1
|
Madrid M, Lakshmipathy U, Zhang X, Bharti K, Wall DM, Sato Y, Muschler G, Ting A, Smith N, Deguchi S, Kawamata S, Moore JC, Makovoz B, Sullivan S, Falco V, Al-Riyami AZ. Considerations for the development of iPSC-derived cell therapies: a review of key challenges by the JSRM-ISCT iPSC Committee. Cytotherapy 2024; 26:1382-1399. [PMID: 38958627 PMCID: PMC11471376 DOI: 10.1016/j.jcyt.2024.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.
Collapse
Affiliation(s)
| | | | | | - Kapil Bharti
- National Eye Institute of the National Institutes of Health, Bethesda, USA
| | - Dominic M Wall
- Peter MacCallum Cancer Centre, Melbourne Australia; Cell Therapies Pty Ltd, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Yoji Sato
- National Institute of Health Sciences, Kawasaki, Japan
| | | | | | | | - Shuhei Deguchi
- CIRA Foundation, Facility for iPS Cell Therapy (FiT), Kyoto, Japan
| | - Shin Kawamata
- Cyto-Facto Inc., Kobe, Japan; Kobe University, Kobe, Japan.
| | | | | | | | | | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, University Medical City, Muscat, Oman
| |
Collapse
|
2
|
Vijayraghavan S, Blouin T, McCollum J, Porcher L, Virard F, Zavadil J, Feghali-Bostwick C, Saini N. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat Commun 2024; 15:8889. [PMID: 39406724 PMCID: PMC11480385 DOI: 10.1038/s41467-024-53332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis is a connective tissue disorder characterized by excessive fibrosis that primarily affects women, and can present as a multisystem pathology. Roughly 4-22% of patients with systemic sclerosis develop cancer, which drastically worsens prognosis. However, the mechanisms underlying systemic sclerosis initiation, propagation, and cancer development are poorly understood. We hypothesize that the inflammation and immune response associated with systemic sclerosis can trigger DNA damage, leading to elevated somatic mutagenesis, a hallmark of pre-cancerous tissues. To test our hypothesis, we culture clonal lineages of fibroblasts from the lung tissues of controls and systemic sclerosis patients and compare their mutation burdens and spectra. We find an overall increase in all major mutation types in systemic sclerosis samples compared to control lung samples, from small-scale events such as single base substitutions and insertions/deletions, to chromosome-level changes, including copy-number changes and structural variants. In the genomes of patients with systemic sclerosis, we find evidence of somatic hypermutation or kategis (typically only seen in cancer genomes), we identify mutation signatures closely resembling the error-prone translesion polymerase Polη activity, and observe an activation-induced deaminase-like mutation signature, which overlaps with genomic regions displaying kataegis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Blouin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer WHO, Epigenomics and Mechanisms Branch, Lyon, France
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. GeroScience 2024; 46:5171-5189. [PMID: 38488948 PMCID: PMC11336144 DOI: 10.1007/s11357-024-01113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Badja C, Momen S, Koh GCC, Boushaki S, Roumeliotis TI, Kozik Z, Jones I, Bousgouni V, Dias JML, Krokidis MG, Young J, Chen H, Yang M, Docquier F, Memari Y, Valcarcel-Zimenez L, Gupta K, Kong LR, Fawcett H, Robert F, Zhao S, Degasperi A, Kumar Y, Davies H, Harris R, Frezza C, Chatgilialoglu C, Sarkany R, Lehmann A, Bakal C, Choudhary J, Fassihi H, Nik-Zainal S. Insights from multi-omic modeling of neurodegeneration in xeroderma pigmentosum using an induced pluripotent stem cell system. Cell Rep 2024; 43:114243. [PMID: 38805398 DOI: 10.1016/j.celrep.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.
Collapse
Affiliation(s)
- Cherif Badja
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| | - Sophie Momen
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Gene Ching Chiek Koh
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Soraya Boushaki
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Zuza Kozik
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - João M L Dias
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece; Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | - Jamie Young
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Hongwei Chen
- Wellcome Sanger Institute, Hinxton CB10 1RQ, UK; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - France Docquier
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Yasin Memari
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Lorea Valcarcel-Zimenez
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Komal Gupta
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Li Ren Kong
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; NUS Centre for Cancer Research, N2CR, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Florian Robert
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Salome Zhao
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Andrea Degasperi
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Yogesh Kumar
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Helen Davies
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Rebecca Harris
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Robert Sarkany
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Chris Bakal
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jyoti Choudhary
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
5
|
Araki R, Suga T, Hoki Y, Imadome K, Sunayama M, Kamimura S, Fujita M, Abe M. iPS cell generation-associated point mutations include many C > T substitutions via different cytosine modification mechanisms. Nat Commun 2024; 15:4946. [PMID: 38862540 PMCID: PMC11166658 DOI: 10.1038/s41467-024-49335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.
Collapse
Affiliation(s)
- Ryoko Araki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Tomo Suga
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuko Hoki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kaori Imadome
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Misato Sunayama
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Kamimura
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Fujita
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masumi Abe
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
6
|
Bogomiakova ME, Bogomazova AN, Lagarkova MA. Dysregulation of Immune Tolerance to Autologous iPSCs and Their Differentiated Derivatives. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:799-816. [PMID: 38880643 DOI: 10.1134/s0006297924050031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 06/18/2024]
Abstract
Induced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, are a promising tool for solving the problem of donor organ shortage. In addition, reprogramming technology makes it possible to obtain a personalized, i.e., patient-specific, cell product transplantation of which should not cause problems related to histocompatibility of the transplanted tissues and organs. At the same time, inconsistent information about the main advantage of autologous iPSC-derivatives - lack of immunogenicity - still casts doubt on the possibility of using such cells beyond immunosuppressive therapy protocols. This review is devoted to immunogenic properties of the syngeneic and autologous iPSCs and their derivatives, as well as to the reasons for dysregulation of their immune tolerance.
Collapse
Affiliation(s)
- Margarita E Bogomiakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Maslov AY, Vijg J. Somatic mutation burden in relation to aging and functional life span: implications for cellular reprogramming and rejuvenation. Curr Opin Genet Dev 2023; 83:102132. [PMID: 37931583 PMCID: PMC10841402 DOI: 10.1016/j.gde.2023.102132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 11/08/2023]
Abstract
The accrual of somatic mutations has been implicated as causal factors in aging since the 1950s. However, the quantitative analysis of somatic mutations has posed a major challenge due to the random nature of de novo mutations in normal tissues, which has limited analysis to tumors and other clonal lineages. Advances in single-cell and single-molecule next-generation sequencing now allow to obtain, for the first time, detailed insights into the landscape of somatic mutations in different human tissues and cell types as a function of age under various conditions. Here, we will briefly recapitulate progress in somatic mutation analysis and discuss the possible relationship between somatic mutation burden with functional life span, with a focus on differences between germ cells, stem cells, and differentiated cells.
Collapse
Affiliation(s)
- Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technologies, Voronezh, Russia.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
8
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
9
|
Jeong H, Moon HE, Yun S, Cho SW, Park HR, Park SH, Myung K, Kwon T, Paek SH. Enrichment of Deleterious Mutated Genes Involved in Ciliary Function and Histone Modification in Brain Cancer Patient-Derived Xenograft Models. Biomedicines 2023; 11:2934. [PMID: 38001935 PMCID: PMC10669283 DOI: 10.3390/biomedicines11112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Patient-derived xenograft (PDX) models, which can retain the characteristics of original tumors in an in vivo-mimicking environment, have been developed to identify better treatment options. However, although original tumors and xenograft tissues mostly share oncogenic mutations and global gene expression patterns, their detailed mutation profiles occasionally do not overlap, indicating that selection occurs in the xenograft environment. To understand this mutational alteration in xenografts, we established 13 PDX models derived from 11 brain tumor patients and confirmed their histopathological similarity. Surprisingly, only a limited number of somatic mutations were shared between the original tumor and xenograft tissue. By analyzing deleteriously mutated genes in tumors and xenografts, we found that previously reported brain tumor-related genes were enriched in PDX samples, demonstrating that xenografts are a valuable platform for studying brain tumors. Furthermore, mutated genes involved in cilium movement, microtubule depolymerization, and histone methylation were enriched in PDX samples compared with the original tumors. Even with the limitations of the heterogeneity of clinical lesions with a heterotropic model, our study demonstrates that PDX models can provide more information in genetic analysis using samples with high heterogeneity, such as brain tumors.
Collapse
Affiliation(s)
- Hyeongsun Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neurosurgery, Hypoxia/Ischemia Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seongmin Yun
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyungjae Myung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neurosurgery, Hypoxia/Ischemia Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
10
|
Kislova AV, Zheglo D, Pozhitnova VO, Sviridov PS, Gadzhieva EP, Voronina ES. Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. Chromosome Res 2023; 31:23. [PMID: 37597021 DOI: 10.1007/s10577-023-09729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.
Collapse
Affiliation(s)
| | - Diana Zheglo
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Philipp S Sviridov
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elmira P Gadzhieva
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
11
|
Tichy ED. Specialized Circuitry of Embryonic Stem Cells Promotes Genomic Integrity. Crit Rev Oncog 2023; 27:1-15. [PMID: 36734869 DOI: 10.1615/critrevoncog.2022042332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) give rise to all cell types of the organism. Given the importance of these cells in this process, ESCs must employ robust mechanisms to protect genomic integrity or risk catastrophic propagation of mutations throughout the organism. Should such an event occur in daughter cells that will eventually contribute to the germline, the overall species health could dramatically decline. This review describes several key mechanisms employed by ESCs that are unique to these cells, in order to maintain their genomic integrity. Additionally, the contributions of cell cycle regulators in modulating ESC differentiation, after DNA damage exposure, are also examined. Where data are available, findings reported in ESCs are extended to include observations described in induced pluripotent stem cells (IPSCs).
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
12
|
Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, Sato Y, Spits C, Stacey GN, Wang H, Pera MF. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell 2022; 29:1624-1636. [PMID: 36459966 DOI: 10.1016/j.stem.2022.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.
Collapse
Affiliation(s)
- Peter W Andrews
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Steering Committee, International Stem Cell Initiative
| | - Jonathan S Draper
- Stem Cell Network, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Steering Committee, International Stem Cell Initiative
| | - Tenneille Ludwig
- WiCell Research Institute, Madison, WI, USA; University of Wisconsin-Madison, Madison, WI 53719, USA; Steering Committee, International Stem Cell Initiative
| | - Florian T Merkle
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK; Steering Committee, International Stem Cell Initiative
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan; Steering Committee, International Stem Cell Initiative
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Steering Committee, International Stem Cell Initiative
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Steering Committee, International Stem Cell Initiative
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China; Steering Committee, International Stem Cell Initiative
| | - Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Steering Committee, International Stem Cell Initiative.
| |
Collapse
|
13
|
Rouhani FJ, Zou X, Danecek P, Badja C, Amarante TD, Koh G, Wu Q, Memari Y, Durbin R, Martincorena I, Bassett AR, Gaffney D, Nik-Zainal S. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nat Genet 2022; 54:1406-1416. [PMID: 35953586 PMCID: PMC9470532 DOI: 10.1038/s41588-022-01147-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2022] [Indexed: 12/27/2022]
Abstract
We explored human induced pluripotent stem cells (hiPSCs) derived from different tissues to gain insights into genomic integrity at single-nucleotide resolution. We used genome sequencing data from two large hiPSC repositories involving 696 hiPSCs and daughter subclones. We find ultraviolet light (UV)-related damage in ~72% of skin fibroblast-derived hiPSCs (F-hiPSCs), occasionally resulting in substantial mutagenesis (up to 15 mutations per megabase). We demonstrate remarkable genomic heterogeneity between independent F-hiPSC clones derived during the same round of reprogramming due to oligoclonal fibroblast populations. In contrast, blood-derived hiPSCs (B-hiPSCs) had fewer mutations and no UV damage but a high prevalence of acquired BCOR mutations (26.9% of lines). We reveal strong selection pressure for BCOR mutations in F-hiPSCs and B-hiPSCs and provide evidence that they arise in vitro. Directed differentiation of hiPSCs and RNA sequencing showed that BCOR mutations have functional consequences. Our work strongly suggests that detailed nucleotide-resolution characterization is essential before using hiPSCs.
Collapse
Affiliation(s)
- Foad J Rouhani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cherif Badja
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Tauanne Dias Amarante
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Gene Koh
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Qianxin Wu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yasin Memari
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel Gaffney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Genomics plc, King Charles House, Oxford, UK
| | - Serena Nik-Zainal
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
| |
Collapse
|
14
|
Stolzenbach V, Woods DC, Tilly JL. Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Front Cell Dev Biol 2022; 10:942652. [PMID: 36081905 PMCID: PMC9445274 DOI: 10.3389/fcell.2022.942652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the “evolution” of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.
Collapse
|
15
|
Lee J, Song S, Lee J, Kang J, Choe EK, Lee TY, Chon MW, Kim M, Kim SW, Chun MS, Chang MS, Kwon JS. Impaired migration of autologous induced neural stem cells from patients with schizophrenia and implications for genetic risk for psychosis. Schizophr Res 2022; 246:225-234. [PMID: 35810486 DOI: 10.1016/j.schres.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023]
Abstract
Stem cell technologies have presented explicit evidence of the neurodevelopmental hypothesis of schizophrenia. However, few studies investigated relevance of the schizophrenia genetic liability and the use of genetic reprogramming on pluripotent stem cells to the impaired neurodevelopment shown by stem cells. Therefore, this study sought to investigate the cellular phenotypes of induced neural stem cells (iNSCs) derived without genetic modification from patients with schizophrenia and from genetic high risk (GHR) individuals. Three patients with a diagnosis of schizophrenia, 3 GHR individuals who had two or more relatives with schizophrenia, and 3 healthy volunteers participated. iNSCs were derived using a small molecule-based lineage switch method, and their gene expression levels and migration capabilities were examined. Demographic characteristics were not different among the groups (age, χ2 = 5.637, P = .060; education, χ2 = 2.111, P = .348). All participants stayed well during the follow-up except one GHR individual who developed psychosis 1.5 years later. Migration capacity was impaired in iNSCs from patients with schizophrenia (SZ-iNSCs) compared to iNSCs from GHR individuals or controls (P < .001). iNSCs from a GHR individual who later developed schizophrenia showed migratory impairment that was similar to SZ-iNSCs. Gene expression levels of Sox2 in SZ-iNSCs were significantly lower than those in controls (P = .028). Defective migration in genetically unmodified SZ-iNSCs is the first direct demonstration of neurodevelopmental abnormalities in schizophrenia. Additionally, alterations in gene expression in SZ-iNSCs suggest mechanisms by which genetic liability leads to aberrant neurodevelopment.
Collapse
Affiliation(s)
- Junhee Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 03080 Seoul, Republic of Korea; Department of Psychiatry, Uijeongbu Eulji Medical Center, 11759 Uijeongbu, Republic of Korea
| | - Sehyeon Song
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 08826 Seoul, Republic of Korea
| | - Juhee Lee
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea
| | - Jisoo Kang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea
| | - Eun Kyung Choe
- Department of Surgery, Seoul National University Hospital Healthcare System Gangnam Center, 06236 Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, 50612 Yangsan, Republic of Korea
| | - Myong-Wuk Chon
- National Center for Mental Health, 04933 Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 05505 Seoul, Republic of Korea
| | - Myung-Suk Chun
- National Agenda Research Division, Korea Institute of Science and Technology, 02792 Seoul, Republic of Korea
| | - Mi-Sook Chang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy, Dental Research Institute and School of Dentistry, Seoul National University, 03080 Seoul, Republic of Korea; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 08826 Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University, 03080 Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, 03080 Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, 08826 Seoul, Republic of Korea.
| |
Collapse
|
16
|
Gabbutt C, Wright NA, Baker A, Shibata D, Graham TA. Lineage tracing in human tissues. J Pathol 2022; 257:501-512. [PMID: 35415852 PMCID: PMC9253082 DOI: 10.1002/path.5911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/11/2022]
Abstract
The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Calum Gabbutt
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
- London Interdisciplinary Doctoral Training Programme (LIDo)LondonUK
| | - Nicholas A Wright
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ann‐Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| | - Darryl Shibata
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Trevor A Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| |
Collapse
|
17
|
Molina-Ruiz FJ, Introna C, Bombau G, Galofre M, Canals JM. Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells 2022; 11:cells11131984. [PMID: 35805069 PMCID: PMC9265327 DOI: 10.3390/cells11131984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.
Collapse
Affiliation(s)
- Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofre
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-035-288
| |
Collapse
|
18
|
Poetsch MS, Strano A, Guan K. Human induced pluripotent stem cells: From cell origin, genomic stability and epigenetic memory to translational medicine. Stem Cells 2022; 40:546-555. [PMID: 35291013 PMCID: PMC9216482 DOI: 10.1093/stmcls/sxac020] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/06/2022] [Indexed: 11/14/2022]
Abstract
The potential of human induced pluripotent stem cells (iPSCs) to self-renew indefinitely and to differentiate virtually into any cell type in unlimited quantities makes them attractive for in-vitro disease modeling, drug screening, personalized medicine, and regenerative therapies. As the genome of iPSCs thoroughly reproduces that of the somatic cells from which they are derived, they may possess genetic abnormalities, which would seriously compromise their utility and safety. Genetic aberrations could be present in donor somatic cells and then transferred during iPSC generation, or they could occur as de novo mutations during reprogramming or prolonged cell culture. Therefore, to warrant safety of human iPSCs for clinical applications, analysis of genetic integrity, particularly during iPSC generation and differentiation, should be carried out on a regular basis. On the other hand, reprogramming of somatic cells to iPSCs requires profound modifications in the epigenetic landscape. Changes in chromatin structure by DNA methylations and histone tail modifications aim to reset the gene expression pattern of somatic cells to facilitate and establish self-renewal and pluripotency. However, residual epigenetic memory influences the iPSC phenotype, which may affect their application in disease therapeutics. The present review discusses the somatic cell origin, genetic stability, and epigenetic memory of iPSCs and their impact on basic and translational research.
Collapse
Affiliation(s)
- Mareike S Poetsch
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Anna Strano
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
- Corresponding author: Kaomei Guan, Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany. Tel: +49 351 458 6246; Fax: +49 351 458 6315;
| |
Collapse
|
19
|
Hasaart KA, Manders F, Ubels J, Verheul M, van Roosmalen MJ, Groenen NM, Oka R, Kuijk E, Lopes SMCDS, Boxtel RV. Human induced pluripotent stem cells display a similar mutation burden as embryonic pluripotent cells in vivo. iScience 2022; 25:103736. [PMID: 35118356 PMCID: PMC8792070 DOI: 10.1016/j.isci.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, but genetic instability is a major concern. Embryonic pluripotent cells also accumulate mutations during early development, but how this relates to the mutation burden in iPSCs remains unknown. Here, we directly compared the mutation burden of cultured iPSCs with their isogenic embryonic cells during human embryogenesis. We generated developmental lineage trees of human fetuses by phylogenetic inference from somatic mutations in the genomes of multiple stem cells, which were derived from different germ layers. Using this approach, we characterized the mutations acquired pre-gastrulation and found a rate of 1.65 mutations per cell division. When cultured in hypoxic conditions, iPSCs generated from fetal stem cells of the assessed fetuses displayed a similar mutation rate and spectrum. Our results show that iPSCs maintain a genomic integrity during culture at a similar degree as their pluripotent counterparts do in vivo.
Collapse
Affiliation(s)
- Karlijn A.L. Hasaart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Joske Ubels
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Markus J. van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Niels M. Groenen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ewart Kuijk
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | | | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| |
Collapse
|
20
|
Sun S, Wang Y, Maslov AY, Dong X, Vijg J. SomaMutDB: a database of somatic mutations in normal human tissues. Nucleic Acids Res 2022; 50:D1100-D1108. [PMID: 34634815 PMCID: PMC8728264 DOI: 10.1093/nar/gkab914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022] Open
Abstract
De novo mutations, a consequence of errors in DNA repair or replication, have been reported to accumulate with age in normal tissues of humans and model organisms. This accumulation during development and aging has been implicated as a causal factor in aging and age-related pathology, including but not limited to cancer. Due to their generally very low abundance mutations have been difficult to detect in normal tissues. Only with recent advances in DNA sequencing of single-cells, clonal lineages or ultra-high-depth sequencing of small tissue biopsies, somatic mutation frequencies and spectra have been unveiled in several tissue types. The rapid accumulation of such data prompted us to develop a platform called SomaMutDB (https://vijglab.einsteinmed.org/SomaMutDB) to catalog the 2.42 million single nucleotide variations (SNVs) and 0.12 million small insertions and deletions (INDELs) thus far identified using these advanced methods in nineteen human tissues or cell types as a function of age or environmental stress conditions. SomaMutDB employs a user-friendly interface to display and query somatic mutations with their functional annotations. Moreover, the database provides six powerful tools for analyzing mutational signatures associated with the data. We believe such an integrated resource will prove valuable for understanding somatic mutations and their possible role in human aging and age-related diseases.
Collapse
Affiliation(s)
- Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yujue Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, and Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Andrews PW. Human pluripotent stem cells: tools for regenerative medicine. BIOMATERIALS TRANSLATIONAL 2021; 2:294-300. [PMID: 35837419 PMCID: PMC9255800 DOI: 10.12336/biomatertransl.2021.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023]
Abstract
Human embryonic stem cells and induced pluripotent stem cells, together denoted as pluripotent stem cells have opened up unprecedented opportunities for developments in human healthcare over the past 20 years. Although much about the properties and behaviour of these cells required to underpin their applications has been discovered over this time, a number of issues remain. This brief review considers the history of these developments and some of the underlying biology, pointing out some of the problems still to be resolved, particularly in relation to their genetic stability and possible malignancy.
Collapse
Affiliation(s)
- Peter W. Andrews
- The Centre for Stem Cell Biology, The School of Bioscience, The University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Genomic stability of mouse spermatogonial stem cells in vitro. Sci Rep 2021; 11:24199. [PMID: 34921203 PMCID: PMC8683475 DOI: 10.1038/s41598-021-03658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
Germline mutations underlie genetic diversity and species evolution. Previous studies have assessed the theoretical mutation rates and spectra in germ cells mostly by analyzing genetic markers and reporter genes in populations and pedigrees. This study reported the direct measurement of germline mutations by whole-genome sequencing of cultured spermatogonial stem cells in mice, namely germline stem (GS) cells, together with multipotent GS (mGS) cells that spontaneously dedifferentiated from GS cells. GS cells produce functional sperm that can generate offspring by transplantation into seminiferous tubules, whereas mGS cells contribute to germline chimeras by microinjection into blastocysts in a manner similar to embryonic stem cells. The estimated mutation rate of GS and mGS cells was approximately 0.22 × 10-9 and 1.0 × 10-9 per base per cell population doubling, respectively, indicating that GS cells have a lower mutation rate compared to mGS cells. GS and mGS cells also showed distinct mutation patterns, with C-to-T transition as the most frequent in GS cells and C-to-A transversion as the most predominant in mGS cells. By karyotype analysis, GS cells showed recurrent trisomy of chromosomes 15 and 16, whereas mGS cells frequently exhibited chromosomes 1, 6, 8, and 11 amplifications, suggesting that distinct chromosomal abnormalities confer a selective growth advantage for each cell type in vitro. These data provide the basis for studying germline mutations and a foundation for the future utilization of GS cells for reproductive technology and clinical applications.
Collapse
|
23
|
Jewell BE, Xu A, Zhu D, Huang MF, Lu L, Liu M, Underwood EL, Park JH, Fan H, Gingold JA, Zhou R, Tu J, Huo Z, Liu Y, Jin W, Chen YH, Xu Y, Chen SH, Rainusso N, Berg NK, Bazer DA, Vellano C, Jones P, Eltzschig HK, Zhao Z, Kaipparettu BA, Zhao R, Wang LL, Lee DF. Patient-derived iPSCs link elevated mitochondrial respiratory complex I function to osteosarcoma in Rothmund-Thomson syndrome. PLoS Genet 2021; 17:e1009971. [PMID: 34965247 PMCID: PMC8716051 DOI: 10.1371/journal.pgen.1009971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.
Collapse
Affiliation(s)
- Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Linchao Lu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Mo Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Erica L Underwood
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Julian A Gingold
- Department of Obstetrics & Gynecology and Women's Health, Einstein/Montefiore Medical Center, New York City, New York, United States of America
| | - Ruoji Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jian Tu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zijun Huo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ying Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weidong Jin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Yi-Hung Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yitian Xu
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Nino Rainusso
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Nathaniel K Berg
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Christopher Vellano
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Philip Jones
- TRACTION Platform, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Holger K Eltzschig
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lisa L Wang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
24
|
Krog RT, de Miranda NFCC, Vahrmeijer AL, Kooreman NG. The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13225789. [PMID: 34830945 PMCID: PMC8616212 DOI: 10.3390/cancers13225789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite improvements in the treatment of several cancer types, the extremely poor prognosis of pancreatic cancer patients has remained unchanged over the last decades. Therefore, new therapeutic regimens for pancreatic cancer are highly needed. In this review, we will discuss the potential of induced pluripotent stem cells (iPSCs) to generate representative pancreatic cancer models that can aid the development of novel diagnostics and therapeutic strategies. Furthermore, the potential of iPSCs as pancreatic cancer vaccines or as a basis for cellular therapies will be discussed. With promising preclinical results and ongoing clinical trials, the potential of iPSCs to further the treatment of pancreatic cancer is being explored and, in turn, will hopefully provide additional therapies to increase the poor survival rates of this patient population. Abstract Advances in the treatment of pancreatic ductal adenocarcinoma (PDAC) using neoadjuvant chemoradiotherapy, chemotherapy, and immunotherapy have had minimal impact on the overall survival of patients. A general lack of immunogenic features and a complex tumor microenvironment (TME) are likely culprits for therapy refractoriness in PDAC. Induced pluripotent stem cells (iPSCs) should be explored as a means to advance the treatment options for PDAC, by providing representative in vitro models of pancreatic cancer development. In addition, iPSCs could be used for tailor-made cellular immunotherapies or as a source of tumor-associated antigens in the context of vaccination.
Collapse
Affiliation(s)
- Ricki T. Krog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
| | - Nigel G. Kooreman
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.T.K.); (A.L.V.)
- Correspondence:
| |
Collapse
|
25
|
Valencia-Morales MDP, Sanchez-Flores A, Colín-Castelán D, Alvarado-Caudillo Y, Fragoso-Bargas N, López-González G, Peña-López T, Ramírez-Nava M, de la Rocha C, Rodríguez-Ríos D, Lund G, Zaina S. Somatic Genetic Mosaicism in the Apolipoprotein E-null Mouse Aorta. Thromb Haemost 2021; 121:1541-1553. [PMID: 33677828 DOI: 10.1055/a-1414-4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In addition to genetic and epigenetic inheritance, somatic variation may contribute to cardiovascular disease (CVD) risk. CVD-associated somatic mutations have been reported in human clonal hematopoiesis, but evidence in the atheroma is lacking. To probe for somatic variation in atherosclerosis, we sought single-nucleotide private variants (PVs) in whole-exome sequencing (WES) data of aorta, liver, and skeletal muscle of two C57BL/6J coisogenic male ApoE null/wild-type (WT) sibling pairs, and RNA-seq data of one of the two pairs. Relative to the C57BL/6 reference genome, we identified 9 and 11 ApoE null aorta- and liver-specific PVs that were shared by all WES and RNA-seq datasets. Corresponding PVs in WT sibling aorta and liver were 1 and 0, respectively, and not overlapping with ApoE null PVs. Pyrosequencing analysis of 4 representative PVs in 17 ApoE null aortas and livers confirmed tissue-specific shifts toward the alternative allele, in addition to significant deviations from mendelian allele ratios. Notably, all aorta and liver PVs were present in the dbSNP database and were predominantly transition mutations within atherosclerosis-related genes. The majority of PVs were in discrete clusters approximately 3 Mb and 65 to 73 Mb away from hypermutable immunoglobin loci in chromosome 6. These features were largely shared with previously reported CVD-associated somatic mutations in human clonal hematopoiesis. The observation that SNPs exhibit tissue-specific somatic DNA mosaicism in ApoE null mice is potentially relevant for genetic association study design. The proximity of PVs to hypermutable loci suggests testable mechanistic hypotheses.
Collapse
Affiliation(s)
- María Del Pilar Valencia-Morales
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
- Department of Developmental Genetics and Molecular Physiology, "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | - Alejandro Sanchez-Flores
- "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | | | | | | | - Gladys López-González
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Tania Peña-López
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Magda Ramírez-Nava
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Carmen de la Rocha
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| |
Collapse
|
26
|
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
27
|
Kamimura S, Suga T, Hoki Y, Sunayama M, Imadome K, Fujita M, Nakamura M, Araki R, Abe M. Insertion/deletion and microsatellite alteration profiles in induced pluripotent stem cells. Stem Cell Reports 2021; 16:2503-2519. [PMID: 34559999 PMCID: PMC8514972 DOI: 10.1016/j.stemcr.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
We here demonstrate that microsatellite (MS) alterations are elevated in both mouse and human induced pluripotent stem cells (iPSCs), but importantly we have now identified a type of human iPSC in which these alterations are considerably reduced. We aimed in our present analyses to profile the InDels in iPSC/ntESC genomes, especially in MS regions. To detect somatic de novo mutations in particular, we generated 13 independent reprogramed stem cell lines (11 iPSC and 2 ntESC lines) from an identical parent somatic cell fraction of a C57BL/6 mouse. By using this cell set with an identical genetic background, we could comprehensively detect clone-specific alterations and, importantly, experimentally validate them. The effectiveness of employing sister clones for detecting somatic de novo mutations was thereby demonstrated. We then successfully applied this approach to human iPSCs. Our results require further careful genomic analysis but make an important inroad into solving the issue of genome abnormalities in iPSCs.
Collapse
Affiliation(s)
- Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomo Suga
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yuko Hoki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Misato Sunayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Miki Nakamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
28
|
Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer 2021; 21:619-637. [PMID: 34316057 DOI: 10.1038/s41568-021-00377-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Whole-genome sequencing has brought the cancer genomics community into new territory. Thanks to the sheer power provided by the thousands of mutations present in each patient's cancer, we have been able to discern generic patterns of mutations, termed 'mutational signatures', that arise during tumorigenesis. These mutational signatures provide new insights into the causes of individual cancers, revealing both endogenous and exogenous factors that have influenced cancer development. This Review brings readers up to date in a field that is expanding in computational, experimental and clinical directions. We focus on recent conceptual advances, underscoring some of the caveats associated with using the mutational signature frameworks and highlighting the latest experimental insights. We conclude by bringing attention to areas that are likely to see advancements in clinical applications.
Collapse
Affiliation(s)
- Gene Koh
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sophie Momen
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA, Oliver TRW, Leongamornlert D, Ellis P, Noorani A, Mitchell TJ, Butler TM, Hooks Y, Warren AY, Jorgensen M, Dawson KJ, Menzies A, O'Neill L, Latimer C, Teng M, van Boxtel R, Iacobuzio-Donahue CA, Martincorena I, Heer R, Campbell PJ, Fitzgerald RC, Stratton MR, Rahbari R. The mutational landscape of human somatic and germline cells. Nature 2021; 597:381-386. [PMID: 34433962 DOI: 10.1038/s41586-021-03822-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
Over the course of an individual's lifetime, normal human cells accumulate mutations1. Here we compare the mutational landscape in 29 cell types from the soma and germline using multiple samples from the same individuals. Two ubiquitous mutational signatures, SBS1 and SBS5/40, accounted for the majority of acquired mutations in most cell types, but their absolute and relative contributions varied substantially. SBS18, which potentially reflects oxidative damage2, and several additional signatures attributed to exogenous and endogenous exposures contributed mutations to subsets of cell types. The rate of mutation was lowest in spermatogonia, the stem cells from which sperm are generated and from which most genetic variation in the human population is thought to originate. This was due to low rates of ubiquitous mutational processes and may be partially attributable to a low rate of cell division in basal spermatogonia. These results highlight similarities and differences in the maintenance of the germline and soma.
Collapse
Affiliation(s)
- Luiza Moore
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alex Cagan
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Matthew D C Neville
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Rashesh Sanghvi
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Thomas R W Oliver
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Peter Ellis
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Inivata, Cambridge, UK
| | - Ayesha Noorani
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mette Jorgensen
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kevin J Dawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mabel Teng
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Urology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | | | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
30
|
Ershova AS, Eliseeva IA, Nikonov OS, Fedorova AD, Vorontsov IE, Papatsenko D, Kulakovskiy IV. Enhanced C/EBP binding to G·T mismatches facilitates fixation of CpG mutations in cancer and adult stem cells. Cell Rep 2021; 35:109221. [PMID: 34107262 DOI: 10.1016/j.celrep.2021.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Somatic mutations in regulatory sites of human stem cells affect cell identity or cause malignant transformation. By mining the human genome for co-occurrence of mutations and transcription factor binding sites, we show that C/EBP binding sites are strongly enriched with [C > T]G mutations in cancer and adult stem cells, which is of special interest because C/EBPs regulate cell fate and differentiation. In vitro protein-DNA binding assay and structural modeling of the CEBPB-DNA complex show that the G·T mismatch in the core CG dinucleotide strongly enhances affinity of the binding site. We conclude that enhanced binding of C/EBPs shields CpG·TpG mismatches from DNA repair, leading to selective accumulation of [C > T]G mutations and consequent deterioration of the binding sites. This mechanism of targeted mutagenesis highlights the effect of a mutational process on certain regulatory sites and reveals the molecular basis of putative regulatory alterations in stem cells.
Collapse
Affiliation(s)
- Anna S Ershova
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Irina A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YN60, Ireland
| | - Ilya E Vorontsov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Papatsenko
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
31
|
Ludikhuize MC, Rodríguez Colman MJ. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid Redox Signal 2021; 34:1004-1024. [PMID: 32847377 DOI: 10.1089/ars.2020.8126] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Stem cell activation and differentiation occur along changes in cellular metabolism. Metabolic transitions translate into changes in redox balance, cell signaling, and epigenetics, thereby regulating these processes. Metabolic transitions are key regulators of cell fate and exemplify the moonlighting nature of many metabolic enzymes and their associated metabolites. Recent Advances: Forkhead box O transcription factors (FOXOs) are bona fide regulators of cellular homeostasis. FOXOs are multitasking proteins able to regulate cell cycle, cellular metabolism, and redox state. Recent and ongoing research poses FOXOs as key factors in stem cell maintenance and differentiation in several tissues. Critical Issues: The multitasking nature of FOXOs and their tissue-specific expression patterns hinders to disclose a possible conserved mechanism of regulation of stem cell maintenance and differentiation. Moreover, cellular metabolism, cell signaling, and epigenetics establish complex regulatory interactions, which challenge the establishment of the causal/temporal nature of metabolic changes and stem cell activation and differentiation. Future Directions: The development of single-cell technologies and in vitro models able to reproduce the dynamics of stem cell differentiation are actively contributing to define the role of metabolism in this process. This knowledge is key to understanding and designing therapies for those pathologies where the balance between proliferation and differentiation is lost. Importantly, metabolic interventions could be applied to optimize stem cell cultures meant for therapeutical applications, such as transplantations, to treat autoimmune and degenerative disorders. Antioxid. Redox Signal. 34, 1004-1024.
Collapse
Affiliation(s)
- Marlies Corine Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María José Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Abstract
Human pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide unprecedented opportunities for cell therapies against intractable diseases and injuries. Both ESCs and iPSCs are already being used in clinical trials. However, we continue to encounter practical issues that limit their use, including their inherent properties of tumorigenicity, immunogenicity, and heterogeneity. Here, I review two decades of research aimed at overcoming these three difficulties.
Collapse
|
33
|
Kosanke M, Osetek K, Haase A, Wiehlmann L, Davenport C, Schwarzer A, Adams F, Kleppa MJ, Schambach A, Merkert S, Wunderlich S, Menke S, Dorda M, Martin U. Reprogramming enriches for somatic cell clones with small-scale mutations in cancer-associated genes. Mol Ther 2021; 29:2535-2553. [PMID: 33831558 DOI: 10.1016/j.ymthe.2021.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.
Collapse
Affiliation(s)
- Maike Kosanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Katarzyna Osetek
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Colin Davenport
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Schwarzer
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Felix Adams
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Sandra Menke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
34
|
Hammond D, Loghavi S. Clonal haematopoiesis of emerging significance. Pathology 2021; 53:300-311. [PMID: 33685721 DOI: 10.1016/j.pathol.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Clonal haematopoiesis (CH) is a ubiquitous feature of aging and provides mechanistic insight into the inextricable relationship between chronic inflammation and age-related diseases. Although CH confers a cumulative risk of subsequent haematological malignancy, particularly myeloid neoplasms, that risk is heavily mutation- and context-specific. Individuals with mutations in DNA damage response pathway genes receiving select cytotoxic therapies for solid tumours are among the highest risk groups for subsequent development of myeloid neoplasms. Multiple lines of evidence suggest that TET2-mutated macrophages causally contribute to cardiometabolic disease through the generation of proinflammatory cytokines. It is speculated that such CH-related inflammation is a shared driver of several other chronic diseases. Whether we can intervene in individuals with CH to diminish the risk of subsequent haematological malignancy or non-haematological disease remains to be seen. However, precision anti-cytokine therapies are a rational starting point to break the feedforward loop between clonal myeloid expansion, inflammation, and end-organ damage.
Collapse
Affiliation(s)
- Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Turocy J, Adashi EY, Egli D. Heritable human genome editing: Research progress, ethical considerations, and hurdles to clinical practice. Cell 2021; 184:1561-1574. [PMID: 33740453 DOI: 10.1016/j.cell.2021.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022]
Abstract
Our genome at conception determines much of our health as an adult. Most human diseases have a heritable component and thus may be preventable through heritable genome editing. Preventing disease from the beginning of life before irreversible damage has occurred is an admirable goal, but the path to fruition remains unclear. Here, we review the significant scientific contributions to the field of human heritable genome editing, the unique ethical challenges that cannot be overlooked, and the hurdles that must be overcome prior to translating these technologies into clinical practice.
Collapse
Affiliation(s)
- Jenna Turocy
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Eli Y Adashi
- Professor of Medical Science, Brown University, Providence, RI, USA
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA; Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| |
Collapse
|
36
|
Zhang H, Su B, Jiao L, Xu ZH, Zhang CJ, Nie J, Gao ML, Zhang YV, Jin ZB. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:245. [PMID: 33708872 PMCID: PMC7940887 DOI: 10.21037/atm-20-4707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly due in large part to age-dependent atrophy of retinal pigment epithelium (RPE) cells. RPE cells form a monolayer located between the choroid and the outer segments of photoreceptors, playing multifarious roles in maintenance of visual function. Allogeneically induced pluripotent stem cell-derived RPE (iPSC-RPE or iRPE) has become a potential approach for providing an abundant source of donors for clinical cell products. Transplantation of iRPE has been proven effective in rescuing impaired retinas in Royal College of Surgeons (RCS) rats after approximately 5 to 6 weeks. Here, we explore the long-term (19 weeks) safety and efficacy of human iRPE cell transplantation in pre-clinical animal models. Methods The expression of human RPE-specific markers in iRPE cells was determined using immunofluorescence staining. For the proliferative test, Ki-67 expression was also verified by immunofluorescence and flow cytometric analysis. Then, iRPE cells were transplanted into the subretinal space of immune-deficient NOD/SCID/IL-2Rgcnull (NSG) mice to assess their safety. To evaluate whether the transplanted cells could survive and rescue visual function, we performed color fundus photography, focal electroretinogram and immunostaining after delivering iRPE cells into the subretinal space of RCS rats. Results Human iRPE cells expressed native RPE-specific markers, such as microphthalmia-associated transcription factor (MiTF), retinal pigment epithelium-specific 65-kDa protein (RPE65) and tight-junction associated structural protein (ZO-1), and their proliferative capacity (Ki-67 expression) was poor after 25 days of induction. A tumorigenicity test revealed no tumor formation or abnormal proliferation in the immunodeficient mice after subretinal injection of 5×105 iRPE cells. The transplanted iRPE cells survived for at least 19 weeks and maintained visual function for 15 weeks. Conclusions In the present study, we provided further evidence for the use of human iRPE transplantation to treat retinal degenerative disease in pre-clinical animal models. Therefore, we consider human iRPE cells a promising source of cell replacement therapy for AMD.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bingnan Su
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Luyan Jiao
- Nuwacell Biotechnologies Co., Ltd, Hefei, China
| | - Ze-Hua Xu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang-Jun Zhang
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jinfu Nie
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | | | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
UV-exposure, endogenous DNA damage, and DNA replication errors shape the spectra of genome changes in human skin. PLoS Genet 2021; 17:e1009302. [PMID: 33444353 PMCID: PMC7808690 DOI: 10.1371/journal.pgen.1009302] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Human skin is continuously exposed to environmental DNA damage leading to the accumulation of somatic mutations over the lifetime of an individual. Mutagenesis in human skin cells can be also caused by endogenous DNA damage and by DNA replication errors. The contributions of these processes to the somatic mutation load in the skin of healthy humans has so far not been accurately assessed because the low numbers of mutations from current sequencing methodologies preclude the distinction between sequencing errors and true somatic genome changes. In this work, we sequenced genomes of single cell-derived clonal lineages obtained from primary skin cells of a large cohort of healthy individuals across a wide range of ages. We report here the range of mutation load and a comprehensive view of the various somatic genome changes that accumulate in skin cells. We demonstrate that UV-induced base substitutions, insertions and deletions are prominent even in sun-shielded skin. In addition, we detect accumulation of mutations due to spontaneous deamination of methylated cytosines as well as insertions and deletions characteristic of DNA replication errors in these cells. The endogenously induced somatic mutations and indels also demonstrate a linear increase with age, while UV-induced mutation load is age-independent. Finally, we show that DNA replication stalling at common fragile sites are potent sources of gross chromosomal rearrangements in human cells. Thus, somatic mutations in skin of healthy individuals reflect the interplay of environmental and endogenous factors in facilitating genome instability and carcinogenesis. Skin forms the first barrier against a variety of environmental toxins and DNA damaging agents. Additionally, DNA of skin cells suffer from endogenous damage and errors during replication. Altogether, these lesions cause a variety of genome changes resulting in disease including cancer. However, the accurate measurement of the range and complete spectrum of genome changes in healthy skin was missing due to technical or biological limitations of prior studies. We present here accurate measurements of the various types of somatic genome changes that we found in skin fibroblasts and melanocytes from 21 donors ranging in ages from 25 to 79 years, which allowed to distinguish age related from age independent changes. Our cohort contains both White and African American donors, allowing an estimation of the impacts of skin color on mutagenesis. As a result, we revealed the complete spectrum and determined the range of somatic genome changes and their etiologies in healthy human skin fibroblasts and melanocytes and highlighted molecular mechanisms underlying these changes. Therefore, our study introduces a base line for defining disease levels of genome instability in skin.
Collapse
|
38
|
Strategies for Cancer Immunotherapy Using Induced Pluripotency Stem Cells-Based Vaccines. Cancers (Basel) 2020; 12:cancers12123581. [PMID: 33266109 PMCID: PMC7760556 DOI: 10.3390/cancers12123581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Despite improvements in cancer therapy, metastatic solid tumors remain largely incurable. Immunotherapy has emerged as a pioneering and promising approach for cancer therapy and management, and in particular intended for advanced tumors unresponsive to current therapeutics. In cancer immunotherapy, components of the immune system are exploited to eliminate cancer cells and treat patients. The recent clinical successes of immune checkpoint blockade and chimeric antigen receptor T cell therapies represent a turning point in cancer treatment. Despite their potential success, current approaches depend on efficient tumor antigen presentation which are often inaccessible, and most tumors turn refractory to current immunotherapy. Patient-derived induced pluripotent stem cells (iPSCs) have been shown to share several characteristics with cancer (stem) cells (CSCs), eliciting a specific anti-tumoral response when injected in rodent cancer models. Indeed, artificial cellular reprogramming has been widely compared to the biogenesis of CSCs. Here, we will discuss the state-of-the-art on the potential implication of cellular reprogramming and iPSCs for the design of patient-specific immunotherapeutic strategies, debating the similarities between iPSCs and cancer cells and introducing potential strategies that could enhance the efficiency and therapeutic potential of iPSCs-based cancer vaccines.
Collapse
|
39
|
Chromosomal aberration arises during somatic reprogramming to pluripotent stem cells. Cell Div 2020; 15:12. [PMID: 33292330 PMCID: PMC7641821 DOI: 10.1186/s13008-020-00068-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) has opened new therapeutic possibilities. However, karyotypic abnormalities detected in iPSCs compromised their utility, especially chromosomal aberrations found at early passages raised serious safety concerns. The mechanism underlying the chromosomal abnormality in early-passage iPSCs is not known. Methods Human dermal fibroblasts (HDFs) were stimulated with KMOS (KLF4, cMYC, OCT4 and SOX2) proteins to enhance their proliferative capacity and many vigorous clones were obtained. Clonal reprogramming was carried out by KMOS mRNAs transfection to confirm the ‘chromosomal mutagenicity’ of reprogramming process. Subculturing was performed to examine karyotypic stability of iPSCs after the re-establishment of stemness. And antioxidant N-acetyl-cysteine (NAC) was added to the culture medium for further confirmming the mutagenicity in the first few days of reprogramming. Results Chromosomal aberrations were found in a small percentage of newly induced iPS clones by reprogramming transcription factors. Clonal reprogramming ruled out the aberrant chromosomes inherited from rare karyotypically abnormal parental cell subpopulation. More importantly, the antioxidant NAC effectively reduced the occurrence of chromosomal aberrations at the early stage of reprogramming. Once iPS cell lines were established, they restored karyotypic stability in subsequent subculturing. Conclusions Our results provided the first line of evidence for the ‘chromosomal mutagenicity’ of reprogramming process.
Collapse
|
40
|
Halliwell J, Barbaric I, Andrews PW. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat Rev Mol Cell Biol 2020; 21:715-728. [DOI: 10.1038/s41580-020-00292-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
|
41
|
Miao X, Li Y, Zheng C, Wang L, Jin C, Chen L, Mi S, Zhai W, Wang QF, Cai J. A promising iPS-based single-cell cloning strategy revealing signatures of somatic mutations in heterogeneous normal cells. Comput Struct Biotechnol J 2020; 18:2326-2335. [PMID: 32994891 PMCID: PMC7493045 DOI: 10.1016/j.csbj.2020.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Single-cell genomics has advanced rapidly as trace-DNA amplification technologies evolved. However, current technologies are subject to a variety of pitfalls such as contamination, uneven genomic coverage, and amplification errors. Even for the "golden" strategy of single stem cell-derived clonal formation, high-fidelity amplification is applicable merely to single stem cells. It's still challenging to accurately define somatic mutations of a single cell in various cell types. Herein, we provided evidence, for the first time, to prove that induced pluripotent stem cells (iPS cells or iPSC), being a single somatic cell-derived clone, are recording almost identical (>90%) mutational profile of the initial cell progenitor. This finding demonstrates iPS technique, applicable to any cell type, can be utilized as a cell cloning strategy favorable for single-cell genomic amplification. This novel strategy is not limited by cell-type constraints or amplification artifacts, and thus enables our detailed investigation on the characteristics of somatic mutations in heterogeneous normal cells.
Collapse
Affiliation(s)
- Xuexia Miao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Lifei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Jin
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhai
- Department of Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Drexler HG, Quentmeier H. The LL-100 Cell Lines Panel: Tool for Molecular Leukemia-Lymphoma Research. Int J Mol Sci 2020; 21:ijms21165800. [PMID: 32823535 PMCID: PMC7461097 DOI: 10.3390/ijms21165800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Certified cell line models provide ideal experimental platforms to answer countless scientific questions. The LL-100 panel is a cohort of cell lines that are broadly representative of all leukemia–lymphoma entities (including multiple myeloma and related diseases), rigorously authenticated and validated, and comprehensively annotated. The process of the assembly of the LL-100 panel was based on evidence and experience. To expand the genetic characterization across all LL-100 cell lines, we performed whole-exome sequencing and RNA sequencing. Here, we describe the conception of the panel and showcase some exemplary applications with a focus on cancer genomics. Due diligence was paid to exclude cross-contaminated and non-representative cell lines. As the LL-100 cell lines are so well characterized and readily available, the panel will be a valuable resource for identifying cell lines with mutations in cancer genes, providing superior model systems. The data also add to the current knowledge of the molecular pathogenesis of leukemia–lymphoma. Additional efforts to expand the breadth of available high-quality cell lines are clearly warranted.
Collapse
Affiliation(s)
- Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
- Faculty of Life Sciences, Technical University of Braunschweig, 38124 Braunschweig, Germany
- Correspondence:
| | - Hilmar Quentmeier
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| |
Collapse
|
43
|
Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dentro SC, Dawson KJ, Butler T, Rahbari R, Mitchell TJ, Maura F, Nangalia J, Tarpey PS, Brunner SF, Lee-Six H, Hooks Y, Moody S, Mahbubani KT, Jimenez-Linan M, Brosens JJ, Iacobuzio-Donahue CA, Martincorena I, Saeb-Parsy K, Campbell PJ, Stratton MR. The mutational landscape of normal human endometrial epithelium. Nature 2020; 580:640-646. [PMID: 32350471 DOI: 10.1038/s41586-020-2214-z] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.
Collapse
Affiliation(s)
- Luiza Moore
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Daniel Leongamornlert
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter Ellis
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Inivata Ltd, Cambridge, UK
| | - Stefan C Dentro
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Kevin J Dawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Tim Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Thomas J Mitchell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Francesco Maura
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jyoti Nangalia
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Patrick S Tarpey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Simon F Brunner
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Henry Lee-Six
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Mercedes Jimenez-Linan
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jan J Brosens
- Tommy's National Miscarriage Research Centre, Warwick Medical School, University of Warwick, Coventry, UK
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
44
|
Thompson O, von Meyenn F, Hewitt Z, Alexander J, Wood A, Weightman R, Gregory S, Krueger F, Andrews S, Barbaric I, Gokhale PJ, Moore HD, Reik W, Milo M, Nik-Zainal S, Yusa K, Andrews PW. Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nat Commun 2020; 11:1528. [PMID: 32251294 PMCID: PMC7089967 DOI: 10.1038/s41467-020-15271-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence of repetitive genomic changes that provide a selective growth advantage in pluripotent stem cells is of concern for their clinical application. However, the effect of different culture conditions on the underlying mutation rate is unknown. Here we show that the mutation rate in two human embryonic stem cell lines derived and banked for clinical application is low and not substantially affected by culture with Rho Kinase inhibitor, commonly used in their routine maintenance. However, the mutation rate is reduced by >50% in cells cultured under 5% oxygen, when we also found alterations in imprint methylation and reversible DNA hypomethylation. Mutations are evenly distributed across the chromosomes, except for a slight increase on the X-chromosome, and an elevation in intergenic regions suggesting that chromatin structure may affect mutation rate. Overall the results suggest that pluripotent stem cells are not subject to unusually high rates of genetic or epigenetic alterations.
Collapse
Affiliation(s)
- Oliver Thompson
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ferdinand von Meyenn
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- Institute of Food, Nutrition and Health, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Zoe Hewitt
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - John Alexander
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andrew Wood
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Richard Weightman
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sian Gregory
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Ivana Barbaric
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Paul J Gokhale
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Harry D Moore
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marta Milo
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Serena Nik-Zainal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Academic Laboratory of Medical Genetics, Cambridge University Hospitals NHS Foundation Trust, Box 238, Lv6 Addenbrooke' Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, University of Cambridge, Hutchinson/MRC Research Centre, Box 1297, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Peter W Andrews
- The Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
45
|
Yoshihara M, Oguchi A, Murakawa Y. Genomic Instability of iPSCs and Challenges in Their Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:23-47. [PMID: 31898780 DOI: 10.1007/978-3-030-31206-0_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generation of human-induced pluripotent stem cells (iPSCs) from somatic cells has opened the possibility to design novel therapeutic approaches. In 2014, the first-in-human clinical trial of iPSC-based therapy was conducted. However, the transplantation for the second patient was discontinued at least in part due to genetic aberrations detected in iPSCs. Moreover, many studies have reported genetic aberrations in iPSCs with the rapid progress in genomic technologies. The presence of genomic instability raises serious safety concerns and can hamper the advancement of iPSC-based therapies. Here, we summarize our current knowledge on genomic instability of iPSCs and challenges in their clinical applications. In view of the recent expansion of stem cell therapies, it is crucial to gain deeper mechanistic insights into the genetic aberrations, ranging from chromosomal aberrations, copy number variations to point mutations. On the basis of their origin, these genetic aberrations in iPSCs can be classified as (i) preexisting mutations in parental somatic cells, (ii) reprogramming-induced mutations, and (iii) mutations that arise during in vitro culture. However, it is still unknown whether these genetic aberrations in iPSCs can be an actual risk factor for adverse effects. Intersection of the genomic data on iPSCs with the patients' clinical follow-up data will help to produce evidence-based criteria for clinical application. Furthermore, we discuss novel approaches to generate iPSCs with fewer genetic aberrations. Better understanding of iPSCs from both basic and clinical aspects will pave the way for iPSC-based therapies.
Collapse
Affiliation(s)
- Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
46
|
Nakamori M, Panigrahi GB, Lanni S, Gall-Duncan T, Hayakawa H, Tanaka H, Luo J, Otabe T, Li J, Sakata A, Caron MC, Joshi N, Prasolava T, Chiang K, Masson JY, Wold MS, Wang X, Lee MYWT, Huddleston J, Munson KM, Davidson S, Layeghifard M, Edward LM, Gallon R, Santibanez-Koref M, Murata A, Takahashi MP, Eichler EE, Shlien A, Nakatani K, Mochizuki H, Pearson CE. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat Genet 2020; 52:146-159. [PMID: 32060489 PMCID: PMC7043212 DOI: 10.1038/s41588-019-0575-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
Abstract
In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Terence Gall-Duncan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hideki Hayakawa
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hana Tanaka
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jennifer Luo
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Takahiro Otabe
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jinxing Li
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Akihiro Sakata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Niraj Joshi
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Tanya Prasolava
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Karen Chiang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott Davidson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Mehdi Layeghifard
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Richard Gallon
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam Shlien
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Araki R, Hoki Y, Suga T, Obara C, Sunayama M, Imadome K, Fujita M, Kamimura S, Nakamura M, Wakayama S, Nagy A, Wakayama T, Abe M. Genetic aberrations in iPSCs are introduced by a transient G1/S cell cycle checkpoint deficiency. Nat Commun 2020; 11:197. [PMID: 31924765 PMCID: PMC6954237 DOI: 10.1038/s41467-019-13830-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
A number of point mutations have been identified in reprogrammed pluripotent stem cells such as iPSCs and ntESCs. The molecular basis for these mutations has remained elusive however, which is a considerable impediment to their potential medical application. Here we report a specific stage at which iPSC generation is not reduced in response to ionizing radiation, i.e. radio-resistance. Quite intriguingly, a G1/S cell cycle checkpoint deficiency occurs in a transient fashion at the initial stage of the genome reprogramming process. These cancer-like phenomena, i.e. a cell cycle checkpoint deficiency resulting in the accumulation of point mutations, suggest a common developmental pathway between iPSC generation and tumorigenesis. This notion is supported by the identification of specific cancer mutational signatures in these cells. We describe efficient generation of human integration-free iPSCs using erythroblast cells, which have only a small number of point mutations and INDELs, none of which are in coding regions. Point mutations have been found in induced pluripotent stem cells (iPSCs) but when they arise is unclear. Here, the authors show that a G1/S cell cycle checkpoint deficiency transiently occurs early in genome reprogramming, suggesting a common developmental pathway between iPSC and tumorigenesis, and generate genetic burden-free human iPSCs.
Collapse
Affiliation(s)
- Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Yuko Hoki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Tomo Suga
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Chizuka Obara
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Misato Sunayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Miki Nakamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| |
Collapse
|
48
|
Petljak M, Alexandrov LB, Brammeld JS, Price S, Wedge DC, Grossmann S, Dawson KJ, Ju YS, Iorio F, Tubio JMC, Koh CC, Georgakopoulos-Soares I, Rodríguez-Martín B, Otlu B, O'Meara S, Butler AP, Menzies A, Bhosle SG, Raine K, Jones DR, Teague JW, Beal K, Latimer C, O'Neill L, Zamora J, Anderson E, Patel N, Maddison M, Ng BL, Graham J, Garnett MJ, McDermott U, Nik-Zainal S, Campbell PJ, Stratton MR. Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis. Cell 2020; 176:1282-1294.e20. [PMID: 30849372 PMCID: PMC6424819 DOI: 10.1016/j.cell.2019.02.012] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 09/19/2018] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
Abstract
Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers. Annotation of mutational signatures across 1,001 cancer cell lines and 577 PDXs Activities of mutational processes determined over time in cancer cell lines APOBEC-associated mutagenesis is often ongoing and can be episodic Detection of mutational signatures by single-cell sequencing
Collapse
Affiliation(s)
- Mia Petljak
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ludmil B Alexandrov
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan S Brammeld
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Stacey Price
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - David C Wedge
- Oxford Big Data Institute, Old Road Campus, Oxford OX3 7LF, UK; Oxford NIHR Biomedical Research Centre, Oxford, OX4 2PG, UK
| | - Sebastian Grossmann
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kevin J Dawson
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Francesco Iorio
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jose M C Tubio
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Mobile Genomes and Disease, Molecular Medicine and Chronic Diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo 36310, Spain
| | - Ching Chiek Koh
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Bernardo Rodríguez-Martín
- Mobile Genomes and Disease, Molecular Medicine and Chronic Diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo 36310, Spain
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah O'Meara
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Adam P Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Andrew Menzies
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Shriram G Bhosle
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - David R Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kathryn Beal
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Laura O'Neill
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jorge Zamora
- Mobile Genomes and Disease, Molecular Medicine and Chronic Diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain; The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo 36310, Spain
| | - Elizabeth Anderson
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Nikita Patel
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Mark Maddison
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jennifer Graham
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Mathew J Garnett
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ultan McDermott
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Serena Nik-Zainal
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
49
|
Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW, Maslov AY, Dong X, Vijg J. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. SCIENCE ADVANCES 2020; 6:eaax2659. [PMID: 32064334 PMCID: PMC6994209 DOI: 10.1126/sciadv.aax2659] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Accumulating somatic mutations have been implicated in age-related cellular degeneration and death. Because of their random nature and low abundance, somatic mutations are difficult to detect except in single cells or clonal cell lineages. Here, we show that in single hepatocytes from human liver, an organ exposed to high levels of genotoxic stress, somatic mutation frequencies are high and increase substantially with age. Considerably lower mutation frequencies were observed in liver stem cells (LSCs) and organoids derived from them. Mutational spectra in hepatocytes showed signatures of oxidative stress that were different in old age and in LSCs. A considerable number of mutations were found in functional parts of the liver genome, suggesting that somatic mutagenesis could causally contribute to the age-related functional decline and increased incidence of disease of human liver. These results underscore the importance of stem cells in maintaining genome sequence integrity in aging somatic tissues.
Collapse
Affiliation(s)
- K. Brazhnik
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S. Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - O. Alani
- Division of Transplant Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M. Kinkhabwala
- Division of Transplant Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A. W. Wolkoff
- Marion Bessin Liver Research Center, Division of Hepatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A. Y. Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - X. Dong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J. Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Center for Single-Cell Omics in Aging and Disease, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
50
|
Franco I, Helgadottir HT, Moggio A, Larsson M, Vrtačnik P, Johansson A, Norgren N, Lundin P, Mas-Ponte D, Nordström J, Lundgren T, Stenvinkel P, Wennberg L, Supek F, Eriksson M. Whole genome DNA sequencing provides an atlas of somatic mutagenesis in healthy human cells and identifies a tumor-prone cell type. Genome Biol 2019; 20:285. [PMID: 31849330 PMCID: PMC6918713 DOI: 10.1186/s13059-019-1892-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The lifelong accumulation of somatic mutations underlies age-related phenotypes and cancer. Mutagenic forces are thought to shape the genome of aging cells in a tissue-specific way. Whole genome analyses of somatic mutation patterns, based on both types and genomic distribution of variants, can shed light on specific processes active in different human tissues and their effect on the transition to cancer. RESULTS To analyze somatic mutation patterns, we compile a comprehensive genetic atlas of somatic mutations in healthy human cells. High-confidence variants are obtained from newly generated and publicly available whole genome DNA sequencing data from single non-cancer cells, clonally expanded in vitro. To enable a well-controlled comparison of different cell types, we obtain single genome data (92% mean coverage) from multi-organ biopsies from the same donors. These data show multiple cell types that are protected from mutagens and display a stereotyped mutation profile, despite their origin from different tissues. Conversely, the same tissue harbors cells with distinct mutation profiles associated to different differentiation states. Analyses of mutation rate in the coding and non-coding portions of the genome identify a cell type bearing a unique mutation pattern characterized by mutation enrichment in active chromatin, regulatory, and transcribed regions. CONCLUSIONS Our analysis of normal cells from healthy donors identifies a somatic mutation landscape that enhances the risk of tumor transformation in a specific cell population from the kidney proximal tubule. This unique pattern is characterized by high rate of mutation accumulation during adult life and specific targeting of expressed genes and regulatory regions.
Collapse
Affiliation(s)
- Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Aldo Moggio
- Department of Medicine Huddinge, Integrated Cardio Metabolic Center, Karolinska Institutet, Huddinge, Sweden
| | - Malin Larsson
- Science for Life Laboratory, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Peter Vrtačnik
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Johansson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nina Norgren
- Science for Life Laboratory, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Pär Lundin
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics (DBB), Stockholm University, Stockholm, Sweden
| | - David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Johan Nordström
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | - Torbjörn Lundgren
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | - Peter Stenvinkel
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Renal Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Wennberg
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Division of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|