynamics, thus selecting for patterns of antigenic variation that enabled lengthier, more chronic infections. Conclusions These observations suggest that changes in transmission dynamics selected for significant alterations in the transcriptional regulatory mechanisms that mediate antigenic variation in the parasite lineage that includes P. falciparum. These changes likely underlie the chronic nature of these infections as well as their exceptional virulence. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01872-z.
Collapse
Affiliation(s)
- Mackensie R Gross
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Rosie Hsu
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
46
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
47
|
He Q, Pilosof S, Tiedje KE, Day KP, Pascual M. Frequency-Dependent Competition Between Strains Imparts Persistence to Perturbations in a Model of Plasmodium falciparum Malaria Transmission. Front Ecol Evol 2021; 9. [PMID: 35433714 PMCID: PMC9012452 DOI: 10.3389/fevo.2021.633263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high-transmission endemic regions, local populations of Plasmodium falciparum exhibit vast diversity of the var genes encoding its major surface antigen, with each parasite comprising multiple copies from this diverse gene pool. This strategy to evade the immune system through large combinatorial antigenic diversity is common to other hyperdiverse pathogens. It underlies a series of fundamental epidemiological characteristics, including large reservoirs of transmission from high prevalence of asymptomatics and long-lasting infections. Previous theory has shown that negative frequency-dependent selection (NFDS) mediated by the acquisition of specific immunity by hosts structures the diversity of var gene repertoires, or strains, in a pattern of limiting similarity that is both non-random and non-neutral. A combination of stochastic agent-based models and network analyses has enabled the development and testing of theory in these complex adaptive systems, where assembly of local parasite diversity occurs under frequency-dependent selection and large pools of variation. We show here the application of these approaches to theory comparing the response of the malaria transmission system to intervention when strain diversity is assembled under (competition-based) selection vs. a form of neutrality, where immunity depends only on the number but not the genetic identity of previous infections. The transmission system is considerably more persistent under NFDS, exhibiting a lower extinction probability despite comparable prevalence during intervention. We explain this pattern on the basis of the structure of strain diversity, in particular the more pronounced fraction of highly dissimilar parasites. For simulations that survive intervention, prevalence under specific immunity is lower than under neutrality, because the recovery of diversity is considerably slower than that of prevalence and decreased var gene diversity reduces parasite transmission. A Principal Component Analysis of network features describing parasite similarity reveals that despite lower overall diversity, NFDS is quickly restored after intervention constraining strain structure and maintaining patterns of limiting similarity important to parasite persistence. Given the described enhanced persistence under perturbation, intervention efforts will likely require longer times than the usual practice to eliminate P. falciparum populations. We discuss implications of our findings and potential analogies for ecological communities with non-neutral assembly processes involving frequency-dependence.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
- Correspondence: Mercedes Pascual,
| |
Collapse
|
48
|
Simon CS, Stürmer VS, Guizetti J. How Many Is Enough? - Challenges of Multinucleated Cell Division in Malaria Parasites. Front Cell Infect Microbiol 2021; 11:658616. [PMID: 34026661 PMCID: PMC8137892 DOI: 10.3389/fcimb.2021.658616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Regulating the number of progeny generated by replicative cell cycles is critical for any organism to best adapt to its environment. Classically, the decision whether to divide further is made after cell division is completed by cytokinesis and can be triggered by intrinsic or extrinsic factors. Contrarily, cell cycles of some species, such as the malaria-causing parasites, go through multinucleated cell stages. Hence, their number of progeny is determined prior to the completion of cell division. This should fundamentally affect how the process is regulated and raises questions about advantages and challenges of multinucleation in eukaryotes. Throughout their life cycle Plasmodium spp. parasites undergo four phases of extensive proliferation, which differ over three orders of magnitude in the amount of daughter cells that are produced by a single progenitor. Even during the asexual blood stage proliferation parasites can produce very variable numbers of progeny within one replicative cycle. Here, we review the few factors that have been shown to affect those numbers. We further provide a comparative quantification of merozoite numbers in several P. knowlesi and P. falciparum parasite strains, and we discuss the general processes that may regulate progeny number in the context of host-parasite interactions. Finally, we provide a perspective of the critical knowledge gaps hindering our understanding of the molecular mechanisms underlying this exciting and atypical mode of parasite multiplication.
Collapse
Affiliation(s)
| | | | - Julien Guizetti
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
49
|
Liu S, Huckaby AC, Brown AC, Moore CC, Burbulis I, McConnell MJ, Güler JL. Single-cell sequencing of the small and AT-skewed genome of malaria parasites. Genome Med 2021; 13:75. [PMID: 33947449 PMCID: PMC8094492 DOI: 10.1186/s13073-021-00889-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Single-cell genomics is a rapidly advancing field; however, most techniques are designed for mammalian cells. We present a single-cell sequencing pipeline for an intracellular parasite, Plasmodium falciparum, with a small genome of extreme base content. Through optimization of a quasi-linear amplification method, we target the parasite genome over contaminants and generate coverage levels allowing detection of minor genetic variants. This work, as well as efforts that build on these findings, will enable detection of parasite heterogeneity contributing to P. falciparum adaptation. Furthermore, this study provides a framework for optimizing single-cell amplification and variant analysis in challenging genomes.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Adam C Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Audrey C Brown
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher C Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Ian Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
- Current address: Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Jennifer L Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
50
|
K13-Mediated Reduced Susceptibility to Artemisinin in Plasmodium falciparum Is Overlaid on a Trait of Enhanced DNA Damage Repair. Cell Rep 2021; 32:107996. [PMID: 32755588 PMCID: PMC7408483 DOI: 10.1016/j.celrep.2020.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Southeast Asia has been the hotbed for the development of drug-resistant malaria parasites, including those with resistance to artemisinin combination therapy. While mutations in the kelch propeller domain (K13 mutations) are associated with artemisinin resistance, a range of evidence suggests that other factors are critical for the establishment and subsequent transmission of resistance in the field. Here, we perform a quantitative analysis of DNA damage and repair in the malaria parasite Plasmodium falciparum and find a strong link between enhanced DNA damage repair and artemisinin resistance. This experimental observation is further supported when variations in seven known DNA repair genes are found in resistant parasites, with six of these mutations being associated with K13 mutations. Our data provide important insights on confounding factors that are important for the establishment and spread of artemisinin resistance and may explain why resistance has not yet arisen in Africa. High-throughput MalariaCometChip to measure DNA damage level in P. falciparum Subpopulation of Cambodian isolates possess enhanced DNA damage repair Important link between enhanced DNA damage repair and artemisinin resistance
Collapse
|