1
|
Biswas P, Bako JA, Liston JB, Yu H, Wat LW, Miller CJ, Gordon MD, Huan T, Stanley M, Rideout EJ. Insulin/insulin-like growth factor signaling pathway promotes higher fat storage in Drosophila females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.623936. [PMID: 40342968 PMCID: PMC12060994 DOI: 10.1101/2024.11.18.623936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
In Drosophila , adult females store more fat than males. While the mechanisms that restrict body fat in males are becoming clearer, less is known about how females achieve higher fat storage. Here, we perform a detailed investigation of the mechanisms that promote higher fat storage in females. We show greater intake of dietary sugar supports higher fat storage due to female-biased remodeling of the fat body lipidome. Dietary sugar stimulates a female-specific increase in Drosophila insulin-like peptide 3 (Dilp3), which acts together with greater peripheral insulin sensitivity to augment insulin/insulin-like growth factor signaling pathway (IIS) activity in adult females. Indeed, Dilp3 overexpression prevented the female-biased decrease in body fat after removal of dietary sugar. Given that adult-specific IIS inhibition caused a female-biased decrease in body fat, our data reveal IIS as a key determinant of female fat storage.
Collapse
|
2
|
Zhang M, Wen H, Sun Q, Zhang D, Li Y, Xi A, Zheng X, Wu Y, Cao J, Bouyer J, Xi Z. Early attainment of 20-hydroxyecdysone threshold shapes mosquito sexual dimorphism in developmental timing. Nat Commun 2025; 16:821. [PMID: 39827175 PMCID: PMC11743200 DOI: 10.1038/s41467-025-56224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika. Our results show that the attainment of CW is contingent upon surpassing a critical 20E threshold, which results in entrance into a constant 22 h interval and the subsequent 20E pulse responsible for larval-pupal ecdysis. Sexual dimorphism in pupation time arises from higher basal 20E levels in males, enabling earlier CW attainment. Administering 20E at 50% of L3/L4 molt, when most of males but not females pass the pulse, results in female-specific lethality. These findings highlight the pivotal role of 20E thresholds in CW, pupation timing, and sexual dimorphism, suggesting that manipulating 20E levels can skew populations male, offering a potential mosquito sex separation strategy.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Han Wen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Qiang Sun
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Dongjing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Andrew Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Xiaoying Zheng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jeremy Bouyer
- Insect Pest Control Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- ASTRE, CIRAD, F34398, Montpellier, France
- ASTRE, Cirad, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Zhiyong Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Grmai L, Mychalczuk M, Arkalgud A, Vasudevan D. Sexually dimorphic ATF4 expression in the fat confers female stress tolerance in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630478. [PMID: 39763862 PMCID: PMC11703189 DOI: 10.1101/2024.12.27.630478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Metabolic differences between males and females have been well documented across many species. However, the molecular basis of these differences and how they impact tolerance to nutrient deprivation is still under investigation. In this work, we use Drosophila melanogaster to demonstrate that sex-specific differences in fat tissue metabolism are driven, in part, by dimorphic expression of the Integrated Stress Response (ISR) transcription factor, ATF4. We found that female fat tissues have higher ATF4 activity than their male counter parts under homeostatic conditions. This dimorphism was partly due to a female bias in transcript abundance of specific ATF4 splice isoforms. We found that the canonical sex determinants transformer (tra) and doublesex (dsx) drive such dimorphic ATF4 transcript abundance. These differences persist in a genetic model of nutrient deprivation, where female animals showed greater resistance to lethality than males in an ATF4-dependent manner. These results suggest that higher ATF4 activity confers higher tolerance to stress in females. Together, our data describe a previously unknown facet of ISR signaling wherein sexual identity of adipose tissue confers differential stress tolerance in males and females. Since energy storage mechanisms are known to be dimorphic and have been linked to ATF4 regulation, our studies provide a mechanistic starting point for understanding how sexual identity influences metabolic disease outcomes.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Present Address: Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Melissa Mychalczuk
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Present Address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Aditya Arkalgud
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deepika Vasudevan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Hérault C, Pihl T, Hudry B. Cellular sex throughout the organism underlies somatic sexual differentiation. Nat Commun 2024; 15:6925. [PMID: 39138201 PMCID: PMC11322332 DOI: 10.1038/s41467-024-51228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Sex chromosomes underlie the development of male or female sex organs across species. While systemic signals derived from sex organs prominently contribute to sex-linked differences, it is unclear whether the intrinsic presence of sex chromosomes in somatic tissues has a specific function. Here, we use genetic tools to show that cellular sex is crucial for sexual differentiation throughout the body in Drosophila melanogaster. We reveal that every somatic cell converts the intrinsic presence of sex chromosomes into the active production of a sex determinant, a female specific serine- and arginine-rich (SR) splicing factor. This discovery dismisses the mosaic model which posits that only a subset of cells has the potential to sexually differentiate. Using cell-specific sex reversals, we show that this prevalence of cellular sex drives sex differences in organ size and body weight and is essential for fecundity. These findings demonstrate that cellular sex drives differentiation programs at an organismal scale and highlight the importance of cellular sex pathways in sex trait evolution.
Collapse
Affiliation(s)
- Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
5
|
Audet T, Krol J, Pelletier K, Stewart AD, Dworkin I. Sexually discordant selection is associated with trait-specific morphological changes and a complex genomic response. Evolution 2024; 78:1426-1440. [PMID: 38720526 DOI: 10.1093/evolut/qpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 07/30/2024]
Abstract
Sexes often have differing fitness optima, potentially generating intra-locus sexual conflict, as each sex bears a genetic "load" of alleles beneficial to the other sex. One strategy to evaluate conflict in the genome is to artificially select populations discordantly against established sexual dimorphism (SD), reintroducing attenuated conflict. We investigate a long-term artificial selection experiment reversing sexual size dimorphism in Drosophila melanogaster during ~350 generations of sexually discordant selection. We explore morphological and genomic changes to identify loci under selection between the sexes in discordantly and concordantly size-selected treatments. Despite substantial changes to overall size, concordant selection maintained ancestral SD. However, discordant selection altered size dimorphism in a trait-specific manner. We observe multiple possible soft selective sweeps in the genome, with size-related genes showing signs of selection. Patterns of genomic differentiation between the sexes within lineages identified potential sites maintained by sexual conflict. One discordant selected lineage shows a pattern of elevated genomic differentiation between males and females on chromosome 3L, consistent with the maintenance of sexual conflict. Our results suggest visible signs of conflict and differentially segregating alleles between the sexes due to discordant selection.
Collapse
Affiliation(s)
- Tyler Audet
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Joelle Krol
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Katie Pelletier
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Andrew D Stewart
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
De Groef S, Ribeiro Lopes M, Winant M, Rosschaert E, Wilms T, Bolckmans L, Calevro F, Callaerts P. Reference genes to study the sex-biased expression of genes regulating Drosophila metabolism. Sci Rep 2024; 14:9518. [PMID: 38664539 PMCID: PMC11045863 DOI: 10.1038/s41598-024-58863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Sex is an important variable in biology. Notable differences have been observed between male and female Drosophila in regulation of metabolism, in response to nutritional challenges, and in phenotypes relevant for obesity and metabolic disorders. The differences between males and females can be expected to result from differences in gene expression. We observed that expression levels of reference genes commonly used for normalization of qRT-PCR results such as GAPDH, β-actin, and 18SrRNA, show prominent sexual dimorphism. Since this will impact relative expression and conclusions related to that, we performed a systematic analysis of candidate reference genes with the objective of identifying reference genes with stable expression in male and female Drosophila. These reference genes (LamCa, βTub60D and βTub97EF) were then used to assess sex-specific differences in expression of metabolism associated genes. Additionally, we evaluated the utility of these reference genes following a nutritional challenge and showed that LamCa and βtub97EF are stably expressed between sexes and under different nutritional conditions and are thus suitable as reference genes. Our results highlight the importance of evaluating the stability of reference genes when sex-specific differences in gene expression are studied, and identify structural genes as a category worth exploring as reference genes in other species. Finally, we also uncovered hitherto unknown sexually dimorphic expression of a number of metabolism-associated genes, information of interest to others working in the field of metabolic disorders.
Collapse
Affiliation(s)
- Sofie De Groef
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | | | - Mattias Winant
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | - Emily Rosschaert
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | - Tom Wilms
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | - Lenz Bolckmans
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | | | - Patrick Callaerts
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Cherian CM, Reeves HR, De Silva D, Tsao S, Marshall KE, Rideout EJ. Consideration of sex as a biological variable in diabetes research across twenty years. Biol Sex Differ 2024; 15:19. [PMID: 38409052 PMCID: PMC10895746 DOI: 10.1186/s13293-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Sex differences exist in the risk of developing type 1 and type 2 diabetes, and in the risk of developing diabetes-associated complications. Sex differences in glucose homeostasis, islet and β cell biology, and peripheral insulin sensitivity have also been reported. Yet, we lack detailed information on the mechanisms underlying these differences, preventing the development of sex-informed therapeutic strategies for persons living with diabetes. To chart a path toward greater inclusion of biological sex as a variable in diabetes research, we first need a detailed assessment of common practices in the field. METHODS We developed a scoring system to evaluate the inclusion of biological sex in manuscripts published in Diabetes, a journal published by the American Diabetes Association. We chose Diabetes as this journal focuses solely on diabetes and diabetes-related research, and includes manuscripts that use both clinical and biomedical approaches. We scored papers published across 3 years within a 20-year period (1999, 2009, 2019), a timeframe that spans the introduction of funding agency and journal policies designed to improve the consideration of biological sex as a variable. RESULTS Our analysis showed fewer than 15% of papers used sex-based analysis in even one figure across all study years, a trend that was reproduced across journal-defined categories of diabetes research (e.g., islet studies, signal transduction). Single-sex studies accounted for approximately 40% of all manuscripts, of which > 87% used male subjects only. While we observed a modest increase in the overall inclusion of sex as a biological variable during our study period, our data highlight significant opportunities for improvement in diabetes research practices. We also present data supporting a positive role for journal policies in promoting better consideration of biological sex in diabetes research. CONCLUSIONS Our analysis provides significant insight into common practices in diabetes research related to the consideration of biological sex as a variable. Based on our analysis we recommend ways that diabetes researchers can improve inclusion of biological sex as a variable. In the long term, improved practices will reveal sex-specific mechanisms underlying diabetes risk and complications, generating knowledge to enable the development of sex-informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Celena M Cherian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Hayley R Reeves
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Duneesha De Silva
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, The University of British Columbia, Vancouver, Canada
| | - Serena Tsao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Katie E Marshall
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.
- Life Sciences Center, 2350 Health Sciences Mall (RM3308), Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Leung K, van de Zande L, Beukeboom LW. Effects of polyploidization and their evolutionary implications are revealed by heritable polyploidy in the haplodiploid wasp Nasonia vitripennis. PLoS One 2023; 18:e0288278. [PMID: 37917617 PMCID: PMC10621845 DOI: 10.1371/journal.pone.0288278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/23/2023] [Indexed: 11/04/2023] Open
Abstract
Recurrent polyploidization occurred in the evolutionary history of most Eukaryota. However, how neopolyploid detriment (sterility, gigantism, gene dosage imbalances) has been overcome and even been bridged to evolutionary advantage (gene network diversification, mass radiation, range expansion) is largely unknown, particularly for animals. We used the parasitoid wasp Nasonia vitripennis, a rare insect system with heritable polyploidy, to begin addressing this knowledge gap. In Hymenoptera the sexes have different ploidies (haploid males, diploid females) and neopolyploids (diploid males, triploid females) occur for various species. Although such polyploids are usually sterile, those of N. vitripennis are reproductively capable and can even establish stable polyploid lines. To assess the effects of polyploidization, we compared a long-established polyploid line, the Whiting polyploid line (WPL) and a newly generated transformer knockdown line (tKDL) for fitness traits, absolute gene expression, and cell size and number. WPL polyploids have high male fitness and low female fecundity, while tKDL polyploids have poor male mate competition ability and high fertility. WPL has larger cells and cell number reduction, but the tKDL does not differ in this respect. Expression analyses of two housekeeping genes indicated that gene dosage is linked to sex irrespective of ploidy. Our study suggests that polyploid phenotypic variation may explain why some polyploid lineages thrive and others die out; a commonly proposed but difficult-to-test hypothesis. This documentation of diploid males (tKDL) with impaired competitive mating ability; triploid females with high fitness variation; and hymenopteran sexual dosage compensation (despite the lack of sex chromosomes) all challenges general assumptions on hymenopteran biology. We conclude that polyploidization is dependent on the duplicated genome characteristics and that genomes of different lines are unequally suited to survive diploidization. These results demonstrate the utility of N. vitripennis for delineating mechanisms of animal polyploid evolution, analogous to more advanced polyploid plant models.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Czarnoleski M, Szlachcic E, Privalova V, Maria Labecka A, Sikorska A, Sobczyk Ł, VandenBrooks J, Angilletta MJ. Oxygen and temperature affect cell sizes differently among tissues and between sexes of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2023; 150:104559. [PMID: 37640139 DOI: 10.1016/j.jinsphys.2023.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Spatio-temporal gradients in thermal and oxygen conditions trigger evolutionary and developmental responses in ectotherms' body size and cell size, which are commonly interpreted as adaptive. However, the evidence for cell-size responses is fragmentary, as cell size is typically assessed in single tissues. In a laboratory experiment, we raised genotypes of Drosophila melanogaster at all combinations of two temperatures (16 °C or 25 °C) and two oxygen levels (10% or 22%) and measured body size and the sizes of cells in different tissues. For each sex, we measured epidermal cells in a wing and a leg and ommatidial cells of an eye. For males, we also measured epithelial cells of a Malpighian tubule and muscle cells of a flight muscle. On average, females emerged at a larger body size than did males, having larger cells in all tissues. Flies of either sex emerged at a smaller body size when raised under warm or hypoxic conditions. Development at 25 °C resulted in smaller cells in most tissues. Development under hypoxia resulted in smaller cells in some tissues, especially among females. Altogether, our results show thermal and oxygen conditions trigger shifts in adult size, coupled with the systemic orchestration of cell sizes throughout the body of a fly. The nature of these patterns supports a model in which an ectotherm adjusts its life-history traits and cellular composition to prevent severe hypoxia at the cellular level. However, our results revealed some inconsistencies linked to sex, cell type, and environmental parameters, which suggest caution in translating information obtained for single type of cells to the organism as a whole.
Collapse
Affiliation(s)
- Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Łukasz Sobczyk
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
10
|
Diaz AV, Stephenson D, Nemkov T, D’Alessandro A, Reis T. Spenito-dependent metabolic sexual dimorphism intrinsic to fat storage cells. Genetics 2023; 225:iyad164. [PMID: 37738330 PMCID: PMC10627258 DOI: 10.1093/genetics/iyad164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 09/24/2023] Open
Abstract
Metabolism in males and females is distinct. Differences are usually linked to sexual reproduction, with circulating signals (e.g. hormones) playing major roles. In contrast, sex differences prior to sexual maturity and intrinsic to individual metabolic tissues are less understood. We analyzed Drosophila melanogaster larvae and find that males store more fat than females, the opposite of the sexual dimorphism in adults. We show that metabolic differences are intrinsic to the major fat storage tissue, including many differences in the expression of metabolic genes. Our previous work identified fat storage roles for Spenito (Nito), a conserved RNA-binding protein and regulator of sex determination. Nito knockdown specifically in the fat storage tissue abolished fat differences between males and females. We further show that Nito is required for sex-specific expression of the master regulator of sex determination, Sex-lethal (Sxl). "Feminization" of fat storage cells via tissue-specific overexpression of a Sxl target gene made larvae lean, reduced the fat differences between males and females, and induced female-like metabolic gene expression. Altogether, this study supports a model in which Nito autonomously controls sexual dimorphisms and differential expression of metabolic genes in fat cells in part through its regulation of the sex determination pathway.
Collapse
Affiliation(s)
- Arely V Diaz
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tânia Reis
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Vea IM, Wilcox AS, Frankino WA, Shingleton AW. Genetic Variation in Sexual Size Dimorphism Is Associated with Variation in Sex-Specific Plasticity in Drosophila. Am Nat 2023; 202:368-381. [PMID: 37606943 DOI: 10.1086/725420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractThe difference in body size between females and males, or sexual size dimorphism (SSD), is ubiquitous, yet we have a poor understanding of the developmental genetic mechanisms that generate it and how these mechanisms may vary within and among species. Such an understanding of the genetic architecture of SSD is important if we are to evaluate alternative models of SSD evolution, but the genetic architecture is difficult to describe because SSD is a characteristic of populations, not individuals. Here, we overcome this challenge by using isogenic lineages of Drosophila to measure SSD for 196 genotypes. We demonstrate extensive genetic variation for SSD, primarily driven by higher levels of genetic variation for body size among females than among males. While we observe a general increase in SSD with sex-averaged body size (pooling for sex) among lineages, most of the variation in SSD is independent of sex-averaged body size and shows a strong genetic correlation with sex-specific plasticity, such that increased female-biased SSD is associated with increased body size plasticity in females. Our data are consistent with the condition dependence hypothesis of sexual dimorphism and suggest that SSD in Drosophila is a consequence of selection on the developmental genetic mechanisms that regulate the plasticity of body size.
Collapse
|
12
|
Kaufmann P, Wiberg RAW, Papachristos K, Scofield DG, Tellgren-Roth C, Immonen E. Y-Linked Copy Number Polymorphism of Target of Rapamycin Is Associated with Sexual Size Dimorphism in Seed Beetles. Mol Biol Evol 2023; 40:msad167. [PMID: 37479678 PMCID: PMC10414808 DOI: 10.1093/molbev/msad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
The Y chromosome is theorized to facilitate evolution of sexual dimorphism by accumulating sexually antagonistic loci, but empirical support is scarce. Due to the lack of recombination, Y chromosomes are prone to degenerative processes, which poses a constraint on their adaptive potential. Yet, in the seed beetle, Callosobruchus maculatus segregating Y linked variation affects male body size and thereby sexual size dimorphism (SSD). Here, we assemble C. maculatus sex chromosome sequences and identify molecular differences associated with Y-linked SSD variation. The assembled Y chromosome is largely euchromatic and contains over 400 genes, many of which are ampliconic with a mixed autosomal and X chromosome ancestry. Functional annotation suggests that the Y chromosome plays important roles in males beyond primary reproductive functions. Crucially, we find that, besides an autosomal copy of the gene target of rapamycin (TOR), males carry an additional TOR copy on the Y chromosome. TOR is a conserved regulator of growth across taxa, and our results suggest that a Y-linked TOR provides a male specific opportunity to alter body size. A comparison of Y haplotypes associated with male size difference uncovers a copy number variation for TOR, where the haplotype associated with decreased male size, and thereby increased sexual dimorphism, has two additional TOR copies. This suggests that sexual conflict over growth has been mitigated by autosome to Y translocation of TOR followed by gene duplications. Our results reveal that despite of suppressed recombination, the Y chromosome can harbor adaptive potential as a male-limited supergene.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Uppsala, Sweden
| | - R Axel W Wiberg
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Uppsala, Sweden
- Ecology Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Douglas G Scofield
- Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden
| | - Christian Tellgren-Roth
- National Genomics Infrastructure, Uppsala Genome Center, SciLifeLab, BioMedical Centre, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics (Evolutionary Biology program), Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Delanoue R, Clot C, Leray C, Pihl T, Hudry B. Y chromosome toxicity does not contribute to sex-specific differences in longevity. Nat Ecol Evol 2023; 7:1245-1256. [PMID: 37308701 PMCID: PMC10406604 DOI: 10.1038/s41559-023-02089-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/14/2023] [Indexed: 06/14/2023]
Abstract
While sex chromosomes carry sex-determining genes, they also often differ from autosomes in size and composition, consisting mainly of silenced heterochromatic repetitive DNA. Even though Y chromosomes show structural heteromorphism, the functional significance of such differences remains elusive. Correlative studies suggest that the amount of Y chromosome heterochromatin might be responsible for several male-specific traits, including sex-specific differences in longevity observed across a wide spectrum of species, including humans. However, experimental models to test this hypothesis have been lacking. Here we use the Drosophila melanogaster Y chromosome to investigate the relevance of sex chromosome heterochromatin in somatic organs in vivo. Using CRISPR-Cas9, we generated a library of Y chromosomes with variable levels of heterochromatin. We show that these different Y chromosomes can disrupt gene silencing in trans, on other chromosomes, by sequestering core components of the heterochromatin machinery. This effect is positively correlated to the level of Y heterochromatin. However, we also find that the ability of the Y chromosome to affect genome-wide heterochromatin does not generate physiological sex differences, including sexual dimorphism in longevity. Instead, we discovered that it is the phenotypic sex, female or male, that controls sex-specific differences in lifespan, rather than the presence of a Y chromosome. Altogether, our findings dismiss the 'toxic Y' hypothesis that postulates that the Y chromosome leads to reduced lifespan in XY individuals.
Collapse
Affiliation(s)
- Rénald Delanoue
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France.
| | - Charlène Clot
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France
| | - Chloé Leray
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France
| | - Thomas Pihl
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France
| | - Bruno Hudry
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, INSERM, Nice, France.
| |
Collapse
|
14
|
Privalova V, Labecka AM, Szlachcic E, Sikorska A, Czarnoleski M. Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators. Sci Rep 2023; 13:7565. [PMID: 37160985 PMCID: PMC10169805 DOI: 10.1038/s41598-023-34674-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictorΔ2 and Mnt1) and corresponding controls. While rictorΔ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictorΔ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
15
|
Jeanne PV, McLamb F, Feng Z, Griffin L, Gong S, Shea D, Szuch MA, Scott S, Gersberg RM, Bozinovic G. Locomotion and brain gene expression exhibit sex-specific non-monotonic dose-response to HFPO-DA during Drosophila melanogaster lifespan. Neurotoxicology 2023; 96:207-221. [PMID: 37156305 DOI: 10.1016/j.neuro.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Legacy per- and polyfluoroalkyl substances (PFAS), known for their environmental persistence and bio-accumulative properties, have been phased out in the U.S. due to public health concerns. A newer polymerization aid used in the manufacture of some fluoropolymers, hexafluoropropylene oxide-dimer acid (HFPO-DA), has lower reported bioaccumulation and toxicity, but is a potential neurotoxicant implicated in dopaminergic neurodegeneration. OBJECTIVE We investigated HFPO-DA's bio-accumulative potential and sex-specific effects on lifespan, locomotion, and brain gene expression in fruit flies. METHODS We quantified bioaccumulation of HFPO-DA in fruit flies exposed to 8.7×104µg/L of HFPO-DA in the fly media for 14 days via UHPLC-MS. Long-term effect on lifespan was determined by exposing both sexes to 8.7×102 - 8.7×105µg/L of HFPO-DA in media. Locomotion was measured following 3, 7, and 14 days of exposures at 8.7×101 - 8.7×105µg/L of HFPO-DA in media, and high-throughput 3'-end RNA-sequencing was used to quantify gene expression in fly brains across the same time points. RESULTS Bioaccumulation of HFPO-DA in fruit flies was not detected. HFPO-DA-induced effects on lifespan, locomotion, and brain gene expression, and lowest adverse effect level (LOAEL) showed sexually dimorphic patterns. Locomotion scores significantly decreased in at least one dose at all time points for females and only at 3-day exposure for males, while brain gene expression exhibited non-monotonic dose-response. Differentially expressed genes correlated to locomotion scores revealed sex-specific numbers of positively and negatively correlated genes per functional category. CONCLUSION Although HFPO-DA effects on locomotion and survival were significant at doses higher than the US EPA reference dose, the brain transcriptomic profiling reveals sex-specific changes and neurological molecular targets; gene enrichments highlight disproportionately affected categories, including immune response: female-specific co-upregulation suggests potential neuroinflammation. Consistent sex-specific exposure effects necessitate blocking for sex in experimental design during HFPO-DA risk assessment.
Collapse
Affiliation(s)
- P Vu Jeanne
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, Division of Extended Studies, La Jolla, CA, USA
| | | | - Mary A Szuch
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Savannah Scott
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
| | - Richard M Gersberg
- San Diego State University, Graduate School of Public Health, San Diego, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA; San Diego State University, Graduate School of Public Health, San Diego, CA, USA; University of California, San Diego, School of Biological Sciences, La Jolla, CA, USA.
| |
Collapse
|
16
|
Szlachcic E, Labecka AM, Privalova V, Sikorska A, Czarnoleski M. Systemic orchestration of cell size throughout the body: influence of sex and rapamycin exposure in Drosophila melanogaster. Biol Lett 2023; 19:20220611. [PMID: 36946132 PMCID: PMC10031402 DOI: 10.1098/rsbl.2022.0611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Along with differences in life histories, metazoans have also evolved vast differences in cellularity, involving changes in the molecular pathways controlling the cell cycle. The extent to which the signalling network systemically determines cellular composition throughout the body and whether tissue cellularity is organized locally to match tissue-specific functions are unclear. We cultured genetic lines of Drosophila melanogaster on food with and without rapamycin to manipulate the activity of target of rapamycin (TOR)/insulin pathways and evaluate cell-size changes in five types of adult cells: wing and leg epidermal cells, ommatidial cells, indirect flight muscle cells and Malpighian tubule epithelial cells. Rapamycin blocks TOR multiprotein complex 1, reducing cell growth, but this effect has been studied in single cell types. As adults, rapamycin-treated flies had smaller bodies and consistently smaller cells in all tissues. Regardless, females eclosed with larger bodies and larger cells in all tissues than males. Thus, differences in TOR activity and sex were associated with the orchestration of cell size throughout the body, leading to differences in body size. We postulate that the activity of TOR/insulin pathways and their effects on cellularity should be considered when investigating the origin of ecological and evolutionary patterns in life histories.
Collapse
Affiliation(s)
- Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
17
|
Brownrigg GP, Xia YH, Chu CMJ, Wang S, Chao C, Zhang JA, Skovsø S, Panzhinskiy E, Hu X, Johnson JD, Rideout EJ. Sex differences in islet stress responses support female β cell resilience. Mol Metab 2023; 69:101678. [PMID: 36690328 PMCID: PMC9971554 DOI: 10.1016/j.molmet.2023.101678] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Pancreatic β cells play a key role in maintaining glucose homeostasis; dysfunction of this critical cell type causes type 2 diabetes (T2D). Emerging evidence points to sex differences in β cells, but few studies have examined male-female differences in β cell stress responses and resilience across multiple contexts, including diabetes. Here, we address the need for high-quality information on sex differences in β cell and islet gene expression and function using both human and rodent samples. METHODS In humans, we compared β cell gene expression and insulin secretion in donors with T2D to non-diabetic donors in both males and females. In mice, we generated a well-powered islet RNAseq dataset from 20-week-old male and female siblings with similar insulin sensitivity. Our unbiased gene expression analysis pointed to a sex difference in the endoplasmic reticulum (ER) stress response. Based on this analysis, we hypothesized female islets would be more resilient to ER stress than male islets. To test this, we subjected islets isolated from age-matched male and female mice to thapsigargin treatment and monitored protein synthesis, cell death, and β cell insulin production and secretion. Transcriptomic and proteomic analyses were used to characterize sex differences in islet responses to ER stress. RESULTS Our single-cell analysis of human β cells revealed sex-specific changes to gene expression and function in T2D, correlating with more robust insulin secretion in human islets isolated from female donors with T2D compared to male donors with T2D. In mice, RNA sequencing revealed differential enrichment of unfolded protein response pathway-associated genes, where female islets showed higher expression of genes linked with protein synthesis, folding, and processing. This differential expression was physiologically significant, as islets isolated from female mice were more resilient to ER stress induction with thapsigargin. Specifically, female islets showed a greater ability to maintain glucose-stimulated insulin production and secretion during ER stress compared with males. CONCLUSIONS Our data demonstrate sex differences in β cell gene expression in both humans and mice, and that female β cells show a greater ability to maintain glucose-stimulated insulin secretion across multiple physiological and pathological contexts.
Collapse
Affiliation(s)
- George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chieh Min Jamie Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Su Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jiashuo Aaron Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Evgeniy Panzhinskiy
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
18
|
Diaz AV, Matheny T, Stephenson D, Nemkov T, D’Alessandro A, Reis T. Spenito-dependent metabolic sexual dimorphism intrinsic to fat storage cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528952. [PMID: 36824729 PMCID: PMC9949119 DOI: 10.1101/2023.02.17.528952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Metabolism in males and females is distinct. Differences are usually linked to sexual reproduction, with circulating signals (e.g. hormones) playing major roles. By contrast, sex differences prior to sexual maturity and intrinsic to individual metabolic tissues are less understood. We analyzed Drosophila melanogaster larvae and find that males store more fat than females, the opposite of the sexual dimorphism in adults. We show that metabolic differences are intrinsic to the major fat storage tissue, including many differences in the expression of metabolic genes. Our previous work identified fat storage roles for Spenito (Nito), a conserved RNA-binding protein and regulator of sex determination. Nito knockdown specifically in the fat storage tissue abolished fat differences between males and females. We further show that Nito is required for sex-specific expression of the master regulator of sex determination, Sex-lethal (Sxl). "Feminization" of fat storage cells via tissue-specific overexpression of a Sxl target gene made larvae lean, reduced the fat differences between males and females, and induced female-like metabolic gene expression. Altogether, this study supports a model in which Nito autonomously controls sexual dimorphisms and differential expression of metabolic genes in fat cells in part through its regulation of the sex determination pathway.
Collapse
Affiliation(s)
- Arely V. Diaz
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tyler Matheny
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tânia Reis
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
19
|
Lushchak O, Strilbytska O, Storey KB. Gender-specific effects of pro-longevity interventions in Drosophila. Mech Ageing Dev 2023; 209:111754. [PMID: 36375654 DOI: 10.1016/j.mad.2022.111754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Sex differences in lifespan are well recognized in the majority of animal species. For example, in male versus female Drosophila melanogaster there are significant differences in behavior and physiology. However, little is known about the underlying mechanisms of gender differences in responses to pro-longevity interventions in this model organism. Here we summarize the existing data on the effects of nutritional and pharmacological anti-aging interventions such as nutrition regimens, diet and dietary supplementation on the lifespan of male and female Drosophila. We demonstrate that males and females have different sensitivities to interventions and that the effects are highly dependent on genetic background, mating, dose and exposure duration. Our work highlights the importance of understanding the mechanisms that underlie the gender-specific effect of anti-aging manipulations. This will provide insight into how these benefits may be valuable for elucidating the primary physiological and molecular targets involved in aging and lifespan determination.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
20
|
Paloma Álvarez-Rendón J, Manuel Murillo-Maldonado J, Rafael Riesgo-Escovar J. The insulin signaling pathway a century after its discovery: Sexual dimorphism in insulin signaling. Gen Comp Endocrinol 2023; 330:114146. [PMID: 36270337 DOI: 10.1016/j.ygcen.2022.114146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Since practically a century ago, the insulin pathway was discovered in both vertebrates and invertebrates, implying an evolutionarily ancient origin. After a century of research, it is now clear that the insulin signal transduction pathway is a critical, flexible and pleiotropic pathway, evolving into multiple anabolic functions besides glucose homeostasis. It regulates paramount aspects of organismal well-being like growth, longevity, intermediate metabolism, and reproduction. Part of this diversification has been attained by duplications and divergence of both ligands and receptors riding on a common general signal transduction system. One of the aspects that is strikingly different is its usage in reproduction, particularly in male versus female development and fertility within the same species. This review highlights sexual divergence in metabolism and reproductive tract differences, the occurrence of sexually "exaggerated" traits, and sex size differences that are due to the sexes' differential activity/response to the insulin signaling pathway.
Collapse
Affiliation(s)
- Jéssica Paloma Álvarez-Rendón
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Manuel Murillo-Maldonado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Juan Rafael Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
21
|
Malacrinò A, Brengdahl MI, Kimber CM, Mital A, Shenoi VN, Mirabello C, Friberg U. Ageing desexualizes the Drosophila brain transcriptome. Proc Biol Sci 2022; 289:20221115. [PMID: 35946149 PMCID: PMC9364003 DOI: 10.1098/rspb.2022.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
General evolutionary theory predicts that individuals in low condition should invest less in sexual traits compared to individuals in high condition. Whether this positive association between condition and investment also holds between young (high condition) and senesced (low condition) individuals is however less clear, since elevated investment into reproduction may be beneficial when individuals approach the end of their life. To address how investment into sexual traits changes with age, we study genes with sex-biased expression in the brain, the tissue from which sexual behaviours are directed. Across two distinct populations of Drosophila melanogaster, we find that old brains display fewer sex-biased genes, and that expression of both male-biased and female-biased genes converges towards a sexually intermediate phenotype owing to changes in both sexes with age. We further find that sex-biased genes in general show heightened age-dependent expression in comparison to unbiased genes and that age-related changes in the sexual brain transcriptome are commonly larger in males than females. Our results hence show that ageing causes a desexualization of the fruit fly brain transcriptome and that this change mirrors the general prediction that low condition individuals should invest less in sexual phenotypes.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany,Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | | | | | - Avani Mital
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| | | | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, 581 83 Linköping, Sweden
| | - Urban Friberg
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
22
|
Deng D, Xing S, Liu X, Ji Q, Zhai Z, Peng W. Transcriptome analysis of sex-biased gene expression in the spotted-wing Drosophila, Drosophila suzukii (Matsumura). G3 GENES|GENOMES|GENETICS 2022; 12:6588685. [PMID: 35587603 PMCID: PMC9339319 DOI: 10.1093/g3journal/jkac127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Sexual dimorphism occurs widely throughout insects and has profound influences on evolutionary path. Sex-biased genes are considered to account for most of phenotypic differences between sexes. In order to explore the sex-biased genes potentially associated with sexual dimorphism and sexual development in Drosophila suzukii, a major devastating and invasive crop pest, we conducted whole-organism transcriptome profiling and sex-biased gene expression analysis on adults of both sexes. We identified transcripts of genes involved in several sex-specific physiological and functional processes, including transcripts involved in sex determination, reproduction, olfaction, and innate immune signals. A total of 11,360 differentially expressed genes were identified in the comparison, and 1,957 differentially expressed genes were female-biased and 4,231 differentially expressed genes were male-biased. The pathway predominantly enriched for differentially expressed genes was related to spliceosome, which might reflect the differences in the alternative splicing mechanism between males and females. Twenty-two sex determination and 16 sex-related reproduction genes were identified, and expression pattern analysis revealed that the majority of genes were differentially expressed between sexes. Additionally, the differences in sex-specific olfactory and immune processes were analyzed and the sex-biased expression of these genes may play important roles in pheromone and odor detection, and immune response. As a valuable dataset, our sex-specific transcriptomic data can significantly contribute to the fundamental elucidation of the molecular mechanisms of sexual dimorphism in fruit flies, and may provide candidate genes potentially useful for the development of genetic sexing strains, an important tool for sterile insect technique applications against this economically important species.
Collapse
Affiliation(s)
- Dan Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Shisi Xing
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Xuxiang Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Institute of Biological Control, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Qinge Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Institute of Biological Control, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| | - Wei Peng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University , Changsha 410081, China
| |
Collapse
|
23
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
24
|
Adipose mitochondrial metabolism controls body growth by modulating systemic cytokine and insulin signaling. Cell Rep 2022; 39:110802. [PMID: 35545043 DOI: 10.1016/j.celrep.2022.110802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Animals must adapt their growth to fluctuations in nutrient availability to ensure proper development. These adaptations often rely on specific nutrient-sensing tissues that control whole-body physiology through inter-organ communication. While the signaling mechanisms that underlie this communication are well studied, the contributions of metabolic alterations in nutrient-sensing tissues are less clear. Here, we show how the reprogramming of adipose mitochondria controls whole-body growth in Drosophila larvae. We find that dietary nutrients alter fat-body mitochondrial morphology to lower their bioenergetic activity, leading to rewiring of fat-body glucose metabolism. Strikingly, we find that genetic reduction of mitochondrial bioenergetics just in the fat body is sufficient to accelerate body growth and development. These growth effects are caused by inhibition of the fat-derived secreted peptides ImpL2 and tumor necrosis factor alpha (TNF-α)/Eiger, leading to enhanced systemic insulin signaling. Our work reveals how reprogramming of mitochondrial metabolism in one nutrient-sensing tissue can couple nutrient availability to whole-body growth.
Collapse
|
25
|
Sex-specific regulation of development, growth and metabolism. Semin Cell Dev Biol 2022; 138:117-127. [PMID: 35469676 DOI: 10.1016/j.semcdb.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Adult females and males of most species differ in many aspects of their morphology, physiology and behavior, in response to sex-specific selective pressures that maximize fitness. While we have an increasingly good understanding of the genetic mechanisms that initiate these differences, the sex-specific developmental trajectories that generate them are much less well understood. Here we review recent advances in the sex-specific regulation of development focusing on two models where this development is increasingly well understood: Sexual dimorphism of body size in the fruit fly Drosophila melanogaster and sexual dimorphism of horns in the horned beetle Onthophagus taurus. Because growth and development are also supported by metabolism, the regulation of sex-specific metabolism during and after development is an important aspect of the generation of female and male phenotypes. Hitherto, the study of sex-specific development has largely been independent of the study of sex-specific metabolism. Nevertheless, as we discuss in this review, recent research has begun to reveal considerable overlap in the cellular and physiological mechanisms that regulate sex-specific development and metabolism.
Collapse
|
26
|
Millington JW, Biswas P, Chao C, Xia YH, Wat LW, Brownrigg GP, Sun Z, Basner-Collins PJ, Klein Geltink RI, Rideout EJ. A low-sugar diet enhances Drosophila body size in males and females via sex-specific mechanisms. Development 2022; 149:dev200491. [PMID: 35195254 PMCID: PMC10656461 DOI: 10.1242/dev.200491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
In Drosophila, changes to dietary protein elicit different body size responses between the sexes. Whether these differential body size effects extend to other macronutrients remains unclear. Here, we show that lowering dietary sugar (0S diet) enhanced body size in male and female larvae. Despite an equivalent phenotypic effect between the sexes, we detected sex-specific changes to signalling pathways, transcription and whole-body glycogen and protein. In males, the low-sugar diet augmented insulin/insulin-like growth factor signalling pathway (IIS) activity by increasing insulin sensitivity, where increased IIS was required for male metabolic and body size responses in 0S. In females reared on low sugar, IIS activity and insulin sensitivity were unaffected, and IIS function did not fully account for metabolic and body size responses. Instead, we identified a female-biased requirement for the Target of rapamycin pathway in regulating metabolic and body size responses. Together, our data suggest the mechanisms underlying the low-sugar-induced increase in body size are not fully shared between the sexes, highlighting the importance of including males and females in larval studies even when similar phenotypic outcomes are observed.
Collapse
Affiliation(s)
- Jason W. Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Lianna W. Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Paige J. Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ramon I. Klein Geltink
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada
| | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
27
|
Noncanonical function of the Sex lethal gene controls the protogyny phenotype in Drosophila melanogaster. Sci Rep 2022; 12:1455. [PMID: 35087103 PMCID: PMC8795210 DOI: 10.1038/s41598-022-05147-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/31/2021] [Indexed: 12/01/2022] Open
Abstract
Drosophila melanogaster females eclose on average 4 h faster than males owing to sexual differences in the pupal period, referred to as the protogyny phenotype. Here, to elucidate the mechanism underlying the protogyny phenotype, we used our newly developed Drosophila Individual Activity Monitoring and Detecting System (DIAMonDS) that detects the precise timing of both pupariation and eclosion in individual flies. Although sex transformation induced by tra-2, tra alteration, or msl-2 knockdown-mediated disruption of dosage compensation showed no effect on the protogyny phenotype, stage-specific whole-body knockdown and mutation of the Drosophila master sex switch gene, Sxl, was found to disrupt the protogyny phenotype. Thus, Sxl establishes the protogyny phenotype through a noncanonical pathway in D. melanogaster.
Collapse
|
28
|
Svoysky AJ, Bellah JL, Johnston LA. Studies of Myc super-competition and clonal growth in Drosophila males and females. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000502. [PMID: 34909609 PMCID: PMC8662350 DOI: 10.17912/micropub.biology.000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Cell competition is a cell selection process that arises in growing tissues as a result of interactions between cells of different fitness. This behavior is also observed in Myc super-competition, where healthy wild type cells in growing wing discs of Drosophila are outcompeted by nearby cells that express higher levels of the Myc oncogene. Most work on Myc super-competition has examined it in mixed populations of male and female larvae. However, as physiological and genetic differences between Drosophila males and females could affect the competitive behavior of cells, we have investigated whether sex differences affect the process. Here we show that both male and female wing disc cells are subject to Myc super-competition. Female disc cells appear to be more sensitive to competitive elimination than male cells, potentially due to differences in baseline cellular Myc levels between the sexes. We also report sexual dimorphism of cell size and number between male and female growing wing discs that is independent of competition; wing discs and wing pouches from females are larger than males' due to larger cell size and cell number. We suggest that separately examining male and female tissues in cell competition assays could enhance our understanding of the effects of sex-specific pathways on cell and super-competition.
Collapse
Affiliation(s)
- Abigail J Svoysky
- Department of Genetics and Development, Columbia University Medical Center
| | - Jeffrey L Bellah
- Department of Genetics and Development, Columbia University Medical Center
| | - Laura A Johnston
- Department of Genetics and Development, Columbia University Medical Center
| |
Collapse
|
29
|
Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. eLife 2021; 10:e72350. [PMID: 34672260 PMCID: PMC8594944 DOI: 10.7554/elife.72350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Zahid S Chowdhury
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Jason W Millington
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| |
Collapse
|
30
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
31
|
Identification and Characterization of the Masculinizing Function of the Helicoverpa armigera Masc Gene. Int J Mol Sci 2021; 22:ijms22168650. [PMID: 34445352 PMCID: PMC8395511 DOI: 10.3390/ijms22168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The Masculinizer (Masc) gene has been known to control sex development and dosage compensation in lepidopterans. However, it remains unclear whether its ortholog exists and plays the same roles in distantly related lepidopterans such as Helicoverpa armigera. To address this question, we cloned Masc from H. armigera (HaMasc), which contains all essential functional domains of BmMasc, albeit with less than 30% amino acid sequence identity with BmMasc. Genomic PCR and qPCR analyses showed that HaMasc is a Z chromosome-linked gene since its genomic content in males (ZZ) was two times greater than that in females (ZW). RT-PCR and RT-qPCR analyses revealed that HaMasc expression was sex- and stage-biased, with significantly more transcripts in males and eggs than in females and other stages. Transfection of a mixture of three siRNAs of HaMasc into a male embryonic cell line of H. armigera led to the appearance of female-specific mRNA splicing isoforms of H. armigeradoublesex (Hadsx), a downstream target gene of HaMasc in the H. armigera sex determination pathway. The knockdown of HaMasc, starting from the third instar larvae resulted in a shift of Hadsx splicing from male to female isoforms, smaller male pupa and testes, fewer but larger/longer spermatocytes and sperm bundles, delayed pupation and internal fusion of the testes and follicles. These data demonstrate that HaMasc functions as a masculinizing gene in the H. armigera sex-determination cascade.
Collapse
|
32
|
Disparate regulation of IMD signaling drives sex differences in infection pathology in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:2026554118. [PMID: 34341118 PMCID: PMC8364183 DOI: 10.1073/pnas.2026554118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex differences in infection outcome are a widely observed phenomenon. While it is known that biological sex can influence an animal’s response to infection, the mechanisms through which these differences emerge are less clear. Here, we describe a mechanism through which heightened regulation of the IMD signaling pathway by female—but not male—Drosophila melanogaster reduces the cost of immune activity at the expense of resistance to bacterial infection. Through the masculinization of the main organ responsible for antimicrobial peptide activity in the fly (fat body), this work demonstrates that this heightened immune regulation is mediated by sex-determining pathways. Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.
Collapse
|
33
|
Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021; 33:1279-1292. [PMID: 34139200 PMCID: PMC8612010 DOI: 10.1016/j.cmet.2021.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms governing metabolism. New assays and approaches to physiology have aligned with superlative genetic tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advantages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-standing questions in three broad areas-inter-organ signaling through hormonal or neural mechanisms governing metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually dimorphic metabolism and physiology-and how these findings relate to human (patho)physiology. The imaginative application of integrative physiology and related approaches in flies to questions in metabolism is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying human diseases and physiological equipoise in health.
Collapse
Affiliation(s)
- Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Deborah D Tsao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
34
|
Gillette CM, Tennessen JM, Reis T. Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development. Dev Biol 2021; 475:234-244. [DOI: 10.1016/j.ydbio.2021.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
|
35
|
Rohner PT. A role for sex-determination genes in life history evolution? Doublesex mediates sexual size dimorphism in the gazelle dung beetle. J Evol Biol 2021; 34:1326-1332. [PMID: 34075658 DOI: 10.1111/jeb.13877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/06/2021] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
An organism's fitness depends strongly on its age and size at maturation. Although the evolutionary forces acting on these critical life history traits have been heavily scrutinized, the developmental mechanisms underpinning intraspecific variation in adult size and development time remain much less well-understood. Using RNA interference, I here show that the highly conserved sex-determination gene doublesex (dsx) mediates sexual size dimorphism (SSD) in the gazelle dung beetle Digitonthophagus gazella. Because doublesex undergoes sex-specific splicing and sex-limited isoforms regulate different target genes, this suggests that dsx contributes to the resolution of intralocus sexual conflict in body size. However, these results contrast with previous studies demonstrating that dsx does not affect body size or SSD in Drosophila. This indicates that intraspecific body size variation is underlain by contrasting developmental mechanisms in different insect lineages. Furthermore, although male D. gazella have a longer development time than females, sexual bimaturism was not affected by dsx expression knockdown. In addition, and in contrast to secondary sexual morphology, dsx did not significantly affect nutritional plasticity in life history. Taken together, these findings indicate that dsx signalling contributes to intraspecific life history variation but that dsx's function in mediating sexual dimorphism in life history differs among traits and species. More generally, these findings suggest that genes ancestrally tasked with sex determination have been co-opted into the developmental regulation of life history traits and may represent an underappreciated mechanism of life history evolution.
Collapse
|
36
|
McDonald JMC, Nabili P, Thorsen L, Jeon S, Shingleton AW. Sex-specific plasticity and the nutritional geometry of insulin-signaling gene expression in Drosophila melanogaster. EvoDevo 2021; 12:6. [PMID: 33990225 PMCID: PMC8120840 DOI: 10.1186/s13227-021-00175-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others' research has shown that SSD in D. melanogaster reflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach. RESULTS The IIS-regulated transcripts of 4E-BP and InR most strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression of dILP5 positively correlated with body size, while expression of dILP2,3 and 8, was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet on dILP expression in males. CONCLUSION Although females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level, dILP expression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall Ithaca, NY, 14853, USA
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Pegah Nabili
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Lily Thorsen
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Sohee Jeon
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA.
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA.
| |
Collapse
|
37
|
Behnke JA, Ye C, Setty A, Moberg KH, Zheng JQ. Repetitive mild head trauma induces activity mediated lifelong brain deficits in a novel Drosophila model. Sci Rep 2021; 11:9738. [PMID: 33958652 PMCID: PMC8102574 DOI: 10.1038/s41598-021-89121-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Mild head trauma, including concussion, can lead to chronic brain dysfunction and degeneration but the underlying mechanisms remain poorly understood. Here, we developed a novel head impact system to investigate the long-term effects of mild head trauma on brain structure and function, as well as the underlying mechanisms in Drosophila melanogaster. We find that Drosophila subjected to repetitive head impacts develop long-term deficits, including impaired startle-induced climbing, progressive brain degeneration, and shortened lifespan, all of which are substantially exacerbated in female flies. Interestingly, head impacts elicit an elevation in neuronal activity and its acute suppression abrogates the detrimental effects in female flies. Together, our findings validate Drosophila as a suitable model system for investigating the long-term effects of mild head trauma, suggest an increased vulnerability to brain injury in female flies, and indicate that early altered neuronal excitability may be a key mechanism linking mild brain trauma to chronic degeneration.
Collapse
Affiliation(s)
- Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Aayush Setty
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
38
|
Interplay between sex determination cascade and major signaling pathways during Drosophila eye development: Perspectives for future research. Dev Biol 2021; 476:41-52. [PMID: 33745943 DOI: 10.1016/j.ydbio.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Understanding molecular mechanisms of sexually dimorphic organ growth is a fundamental problem of developmental biology. Recent quantitative studies showed that the Drosophila compound eye is a convenient model to study the determination of the final organ size. In Drosophila, females have larger eyes than males and this is evident even after correction for the larger body size. Moreover, female eyes include more ommatidia (photosensitive units) than male eyes and this difference is specified at the third larval instar in the eye primordia called eye imaginal discs. This may result in different visual capabilities between the two sexes and have behavioral consequences. Despite growing evidence on the genetic bases of eye size variation between different Drosophila species and strains, mechanisms responsible for within-species sexual dimorphism still remain elusive. Here, we discuss a presumptive crosstalk between the sex determination cascade and major signaling pathways during dimorphic eye development. Male- and female-specific isoforms of Doublesex (Dsx) protein are known to control sex-specific differentiation in the somatic tissues. However, no data on Dsx function during eye disc growth and patterning are currently available. Remarkably, Sex lethal (Sxl), the sex determination switch protein, was shown to directly affect Hedgehog (Hh) and Notch (N) signaling in the Drosophila wing disc. The similarity of signaling pathways involved in the wing and eye disc growth suggests that Sxl might be integrated into regulation of eye development. Dsx role in the eye disc requires further investigation. We discuss currently available data on sex-biased gene expression in the Drosophila eye and highlight perspectives for future studies.
Collapse
|
39
|
Millington JW, Brownrigg GP, Basner-Collins PJ, Sun Z, Rideout EJ. Genetic manipulation of insulin/insulin-like growth factor signaling pathway activity has sex-biased effects on Drosophila body size. G3 (BETHESDA, MD.) 2021; 11:jkaa067. [PMID: 33793746 PMCID: PMC8063079 DOI: 10.1093/g3journal/jkaa067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
In Drosophila raised in nutrient-rich conditions, female body size is approximately 30% larger than male body size due to an increased rate of growth and differential weight loss during the larval period. While the mechanisms that control this sex difference in body size remain incompletely understood, recent studies suggest that the insulin/insulin-like growth factor signaling pathway (IIS) plays a role in the sex-specific regulation of processes that influence body size during development. In larvae, IIS activity differs between the sexes, and there is evidence of sex-specific regulation of IIS ligands. Yet, we lack knowledge of how changes to IIS activity impact body size in each sex, as the majority of studies on IIS and body size use single- or mixed-sex groups of larvae and/or adult flies. The goal of our current study was to clarify the body size requirement for IIS activity in each sex. To achieve this goal, we used established genetic approaches to enhance, or inhibit, IIS activity, and quantified pupal size in males and females. Overall, genotypes that inhibited IIS activity caused a female-biased decrease in body size, whereas genotypes that augmented IIS activity caused a male-specific increase in body size. These data extend our current understanding of body size regulation by showing that most changes to IIS pathway activity have sex-biased effects, and highlights the importance of analyzing body size data according to sex.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
40
|
Millington JW, Brownrigg GP, Chao C, Sun Z, Basner-Collins PJ, Wat LW, Hudry B, Miguel-Aliaga I, Rideout EJ. Female-biased upregulation of insulin pathway activity mediates the sex difference in Drosophila body size plasticity. eLife 2021; 10:e58341. [PMID: 33448263 PMCID: PMC7864645 DOI: 10.7554/elife.58341] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nutrient-dependent body size plasticity differs between the sexes in most species, including mammals. Previous work in Drosophila showed that body size plasticity was higher in females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here, we discover that a protein-rich diet augments body size in females and not males because of a female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, we show that sex determination gene transformer promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to regulate the male-female difference in body size plasticity. Together, these findings provide vital insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size plasticity.
Collapse
Affiliation(s)
- Jason W Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Ziwei Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Paige J Basner-Collins
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
41
|
Meta-analysis of Diets Used in Drosophila Microbiome Research and Introduction of the Drosophila Dietary Composition Calculator (DDCC). G3-GENES GENOMES GENETICS 2020; 10:2207-2211. [PMID: 32371452 PMCID: PMC7341119 DOI: 10.1534/g3.120.401235] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nutrition is a major factor influencing many aspects of Drosophila melanogaster physiology. However, a wide range of diets, many of which are termed "standard" in the literature, are utilized for D. melanogaster research, leading to inconsistencies in reporting of nutrition-dependent phenotypes across the field. This is especially evident in microbiome studies, as diet has a pivotal role in microbiome composition and resulting host-microbe interactions. Here, we performed a meta-analysis of diets used in fly microbiome research and provide a web-based tool for researchers to determine the nutritional content of diets of interest. While our meta-analysis primarily focuses on microbiome studies, our goal in developing these resources is to aid the broader community in contextualizing past and future studies across the scope of D. melanogaster research to better understand how individual lab diets can contribute to observed phenotypes.
Collapse
|
42
|
Hudry B, de Goeij E, Mineo A, Gaspar P, Hadjieconomou D, Studd C, Mokochinski JB, Kramer HB, Plaçais PY, Preat T, Miguel-Aliaga I. Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell 2020; 178:901-918.e16. [PMID: 31398343 PMCID: PMC6700282 DOI: 10.1016/j.cell.2019.07.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized. Intestinal carbohydrate metabolism is male-biased and region-specific Testes masculinize gut sugar handling by promoting enterocyte JAK-STAT signaling The male intestine secretes citrate to the adjacent testes Gut-derived citrate promotes food intake and sperm maturation
Collapse
Affiliation(s)
- Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; Université Côte d'Azur, CNRS, INSERM, iBV, France.
| | - Eva de Goeij
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alessandro Mineo
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Joao B Mokochinski
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Holger B Kramer
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
43
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
44
|
Matsushita R, Nishimura T. Trehalose metabolism confers developmental robustness and stability in Drosophila by regulating glucose homeostasis. Commun Biol 2020; 3:170. [PMID: 32265497 PMCID: PMC7138798 DOI: 10.1038/s42003-020-0889-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved molecular mechanisms to ensure consistent and invariant phenotypes in the face of environmental fluctuations. Developmental homeostasis is determined by two factors: robustness, which buffers against environmental variations; and developmental stability, which buffers against intrinsic random variations. However, our understanding of these noise-buffering mechanisms remains incomplete. Here, we showed that appropriate glycemic control confers developmental homeostasis in the fruit fly Drosophila. We found that circulating glucose levels are buffered by trehalose metabolism, which acts as a glucose sink in circulation. Furthermore, mutations in trehalose synthesis enzyme (Tps1) increased the among-individual and within-individual variations in wing size. Whereas wild-type flies were largely resistant to changes in dietary carbohydrate and protein levels, Tps1 mutants experienced significant disruptions in developmental homeostasis in response to dietary stress. These results demonstrate that glucose homeostasis against dietary stress is crucial for developmental homeostasis.
Collapse
Affiliation(s)
- Ryota Matsushita
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|
45
|
Montooth KL, Dhawanjewar AS, Meiklejohn CD. Temperature-Sensitive Reproduction and the Physiological and Evolutionary Potential for Mother's Curse. Integr Comp Biol 2020; 59:890-899. [PMID: 31173136 PMCID: PMC6797906 DOI: 10.1093/icb/icz091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Strict maternal transmission of mitochondrial DNA (mtDNA) is hypothesized to permit the accumulation of mitochondrial variants that are deleterious to males but not females, a phenomenon called mother’s curse. However, direct evidence that mtDNA mutations exhibit such sexually antagonistic fitness effects is sparse. Male-specific mutational effects can occur when the physiological requirements of the mitochondria differ between the sexes. Such male-specific effects could potentially occur if sex-specific cell types or tissues have energy requirements that are differentially impacted by mutations affecting energy metabolism. Here we summarize findings from a model mitochondrial–nuclear incompatibility in the fruit fly Drosophila that demonstrates sex-biased effects, but with deleterious effects that are generally larger in females. We present new results showing that the mitochondrial–nuclear incompatibility does negatively affect male fertility, but only when males are developed at high temperatures. The temperature-dependent male sterility can be partially rescued by diet, suggesting an energetic basis. Finally, we discuss fruitful paths forward in understanding the physiological scope for sex-specific effects of mitochondrial mutations in the context of the recent discovery that many aspects of metabolism are sexually dimorphic and downstream of sex-determination pathways in Drosophila. A key parameter of these models that remains to be quantified is the fraction of mitochondrial mutations with truly male-limited fitness effects across extrinsic and intrinsic environments. Given the energy demands of reproduction in females, only a small fraction of the mitochondrial mutational spectrum may have the potential to contribute to mother’s curse in natural populations.
Collapse
Affiliation(s)
- Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| | - Abhilesh S Dhawanjewar
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, 1104 T Street, Lincoln, NE 68502, USA
| |
Collapse
|
46
|
Wat LW, Chao C, Bartlett R, Buchanan JL, Millington JW, Chih HJ, Chowdhury ZS, Biswas P, Huang V, Shin LJ, Wang LC, Gauthier MPL, Barone MC, Montooth KL, Welte MA, Rideout EJ. A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS Biol 2020; 18:e3000595. [PMID: 31961851 PMCID: PMC6994176 DOI: 10.1371/journal.pbio.3000595] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/31/2020] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Triglycerides are the major form of stored fat in all animals. One important determinant of whole-body fat storage is whether an animal is male or female. Here, we use Drosophila, an established model for studies on triglyceride metabolism, to gain insight into the genes and physiological mechanisms that contribute to sex differences in fat storage. Our analysis of triglyceride storage and breakdown in both sexes identified a role for triglyceride lipase brummer (bmm) in the regulation of sex differences in triglyceride homeostasis. Normally, male flies have higher levels of bmm mRNA both under normal culture conditions and in response to starvation, a lipolytic stimulus. We find that loss of bmm largely eliminates the sex difference in triglyceride storage and abolishes the sex difference in triglyceride breakdown via strongly male-biased effects. Although we show that bmm function in the fat body affects whole-body triglyceride levels in both sexes, in males, we identify an additional role for bmm function in the somatic cells of the gonad and in neurons in the regulation of whole-body triglyceride homeostasis. Furthermore, we demonstrate that lipid droplets are normally present in both the somatic cells of the male gonad and in neurons, revealing a previously unrecognized role for bmm function, and possibly lipid droplets, in these cell types in the regulation of whole-body triglyceride homeostasis. Taken together, our data reveal a role for bmm function in the somatic cells of the gonad and in neurons in the regulation of male–female differences in fat storage and breakdown and identify bmm as a link between the regulation of triglyceride homeostasis and biological sex. An investigation of the genetic and physiological mechanisms underlying sex differences in fat storage and breakdown in the fruit fly Drosophila identifies previously unrecognized sex- and cell type-specific roles for the conserved triglyceride lipase brummer.
Collapse
Affiliation(s)
- Lianna W. Wat
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachael Bartlett
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin L. Buchanan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jason W. Millington
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui Ju Chih
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zahid S. Chowdhury
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian Huang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Leah J. Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lin Chuan Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marie-Pierre L. Gauthier
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria C. Barone
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Kristi L. Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
47
|
Leitner N, Ben-Shahar Y. The neurogenetics of sexually dimorphic behaviors from a postdevelopmental perspective. GENES BRAIN AND BEHAVIOR 2019; 19:e12623. [PMID: 31674725 DOI: 10.1111/gbb.12623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Most sexually reproducing animal species are characterized by two morphologically and behaviorally distinct sexes. The genetic, molecular and cellular processes that produce sexual dimorphisms are phylogenetically diverse, though in most cases they are thought to occur early in development. In some species, however, sexual dimorphisms are manifested after development is complete, suggesting the intriguing hypothesis that sex, more generally, might be considered a continuous trait that is influenced by both developmental and postdevelopmental processes. Here, we explore how biological sex is defined at the genetic, neuronal and behavioral levels, its effects on neuronal development and function, and how it might lead to sexually dimorphic behavioral traits in health and disease. We also propose a unifying framework for understanding neuronal and behavioral sexual dimorphisms in the context of both developmental and postdevelopmental, physiological timescales. Together, these two temporally separate processes might drive sex-specific neuronal functions in sexually mature adults, particularly as it pertains to behavior in health and disease.
Collapse
Affiliation(s)
- Nicole Leitner
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
48
|
Okada H, Yagi R, Gardeux V, Deplancke B, Hafen E. Sex-dependent and sex-independent regulatory systems of size variation in natural populations. Mol Syst Biol 2019; 15:e9012. [PMID: 31777173 PMCID: PMC6878047 DOI: 10.15252/msb.20199012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
Size of organs/organisms is a polygenic trait. Many of the growth-regulatory genes constitute conserved growth signaling pathways. However, how these multiple genes are orchestrated at the systems level to attain the natural variation in size including sexual size dimorphism is mostly unknown. Here we take a multi-layered systems omics approach to study size variation in the Drosophila wing. We show that expression levels of many critical growth regulators such as Wnt and TGFβ pathway components significantly differ between sexes but not between lines exhibiting size differences within each sex, suggesting a primary role of these regulators in sexual size dimorphism. Only a few growth genes including a receptor of steroid hormone ecdysone exhibit association with between-line size differences. In contrast, we find that between-line size variation is largely regulated by genes with a diverse range of cellular functions, most of which have never been implicated in growth. In addition, we show that expression quantitative trait loci (eQTLs) linked to these novel growth regulators accurately predict population-wide, between-line wing size variation. In summary, our study unveils differential gene regulatory systems that control wing size variation between and within sexes.
Collapse
Affiliation(s)
- Hirokazu Okada
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Ryohei Yagi
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and GeneticsInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and GeneticsInstitute of BioengineeringSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ernst Hafen
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| |
Collapse
|
49
|
Wu JJ, Zhou YL, Wang ZW, Li GH, Jin FP, Cui LL, Gao HT, Li XP, Zhou L, Gui JF. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes and Signaling Pathways Between Male and Female Red-Tail Catfish (Mystus wyckioides). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:463-474. [PMID: 30941640 DOI: 10.1007/s10126-019-09894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Sexual dimorphism is widespread in fish species. The red-tail catfish (Mystus wyckioides) is a commercially important catfish in the lower reaches of the Lancang River and the Mekong basin, and it shows a growth advantage in males. Here, RNA-seq was for the first time used to explore the gene expression difference between the sexes in the hypothalamus and pituitary of red-tail catfish, respectively. In the hypothalamus, 5732 and 271 unigenes have significantly higher and lower expressions, respectively, in males compared with females. KEGG analysis showed that 212 DEGs were annotated to 216 signaling pathways, and enrichment analysis suggested different levels of cAMP and glutamatergic synapse signaling between male and female hypothalami and some of the DEGs appear involved in gonad development and growth. In the pituitary, we found only 19 differentially expressed unigenes, which were annotated to 32 signaling pathways, most of which play important roles in gonad development.
Collapse
Affiliation(s)
- Jun-Jie Wu
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guang-Hua Li
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Fang-Peng Jin
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Li-Li Cui
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Hai-Tao Gao
- Yunnan Institute of Fishery Sciences Research, Kunming, 650111, China
| | - Xin-Ping Li
- Xishuangbanna Native Fish Research and Breeding Center, Xishuangbanna, 666100, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
50
|
Suzawa M, Muhammad NM, Joseph BS, Bland ML. The Toll Signaling Pathway Targets the Insulin-like Peptide Dilp6 to Inhibit Growth in Drosophila. Cell Rep 2019; 28:1439-1446.e5. [DOI: 10.1016/j.celrep.2019.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
|