1
|
Ishigohoka J, Liedvogel M. High-recombining genomic regions affect demography inference based on ancestral recombination graphs. Genetics 2025; 229:iyaf004. [PMID: 39790013 PMCID: PMC11912872 DOI: 10.1093/genetics/iyaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Multiple methods of demography inference are based on the ancestral recombination graph. This powerful approach uses observed mutations to model local genealogies changing along chromosomes by historical recombination events. However, inference of underlying genealogies is difficult in regions with high recombination rate relative to mutation rate due to the lack of mutations representing genealogies. Despite the prevalence of high-recombining genomic regions in some organisms, such as birds, its impact on demography inference based on ancestral recombination graphs has not been well studied. Here, we use population genomic simulations to investigate the impact of high-recombining regions on demography inference based on ancestral recombination graphs. We demonstrate that inference of effective population size and the time of population split events is systematically affected when high-recombining regions cover wide breadths of the chromosomes. Excluding high-recombining genomic regions can practically mitigate this impact, and population genomic inference of recombination maps is informative in defining such regions although the estimated values of local recombination rate can be biased. Finally, we confirm the relevance of our findings in empirical analysis by contrasting demography inferences applied for a bird species, the Eurasian blackcap (Sylvia atricapilla), using different parts of the genome with high and low recombination rates. Our results suggest that demography inference methods based on ancestral recombination graphs should be carried out with caution when applied in species whose genomes contain long stretches of high-recombining regions.
Collapse
Affiliation(s)
- Jun Ishigohoka
- Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön 24306, Germany
| | - Miriam Liedvogel
- Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön 24306, Germany
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
- Department of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
| |
Collapse
|
2
|
Bruno M, Maisha S, Mitra A, Costello K, Watkins-Chow D, Logsdon GA, Gambogi CW, Dumont BL, Black BE, Keane TM, Ferguson-Smith AC, Dale R, Macfarlan TS. Young KRAB-zinc finger gene clusters are highly dynamic incubators of ERV-driven genetic heterogeneity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640358. [PMID: 40161592 PMCID: PMC11952569 DOI: 10.1101/2025.02.26.640358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
KRAB-zinc finger proteins (KZFPs) comprise the largest family of mammalian transcription factors, rapidly evolving within and between species. Most KZFPs repress endogenous retroviruses (ERVs) and other retrotransposons, with KZFP gene numbers correlating with the ERV load across species, suggesting coevolution. How new KZFPs emerge in response to ERV invasions is currently unknown. Using a combination of long-read sequencing technologies and genome assembly, we present a first detailed comparative analysis of young KZFP gene clusters in the mouse lineage, which has undergone recent KZFP gene expansion and ERV infiltration. Detailed annotation of KZFP genes in a cluster on Mus musculus Chromosome 4 revealed parallel expansion and diversification of this locus in different mouse strains (C57BL/6J, 129S1/SvImJ and CAST/EiJ) and species (Mus spretus and Mus pahari). Our data supports a model by which new ERV integrations within young KZFP gene clusters likely promoted recombination events leading to the emergence of new KZFPs that repress them. At the same time, ERVs also increased their numbers by duplication instead of retrotransposition alone, unraveling a new mechanism for ERV enrichment at these loci.
Collapse
Affiliation(s)
- Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland, USA
| | - Sharaf Maisha
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland, USA
| | - Apratim Mitra
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland, USA
| | - Kevin Costello
- Department of Genetics, University of Cambridge; Cambridge, UK
| | - Dawn Watkins-Chow
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland, USA
| | - Glennis A. Logsdon
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Craig W. Gambogi
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - Ben E. Black
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Thomas M. Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Ryan Dale
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland, USA
| | - Todd S. Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland, USA
| |
Collapse
|
3
|
Fotopulosova V, Tanieli G, Fusek K, Jansa P, Forejt J. A Minimal Hybrid Sterility Genome Assembled by Chromosome Swapping Between Mouse Subspecies (Mus musculus). Mol Biol Evol 2024; 41:msae211. [PMID: 39404090 PMCID: PMC11518865 DOI: 10.1093/molbev/msae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Hybrid sterility is a reproductive isolation barrier between diverging taxa securing the early steps of speciation. Hybrid sterility is ubiquitous in the animal and plant kingdoms, but its genetic control is poorly understood. In our previous studies, we have uncovered the sterility of hybrids between musculus and domesticus subspecies of the house mouse, which is controlled by the Prdm9 gene, the X-linked Hstx2 locus, and subspecific heterozygosity for genetic background. To further investigate this form of genic-driven chromosomal sterility, we constructed a simplified hybrid sterility model within the genome of the domesticus subspecies by swapping domesticus autosomes with their homologous partners from the musculus subspecies. We show that the "sterility" allelic combination of Prdm9 and Hstx2 can be activated by a musculus/domesticus heterozygosity of as few as two autosomes, Chromosome 17 (Chr 17) and Chr 18 and is further enhanced when another heterosubspecific autosomal pair is present, whereas it has no effect on meiotic progression in the pure domesticus genome. In addition, we identify a new X-linked hybrid sterility locus, Hstx3, at the centromeric end of Chr X, which modulates the incompatibility between Prdm9 and Hstx2. These results further support our concept of chromosomal hybrid sterility based on evolutionarily accumulated divergence between homologous sequences. Based on these and previous results, we believe that future studies should include more information on the mutual recognition of homologous chromosomes at or before the first meiotic prophase in interspecific hybrids, as this may serve as a general reproductive isolation checkpoint in mice and other species.
Collapse
Affiliation(s)
- Vladana Fotopulosova
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Giordano Tanieli
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Karel Fusek
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Petr Jansa
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Jiri Forejt
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
4
|
Johnston SE. Understanding the Genetic Basis of Variation in Meiotic Recombination: Past, Present, and Future. Mol Biol Evol 2024; 41:msae112. [PMID: 38959451 PMCID: PMC11221659 DOI: 10.1093/molbev/msae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Meiotic recombination is a fundamental feature of sexually reproducing species. It is often required for proper chromosome segregation and plays important role in adaptation and the maintenance of genetic diversity. The molecular mechanisms of recombination are remarkably conserved across eukaryotes, yet meiotic genes and proteins show substantial variation in their sequence and function, even between closely related species. Furthermore, the rate and distribution of recombination shows a huge diversity within and between chromosomes, individuals, sexes, populations, and species. This variation has implications for many molecular and evolutionary processes, yet how and why this diversity has evolved is not well understood. A key step in understanding trait evolution is to determine its genetic basis-that is, the number, effect sizes, and distribution of loci underpinning variation. In this perspective, I discuss past and current knowledge on the genetic basis of variation in recombination rate and distribution, explore its evolutionary implications, and present open questions for future research.
Collapse
Affiliation(s)
- Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
5
|
Joseph J, Prentout D, Laverré A, Tricou T, Duret L. High prevalence of PRDM9-independent recombination hotspots in placental mammals. Proc Natl Acad Sci U S A 2024; 121:e2401973121. [PMID: 38809707 PMCID: PMC11161765 DOI: 10.1073/pnas.2401973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexandre Laverré
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
- Swiss Institute of Bioinformatics, LausanneCH-1015, Switzerland
| | - Théo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| |
Collapse
|
6
|
Genestier A, Duret L, Lartillot N. Bridging the gap between the evolutionary dynamics and the molecular mechanisms of meiosis: A model based exploration of the PRDM9 intra-genomic Red Queen. PLoS Genet 2024; 20:e1011274. [PMID: 38768268 PMCID: PMC11142677 DOI: 10.1371/journal.pgen.1011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Molecular dissection of meiotic recombination in mammals, combined with population-genetic and comparative studies, have revealed a complex evolutionary dynamic characterized by short-lived recombination hotspots. Hotspots are chromosome positions containing DNA sequences where the protein PRDM9 can bind and cause crossing-over. To explain these fast evolutionary dynamic, a so-called intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hotspot extinction (the hotspot conversion paradox), followed by positive selection favoring mutant PRDM9 alleles recognizing new sequence motifs. Although this model predicts many empirical observations, the exact causes of the positive selection acting on new PRDM9 alleles is still not well understood. In this direction, experiment on mouse hybrids have suggested that, in addition to targeting double strand breaks, PRDM9 has another role during meiosis. Specifically, PRDM9 symmetric binding (simultaneous binding at the same site on both homologues) would facilitate homology search and, as a result, the pairing of the homologues. Although discovered in hybrids, this second function of PRDM9 could also be involved in the evolutionary dynamic observed within populations. To address this point, here, we present a theoretical model of the evolutionary dynamic of meiotic recombination integrating current knowledge about the molecular function of PRDM9. Our modeling work gives important insights into the selective forces driving the turnover of recombination hotspots. Specifically, the reduced symmetrical binding of PRDM9 caused by the loss of high affinity binding sites induces a net positive selection eliciting new PRDM9 alleles recognizing new targets. The model also offers new insights about the influence of the gene dosage of PRDM9, which can paradoxically result in negative selection on new PRDM9 alleles entering the population, driving their eviction and thus reducing standing variation at this locus.
Collapse
Affiliation(s)
- Alice Genestier
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France
| | - Laurent Duret
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France
| | - Nicolas Lartillot
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France
| |
Collapse
|
7
|
AbuAlia KFN, Damm E, Ullrich KK, Mukaj A, Parvanov E, Forejt J, Odenthal-Hesse L. Natural variation in the zinc-finger-encoding exon of Prdm9 affects hybrid sterility phenotypes in mice. Genetics 2024; 226:iyae004. [PMID: 38217871 PMCID: PMC10917509 DOI: 10.1093/genetics/iyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.
Collapse
Affiliation(s)
- Khawla F N AbuAlia
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Elena Damm
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Kristian K Ullrich
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Amisa Mukaj
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Linda Odenthal-Hesse
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| |
Collapse
|
8
|
Davies B, Zhang G, Moralli D, Alghadban S, Biggs D, Preece C, Donnelly P, Hinch AG. Characterization of meiotic recombination intermediates through gene knockouts in founder hybrid mice. Genome Res 2023; 33:2018-2027. [PMID: 37977820 PMCID: PMC10760447 DOI: 10.1101/gr.278024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Mammalian meiotic recombination proceeds via repair of hundreds of programmed DNA double-strand breaks, which requires choreographed binding of RPA, DMC1, and RAD51 to single-stranded DNA substrates. High-resolution in vivo binding maps of these proteins provide insights into the underlying molecular mechanisms. When assayed in F1-hybrid mice, these maps can distinguish the broken chromosome from the chromosome used as template for repair, revealing more mechanistic detail and enabling the structure of the recombination intermediates to be inferred. By applying CRISPR-Cas9 mutagenesis directly on F1-hybrid embryos, we have extended this approach to explore the molecular detail of recombination when a key component is knocked out. As a proof of concept, we have generated hybrid biallelic knockouts of Dmc1 and built maps of meiotic binding of RAD51 and RPA in them. DMC1 is essential for meiotic recombination, and comparison of these maps with those from wild-type mice is informative about the structure and timing of critical recombination intermediates. We observe redistribution of RAD51 binding and complete abrogation of D-loop recombination intermediates at a molecular level in Dmc1 mutants. These data provide insight on the configuration of RPA in D-loop intermediates and suggest that stable strand exchange proceeds via multiple rounds of strand invasion with template switching in mouse. Our methodology provides a high-throughput approach for characterization of gene function in meiotic recombination at low animal cost.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Samy Alghadban
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
- Genomics PLC, Oxford OX1 1JD, United Kingdom
| | - Anjali Gupta Hinch
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
| |
Collapse
|
9
|
Baker Z, Przeworski M, Sella G. Down the Penrose stairs, or how selection for fewer recombination hotspots maintains their existence. eLife 2023; 12:e83769. [PMID: 37830496 PMCID: PMC10703446 DOI: 10.7554/elife.83769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/12/2023] [Indexed: 10/14/2023] Open
Abstract
In many species, meiotic recombination events tend to occur in narrow intervals of the genome, known as hotspots. In humans and mice, double strand break (DSB) hotspot locations are determined by the DNA-binding specificity of the zinc finger array of the PRDM9 protein, which is rapidly evolving at residues in contact with DNA. Previous models explained this rapid evolution in terms of the need to restore PRDM9 binding sites lost to gene conversion over time, under the assumption that more PRDM9 binding always leads to more DSBs. This assumption, however, does not align with current evidence. Recent experimental work indicates that PRDM9 binding on both homologs facilitates DSB repair, and that the absence of sufficient symmetric binding disrupts meiosis. We therefore consider an alternative hypothesis: that rapid PRDM9 evolution is driven by the need to restore symmetric binding because of its role in coupling DSB formation and efficient repair. To this end, we model the evolution of PRDM9 from first principles: from its binding dynamics to the population genetic processes that govern the evolution of the zinc finger array and its binding sites. We show that the loss of a small number of strong binding sites leads to the use of a greater number of weaker ones, resulting in a sharp reduction in symmetric binding and favoring new PRDM9 alleles that restore the use of a smaller set of strong binding sites. This decrease, in turn, drives rapid PRDM9 evolutionary turnover. Our results therefore suggest that the advantage of new PRDM9 alleles is in limiting the number of binding sites used effectively, rather than in increasing net PRDM9 binding. By extension, our model suggests that the evolutionary advantage of hotspots may have been to increase the efficiency of DSB repair and/or homolog pairing.
Collapse
Affiliation(s)
- Zachary Baker
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Molly Przeworski
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Program for Mathematical Genomics, Columbia UniversityNew YorkUnited States
| | - Guy Sella
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Program for Mathematical Genomics, Columbia UniversityNew YorkUnited States
| |
Collapse
|
10
|
Byers C, Spruce C, Fortin HJ, Hartig EI, Czechanski A, Munger SC, Reinholdt LG, Skelly DA, Baker CL. Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells. EMBO J 2022; 41:e109445. [PMID: 34931323 PMCID: PMC8762565 DOI: 10.15252/embj.2021109445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.
Collapse
Affiliation(s)
- Candice Byers
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Haley J Fortin
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | - Ellen I Hartig
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | - Steven C Munger
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| | | | | | - Christopher L Baker
- The Jackson LaboratoryBar HarborMEUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
11
|
Kopania EEK, Watson EM, Rathje CC, Skinner BM, Ellis PJI, Larson EL, Good JM. The contribution of sex chromosome conflict to disrupted spermatogenesis in hybrid house mice. Genetics 2022; 222:iyac151. [PMID: 36194004 PMCID: PMC9713461 DOI: 10.1093/genetics/iyac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome-autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Eleanor M Watson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Claudia C Rathje
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
12
|
Marín-Gual L, González-Rodelas L, M. Garcias M, Kratochvíl L, Valenzuela N, Georges A, Waters PD, Ruiz-Herrera A. Meiotic chromosome dynamics and double strand break formation in reptiles. Front Cell Dev Biol 2022; 10:1009776. [PMID: 36313577 PMCID: PMC9597255 DOI: 10.3389/fcell.2022.1009776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.
Collapse
Affiliation(s)
- Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria M. Garcias
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Aurora Ruiz-Herrera,
| |
Collapse
|
13
|
Valiskova B, Gregorova S, Lustyk D, Šimeček P, Jansa P, Forejt J. Genic and Chromosomal Components of Prdm9-Driven Hybrid Male Sterility in Mice (Mus musculus). Genetics 2022; 222:6655690. [PMID: 35924978 PMCID: PMC9434306 DOI: 10.1093/genetics/iyac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility (HMS) gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus m. musculus x Mus m. domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break (DSB) hotspots results in difficult to repair DSBs, incomplete synapsis of homologous chromosomes and meiotic arrest at the first meiotic prophase. Here we show that Prdm9 behaves as a major HMS gene in mice outside the Mus m. musculus x Mus m. domesticus F1 hybrids, in the genomes composed of Mus m. castaneus and Mus m. musculus chromosomes segregating on the Mus m. domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of five quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, four control either meiotic synapsis or fertility phenotypes and one controls both, synapsis and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of HMS. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled HMS represents an example of genetic architecture of HMS consisting of genic and chromosomal components.
Collapse
Affiliation(s)
- Barbora Valiskova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Sona Gregorova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Petr Šimeček
- Central Laboratory of Bioinformatics, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Jiří Forejt
- Corresponding author: Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Průmyslová 595, Vestec 25250, Czech Republic.
| |
Collapse
|
14
|
Lee B, Cyrill SL, Lee W, Melchiotti R, Andiappan AK, Poidinger M, Rötzschke O. Analysis of archaic human haplotypes suggests that 5hmC acts as an epigenetic guide for NCO recombination. BMC Biol 2022; 20:173. [PMID: 35927700 PMCID: PMC9354366 DOI: 10.1186/s12915-022-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-crossover (NCO) refers to a mechanism of homologous recombination in which short tracks of DNA are copied between homologue chromatids. The allelic changes are typically restricted to one or few SNPs, which potentially allow for the gradual adaptation and maturation of haplotypes. It is assumed to be a stochastic process but the analysis of archaic and modern human haplotypes revealed a striking variability in local NCO recombination rates. Methods NCO recombination rates of 1.9 million archaic SNPs shared with Denisovan hominids were defined by a linkage study and correlated with functional and genomic annotations as well as ChIP-Seq data from modern humans. Results We detected a strong correlation between NCO recombination rates and the function of the respective region: low NCO rates were evident in introns and quiescent intergenic regions but high rates in splice sites, exons, 5′- and 3′-UTRs, as well as CpG islands. Correlations with ChIP-Seq data from ENCODE and other public sources further identified epigenetic modifications that associated directly with these recombination events. A particularly strong association was observed for 5-hydroxymethylcytosine marks (5hmC), which were enriched in virtually all of the functional regions associated with elevated NCO rates, including CpG islands and ‘poised’ bivalent regions. Conclusion Our results suggest that 5hmC marks may guide the NCO machinery specifically towards functionally relevant regions and, as an intermediate of oxidative demethylation, may open a pathway for environmental influence by specifically targeting recently opened gene loci. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01353-9.
Collapse
Affiliation(s)
- Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Samantha Leeanne Cyrill
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Cold Spring Harbor Laboratory, One Bungtown Road, NY, 11724, Cold Spring Harbor, USA
| | - Wendy Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, 3052, Australia
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.
| |
Collapse
|
15
|
Ki BS, Shim SH, Park C, Yoo H, La H, Lee OH, Kwon Y, Skalnik DG, Okada Y, Yoon HG, Kim JH, Hong K, Choi Y. Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1098-1108. [PMID: 35918532 PMCID: PMC9440128 DOI: 10.1038/s12276-022-00813-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Meiosis occurs specifically in germ cells to produce sperm and oocytes that are competent for sexual reproduction. Multiple factors are required for successful meiotic entry, progression, and termination. Among them, trimethylation of histone H3 on lysine 4 (H3K4me3), a mark of active transcription, has been implicated in spermatogenesis by forming double-strand breaks (DSBs). However, the role of H3K4me in transcriptional regulation during meiosis remains poorly understood. Here, we reveal that mouse CXXC finger protein 1 (Cfp1), a component of the H3K4 methyltransferase Setd1a/b, is dynamically expressed in differentiating male germ cells and safeguards meiosis by controlling gene expression. Genetic ablation of mouse CFP1 in male germ cells caused complete infertility with failure in prophase I of the 1st meiosis. Mechanistically, CFP1 binds to genes essential for spermatogenesis, and its loss leads to a reduction in H3K4me3 levels and gene expression. Importantly, CFP1 is highly enriched within the promoter/TSS of target genes to elevate H3K4me3 levels and gene expression at the pachytene stage of meiotic prophase I. The most enriched genes were associated with meiosis and homologous recombination during the differentiation of spermatocytes to round spermatids. Therefore, our study establishes a mechanistic link between CFP1-mediated transcriptional control and meiotic progression and might provide an unprecedented genetic basis for understanding human sterility. Details of the role of a protein in the development of sperm cells in mice could lead to new understanding of sterility in men. An international research team led by Youngsok Choi and Kwonho Hong at Konkuk University, Seoul, South Korea, investigated the role of protein Cfp1, which they found to be required for sperm formation in mice. The protein is a component of an enzyme complex that transfers methyl groups (CH3) onto other proteins involved in controlling gene activity. The researchers identified key aspects of the mechanism by which Cfp1 controls the activity of genes essential for sperm formation to proceed normally. Absence of Cfp1 specifically interferes with the process of meiosis, which generates sperm cells containing only one copy of each chromosome instead of the two copies found in other cells.
Collapse
Affiliation(s)
- Byeong Seong Ki
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - David G Skalnik
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Damm E, Ullrich KK, Amos WB, Odenthal-Hesse L. Evolution of the recombination regulator PRDM9 in minke whales. BMC Genomics 2022; 23:212. [PMID: 35296233 PMCID: PMC8925151 DOI: 10.1186/s12864-022-08305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types – that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. Results Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales – shared across North Atlantic and North Pacific minke whale subspecies boundaries. Conclusion The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08305-1.
Collapse
Affiliation(s)
- Elena Damm
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - Kristian K Ullrich
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - William B Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany.
| |
Collapse
|
17
|
Yang L, Gao Y, Li M, Park KE, Liu S, Kang X, Liu M, Oswalt A, Fang L, Telugu BP, Sattler CG, Li CJ, Cole JB, Seroussi E, Xu L, Yang L, Zhou Y, Li L, Zhang H, Rosen BD, Van Tassell CP, Ma L, Liu GE. Genome-wide recombination map construction from single sperm sequencing in cattle. BMC Genomics 2022; 23:181. [PMID: 35247961 PMCID: PMC8898482 DOI: 10.1186/s12864-022-08415-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Meiotic recombination is one of the important phenomena contributing to gamete genome diversity. However, except for human and a few model organisms, it is not well studied in livestock, including cattle. RESULTS To investigate their distributions in the cattle sperm genome, we sequenced 143 single sperms from two Holstein bulls. We mapped meiotic recombination events at high resolution based on phased heterozygous single nucleotide polymorphism (SNP). In the absence of evolutionary selection pressure in fertilization and survival, recombination events in sperm are enriched near distal chromosomal ends, revealing that such a pattern is intrinsic to the molecular mechanism of meiosis. Furthermore, we further validated these findings in single sperms with results derived from sequencing its family trio of diploid genomes and our previous studies of recombination in cattle. CONCLUSIONS To our knowledge, this is the first large-scale single sperm whole-genome sequencing effort in livestock, which provided useful information for future studies of recombination, genome instability, and male infertility.
Collapse
Affiliation(s)
- Liu Yang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Mingxun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Ki-Eun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xiaolong Kang
- College of Agriculture, Ningxia University, Yinchuan, 750021 China
| | - Mei Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Adam Oswalt
- Select Sires Inc, 11740 U.S. 42 North, Plain City, OH 43064 USA
| | - Lingzhao Fang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Bhanu P. Telugu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
- Division of Animal Sciences, University of Missouri, Columbia, MO 65201 USA
| | | | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Eyal Seroussi
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, P.O.B 15159, HaMaccabim Road, 7528809 Rishon LeTsiyon, Israel
| | - Lingyang Xu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
18
|
Larson EL, Kopania EEK, Hunnicutt KE, Vanderpool D, Keeble S, Good JM. Stage-specific disruption of X chromosome expression during spermatogenesis in sterile house mouse hybrids. G3 (BETHESDA, MD.) 2022; 12:jkab407. [PMID: 34864964 PMCID: PMC9210296 DOI: 10.1093/g3journal/jkab407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.
Collapse
Affiliation(s)
- Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
19
|
Lukaszewicz A, Lange J, Keeney S, Jasin M. De novo deletions and duplications at recombination hotspots in mouse germlines. Cell 2021; 184:5970-5984.e18. [PMID: 34793701 PMCID: PMC8616837 DOI: 10.1016/j.cell.2021.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Davies B, Hinch AG, Cebrian-Serrano A, Alghadban S, Becker PW, Biggs D, Hernandez-Pliego P, Preece C, Moralli D, Zhang G, Myers S, Donnelly P. Altering the binding properties of PRDM9 partially restores fertility across the species boundary. Mol Biol Evol 2021; 38:5555-5562. [PMID: 34491357 PMCID: PMC8662609 DOI: 10.1093/molbev/msab269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sterility or subfertility of male hybrid offspring is commonly observed. This phenomenon contributes to reproductive barriers between the parental populations, an early step in the process of speciation. One frequent cause of such infertility is a failure of proper chromosome pairing during male meiosis. In subspecies of the house mouse, the likelihood of successful chromosome synapsis is improved by the binding of the histone methyltransferase PRDM9 to both chromosome homologues at matching positions. Using genetic manipulation, we altered PRDM9 binding to occur more often at matched sites, and find that chromosome pairing defects can be rescued, not only in an inter-subspecific cross, but also between distinct species. Using different engineered variants, we demonstrate a quantitative link between the degree of matched homologue binding, chromosome synapsis and rescue of fertility in hybrids between Mus musculus and Mus spretus. The resulting partial restoration of fertility reveals additional mechanisms at play that act to lock-in the reproductive isolation between these two species.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | | | | | - Samy Alghadban
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Philipp W Becker
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | | | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK
| | - Simon Myers
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK.,Dept. of Statistics, University of Oxford, OX1 3LB, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, UK.,Dept. of Statistics, University of Oxford, OX1 3LB, UK
| |
Collapse
|
21
|
Gergelits V, Parvanov E, Simecek P, Forejt J. Chromosome-wide characterization of meiotic noncrossovers (gene conversions) in mouse hybrids. Genetics 2021; 217:1-14. [PMID: 33683354 DOI: 10.1093/genetics/iyaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 01/16/2023] Open
Abstract
During meiosis, the recombination-initiating DNA double-strand breaks (DSBs) are repaired by crossovers or noncrossovers (gene conversions). While crossovers are easily detectable, noncrossover identification is hampered by the small size of their converted tracts and the necessity of sequence polymorphism. We report identification and characterization of a mouse chromosome-wide set of noncrossovers by next-generation sequencing of 10 mouse intersubspecific chromosome substitution strains. Based on 94 identified noncrossovers, we determined the mean length of a conversion tract to be 32 bp. The spatial chromosome-wide distribution of noncrossovers and crossovers significantly differed, although both sets overlapped the known hotspots of PRDM9-directed histone methylation and DNA DSBs, thus supporting their origin in the standard DSB repair pathway. A significant deficit of noncrossovers descending from asymmetric DSBs proved their proposed adverse effect on meiotic recombination and pointed to sister chromatids as an alternative template for their repair. The finding has implications for the molecular mechanism of hybrid sterility in mice from crosses between closely related Mus musculus musculus and Mus musculus domesticus subspecies.
Collapse
Affiliation(s)
- Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, CZ-12000 Prague, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Petr Simecek
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, CZ-25250 Vestec, Czech Republic
| |
Collapse
|
22
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
23
|
Jin X, Fudenberg G, Pollard KS. Genome-wide variability in recombination activity is associated with meiotic chromatin organization. Genome Res 2021; 31:1561-1572. [PMID: 34301629 PMCID: PMC8415379 DOI: 10.1101/gr.275358.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Recombination enables reciprocal exchange of genomic information between parental chromosomes and successful segregation of homologous chromosomes during meiosis. Errors in this process lead to negative health outcomes, whereas variability in recombination rate affects genome evolution. In mammals, most crossovers occur in hotspots defined by PRDM9 motifs, although PRDM9 binding peaks are not all equally hot. We hypothesize that dynamic patterns of meiotic genome folding are linked to recombination activity. We apply an integrative bioinformatics approach to analyze how three-dimensional (3D) chromosomal organization during meiosis relates to rates of double-strand-break (DSB) and crossover (CO) formation at PRDM9 binding peaks. We show that active, spatially accessible genomic regions during meiotic prophase are associated with DSB-favored loci, which further adopt a transient locally active configuration in early prophase. Conversely, crossover formation is depleted among DSBs in spatially accessible regions during meiotic prophase, particularly within gene bodies. We also find evidence that active chromatin regions have smaller average loop sizes in mammalian meiosis. Collectively, these findings establish that differences in chromatin architecture along chromosomal axes are associated with variable recombination activity. We propose an updated framework describing how 3D organization of brush-loop chromosomes during meiosis may modulate recombination.
Collapse
Affiliation(s)
- Xiaofan Jin
- Gladstone Institutes, San Francisco, California 94158, USA
| | - Geoff Fudenberg
- Gladstone Institutes, San Francisco, California 94158, USA.,Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, California 94158, USA.,University of California San Francisco, San Francisco, California 94143, USA.,Chan-Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
24
|
Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 2021; 184:4251-4267.e20. [PMID: 34260899 DOI: 10.1016/j.cell.2021.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Genetic recombination generates novel trait combinations, and understanding how recombination is distributed across the genome is key to modern genetics. The PRDM9 protein defines recombination hotspots; however, megabase-scale recombination patterning is independent of PRDM9. The single round of DNA replication, which precedes recombination in meiosis, may establish these patterns; therefore, we devised an approach to study meiotic replication that includes robust and sensitive mapping of replication origins. We find that meiotic DNA replication is distinct; reduced origin firing slows replication in meiosis, and a distinctive replication pattern in human males underlies the subtelomeric increase in recombination. We detected a robust correlation between replication and both contemporary and historical recombination and found that replication origin density coupled with chromosome size determines the recombination potential of individual chromosomes. Our findings and methods have implications for understanding the mechanisms underlying DNA replication, genetic recombination, and the landscape of mammalian germline variation.
Collapse
|
25
|
Forejt J, Jansa P, Parvanov E. Hybrid sterility genes in mice (Mus musculus): a peculiar case of PRDM9 incompatibility. Trends Genet 2021; 37:1095-1108. [PMID: 34238593 DOI: 10.1016/j.tig.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Hybrid sterility is a critical step in the evolution of reproductive barriers between diverging taxa during the process of speciation. Recent studies of young subspecies of the house mouse revealed a multigenic nature and frequent polymorphism of hybrid sterility genes as well as the recurrent engagement of the meiosis-specific gene PR domain-containing 9 (Prdm9) and X-linked loci. Prdm9-controlled hybrid sterility is essentially chromosomal in nature, conditioned by the sequence divergence between subspecies. Depending on the Prdm9 interallelic interactions and the X-linked Hstx2 locus, the same homologs either regularly recombine and synapse, or show impaired DNA DSB repair, asynapsis, and early meiotic arrest. Thus, Prdm9-dependent hybrid sterility points to incompatibilities affecting meiotic recombination as a possible mechanism of reproductive isolation between (sub)species.
Collapse
Affiliation(s)
- Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic.
| | - Petr Jansa
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Emil Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| |
Collapse
|
26
|
Mihola O, Landa V, Pratto F, Brick K, Kobets T, Kusari F, Gasic S, Smagulova F, Grey C, Flachs P, Gergelits V, Tresnak K, Silhavy J, Mlejnek P, Camerini-Otero RD, Pravenec M, Petukhova GV, Trachtulec Z. Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. BMC Biol 2021; 19:86. [PMID: 33910563 PMCID: PMC8082845 DOI: 10.1186/s12915-021-01017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
Collapse
Affiliation(s)
- Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vladimir Landa
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Florencia Pratto
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatyana Kobets
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fitore Kusari
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Srdjan Gasic
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fatima Smagulova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- Present address: Inserm U1085 IRSET, 35042, Rennes, France
| | - Corinne Grey
- Institut de Génétique Humaine, CNRS UMR 9002, 34396, Montpellier, France
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
- Present address: Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Karel Tresnak
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Jan Silhavy
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Galina V Petukhova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic.
| |
Collapse
|
27
|
Mukaj A, Piálek J, Fotopulosova V, Morgan AP, Odenthal-Hesse L, Parvanov ED, Forejt J. Prdm9 Intersubspecific Interactions in Hybrid Male Sterility of House Mouse. Mol Biol Evol 2020; 37:3423-3438. [PMID: 32642764 PMCID: PMC7743643 DOI: 10.1093/molbev/msaa167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Amisa Mukaj
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladana Fotopulosova
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | | | - Linda Odenthal-Hesse
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Emil D Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| |
Collapse
|
28
|
Imai Y, Biot M, Clément JA, Teragaki M, Urbach S, Robert T, Baudat F, Grey C, de Massy B. PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine enrichment. eLife 2020; 9:57117. [PMID: 33047671 PMCID: PMC7599071 DOI: 10.7554/elife.57117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) at specific genomic locations that correspond to PRDM9-binding sites. The molecular steps occurring from PRDM9 binding to DSB formation are unknown. Using proteomic approaches to find PRDM9 partners, we identified HELLS, a member of the SNF2-like family of chromatin remodelers. Upon functional analyses during mouse male meiosis, we demonstrated that HELLS is required for PRDM9 binding and DSB activity at PRDM9 sites. However, HELLS is not required for DSB activity at PRDM9-independent sites. HELLS is also essential for 5-hydroxymethylcytosine (5hmC) enrichment at PRDM9 sites. Analyses of 5hmC in mice deficient for SPO11, which catalyzes DSB formation, and in PRDM9 methyltransferase deficient mice reveal that 5hmC is triggered at DSB-prone sites upon PRDM9 binding and histone modification, but independent of DSB activity. These findings highlight the complex regulation of the chromatin and epigenetic environments at PRDM9-specified hotspots.
Collapse
Affiliation(s)
- Yukiko Imai
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Mathilde Biot
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Julie Aj Clément
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Mariko Teragaki
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Thomas Robert
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Frédéric Baudat
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Corinne Grey
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| |
Collapse
|
29
|
Powers NR, Dumont BL, Emori C, Lawal RA, Brunton C, Paigen K, Handel MA, Bolcun-Filas E, Petkov PM, Bhattacharyya T. Sexual dimorphism in the meiotic requirement for PRDM9: A mammalian evolutionary safeguard. SCIENCE ADVANCES 2020; 6:6/43/eabb6606. [PMID: 33097538 PMCID: PMC7608834 DOI: 10.1126/sciadv.abb6606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/03/2020] [Indexed: 05/14/2023]
Abstract
In many mammals, genomic sites for recombination are determined by the histone methyltransferase PRMD9. Some mouse strains lacking PRDM9 are infertile, but instances of fertility or semifertility in the absence of PRDM9 have been reported in mice, canines, and a human female. Such findings raise the question of how the loss of PRDM9 is circumvented to maintain fertility. We show that genetic background and sex-specific modifiers can obviate the requirement for PRDM9 in mice. Specifically, the meiotic DNA damage checkpoint protein CHK2 acts as a modifier allowing female-specific fertility in the absence of PRDM9. We also report that, in the absence of PRDM9, a PRDM9-independent recombination system is compatible with female meiosis and fertility, suggesting sex-specific regulation of meiotic recombination, a finding with implications for speciation.
Collapse
Affiliation(s)
- Natalie R Powers
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Chihiro Emori
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | - Kenneth Paigen
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mary Ann Handel
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Petko M Petkov
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
30
|
Widmayer SJ, Handel MA, Aylor DL. Age and Genetic Background Modify Hybrid Male Sterility in House Mice. Genetics 2020; 216:585-597. [PMID: 32817010 PMCID: PMC7536842 DOI: 10.1534/genetics.120.303474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Hybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse (Mus musculus) subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific Prdm9 alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at Prdm9 and identical X chromosomes, but differ widely across the rest of the genome. In each case, we crossed female PWK/PhJ mice representative of the M. m. musculus subspecies to males from a classical inbred strain representative of M. m. domesticus: 129S1/SvImJ, A/J, C57BL/6J, or DBA/2J. We detected three distinct trajectories of fertility among the hybrids using breeding experiments. The PWK129S1 males were always infertile. PWKDBA2 males were fertile, despite their genotypes at the major HMS loci. We also observed age-dependent changes in fertility parameters across multiple genetic backgrounds. The PWKB6 and PWKAJ males were always infertile before 12 weeks and after 35 weeks. However, some PWKB6 and PWKAJ males were transiently fertile between 12 and 35 weeks. This observation could resolve previous contradictory reports about the fertility of PWKB6. Taken together, these results point to multiple segregating HMS modifier alleles, some of which have age-related modes of action. The ultimate identification of these alleles and their age-related mechanisms will advance understanding both of the genetic architecture of HMS and of how reproductive barriers are maintained between house mouse subspecies.
Collapse
Affiliation(s)
- Samuel J Widmayer
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Graduate Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | | | - David L Aylor
- Department of Biological Science, W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
31
|
Mapping the Effects of Genetic Variation on Chromatin State and Gene Expression Reveals Loci That Control Ground State Pluripotency. Cell Stem Cell 2020; 27:459-469.e8. [PMID: 32795400 DOI: 10.1016/j.stem.2020.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/07/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
Mouse embryonic stem cells (mESCs) cultured in the presence of LIF occupy a ground state with highly active pluripotency-associated transcriptional and epigenetic circuitry. However, ground state pluripotency in some inbred strain backgrounds is unstable in the absence of ERK1/2 and GSK3 inhibition. Using an unbiased genetic approach, we dissect the basis of this divergent response to extracellular cues by profiling gene expression and chromatin accessibility in 170 genetically heterogeneous mESCs. We map thousands of loci affecting chromatin accessibility and/or transcript abundance, including 10 QTL hotspots where genetic variation at a single locus coordinates the regulation of genes throughout the genome. For one hotspot, we identify a single enhancer variant ∼10 kb upstream of Lifr associated with chromatin accessibility and mediating a cascade of molecular events affecting pluripotency. We validate causation through reciprocal allele swaps, demonstrating the functional consequences of noncoding variation in gene regulatory networks that stabilize pluripotent states in vitro.
Collapse
|
32
|
Mahgoub M, Paiano J, Bruno M, Wu W, Pathuri S, Zhang X, Ralls S, Cheng X, Nussenzweig A, Macfarlan TS. Dual histone methyl reader ZCWPW1 facilitates repair of meiotic double strand breaks in male mice. eLife 2020; 9:e53360. [PMID: 32352380 PMCID: PMC7237205 DOI: 10.7554/elife.53360] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Meiotic crossovers result from homology-directed repair of DNA double-strand breaks (DSBs). Unlike yeast and plants, where DSBs are generated near gene promoters, in many vertebrates DSBs are enriched at hotspots determined by the DNA binding activity of the rapidly evolving zinc finger array of PRDM9 (PR domain zinc finger protein 9). PRDM9 subsequently catalyzes tri-methylation of lysine 4 and lysine 36 of Histone H3 in nearby nucleosomes. Here, we identify the dual histone methylation reader ZCWPW1, which is tightly co-expressed during spermatogenesis with Prdm9, as an essential meiotic recombination factor required for efficient repair of PRDM9-dependent DSBs and for pairing of homologous chromosomes in male mice. In sum, our results indicate that the evolution of a dual histone methylation writer/reader (PRDM9/ZCWPW1) system in vertebrates remodeled genetic recombination hotspot selection from an ancestral static pattern near genes towards a flexible pattern controlled by the rapidly evolving DNA binding activity of PRDM9.
Collapse
Affiliation(s)
- Mohamed Mahgoub
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesdaUnited States
| | - Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, NIHBethesdaUnited States
- Immunology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesdaUnited States
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIHBethesdaUnited States
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Sherry Ralls
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesdaUnited States
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIHBethesdaUnited States
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesdaUnited States
| |
Collapse
|
33
|
Spruce C, Dlamini S, Ananda G, Bronkema N, Tian H, Paigen K, Carter GW, Baker CL. HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots. Genes Dev 2020; 34:398-412. [PMID: 32001511 PMCID: PMC7050486 DOI: 10.1101/gad.333542.119] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Chromatin barriers prevent spurious interactions between regulatory elements and DNA-binding proteins. One such barrier, whose mechanism for overcoming is poorly understood, is access to recombination hot spots during meiosis. Here we show that the chromatin remodeler HELLS and DNA-binding protein PRDM9 function together to open chromatin at hot spots and provide access for the DNA double-strand break (DSB) machinery. Recombination hot spots are decorated by a unique combination of histone modifications not found at other regulatory elements. HELLS is recruited to hot spots by PRDM9 and is necessary for both histone modifications and DNA accessibility at hot spots. In male mice lacking HELLS, DSBs are retargeted to other sites of open chromatin, leading to germ cell death and sterility. Together, these data provide a model for hot spot activation in which HELLS and PRDM9 form a pioneer complex to create a unique epigenomic environment of open chromatin, permitting correct placement and repair of DSBs.
Collapse
Affiliation(s)
| | | | | | | | - Hui Tian
- The Jackson Laboratory, Bar Harbor, Maine 04660, USA
| | | | | | | |
Collapse
|
34
|
Vara C, Capilla L, Ferretti L, Ledda A, Sánchez-Guillén RA, Gabriel SI, Albert-Lizandra G, Florit-Sabater B, Bello-Rodríguez J, Ventura J, Searle JB, Mathias ML, Ruiz-Herrera A. PRDM9 Diversity at Fine Geographical Scale Reveals Contrasting Evolutionary Patterns and Functional Constraints in Natural Populations of House Mice. Mol Biol Evol 2020; 36:1686-1700. [PMID: 31004162 PMCID: PMC6657731 DOI: 10.1093/molbev/msz091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.
Collapse
Affiliation(s)
- Covadonga Vara
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luca Ferretti
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Ledda
- Department for Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rosa A Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Ecología AC (INECOL), Red de Biología Evolutiva, Xalapa, Veracruz, Mexico
| | - Sofia I Gabriel
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Guillermo Albert-Lizandra
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriu Florit-Sabater
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Bello-Rodríguez
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Maria L Mathias
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biol Evol 2019; 11:1552-1572. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2019] [Indexed: 12/13/2022] Open
Abstract
High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories. In analyses with different elevation thresholds, positively selected genes reflected similar functions and pathways, even though there were almost no specific genes in common. For example, EPAS1 (HIF2α), which has been implicated in high-elevation adaptation in other vertebrates, shows a signature of positive selection when high-elevation is defined broadly (>1,500 m), but not when defined narrowly (>2,500 m). Although a few biochemical pathways and genes change predictably as part of hummingbird adaptation to high-elevation conditions, independent lineages have rarely adapted via the same substitutions.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
36
|
Lustyk D, Kinský S, Ullrich KK, Yancoskie M, Kašíková L, Gergelits V, Sedlacek R, Chan YF, Odenthal-Hesse L, Forejt J, Jansa P. Genomic Structure of Hstx2 Modifier of Prdm9-Dependent Hybrid Male Sterility in Mice. Genetics 2019; 213:1047-1063. [PMID: 31562180 PMCID: PMC6827376 DOI: 10.1534/genetics.119.302554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.
Collapse
Affiliation(s)
- Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Faculty of Science, Charles University, Prague CZ-12000, Czech Republic
| | - Slavomír Kinský
- The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Kristian Karsten Ullrich
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Michelle Yancoskie
- Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany
| | - Lenka Kašíková
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Radislav Sedlacek
- The Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Yingguang Frank Chan
- Molecular Basis and Evolution of Complex Traits Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen 72076, Germany
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| |
Collapse
|
37
|
Li R, Bitoun E, Altemose N, Davies RW, Davies B, Myers SR. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat Commun 2019; 10:3900. [PMID: 31467277 PMCID: PMC6715734 DOI: 10.1038/s41467-019-11675-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
During meiotic recombination, homologue-templated repair of programmed DNA double-strand breaks (DSBs) produces relatively few crossovers and many difficult-to-detect non-crossovers. By intercrossing two diverged mouse subspecies over five generations and deep-sequencing 119 offspring, we detect thousands of crossover and non-crossover events genome-wide with unprecedented power and spatial resolution. We find that both crossovers and non-crossovers are strongly depleted at DSB hotspots where the DSB-positioning protein PRDM9 fails to bind to the unbroken homologous chromosome, revealing that PRDM9 also functions to promote homologue-templated repair. Our results show that complex non-crossovers are much rarer in mice than humans, consistent with complex events arising from accumulated non-programmed DNA damage. Unexpectedly, we also find that GC-biased gene conversion is restricted to non-crossover tracts containing only one mismatch. These results demonstrate that local genetic diversity profoundly alters meiotic repair pathway decisions via at least two distinct mechanisms, impacting genome evolution and Prdm9-related hybrid infertility. During meiotic recombination, genetic information is transferred or exchanged between parental chromosome copies. Using a large hybrid mouse pedigree, the authors generated high-resolution maps of these transfer/exchange events and discovered new properties governing their processing and resolution.
Collapse
Affiliation(s)
- Ran Li
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
| | - Emmanuelle Bitoun
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Nicolas Altemose
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.,Department of Bioengineering, Stanley Hall, University of California, Berkeley, CA, 94720, USA
| | - Robert W Davies
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK.,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Benjamin Davies
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon R Myers
- The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK. .,Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
| |
Collapse
|
38
|
Lee W, Plant K, Humburg P, Knight JC. AltHapAlignR: improved accuracy of RNA-seq analyses through the use of alternative haplotypes. Bioinformatics 2019. [PMID: 29514179 PMCID: PMC6041798 DOI: 10.1093/bioinformatics/bty125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Motivation Reliance on mapping to a single reference haplotype currently limits accurate estimation of allele or haplotype-specific expression using RNA-sequencing, notably in highly polymorphic regions such as the major histocompatibility complex. Results We present AltHapAlignR, a method incorporating alternate reference haplotypes to generate gene- and haplotype-level estimates of transcript abundance for any genomic region where such information is available. We validate using simulated and experimental data to quantify input allelic ratios for major histocompatibility complex haplotypes, demonstrating significantly improved correlation with ground truth estimates of gene counts compared to standard single reference mapping. We apply AltHapAlignR to RNA-seq data from 462 individuals, showing how significant underestimation of expression of the majority of classical human leukocyte antigen genes using conventional mapping can be corrected using AltHapAlignR to allow more accurate quantification of gene expression for individual alleles and haplotypes. Availability and implementation Source code freely available at https://github.com/jknightlab/AltHapAlignR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wanseon Lee
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katharine Plant
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Humburg
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Schwarz T, Striedner Y, Horner A, Haase K, Kemptner J, Zeppezauer N, Hermann P, Tiemann-Boege I. PRDM9 forms a trimer by interactions within the zinc finger array. Life Sci Alliance 2019; 2:e201800291. [PMID: 31308055 PMCID: PMC6643046 DOI: 10.26508/lsa.201800291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
PRDM9 is a trans-acting factor directing meiotic recombination to specific DNA-binding sites by its zinc finger (ZnF) array. It was suggested that PRDM9 is a multimer; however, we do not know the stoichiometry or the components inducing PRDM9 multimerization. In this work, we used in vitro binding studies and characterized with electrophoretic mobility shift assays, mass spectrometry, and fluorescence correlation spectroscopy the stoichiometry of the PRDM9 multimer of two different murine PRDM9 alleles carrying different tags and domains produced with different expression systems. Based on the migration distance of the PRDM9-DNA complex, we show that PRDM9 forms a trimer. Moreover, this stoichiometry is adapted already by the free, soluble protein with little exchange between protein monomers. The variable ZnF array of PRDM9 is sufficient for multimerization, and at least five ZnFs form already a functional trimer. Finally, we also show that only one ZnF array within the PRDM9 oligomer binds to the DNA, whereas the remaining two ZnF arrays likely maintain the trimer by ZnF-ZnF interactions.
Collapse
Affiliation(s)
- Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Karin Haase
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Jasmin Kemptner
- Red Cross Blood Transfusion Center Upper Austria, MedCampus II, Johannes Kepler University, Linz, Austria
| | | | - Philipp Hermann
- Institute of Applied Statistics, Johannes Kepler University, Linz, Austria
| | | |
Collapse
|
40
|
Raghupathy N, Choi K, Vincent MJ, Beane GL, Sheppard KS, Munger SC, Korstanje R, Pardo-Manual de Villena F, Churchill GA. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression. Bioinformatics 2019; 34:2177-2184. [PMID: 29444201 DOI: 10.1093/bioinformatics/bty078] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/09/2018] [Indexed: 02/06/2023] Open
Abstract
Motivation Allele-specific expression (ASE) refers to the differential abundance of the allelic copies of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome, read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads aligning equally well to multiple genomic locations, isoforms or alleles can comprise the majority (>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods have been developed that use weighted allocation of read counts but these methods treat the different types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have implemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to estimate total gene expression, isoform usage and ASE based on this hierarchical allocation. Results Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic variants improve estimates of ASE and total gene expression compared to methods that use reference genome alignments. Weighted allocation methods outperform methods that discard multi-reads. Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects. Availability and implementation EMASE software is available at https://github.com/churchill-lab/emase. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|
41
|
Menon DU, Shibata Y, Mu W, Magnuson T. Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germline transcription in the mouse. Development 2019; 146:dev174094. [PMID: 31043422 PMCID: PMC6803380 DOI: 10.1242/dev.174094] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
Abstract
A deficiency in BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, results in a meiotic arrest during spermatogenesis. Here, we explore the causative mechanisms. BRG1 is preferentially enriched at active promoters of genes essential for spermatogonial pluripotency and meiosis. In contrast, BRG1 is also associated with the repression of somatic genes. Chromatin accessibility at these target promoters is dependent upon BRG1. These results favor a model in which BRG1 coordinates spermatogenic transcription to ensure meiotic progression. In spermatocytes, BRG1 interacts with SCML2, a testis-specific PRC1 factor that is associated with the repression of somatic genes. We present evidence to suggest that BRG1 and SCML2 concordantly regulate genes during meiosis. Furthermore, BRG1 is required for the proper localization of SCML2 and its associated deubiquitylase, USP7, to the sex chromosomes during pachynema. SCML2-associated mono-ubiquitylation of histone H2A lysine 119 (H2AK119ub1) and acetylation of histone lysine 27 (H3K27ac) are elevated in Brg1cKO testes. Coincidentally, the PRC1 ubiquitin ligase RNF2 is activated while a histone H2A/H2B deubiquitylase USP3 is repressed. Thus, BRG1 impacts the male epigenome by influencing the localization and expression of epigenetic modifiers. This mechanism highlights a novel paradigm of cooperativity between SWI/SNF and PRC1.
Collapse
Affiliation(s)
- Debashish U Menon
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Yoichiro Shibata
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Weipeng Mu
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Terry Magnuson
- Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
42
|
Mihola O, Pratto F, Brick K, Linhartova E, Kobets T, Flachs P, Baker CL, Sedlacek R, Paigen K, Petkov PM, Camerini-Otero RD, Trachtulec Z. Histone methyltransferase PRDM9 is not essential for meiosis in male mice. Genome Res 2019; 29:1078-1086. [PMID: 31186301 PMCID: PMC6633264 DOI: 10.1101/gr.244426.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/07/2019] [Indexed: 01/03/2023]
Abstract
A hallmark of meiosis is the rearrangement of parental alleles to ensure genetic diversity in the gametes. These chromosome rearrangements are mediated by the repair of programmed DNA double-strand breaks (DSBs) as genetic crossovers between parental homologs. In mice, humans, and many other mammals, meiotic DSBs occur primarily at hotspots, determined by sequence-specific binding of the PRDM9 protein. Without PRDM9, meiotic DSBs occur near gene promoters and other functional sites. Studies in a limited number of mouse strains showed that functional PRDM9 is required to complete meiosis, but despite its apparent importance, Prdm9 has been repeatedly lost across many animal lineages. Both the reason for mouse sterility in the absence of PRDM9 and the mechanism by which Prdm9 can be lost remain unclear. Here, we explore whether mice can tolerate the loss of Prdm9 By generating Prdm9 functional knockouts in an array of genetic backgrounds, we observe a wide range of fertility phenotypes and ultimately demonstrate that PRDM9 is not required for completion of male meiosis. Although DSBs still form at a common subset of functional sites in all mice lacking PRDM9, meiotic outcomes differ substantially. We speculate that DSBs at functional sites are difficult to repair as a crossover and that by increasing the efficiency of crossover formation at these sites, genetic modifiers of recombination rates can allow for meiotic progression. This model implies that species with a sufficiently high recombination rate may lose Prdm9 yet remain fertile.
Collapse
Affiliation(s)
- Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Florencia Pratto
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Eliska Linhartova
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Tatyana Kobets
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Christopher L Baker
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Petko M Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
43
|
Lim MCW, Witt CC, Graham CH, Dávalos LM. Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biol Evol 2019; 11:1573-1585. [PMID: 31028697 PMCID: PMC6553502 DOI: 10.1093/gbe/evz090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/27/2022] Open
Abstract
Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination rates can vary drastically across genomes, often localized into small recombination "hotspots" with highly elevated rates, surrounded by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9, whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recombination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had highly divergent landscapes between stickleback populations, where only ∼15% of these hotspots were shared. Our results indicate that fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish. Interestingly, we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may possess a novel mechanism for targeting recombination hotspots at a fine-scale.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University
| |
Collapse
|
44
|
Morgan AP, Bell TA, Crowley JJ, Pardo-Manuel de Villena F. Instability of the Pseudoautosomal Boundary in House Mice. Genetics 2019; 212:469-487. [PMID: 31028113 PMCID: PMC6553833 DOI: 10.1534/genetics.119.302232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful segregation of homologous chromosomes at meiosis requires pairing and recombination. In taxa with dimorphic sex chromosomes, pairing between them in the heterogametic sex is limited to a narrow interval of residual sequence homology known as the pseudoautosomal region (PAR). Failure to form the obligate crossover in the PAR is associated with male infertility in house mice (Mus musculus) and humans. Yet despite this apparent functional constraint, the boundary and organization of the PAR is highly variable in mammals, and even between subspecies of mice. Here, we estimate the genetic map in a previously documented expansion of the PAR in the M. musculus castaneus subspecies and show that the local recombination rate is 100-fold higher than the autosomal background. We identify an independent shift in the PAR boundary in the M. musculus musculus subspecies and show that it involves a complex rearrangement, but still recombines in heterozygous males. Finally, we demonstrate pervasive copy-number variation at the PAR boundary in wild populations of M. m. domesticus, M. m. musculus, and M. m. castaneus Our results suggest that the intensity of recombination activity in the PAR, coupled with relatively weak constraints on its sequence, permit the generation and maintenance of unusual levels of polymorphism in the population of unknown functional significance.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
45
|
Hinch AG, Zhang G, Becker PW, Moralli D, Hinch R, Davies B, Bowden R, Donnelly P. Factors influencing meiotic recombination revealed by whole-genome sequencing of single sperm. Science 2019; 363:eaau8861. [PMID: 30898902 PMCID: PMC6445350 DOI: 10.1126/science.aau8861] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023]
Abstract
Recombination is critical to meiosis and evolution, yet many aspects of the physical exchange of DNA via crossovers remain poorly understood. We report an approach for single-cell whole-genome DNA sequencing by which we sequenced 217 individual hybrid mouse sperm, providing a kilobase-resolution genome-wide map of crossovers. Combining this map with molecular assays measuring stages of recombination, we identified factors that affect crossover probability, including PRDM9 binding on the non-initiating template homolog and telomere proximity. These factors also influence the time for sites of recombination-initiating DNA double-strand breaks to find and engage their homologs, with rapidly engaging sites more likely to form crossovers. We show that chromatin environment on the template homolog affects positioning of crossover breakpoints. Our results also offer insights into recombination in the pseudoautosomal region.
Collapse
Affiliation(s)
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Philipp W Becker
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Robert Hinch
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Baker CL, Walker M, Arat S, Ananda G, Petkova P, Powers NR, Tian H, Spruce C, Ji B, Rausch D, Choi K, Petkov PM, Carter GW, Paigen K. Tissue-Specific Trans Regulation of the Mouse Epigenome. Genetics 2019; 211:831-845. [PMID: 30593494 PMCID: PMC6404261 DOI: 10.1534/genetics.118.301697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/15/2018] [Indexed: 11/18/2022] Open
Abstract
The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.
Collapse
Affiliation(s)
| | | | - Seda Arat
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | - Hui Tian
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | | | - Bo Ji
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | | | |
Collapse
|
47
|
Patel L, Kang R, Rosenberg SC, Qiu Y, Raviram R, Chee S, Hu R, Ren B, Cole F, Corbett KD. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat Struct Mol Biol 2019; 26:164-174. [PMID: 30778236 PMCID: PMC6403010 DOI: 10.1038/s41594-019-0187-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
In meiotic prophase, chromosomes are organized into compacted loop arrays to promote homolog pairing and recombination. Here, we probe the architecture of the mouse spermatocyte genome in early and late meiotic prophase using chromosome conformation capture (Hi-C). Our data support the established loop array model of meiotic chromosomes, and infer loops averaging 0.8-1.0 megabase pairs (Mb) in early prophase and extending to 1.5-2.0 Mb in late prophase as chromosomes compact and homologs undergo synapsis. Topologically associating domains (TADs) are lost in meiotic prophase, suggesting that assembly of the meiotic chromosome axis alters the activity of chromosome-associated cohesin complexes. While TADs are lost, physically separated A and B compartments are maintained in meiotic prophase. Moreover, meiotic DNA breaks and interhomolog crossovers preferentially form in the gene-dense A compartment, revealing a role for chromatin organization in meiotic recombination. Finally, direct detection of interhomolog contacts genome-wide reveals the structural basis for homolog alignment and juxtaposition by the synaptonemal complex.
Collapse
Affiliation(s)
- Lucas Patel
- Department of Biology, University of California San Diego, La Jolla, CA, USA
| | - Rhea Kang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Genetics and Epigenetics Graduate Program, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Scott C Rosenberg
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Yunjiang Qiu
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Sora Chee
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA.
- Genetics and Epigenetics Graduate Program, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Rousselle M, Laverré A, Figuet E, Nabholz B, Galtier N. Influence of Recombination and GC-biased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds. Mol Biol Evol 2019; 36:458-471. [PMID: 30590692 PMCID: PMC6389324 DOI: 10.1093/molbev/msy243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombination is expected to affect functional sequence evolution in several ways. On the one hand, recombination is thought to improve the efficiency of multilocus selection by dissipating linkage disequilibrium. On the other hand, natural selection can be counteracted by recombination-associated transmission distorters such as GC-biased gene conversion (gBGC), which tends to promote G and C alleles irrespective of their fitness effect in high-recombining regions. It has been suggested that gBGC might impact coding sequence evolution in vertebrates, and particularly the ratio of nonsynonymous to synonymous substitution rates (dN/dS). However, distinctive gBGC patterns have been reported in mammals and birds, maybe reflecting the documented contrasts in evolutionary dynamics of recombination rate between these two taxa. Here, we explore how recombination and gBGC affect coding sequence evolution in mammals and birds by analyzing proteome-wide data in six species of Galloanserae (fowls) and six species of catarrhine primates. We estimated the dN/dS ratio and rates of adaptive and nonadaptive evolution in bins of genes of increasing recombination rate, separately analyzing AT → GC, GC → AT, and G ↔ C/A ↔ T mutations. We show that in both taxa, recombination and gBGC entail a decrease in dN/dS. Our analysis indicates that recombination enhances the efficiency of purifying selection by lowering Hill-Robertson effects, whereas gBGC leads to an overestimation of the adaptive rate of AT → GC mutations. Finally, we report a mutagenic effect of recombination, which is independent of gBGC.
Collapse
Affiliation(s)
| | - Alexandre Laverré
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emeric Figuet
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Benoit Nabholz
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Nicolas Galtier
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
49
|
Wang L, Valiskova B, Forejt J. Cisplatin-induced DNA double-strand breaks promote meiotic chromosome synapsis in PRDM9-controlled mouse hybrid sterility. eLife 2018; 7:e42511. [PMID: 30592461 PMCID: PMC6324875 DOI: 10.7554/elife.42511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
PR domain containing 9 (Prdm9) is specifying hotspots of meiotic recombination but in hybrids between two mouse subspecies Prdm9 controls failure of meiotic chromosome synapsis and hybrid male sterility. We have previously reported that Prdm9-controlled asynapsis and meiotic arrest are conditioned by the inter-subspecific heterozygosity of the hybrid genome and we presumed that the insufficient number of properly repaired PRDM9-dependent DNA double-strand breaks (DSBs) causes asynapsis of chromosomes and meiotic arrest (Gregorova et al., 2018). We now extend the evidence for the lack of properly processed DSBs by improving meiotic chromosome synapsis with exogenous DSBs. A single injection of chemotherapeutic drug cisplatin increased frequency of RPA and DMC1 foci at the zygotene stage of sterile hybrids, enhanced homolog recognition and increased the proportion of spermatocytes with fully synapsed homologs at pachytene. The results bring a new evidence for a DSB-dependent mechanism of synapsis failure and infertility of intersubspecific hybrids.
Collapse
Affiliation(s)
- Liu Wang
- BIOCEV DivisionInstitute of Molecular Genetics, Czech Academy of SciencesVestecCzech Republic
| | - Barbora Valiskova
- BIOCEV DivisionInstitute of Molecular Genetics, Czech Academy of SciencesVestecCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jiri Forejt
- BIOCEV DivisionInstitute of Molecular Genetics, Czech Academy of SciencesVestecCzech Republic
| |
Collapse
|
50
|
Kang R, Zelazowski MJ, Cole F. Missing the Mark: PRDM9-Dependent Methylation Is Required for Meiotic DSB Targeting. Mol Cell 2018; 69:725-727. [PMID: 29499130 DOI: 10.1016/j.molcel.2018.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PRDM9 determines the localization of meiotic recombination hotspots, which are associated with histone H3 methylation. It is not known whether PRDM9's methyltransferase activity is required or how some PRDM9 alleles can dominate the distribution of hotspots over other alleles. Diagouraga, Clément, and colleagues (2018) show that methyltransferase activity is required for hotspot localization and that this activity is additive in combination, suggesting that the dominance of particular alleles is simply proportional to the frequency of targeted sites.
Collapse
Affiliation(s)
- Rhea Kang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Science Park, Smithville, TX 78957, USA
| | - Maciej J Zelazowski
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Science Park, Smithville, TX 78957, USA.
| |
Collapse
|