1
|
Piekos KM, Freeman A, Fleming K, Bell C. Dentinogenesis imperfecta in a 6-year-old male neutered Labrador retriever: Case report with atypical clinical presentation and treatment review. Front Vet Sci 2024; 11:1473390. [PMID: 39559541 PMCID: PMC11571753 DOI: 10.3389/fvets.2024.1473390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
This case report details the diagnosis and treatment of dentinogenesis imperfecta in a 6-year-old neutered male Labrador, presenting without concurrent osteogenesis imperfecta. Diagnostic modalities, including radiographs, CT imaging, and histopathological examination, are reviewed in conjunction with the latest literature on canine dentinogenesis imperfecta. This patient presented at a more advanced age than typically reported cases. The clinical history, as provided by referring veterinarians, documented fractured deciduous teeth with delayed exfoliation. By 10 months of age, the patient's permanent dentition exhibited a translucent appearance and structural anomalies. Upon presentation to Eastcott Referrals the patient was experiencing significant oral pain and exhibited generalised coronal wear with yellow/brown intrinsic discolouration. CT imaging revealed that all teeth had endodontic disease and associated apical periodontitis, with varied root canal widths indicating that teeth succumbed to endodontic disease at different time points. The treatment protocol involved staged full-mouth extractions, resulting in the complete resolution of clinical symptoms. This case underscores the importance of early diagnosis and intervention in managing dentinogenesis imperfecta in dogs.
Collapse
Affiliation(s)
- Karolina Maria Piekos
- Department of Dentistry, The Ralph Veterinary Referral Centre, Marlow, United Kingdom
- Department of Dentistry, Oral and Maxillofacial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Veterinary Limited, Swindon, United Kingdom
| | - Alix Freeman
- Department of Dentistry, Oral and Maxillofacial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Veterinary Limited, Swindon, United Kingdom
| | - Kathryn Fleming
- Department of Diagnostic Imaging, Anderson Moores Veterinary Specialists, Part of Linnaeus Veterinary Limited, Winchester, United Kingdom
| | - Cynthia Bell
- Specialty Oral Pathology for Animals, LLC., Geneseo, IL, United States
| |
Collapse
|
2
|
Hörtenhuber M, Hytönen MK, Mukarram AK, Arumilli M, Araujo CL, Quintero I, Syrjä P, Airas N, Kaukonen M, Kyöstilä K, Niskanen J, Jokinen TS, Mottaghitalab F, Takan I, Salokorpi N, Raman A, Stevens I, Iivanainen A, Yoshihara M, Gusev O, Bannasch D, Sukura A, Schoenebeck JJ, Ezer S, Katayama S, Daub CO, Kere J, Lohi H. The DoGA consortium expression atlas of promoters and genes in 100 canine tissues. Nat Commun 2024; 15:9082. [PMID: 39433728 PMCID: PMC11494170 DOI: 10.1038/s41467-024-52798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
The dog, Canis lupus familiaris, is an important model for studying human diseases. Unlike many model organisms, the dog genome has a comparatively poor functional annotation, which hampers gene discovery for development, morphology, disease, and behavior. To fill this gap, we established a comprehensive tissue biobank for both the dog and wolf samples. The biobank consists of 5485 samples representing 132 tissues from 13 dogs, 12 dog embryos, and 24 wolves. In a subset of 100 tissues from nine dogs and 12 embryos, we characterized gene expression activity for each promoter, including alternative and novel, i.e., previously not annotated, promoter regions, using the 5' targeting RNA sequencing technology STRT2-seq. We identified over 100,000 promoter region candidates in the recent canine genome assembly, CanFam4, including over 45,000 highly reproducible sites with gene expression and respective tissue enrichment levels. We provide a promoter and gene expression atlas with interactive, open data resources, including a data coordination center and genome browser track hubs. We demonstrated the applicability of Dog Genome Annotation (DoGA) data and resources using multiple examples spanning canine embryonic development, morphology and behavior, and diseases across species.
Collapse
Affiliation(s)
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | | | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - César L Araujo
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Ileana Quintero
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Niina Airas
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Julia Niskanen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Tarja S Jokinen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | | | - Işıl Takan
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Noora Salokorpi
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Amitha Raman
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Irene Stevens
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Masahito Yoshihara
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Oleg Gusev
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 113-8421, Tokyo, Japan
| | - Danika Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, US
| | - Antti Sukura
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Jeffrey J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
| | - Sini Ezer
- Folkhälsan Research Center, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Carsten O Daub
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Juha Kere
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Folkhälsan Research Center, 00290, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland.
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
- Folkhälsan Research Center, 00290, Helsinki, Finland.
| |
Collapse
|
3
|
Ben Braiek M, Szymczak S, André C, Bardou P, Fidelle F, Granado-Tajada I, Plisson-Petit F, Sarry J, Woloszyn F, Moreno-Romieux C, Fabre S. A single base pair duplication in the SLC33A1 gene is associated with fetal losses and neonatal lethality in Manech Tête Rousse dairy sheep. Anim Genet 2024; 55:644-657. [PMID: 38922751 DOI: 10.1111/age.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
We recently discovered that the Manech Tête Rousse (MTR) deficient homozygous haplotype 2 (MTRDHH2) probably carries a recessive lethal mutation in sheep. In this study, we fine-mapped this region through whole-genome sequencing of five MTRDHH2 heterozygous carriers and 95 non-carriers from various ovine breeds. We identified a single base pair duplication within the SLC33A1 gene, leading to a frameshift mutation and a premature stop codon (p.Arg246Alafs*3). SLC33A1 encodes a transmembrane transporter of acetyl-coenzyme A that is crucial for cellular metabolism. To investigate the lethality of this mutation in homozygous MTR sheep, we performed at-risk matings using artificial insemination (AI) between heterozygous SLC33A1 variant carriers (SLC33A1_dupG). Pregnancy was confirmed 15 days post-AI using a blood test measuring interferon Tau-stimulated MX1 gene expression. Ultrasonography between 45 and 60 days post-AI revealed a 12% reduction in AI success compared with safe matings, indicating embryonic/fetal loss. This was supported by the MX1 differential expression test suggesting fetal losses between 15 and 60 days of gestation. We also observed a 34.7% pre-weaning mortality rate in 49 lambs born from at-risk matings. Homozygous SLC33A1_dupG lambs accounted for 47% of this mortality, with deaths occurring mostly within the first 5 days without visible clinical signs. Therefore, appropriate management of SLC33A1_dupG with an allele frequency of 0.04 in the MTR selection scheme would help increase overall fertility and lamb survival.
Collapse
Affiliation(s)
- Maxime Ben Braiek
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Soline Szymczak
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | | | - Itsasne Granado-Tajada
- Department of Animal Production, NEIKER-BRTA Basque Institute of Agricultural Research and Development, Arkaute, Spain
| | | | - Julien Sarry
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Florent Woloszyn
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
4
|
Niskanen JE, Ohlsson Å, Ljungvall I, Drögemüller M, Ernst RF, Dooijes D, van Deutekom HWM, van Tintelen JP, Snijders Blok CJB, van Vugt M, van Setten J, Asselbergs FW, Petrič AD, Salonen M, Hundi S, Hörtenhuber M, Kere J, Pyle WG, Donner J, Postma AV, Leeb T, Andersson G, Hytönen MK, Häggström J, Wiberg M, Friederich J, Eberhard J, Harakalova M, van Steenbeek FG, Wess G, Lohi H. Identification of novel genetic risk factors of dilated cardiomyopathy: from canine to human. Genome Med 2023; 15:73. [PMID: 37723491 PMCID: PMC10506233 DOI: 10.1186/s13073-023-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a life-threatening heart disease and a common cause of heart failure due to systolic dysfunction and subsequent left or biventricular dilatation. A significant number of cases have a genetic etiology; however, as a complex disease, the exact genetic risk factors are largely unknown, and many patients remain without a molecular diagnosis. METHODS We performed GWAS followed by whole-genome, transcriptome, and immunohistochemical analyses in a spontaneously occurring canine model of DCM. Canine gene discovery was followed up in three human DCM cohorts. RESULTS Our results revealed two independent additive loci associated with the typical DCM phenotype comprising left ventricular systolic dysfunction and dilatation. We highlight two novel candidate genes, RNF207 and PRKAA2, known for their involvement in cardiac action potentials, energy homeostasis, and morphology. We further illustrate the distinct genetic etiologies underlying the typical DCM phenotype and ventricular premature contractions. Finally, we followed up on the canine discoveries in human DCM patients and discovered candidate variants in our two novel genes. CONCLUSIONS Collectively, our study yields insight into the molecular pathophysiology of DCM and provides a large animal model for preclinical studies.
Collapse
Affiliation(s)
- Julia E Niskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Robert F Ernst
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hanneke W M van Deutekom
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christian J B Snijders Blok
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marion van Vugt
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | | | - Milla Salonen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Matthias Hörtenhuber
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juha Kere
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Programs Unit, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - W Glen Pyle
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Dalhousie Medicine, Saint John, NB, Canada
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Alex V Postma
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maria Wiberg
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Friederich
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Jenny Eberhard
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, The Netherlands
| | - Gerhard Wess
- LMU Small Animal Clinic, Ludwig Maximilians University of Munich, Munich, Germany
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.
- Folkhälsan Research Center, Haartmaninkatu 8, P.O.Box 63, 00290, Helsinki, Finland.
| |
Collapse
|
5
|
Xiang L, Li Y, Wang X, Liu H, Chang P, Mu X, Tianteng T, Hu M. Transcriptomic and proteomic studies of condylar ossification of the temporomandibular joint in porcine embryos. Animal Model Exp Med 2023; 6:294-305. [PMID: 37259472 PMCID: PMC10486337 DOI: 10.1002/ame2.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/09/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The ossification mechanism of the temporomandibular joint (TMJ) condyle remains unclear in human embryo. The size and structure of TMJ, shape of articular disc and the characteristics of omnivorous chewing in the pig are similar to those of humans. The pig is an ideal animal for studying the mechanism of ossification of the TMJ condyle during the embryonic period. METHOD In a previous study by our group, it was found that there was no condylar ossification on embryonic day(E) 45, but the ossification of condyle occurred between E75 and E90. In this study, a total of 12 miniature pig embryos on E45 and E85 were used. Six embryos were used for tissue sections (3 in each group). The remaining six embryos were used for transcriptomic and proteomic studies to find differential genes and proteins. The differentially expressed genes in transcriptome and proteomic analysis were verified by QPCR. RESULTS In total, 1592 differential genes comprising 1086 up-regulated genes and 506 down-regulated genes were screened for fold changes of ≥2 to ≤0.5 between E45 and E85. In the total of 4613 proteins detected by proteomic analysis, there were 419 differential proteins including 313 up-regulated proteins and 106 down-regulated proteins screened for fold changes of ≥2 to ≤0.5 between E45 and E85. A total of 36 differential genes differing in both transcriptome and proteome analysis were found. QPCR analysis showed that 14 of 15 selected genes were consistent with transcriptome analysis. CONCLUSION Condylar transcriptome and proteomic analysis during the development of TMJ in miniature pigs revealed the regulatory genes/proteins of condylar ossification.
Collapse
Affiliation(s)
- Lei Xiang
- Beijing Research Institute of Traumatology and OrthopaedicsBeijingChina
| | - Yongfeng Li
- Department of StomatologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Xuewen Wang
- Institute for Laboratory Animal ResourcesNational Institutes for Food and Drug ControlBeijingChina
| | - HuaWei Liu
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| | - Ping Chang
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| | - Xiaodan Mu
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| | - Tengyue Tianteng
- State Key Laboratory of West China College of StomatologySichuan UniversityCheng DuChina
| | - Min Hu
- Department of Stomatologythe First Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
6
|
Cortellari M, Bionda A, Cocco R, Sechi S, Liotta L, Crepaldi P. Genomic Analysis of the Endangered Fonni's Dog Breed: A Comparison of Genomic and Phenotypic Evaluation Scores. Animals (Basel) 2023; 13:ani13050818. [PMID: 36899675 PMCID: PMC10000202 DOI: 10.3390/ani13050818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The Fonni's dog is an ancient Sardinian breed for livestock and property guarding. In recent years, the number of new registrations to the breeding book has slumped and, thus, this breed risks being lost forever. This work refocuses attention to the Fonni's dog, analysing its genomic makeup and comparing different phenotypical and genetic evaluation scores. Thirty Fonni's dogs were ranked by their general accordance to the breed typicality (typicality score) and to the provisional standard by official judges (judges' score). They were genotyped with a 230K SNP BeadChip and compared with 379 dogs of 24 breeds. Genomically, the Fonni's dogs placed themselves near shepherd dogs and showed a unique genetic signature, which was used to create the genomic score. This score better correlated with typicality (ρ = 0.69, p < 0.0001) than the judges' score (ρ = 0.63, p = 0.0004), which showed little variability among the included dogs. Hair texture or colour were significantly associated in the three scores. The Fonni's dog is confirmed as a well-distinguished breed, despite being selected mainly for its work abilities. The evaluation criteria used during dog expositions can be improved to increase their variability and include elements typical of the breed. The recovery of the Fonni's dog would be possible only with a shared vision between the Italian kennel club and breeders, and the support of regional programs.
Collapse
Affiliation(s)
- Matteo Cortellari
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
- Correspondence:
| | - Raffaella Cocco
- Department of Veterinary Medicine, Sassari University, Via Vienna, 2, 07100 Sassari, Italy
| | - Sara Sechi
- Department of Veterinary Medicine, Sassari University, Via Vienna, 2, 07100 Sassari, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, Messina University, Viale Palatucci, 13, 98168 Messina, Italy
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
| |
Collapse
|
7
|
Kaur B, Kaur J, Kashyap N, Arora JS, Mukhopadhyay CS. A comprehensive review of genomic perspectives of canine diseases as a model to study human disorders. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:3-8. [PMID: 36606040 PMCID: PMC9808881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023]
Abstract
The domestic dog has been given considerable attention as a system for investigating the genetics of human diseases. Population diversity and breed structure are unique features that make dogs particularly amenable to genetic studies. Dogs show distinguished features of breed-specific homogeneity, which is associated with striking interbreed heterogeneity. This review discusses the significance of studying the genetic maps, genome-wide association studies (GWAS), and usefulness of this species as an animal model. Most canine genetic disorders are similar to those of humans, including inherited, psychiatric, and genetic disorders. In addition to revealing new candidate genes, canine models allow access to experimental resources, such as cells, tissues, and even live animals, for research and intervention purposes.
Collapse
|
8
|
Goldschmidt S, Hoyer N. Management of Dental and Oral Developmental Conditions in Dogs and Cats. Vet Clin North Am Small Anim Pract 2021; 52:139-158. [PMID: 34838248 DOI: 10.1016/j.cvsm.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Developmental dental and oral disorders are present in juvenile patients less than 12 months of age. The conditions are diverse ranging from cosmetic only to requiring advanced surgical intervention to alleviate pain and secondary complications. Clinical presentation, diagnosis, and appropriate treatment of dental abnormalities including abnormalities in the number, structure, size, and shape of teeth, as well as oral abnormalities including malocclusions, congenital cleft lip and palate, developmental abnormalities resulting in bony proliferation, and soft-tissue abnormalities of the lip and tongue are discussed throughout the article.
Collapse
Affiliation(s)
- Stephanie Goldschmidt
- Dentistry & Oral Surgery, University of Minnesota, 1352 Boyd Avenue, C309 Veterinary Medical Center South, St Paul, MN 55108, USA.
| | - Naomi Hoyer
- Dentistry & Oral Surgery, Colorado State University, 300 W Drake, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Guidi EEA, Vercelli A, Corona A, Vercelli A, Cornegliani L. A case of drug-resistant staphylococcal para-aural abscess treated with photodynamic therapy in a West Highland White Terrier presenting with chronic otitis and craniomandibular osteopathy. Photodiagnosis Photodyn Ther 2021; 35:102424. [PMID: 34214685 DOI: 10.1016/j.pdpdt.2021.102424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
A 10-year-old canine with chronic unilateral otitis and a history of unsuccessful systemic and topical antibiotic treatments was referred. A computer tomography scan (CT scan) revealed unilateral chronic otitis with calcification of the ear canal, abscessation and fistula. On bacterial culture a Staphylococcus pseudintermedius sensitive to pradofloxacin was isolated. Systemic treatment with pradofloxacin, 3 mg/kg per os once daily, improved the infection and the dog had total ear canal ablation and bulla osteotomy performed. After one month, despite antibiotic treatment new fistulas developed in the same area. Bacterial culture revealed an drug-resistant S. pseudintermedius sensitive only to rifampicin. Under general anesthesia, the area was cleaned with 0.5% saline solution and 1 mL of indocyanine green (Emundo®, A.R.C.) was injected into the fistulas. A treatment with diode laser (A.R.C. Laser 810 nm, GmbH, Nurnberg, Germany) of four cycles 500 mw for 30 s, with a dosage of 50 J/cm2 in the effected area was performed. No antibiotic was administered and one week later, 50% of the fistulas were closed with a significant improvement of the patient's clinical condition. Cytology and bacterial culture were negative 72 h after the treatment. Total recovery occurred after two weeks. Photodynamic Therapy(PDT) is a promising antibacterial technique in case of localized refractory bacterial infections.
Collapse
Affiliation(s)
| | - Antonella Vercelli
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| | - Antonio Corona
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| | - Andrea Vercelli
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| | - Luisa Cornegliani
- Institutional affiliation: *Clinica Veterinaria Città di Torino, Corso Traiano 99,10135 Turin, Italy
| |
Collapse
|
10
|
The ABCs of the atypical Fam20 secretory pathway kinases. J Biol Chem 2021; 296:100267. [PMID: 33759783 PMCID: PMC7948968 DOI: 10.1016/j.jbc.2021.100267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The study of extracellular phosphorylation was initiated in late 19th century when the secreted milk protein, casein, and egg-yolk protein, phosvitin, were shown to be phosphorylated. However, it took more than a century to identify Fam20C, which phosphorylates both casein and phosvitin under physiological conditions. This kinase, along with its family members Fam20A and Fam20B, defined a new family with altered amino acid sequences highly atypical from the canonical 540 kinases comprising the kinome. Fam20B is a glycan kinase that phosphorylates xylose residues and triggers peptidoglycan biosynthesis, a role conserved from sponges to human. The protein kinase, Fam20C, conserved from nematodes to humans, phosphorylates well over 100 substrates in the secretory pathway with overall functions postulated to encompass endoplasmic reticulum homeostasis, nutrition, cardiac function, coagulation, and biomineralization. The preferred phosphorylation motif of Fam20C is SxE/pS, and structural studies revealed that related member Fam20A allosterically activates Fam20C by forming a heterodimeric/tetrameric complex. Fam20A, a pseudokinase, is observed only in vertebrates. Loss-of-function genetic alterations in the Fam20 family lead to human diseases such as amelogenesis imperfecta, nephrocalcinosis, lethal and nonlethal forms of Raine syndrome with major skeletal defects, and altered phosphate homeostasis. Together, these three members of the Fam20 family modulate a diverse network of secretory pathway components playing crucial roles in health and disease. The overarching theme of this review is to highlight the progress that has been made in the emerging field of extracellular phosphorylation and the key roles secretory pathway kinases play in an ever-expanding number of cellular processes.
Collapse
|
11
|
Yang N, Wang H, Zhang W, Sun H, Li M, Xu Y, Huang L, Geng D. Integrated analysis of transcriptome and proteome to explore the genes related to steroid-induced femoral head necrosis. Exp Cell Res 2021; 401:112513. [PMID: 33567325 DOI: 10.1016/j.yexcr.2021.112513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Femoral head necrosis (FHN) is a common disease of hip. However, the pathogenesis of FHN is not well understood. This study attempted to explore the potentially important genes and proteins involved in FHN. METHODS We integrated the transcriptomic and proteomic methods to quantitatively screen the differentially expressed genes (DEGs) and proteins (DEPs) between Control and FHN groups. Gene ontology (GO) terms and KEGG pathway enrichment analysis were used to assess the roles of DEGs and DEPs. qRT-PCR and western blot were performed to verify the key genes/proteins in FHN. CCK-8 assay was performed to measure cell viability. The protein expression of Bax and Bcl-2 were used to evaluate cell apoptosis. RESULTS Transcriptome and proteome studies indicated 758 DEGs and 1097 DEPs between Control and FHN groups, respectively. Cell division, extracellular exosome, and serine-type endopeptidase activity were the most common terms in biological process (BP), cellular component (CC), and molecular function (MF) enrichment, respectively. DEPs were mainly enriched in cellular process, cell, and binding for BP, CC, and MF categories, respectively. DEGs were mainly involved in PI3K-Akt pathway and DEPs were mainly focused in glycolysis/gluconeogenesis pathway. Notably, 14 down-regulated and 22 up-regulated genes/proteins were detected at both the transcript and protein level. LRG1, SERPINE2, STMN1, COL14A1, SLC37A2, and MMP2 were determined as the key genes/proteins in FHN. SERPINE2/STMN1 overexpression increased viability and decreased apoptosis of dexamethasone-treated MC3T3-E1 cells. CONCLUSIONS Our study investigated some pivotal regulatory genes/proteins in the pathogenesis of FHN, providing novel insight into the genes/proteins involved in FHN.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Hongzhi Wang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Weicheng Zhang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Houyi Sun
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Meng Li
- Department of Orthopaedic, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei City, Anhui Province, 230001, China
| | - Yaozeng Xu
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| | - Lixin Huang
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China.
| | - Dechun Geng
- Department of Orthopaedic, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou City, Jiangsu Province, 215006, China
| |
Collapse
|
12
|
Kyöstilä K, Niskanen JE, Arumilli M, Donner J, Hytönen MK, Lohi H. Intronic variant in POU1F1 associated with canine pituitary dwarfism. Hum Genet 2021; 140:1553-1562. [PMID: 33550451 PMCID: PMC8519942 DOI: 10.1007/s00439-021-02259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
The anterior pituitary gland secretes several endocrine hormones, essential for growth, reproduction and other basic physiological functions. Abnormal development or function of the pituitary gland leads to isolated or combined pituitary hormone deficiency (CPHD). At least 30 genes have been associated with human CPHD, including many transcription factors, such as POU1F1. CPHD occurs spontaneously also in mice and dogs. Two affected breeds have been reported in dogs: German Shepherds with a splice defect in the LHX3 gene and Karelian Bear Dogs (KBD) with an unknown genetic cause. We obtained samples from five KBDs presenting dwarfism and abnormal coats. A combined analysis of genome-wide association and next-generation sequencing mapped the disease to a region in chromosome 31 and identified a homozygous intronic variant in the fourth exon of the POU1F1 gene in the affected dogs. The identified variant, c.605-3C>A, resided in the splice region and was predicted to affect splicing. The variant's screening in three new prospective cases, related breeds, and ~ 8000 dogs from 207 breeds indicated complete segregation in KBDs with a carrier frequency of 8%, and high breed-specificity as carriers were found at a low frequency only in Lapponian Herders, a related breed. Our study establishes a novel canine model for CPHD with a candidate POU1F1 defect.
Collapse
Affiliation(s)
- Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
13
|
Liu C, Dai SK, Shi RX, He XC, Wang YY, He BD, Sun XW, Du HZ, Liu CM, Teng ZQ. Transcriptional profiling of microglia in the injured brain reveals distinct molecular features underlying neurodegeneration. Glia 2021; 69:1292-1306. [PMID: 33492723 DOI: 10.1002/glia.23966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Neurotrauma has been recognized as a risk factor for neurodegenerative diseases, and sex difference of the incidence and outcome of neurodegenerative diseases has long been recognized. Past studies suggest that microglia could play a versatile role in both health and disease. So far, the microglial mechanisms underlying neurodegeneration and potentially lead to sex-specific therapies are still very open. Here we applied whole transcriptome analysis of microglia acutely isolated at different timepoints after a cortical stab wound injury to gain insight into genes that might be dysregulated and transcriptionally different between males and females after cortical injury. We found that microglia displayed distinct temporal and sexual molecular signatures of transcriptome after cortical injury. Hypotheses and gene candidates that we presented in the present study could be worthy to be examined to explore the roles of microglia in neurotrauma and in sex-biased neurodegenerative diseases.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-Xi Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Description of a novel distribution and subsequent resolution of severe, bilateral thoracic limb and cervical vertebral abnormalities in a dog with craniomandibular osteopathy. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2020-001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Tani M, Tanaka S, Oeda C, Azumi Y, Kawamura H, Sakaue M, Ito M. SLC37A2, a phosphorus-related molecule, increases in smooth muscle cells in the calcified aorta. J Clin Biochem Nutr 2020; 68:23-31. [PMID: 33536709 PMCID: PMC7844665 DOI: 10.3164/jcbn.19-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/04/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular calcification is major source of cardiovascular disease in patients with chronic kidney disease. Hyperphosphatemia leads to increased intracellular phosphorus influx, which leads to an increase in osteoblast-like cells in vascular smooth muscle cell. PiT-1 transports phosphate in vascular smooth muscle cell. However, the mechanism of vascular calcification is not completely understood. This study investigated candidate phosphorus-related molecules other than PiT-1. We hypothesized that phosphorus-related molecules belonging to the solute-carrier (SLC) superfamily would be involved in vascular calcification. As a result of DNA microarray analysis, we focused on SLC37A2 and showed that mRNA expression of these cells increased on calcified aotic smooth muscle cells (AoSMC). SLC37A2 has been reported to transport both glucose-6-phosphate/phosphate and phosphate/phosphate exchanges. In vitro analysis showed that SLC37A2 expression was not affected by inflammation on AoSMC. The expression of SLC37A2 mRNA and protein increased in calcified AoSMC. In vivo analysis showed that SLC37A2 mRNA expression in the aorta of chronic kidney disease rats was correlated with osteogenic marker genes. Furthermore, SLC37A2 was expressed at the vascular calcification area in chronic kidney disease rats. As a result, we showed that SLC37A2 is one of the molecules that increase with vascular calcification in vitro and in vivo.
Collapse
Affiliation(s)
- Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Chihiro Oeda
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Yuichi Azumi
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Hiromi Kawamura
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
16
|
Baker L, Muir P, Sample SJ. Genome-wide association studies and genetic testing: understanding the science, success, and future of a rapidly developing field. J Am Vet Med Assoc 2020; 255:1126-1136. [PMID: 31687891 DOI: 10.2460/javma.255.10.1126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dog owners are increasingly interested in using commercially available testing panels to learn about the genetics of their pets, both to identify breed ancestry and to screen for specific genetic diseases. Helping owners interpret and understand results from genetic screening panels is becoming an important issue facing veterinarians. The objective of this review article is to introduce basic concepts behind genetic studies and current genetic screening tests while highlighting their value in veterinary medicine. The potential uses and limitations of commercially available genetic testing panels as screening tests are discussed, including appropriate cautions regarding the interpretation of results. Future directions, particularly with regard to the study of common complex genetic diseases, are also described.
Collapse
|
17
|
Surface LE, Burrow DT, Li J, Park J, Kumar S, Lyu C, Song N, Yu Z, Rajagopal A, Bae Y, Lee BH, Mumm S, Gu CC, Baker JC, Mohseni M, Sum M, Huskey M, Duan S, Bijanki VN, Civitelli R, Gardner MJ, McAndrew CM, Ricci WM, Gurnett CA, Diemer K, Wan F, Costantino CL, Shannon KM, Raje N, Dodson TB, Haber DA, Carette JE, Varadarajan M, Brummelkamp TR, Birsoy K, Sabatini DM, Haller G, Peterson TR. ATRAID regulates the action of nitrogen-containing bisphosphonates on bone. Sci Transl Med 2020; 12:eaav9166. [PMID: 32434850 PMCID: PMC7882121 DOI: 10.1126/scitranslmed.aav9166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 11/02/2022]
Abstract
Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, are the most widely prescribed medications for diseases involving bone, with nearly 200 million prescriptions written annually. Recently, widespread use of N-BPs has been challenged due to the risk of rare but traumatic side effects such as atypical femoral fracture (AFF) and osteonecrosis of the jaw (ONJ). N-BPs bind to and inhibit farnesyl diphosphate synthase, resulting in defects in protein prenylation. Yet, it remains poorly understood what other cellular factors might allow N-BPs to exert their pharmacological effects. Here, we performed genome-wide studies in cells and patients to identify the poorly characterized gene, ATRAID Loss of ATRAID function results in selective resistance to N-BP-mediated loss of cell viability and the prevention of alendronate-mediated inhibition of prenylation. ATRAID is required for alendronate inhibition of osteoclast function, and ATRAID-deficient mice have impaired therapeutic responses to alendronate in both postmenopausal and senile (old age) osteoporosis models. Last, we performed exome sequencing on patients taking N-BPs that suffered ONJ or an AFF. ATRAID is one of three genes that contain rare nonsynonymous coding variants in patients with ONJ or an AFF that is also differentially expressed in poor outcome groups of patients treated with N-BPs. We functionally validated this patient variation in ATRAID as conferring cellular hypersensitivity to N-BPs. Our work adds key insight into the mechanistic action of N-BPs and the processes that might underlie differential responsiveness to N-BPs in people.
Collapse
Affiliation(s)
- Lauren E Surface
- Department of Molecular and Cellular Biology, Department of Chemistry and Chemical Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Damon T Burrow
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jinmei Li
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jiwoong Park
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Sandeep Kumar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Cheng Lyu
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Niki Song
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Zhou Yu
- Department of Molecular and Cellular Biology, Department of Chemistry and Chemical Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Abbhirami Rajagopal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven Mumm
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA
| | - Charles C Gu
- Division of Biostatistics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8067, St. Louis, MO 63110, USA
| | - Jonathan C Baker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | - Mahshid Mohseni
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Melissa Sum
- Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health, 530 1st Ave., Schwartz 5E., New York, NY 10016, USA
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Michael J Gardner
- Department of Orthopedic Surgery, Stanford University, 450 Broadway Street, Redwood City, CA 94063, USA
| | - Chris M McAndrew
- Department of Orthopedic Surgery, Washington University School of Medicine, 4938 Parkview Place, St. Louis, MO 63110, USA
| | - William M Ricci
- Hospital for Special Surgery Main Campus-Belaire Building, 525 East 71st Street 2nd Floor, New York, NY 10021, USA
| | - Christina A Gurnett
- Department of Orthopedic Surgery, Washington University School of Medicine, 4938 Parkview Place, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, Campus Box 8111, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Kathryn Diemer
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Fei Wan
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 4590 Children's Place, Suite 9600, St. Louis, MO 63110, USA
| | - Christina L Costantino
- Massachusetts General Hospital Cancer Center and Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Kristen M Shannon
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Noopur Raje
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas B Dodson
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malini Varadarajan
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, CA 02140, USA
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Cancer Genomics Center, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
| | - Kivanc Birsoy
- The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - David M Sabatini
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- David H. Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gabe Haller
- Department of Neurology, Washington University School of Medicine, Campus Box 8111, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Neurosurgery, Washington University School of Medicine, Campus Box 8057, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Timothy R Peterson
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave., St. Louis, MO 63110, USA.
- Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave. Campus Box 8232, St. Louis, MO 63110, USA
- Institute for Public Health, Washington University School of Medicine, 600 S. Taylor Suite 2400, Campus Box 8217, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Letko A, Leuthard F, Jagannathan V, Corlazzoli D, Matiasek K, Schweizer D, Hytönen MK, Lohi H, Leeb T, Drögemüller C. Whole Genome Sequencing Indicates Heterogeneity of Hyperostotic Disorders in Dogs. Genes (Basel) 2020; 11:genes11020163. [PMID: 32033218 PMCID: PMC7074049 DOI: 10.3390/genes11020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Craniomandibular osteopathy (CMO) and calvarial hyperostotic syndrome (CHS) are proliferative, non-neoplastic disorders affecting the skull bones in young dogs. Different forms of these hyperostotic disorders have been described in many dog breeds. However, an incompletely dominant causative variant for CMO affecting splicing of SLC37A2 has been reported so far only in three Terrier breeds. The purpose of this study was to identify further possible causative genetic variants associated with CHS in an American Staffordshire Terrier, as well as CMO in seven affected dogs of different breeds. We investigated their whole-genome sequences (WGS) and filtered variants using 584 unrelated genomes, which revealed no variants shared across all affected dogs. However, filtering for private variants of each case separately yielded plausible dominantly inherited candidate variants in three of the eight cases. In an Australian Terrier, a heterozygous missense variant in the COL1A1 gene (c.1786G>A; p.(Val596Ile)) was discovered. A pathogenic missense variant in COL1A1 was previously reported in humans with infantile cortical hyperostosis, or Caffey disease, resembling canine CMO. Furthermore, in a Basset Hound, a heterozygous most likely pathogenic splice site variant was found in SLC37A2 (c.1446+1G>A), predicted to lead to exon skipping as shown before in SLC37A2-associated canine CMO of Terriers. Lastly, in a Weimaraner, a heterozygous frameshift variant in SLC35D1 (c.1021_1024delTCAG; p.(Ser341ArgfsTer22)) might cause CMO due to the critical role of SLC35D1 in chondrogenesis and skeletal development. Our study indicates allelic and locus heterogeneity for canine CMO and illustrates the current possibilities and limitations of WGS-based precision medicine in dogs.
Collapse
Affiliation(s)
- Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (F.L.); (V.J.); (T.L.)
| | - Fabienne Leuthard
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (F.L.); (V.J.); (T.L.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (F.L.); (V.J.); (T.L.)
| | | | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilians Universität Munich, 80539 Munich, Germany;
| | - Daniela Schweizer
- Division of Clinical Radiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, and Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, and Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (F.L.); (V.J.); (T.L.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.L.); (F.L.); (V.J.); (T.L.)
- Correspondence: ; Tel.: +41-31-631-25-29
| |
Collapse
|
19
|
Jagannathan V, Drögemüller C, Leeb T. A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet 2019; 50:695-704. [PMID: 31486122 PMCID: PMC6842318 DOI: 10.1111/age.12834] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
The domestic dog serves as an excellent model to investigate the genetic basis of disease. More than 400 heritable traits analogous to human diseases have been described in dogs. To further canine medical genetics research, we established the Dog Biomedical Variant Database Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight wolves. The genomes used in the study have a minimum coverage of 10× and an average coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 038 short indels, including 93% undescribed variants. On average, each individual dog genome carried ∼4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the reference genome assembly. About 2% of the variants were located in coding regions of annotated genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having moderate or high impact on 11 267 protein-coding genes. On average, each genome contained heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes associated with developmental disorders. More than 50 inherited disorders and traits have been unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and diagnostics. This resource of annotated variants and their corresponding genotype frequencies constitutes a highly useful tool for the identification of potential variants causative for rare inherited disorders in dogs.
Collapse
Affiliation(s)
- V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Marinković DM, Lazarević Macanović M, Krstić N, Ćirović D, Gielen I. Craniomandibular osteopathy in a golden jackal (
Canis aureus
). VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2018-000728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Darko M Marinković
- Department of PathologyFaculty of Veterinary MedicineUniversity of BelgradeBelgradeSerbia
| | - Mirjana Lazarević Macanović
- Department of Radiology and Radiation HygieneFaculty of Veterinary MedicineUniversity of BelgradeBelgradeSerbia
| | - Nikola Krstić
- Department of Radiology and Radiation HygieneFaculty of Veterinary MedicineUniversity of BelgradeBelgradeSerbia
| | - Duško Ćirović
- Department of Animal Ecology and ZoogeographyFaculty of BiologyUniversity of BelgradeBelgradeSerbia
| | - Ingrid Gielen
- Department of Radiology and Radiation HygieneFaculty of Veterinary MedicineUniversity of BelgradeBelgradeSerbia
- Department of Medical Imaging and Small Animal OrthopaedicsFaculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
| |
Collapse
|
21
|
A homozygous missense variant in the alkaline phosphatase gene ALPL is associated with a severe form of canine hypophosphatasia. Sci Rep 2019; 9:973. [PMID: 30700765 PMCID: PMC6353930 DOI: 10.1038/s41598-018-37801-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Inherited skeletal disorders affect both humans and animals. In the current study, we have performed series of clinical, pathological and genetic examinations to characterize a previously unreported skeletal disease in the Karelian Bear Dog (KBD) breed. The disease was recognized in seven KBD puppies with a variable presentation of skeletal hypomineralization, growth retardation, seizures and movement difficulties. Exome sequencing of one affected dog revealed a homozygous missense variant (c.1301T > G; p.V434G) in the tissue non-specific alkaline phosphatase gene, ALPL. The identified recessive variant showed full segregation with the disease in a cohort of 509 KBDs with a carrier frequency of 0.17 and was absent from 303 dogs from control breeds. In humans, recessive and dominant ALPL mutations cause hypophosphatasia (HPP), a metabolic bone disease with highly heterogeneous clinical manifestations, ranging from lethal perinatal hypomineralization to a relatively mild dental disease. Our study reports the first naturally occurring HPP in animals, resembling the human infantile form. The canine HPP model may serve as a preclinical model while a genetic test will assist in breeding programs.
Collapse
|
22
|
Dillard KJ, Hytönen MK, Fischer D, Tanhuanpää K, Lehti MS, Vainio-Siukola K, Sironen A, Anttila M. A splice site variant in INPP5E causes diffuse cystic renal dysplasia and hepatic fibrosis in dogs. PLoS One 2018; 13:e0204073. [PMID: 30235266 PMCID: PMC6147468 DOI: 10.1371/journal.pone.0204073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023] Open
Abstract
Ciliopathies presenting as inherited hepatorenal fibrocystic disorders are rare in humans and in dogs. We describe here a novel lethal ciliopathy in Norwich Terrier puppies that was diagnosed at necropsy and characterized as diffuse cystic renal disease and hepatic fibrosis. The histopathological findings were typical for cystic renal dysplasia in which the cysts were located in the straight portion of the proximal tubule, and thin descending and ascending limbs of Henle’s loop. The pedigree of the affected puppies was suggestive of an autosomal recessive inheritance and therefore, whole exome sequencing and homozygosity mapping were used for identification of the causative variant. The analyses revealed a case-specific homozygous splice donor site variant in a cilia related gene, INPP5E: c.1572+5G>A. Association of the variant with the defect was validated in a large cohort of Norwich Terriers with 3 cases and 480 controls, the carrier frequency being 6%. We observed that the identified variant introduces a novel splice site in INPP5E causing a frameshift and formation of a premature stop codon. In conclusion, our results suggest that the INPP5E: c.1572+5G>A variant is causal for the ciliopathy in Norwich Terriers. Therefore, genetic testing can be carried out in the future for the eradication of the disease from the breed.
Collapse
Affiliation(s)
- Kati J. Dillard
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Kimmo Tanhuanpää
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mari S. Lehti
- Natural Resources Institute, LUKE, Jokioinen, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Katri Vainio-Siukola
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Anu Sironen
- Natural Resources Institute, LUKE, Jokioinen, Finland
| | - Marjukka Anttila
- Pathology Research Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
- * E-mail:
| |
Collapse
|
23
|
Assembly and Analysis of Unmapped Genome Sequence Reads Reveal Novel Sequence and Variation in Dogs. Sci Rep 2018; 8:10862. [PMID: 30022108 PMCID: PMC6052005 DOI: 10.1038/s41598-018-29190-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Dogs are excellent animal models for human disease. They have extensive veterinary histories, pedigrees, and a unique genetic system due to breeding practices. Despite these advantages, one factor limiting their usefulness is the canine genome reference (CGR) which was assembled using a single purebred Boxer. Although a common practice, this results in many high-quality reads remaining unmapped. To address this whole-genome sequence data from three breeds, Border Collie (n = 26), Bearded Collie (n = 7), and Entlebucher Sennenhund (n = 8), were analyzed to identify novel, non-CGR genomic contigs using the previously validated pseudo-de novo assembly pipeline. We identified 256,957 novel contigs and paired-end relationships together with BLAT scores provided 126,555 (49%) high-quality contigs with genomic coordinates containing 4.6 Mb of novel sequence absent from the CGR. These contigs close 12,503 known gaps, including 2.4 Mb containing partially missing sequences for 11.5% of Ensembl, 16.4% of RefSeq and 12.2% of canFam3.1+ CGR annotated genes and 1,748 unmapped contigs containing 2,366 novel gene variants. Examples for six disease-associated genes (SCARF2, RD3, COL9A3, FAM161A, RASGRP1 and DLX6) containing gaps or alternate splice variants missing from the CGR are also presented. These findings from non-reference breeds support the need for improvement of the current Boxer-only CGR to avoid missing important biological information. The inclusion of the missing gene sequences into the CGR will facilitate identification of putative disease mutations across diverse breeds and phenotypes.
Collapse
|
24
|
Myotonia congenita in a Labrador Retriever with truncated CLCN1. Neuromuscul Disord 2018; 28:597-605. [DOI: 10.1016/j.nmd.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022]
|
25
|
Sheth J, Bhavsar R, Gandhi A, Sheth F, Pancholi D. A case of Raine syndrome presenting with facial dysmorphy and review of literature. BMC MEDICAL GENETICS 2018; 19:76. [PMID: 29751744 PMCID: PMC5948820 DOI: 10.1186/s12881-018-0593-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/25/2018] [Indexed: 11/29/2022]
Abstract
Background Raine syndrome (RS) – an extremely rare autosomal recessive genetic disorder, is caused by a biallelic mutation in the FAM20C gene. Some of the most common clinical features include generalized osteosclerosis with a periosteal bone formation, dysmorphic face, and thoracic hypoplasia. Many cases have also been reported with oro-dental abnormalities, and developmental delay. Most of the cases result in neonatal death. However, a few non-lethal RS cases have been reported where patients survive till adulthood and exhibits a heterogeneous clinical phenotype. Clinical diagnosis of RS has been done through facial appearance and radiological findings, while confirmatory diagnosis has been conducted through a molecular study of the FAM20C gene. Case presentation A 6-year-old girl was born to healthy third degree consanguineous parents. She presented with facial dysmorphy, delayed speech, and delayed cognition. Radiography showed small sclerotic areas in the lower part of the right femur, and an abnormally-shaped skull with minimal sclerosis in the lower occipital region. Computer tomography scan of the brain revealed mild cortical atrophy, and MRI scan of the brain showed corpus callosal dysgenesis with the absence of the rostral area. Chromosome banding at 500 band resolution showed a normal female karyotype. No quantitative genomic imbalance was detected by aCGH. Further study conducted using Clinical Exome Sequencing identified a homozygous missense variation c.1228 T > A (p.Ser410Thr) in the exon 6 of FAM20C gene – a likely pathogenic variant that confirmed the clinical diagnosis of RS. The variant was confirmed in the proband and her parents using Sanger sequencing. Prenatal diagnosis during subsequent pregnancy revealed heterozygous status of the fetus, and a normal carrier child was delivered at term. Conclusions The syndrome revealed markedly variable presentations such as facial dysmorphy and developmental delay, and was localized to diffuse bone osteosclerosis. Clinical indications, striking radiological findings and molecular testing of FAM20C gene confirmed the diagnosis of RS. A rarity of the disorder and inconsistent phenotype hindered the establishment of genotype-phenotype correlations in RS. Therefore, reporting more cases and conducting further research would be crucial in defining the variable radiologic and molecular defects of the lethal and non-lethal forms of this syndrome. Electronic supplementary material The online version of this article (10.1186/s12881-018-0593-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380015, India.
| | - Riddhi Bhavsar
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380015, India
| | - Ajit Gandhi
- Unique Hospital, Main Road, South Kasba, Solapur, 413007, India
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380015, India
| | - Dhairya Pancholi
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380015, India
| |
Collapse
|
26
|
Donner J, Anderson H, Davison S, Hughes AM, Bouirmane J, Lindqvist J, Lytle KM, Ganesan B, Ottka C, Ruotanen P, Kaukonen M, Forman OP, Fretwell N, Cole CA, Lohi H. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs. PLoS Genet 2018; 14:e1007361. [PMID: 29708978 PMCID: PMC5945203 DOI: 10.1371/journal.pgen.1007361] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/10/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare. Like any human, dogs may suffer from or pass on a variety of inherited disorders. Knowledge of how likely a typical dog is to carry an inherited disorder in its genome, and which disorders are the most common and relevant ones across dog breeds, is valuable for both veterinary care and breeding of healthy dogs. We have explored the largest global dog study sample collected to date, consisting of more than 100,000 mixed breed and purebred dogs, to advance research on this subject. We found that mixed breed dogs and purebred dogs potentially suffer from many of the same inherited disorders, and that around two in five dogs carried at least one of the conditions that we screened for. A dog carrying an inherited disorder is not a “bad dog”–but we humans responsible for breeding selections do need to make sustainable decisions avoiding inbreeding, i.e. mating of dogs that are close relatives. The disease prevalence information we generated during this study is made available online (www.mybreeddata.com), as a free tool for breed and kennel clubs, breeders, as well as the veterinary and scientific community.
Collapse
Affiliation(s)
- Jonas Donner
- Genoscoper Laboratories, Helsinki, Finland
- * E-mail:
| | | | - Stephen Davison
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | | | | | - Johan Lindqvist
- Genoscoper Laboratories, Helsinki, Finland
- MediSapiens Ltd., Helsinki, Finland
| | | | | | | | | | - Maria Kaukonen
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Oliver P. Forman
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Neale Fretwell
- Wisdom Health, Vancouver, Washington, United States of America
| | - Cynthia A. Cole
- Wisdom Health, Vancouver, Washington, United States of America
| | - Hannes Lohi
- Genoscoper Laboratories, Helsinki, Finland
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
27
|
Al-Qattan MM, Andejani DF, Sakati NA, Ramzan K, Imtiaz F. Inclusion of joint laxity, recurrent patellar dislocation, and short distal ulnae as a feature of Van Den Ende-Gupta syndrome: a case report. BMC MEDICAL GENETICS 2018; 19:18. [PMID: 29378527 PMCID: PMC5789735 DOI: 10.1186/s12881-018-0531-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022]
Abstract
Background Van Den Ende-Gupta Syndrome (VDEGS) is an extremely rare autosomal recessive syndrome with less than 20 reported families (approximately 40 patients) in the worldwide literature. Case presentation We have assessed one consanguineous Saudi family with typical features of VDEGS. Two siblings were affected with almost identical features; including blepharophimosis, arachnodactyly, flexion contractures of the elbows, camptodactyly, slender ribs, hooked lateral clavicular ends, and bilateral radial head dislocations. Both patients had several unusual features; including joint laxity, flat feet, recurrent patellar dislocations, and bilateral short distal ulnae. Full sequencing of SCARF2 revealed a homozygous mutation c.773G > A (p. Cys258Tyr) in both affected children. The parents (both with no abnormalities) were heterozygous for the same mutation. Conclusion Joint laxity, recurrent patellar dislocations, and short distal ulnae should be included as part of the clinical spectrum of VDEGS.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Department of Surgery, King Saud University, PO Box 18097, Riyadh, 11415, Saudi Arabia. .,King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia. .,National Hospital, Riyadh, Saudi Arabia.
| | - Doaa F Andejani
- The Saudi Plastic Surgery program, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nadia A Sakati
- Department of Pediatrics, King Faisal Specialist Hospital& Research Center, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Vagt J, Distl O. Complex segregation analysis of craniomandibular osteopathy in Deutsch Drahthaar dogs. Vet J 2017; 231:30-32. [PMID: 29429484 DOI: 10.1016/j.tvjl.2017.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/19/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022]
Abstract
This study investigated familial relationships among Deutsch Drahthaar dogs with craniomandibular osteopathy and examined the most likely mode of inheritance. Sixteen Deutsch Drahthaar dogs with craniomandibular osteopathy were diagnosed using clinical findings, radiography or computed tomography. All 16 dogs with craniomandibular osteopathy had one common ancestor. Complex segregation analyses rejected models explaining the segregation of craniomandibular osteopathy through random environmental variation, monogenic inheritance or an additive sex effect. Polygenic and mixed major gene models sufficiently explained the segregation of craniomandibular osteopathy in the pedigree analysis and offered the most likely hypotheses. The SLC37A2:c.1332C>T variant was not found in a sample of Deutsch Drahthaar dogs with craniomandibular osteopathy, nor in healthy controls. Craniomandibular osteopathy is an inherited condition in Deutsch Drahthaar dogs and the inheritance seems to be more complex than a simple Mendelian model.
Collapse
Affiliation(s)
- J Vagt
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), Bünteweg 17p, 30559 Hannover, Germany
| | - O Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), Bünteweg 17p, 30559 Hannover, Germany.
| |
Collapse
|
29
|
Engel RR, Cifuentes RF. Birth Order and Maternal Age for Reported Cases of Severe Prenatal Cortical Hyperostosis (Caffey–Silverman Disease). AJP Rep 2017; 7:e174-e180. [PMID: 29142783 PMCID: PMC5684708 DOI: 10.1055/s-0037-1606364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/08/2022] Open
Abstract
The spectrum of prenatal cortical hyperostosis includes a mild phenotype that typically presents after 35 weeks of gestation, and a severe form that presents earlier. The skeletal and systemic manifestations of the severe phenotype remain unexplained. A review of reported cases indicates that older mothers and firstborn infants are overrepresented. This combination suggests decreased fertility. Fourteen years after the birth of the present case, his mother presented with renal failure from multiple myeloma raising the possibility that a maternal antibody may play a role in the etiology of severe prenatal Caffey disease. The present case report is also intended to alert clinicians to potential difficulties with tracheal intubation secondary to micrognathia from mandibular involvement during a critical growth period.
Collapse
Affiliation(s)
- Rolf R Engel
- Departments of Pediatrics, Hennepin County Medical Center and University of Minnesota, Minneapolis, Minnesota
| | - Raul F Cifuentes
- Departments of Pediatrics, Hennepin County Medical Center and University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
30
|
Niskanen J, Dillard K, Arumilli M, Salmela E, Anttila M, Lohi H, Hytönen MK. Nonsense variant in COL7A1 causes recessive dystrophic epidermolysis bullosa in Central Asian Shepherd dogs. PLoS One 2017; 12:e0177527. [PMID: 28493971 PMCID: PMC5426755 DOI: 10.1371/journal.pone.0177527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/29/2017] [Indexed: 01/15/2023] Open
Abstract
A rare hereditary mechanobullous disorder called epidermolysis bullosa (EB) causes blistering in the skin and the mucosal membranes. To date, nineteen EB-related genes have been discovered in human and other species. We describe here a novel EB variant in dogs. Two newborn littermates of Central Asian Shepherd dogs with severe signs of skin blistering were brought to a veterinary clinic and euthanized due to poor prognosis. In post-mortem examination, the puppies were shown to have findings in the skin and the mucosal membranes characteristic of EB. A whole-genome sequencing of one of the affected puppies was performed to identify the genetic cause. The resequencing data were filtered under a recessive model against variants from 31 other dog genomes, revealing a homozygous case-specific nonsense variant in one of the known EB-causing genes, COL7A1 (c.4579C>T, p.R1527*). The variant results in a premature stop codon and likely absence of the functional protein in the basement membrane of the skin in the affected dogs. This was confirmed by immunohistochemistry using a COL7A1 antibody. Additional screening of the variant indicated full penetrance and breed specificity at ~28% carrier frequency. In summary, this study reveals a novel COL7A1 variant causing recessive dystrophic EB and provides a genetic test for the eradication of the disease from the breed.
Collapse
Affiliation(s)
- Julia Niskanen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Kati Dillard
- Pathology Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Elina Salmela
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Marjukka Anttila
- Pathology Unit, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
31
|
Hytönen MK, Lohi H. Canine models of human rare disorders. Rare Dis 2016; 4:e1241362. [PMID: 27803843 PMCID: PMC5070630 DOI: 10.1080/21675511.2016.1241362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Millions of children worldwide are born with rare and debilitating developmental disorders each year. Although an increasing number of these conditions are being recognized at the molecular level, the characterization of the underlying pathophysiology remains a grand challenge. This is often due to the lack of appropriate patient material or relevant animal models. Dogs are coming to the rescue as physiologically relevant large animal models. Hundreds of spontaneous genetic conditions have been described in dogs, most with close counterparts to human rare disorders. Our recent examples include the canine models of human Caffey (SLC37A2), van den Ende-Gupta (SCARF2) and Raine (FAM20C) syndromes. These studies demonstrate the pathophysiological similarity of human and canine syndromes, and suggest that joint efforts to characterize both human and canine rare diseases could provide additional benefits to the advancement of the field of rare diseases. Besides revealing new candidate genes, canine models allow access to experimental resources such as cells, tissues and even live animals for research and intervention purposes.
Collapse
Affiliation(s)
- Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland; The Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
32
|
Donner J, Kaukonen M, Anderson H, Möller F, Kyöstilä K, Sankari S, Hytönen M, Giger U, Lohi H. Genetic Panel Screening of Nearly 100 Mutations Reveals New Insights into the Breed Distribution of Risk Variants for Canine Hereditary Disorders. PLoS One 2016; 11:e0161005. [PMID: 27525650 PMCID: PMC4985128 DOI: 10.1371/journal.pone.0161005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/28/2016] [Indexed: 11/19/2022] Open
Abstract
Background The growing number of identified genetic disease risk variants across dog breeds challenges the current state-of-the-art of population screening, veterinary molecular diagnostics, and genetic counseling. Multiplex screening of such variants is now technologically feasible, but its practical potential as a supportive tool for canine breeding, disease diagnostics, pet care, and genetics research is still unexplored. Results To demonstrate the utility of comprehensive genetic panel screening, we tested nearly 7000 dogs representing around 230 breeds for 93 disease-associated variants using a custom-designed genotyping microarray (the MyDogDNA® panel test). In addition to known breed disease-associated mutations, we discovered 15 risk variants in a total of 34 breeds in which their presence was previously undocumented. We followed up on seven of these genetic findings to demonstrate their clinical relevance. We report additional breeds harboring variants causing factor VII deficiency, hyperuricosuria, lens luxation, von Willebrand’s disease, multifocal retinopathy, multidrug resistance, and rod-cone dysplasia. Moreover, we provide plausible molecular explanations for chondrodysplasia in the Chinook, cerebellar ataxia in the Norrbottenspitz, and familiar nephropathy in the Welsh Springer Spaniel. Conclusions These practical examples illustrate how genetic panel screening represents a comprehensive, efficient and powerful diagnostic and research discovery tool with a range of applications in veterinary care, disease research, and breeding. We conclude that several known disease alleles are more widespread across different breeds than previously recognized. However, careful follow up studies of any unexpected discoveries are essential to establish genotype-phenotype correlations, as is readiness to provide genetic counseling on their implications for the dog and its breed.
Collapse
Affiliation(s)
- Jonas Donner
- Genoscoper Laboratories Oy, Helsinki, Finland
- * E-mail:
| | - Maria Kaukonen
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | | | - Kaisa Kyöstilä
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Satu Sankari
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Marjo Hytönen
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Urs Giger
- Section of Medical Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hannes Lohi
- Genoscoper Laboratories Oy, Helsinki, Finland
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|