1
|
Adu OF, Lee H, Früh SP, Schoenle MV, Weichert WS, Flyak AI, Hafenstein SL, Parrish CR. Structures and functions of the limited natural polyclonal antibody response to parvovirus infection. Proc Natl Acad Sci U S A 2025; 122:e2423460122. [PMID: 39951487 PMCID: PMC11873831 DOI: 10.1073/pnas.2423460122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Host antibody responses are key components in the protection of animals against pathogens, yet the defining properties of viral antigens and induction of B cell responses that result in varied protection are still poorly understood. Parvoviruses are simple molecular structures that display 60 repeated motifs on their capsid surface, and rapidly induce strong antibody responses that protect animals from infection. We recently showed that following canine parvovirus infection of its natural host, the polyclonal response in the sera contained only two or three dominant antibodies that bound two epitopes on the capsid. Here, we characterize key antibodies present in that immune response, identifying their sequences, defining their binding properties on the capsid by cryoelectron microscopic (cryoEM) analysis, and testing their effects on viral infectivity. Two antibodies sharing the same heavy chain bound to the side of the capsid threefold spike (B-site), while another distinct antibody bound close to the threefold axis (A-site). The epitopes of these antibodies overlapped the binding site of the host receptor, the transferrin receptor type-1, but to varying degrees. The antibodies varied widely in their neutralization efficiencies as either immunoglobulins (IgGs) or monomeric antigen-binding fragments (Fabs), which was consistent with their ability to compete for the receptor. The monoclonal antibodies characterized here matched the structures from the cryoEM analysis of polyclonal sera, including those present in a different dog than the monoclonal source. This shows that after infection, a focused response to the viral antigen is produced that protects against infection.
Collapse
Affiliation(s)
- Oluwafemi F. Adu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Hyunwook Lee
- The Hormel Institute, University of Minnesota, Austin, MN55912
| | - Simon P. Früh
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
- Department of Veterinary Sciences, Ludwig-Maximilians-University, Munich80539, Germany
| | - Marta V. Schoenle
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Wendy S. Weichert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Andrew I. Flyak
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| | - Susan L. Hafenstein
- The Hormel Institute, University of Minnesota, Austin, MN55912
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN55905
| | - Colin R. Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY14853
| |
Collapse
|
2
|
Shimagaki KS, Lynch RM, Barton JP. Parallel HIV-1 fitness landscapes shape viral dynamics in humans and macaques that develop broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603090. [PMID: 39071321 PMCID: PMC11275900 DOI: 10.1101/2024.07.12.603090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Human immunodeficiency virus (HIV)-1 exhibits remarkable genetic diversity. For this reason, an effective HIV-1 vaccine must elicit antibodies that can neutralize many variants of the virus. While broadly neutralizing antibodies (bnAbs) have been isolated from HIV-1 infected individuals, a general understanding of the virus-antibody coevolutionary processes that lead to their development remains incomplete. We performed a quantitative study of HIV-1 evolution in two individuals who developed bnAbs. We observed strong selection early in infection for mutations affecting HIV-1 envelope glycosylation and escape from autologous strain-specific antibodies, followed by weaker selection for bnAb resistance later in infection. To confirm our findings, we analyzed data from rhesus macaques infected with viruses derived from the same two individuals. We inferred remarkably similar fitness effects of HIV-1 mutations in humans and macaques. Moreover, we observed a striking pattern of rapid HIV-1 evolution, consistent in both humans and macaques, that precedes the development of bnAbs. Our work highlights strong parallels between infection in rhesus macaques and humans, and it reveals a quantitative evolutionary signature of bnAb development.
Collapse
|
3
|
Koornneef A, Vanshylla K, Hardenberg G, Rutten L, Strokappe NM, Tolboom J, Vreugdenhil J, Boer KFD, Perkasa A, Blokland S, Burger JA, Huang WC, Lovell JF, van Manen D, Sanders RW, Zahn RC, Schuitemaker H, Langedijk JPM, Wegmann F. CoPoP liposomes displaying stabilized clade C HIV-1 Env elicit tier 2 multiclade neutralization in rabbits. Nat Commun 2024; 15:3128. [PMID: 38605096 PMCID: PMC11009251 DOI: 10.1038/s41467-024-47492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
| | | | | | - Lucy Rutten
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | - Sven Blokland
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | | | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Roland C Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Johannes P M Langedijk
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| | - Frank Wegmann
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
| |
Collapse
|
4
|
Lässig M, Mustonen V, Nourmohammad A. Steering and controlling evolution - from bioengineering to fighting pathogens. Nat Rev Genet 2023; 24:851-867. [PMID: 37400577 PMCID: PMC11137064 DOI: 10.1038/s41576-023-00623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Control interventions steer the evolution of molecules, viruses, microorganisms or other cells towards a desired outcome. Applications range from engineering biomolecules and synthetic organisms to drug, therapy and vaccine design against pathogens and cancer. In all these instances, a control system alters the eco-evolutionary trajectory of a target system, inducing new functions or suppressing escape evolution. Here, we synthesize the objectives, mechanisms and dynamics of eco-evolutionary control in different biological systems. We discuss how the control system learns and processes information about the target system by sensing or measuring, through adaptive evolution or computational prediction of future trajectories. This information flow distinguishes pre-emptive control strategies by humans from feedback control in biotic systems. We establish a cost-benefit calculus to gauge and optimize control protocols, highlighting the fundamental link between predictability of evolution and efficacy of pre-emptive control.
Collapse
Affiliation(s)
- Michael Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany.
| | - Ville Mustonen
- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Armita Nourmohammad
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
5
|
Kreer C, Lupo C, Ercanoglu MS, Gieselmann L, Spisak N, Grossbach J, Schlotz M, Schommers P, Gruell H, Dold L, Beyer A, Nourmohammad A, Mora T, Walczak AM, Klein F. Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals. Nat Commun 2023; 14:7137. [PMID: 37932288 PMCID: PMC10628170 DOI: 10.1038/s41467-023-42906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Cosimo Lupo
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma I, 00185, Rome, Italy
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Natanael Spisak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Jan Grossbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
- Department of Physics, University of Washington, 3910 15th Ave Northeast, Seattle, WA, 98195, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, WA, 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA, 98102, USA
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
6
|
Carlson KB, Nguyen C, Wcisel DJ, Yoder JA, Dornburg A. Ancient fish lineages illuminate toll-like receptor diversification in early vertebrate evolution. Immunogenetics 2023; 75:465-478. [PMID: 37555888 DOI: 10.1007/s00251-023-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023]
Abstract
Since its initial discovery over 50 years ago, understanding the evolution of the vertebrate RAG- mediated adaptive immune response has been a major area of research focus for comparative geneticists. However, how the evolutionary novelty of an adaptive immune response impacted the diversity of receptors associated with the innate immune response has received considerably less attention until recently. Here, we investigate the diversification of vertebrate toll-like receptors (TLRs), one of the most ancient and well conserved innate immune receptor families found across the Tree of Life, integrating genomic data that represent all major vertebrate lineages with new transcriptomic data from Polypteriformes, the earliest diverging ray-finned fish lineage. Our analyses reveal TLR sequences that reflect the 6 major TLR subfamilies, TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11, and also currently unnamed, yet phylogenetically distinct TLR clades. We additionally recover evidence for a pulse of gene gain coincident with the rise of the RAG-mediated adaptive immune response in jawed vertebrates, followed by a period of rapid gene loss during the Cretaceous. These gene losses are primarily concentrated in marine teleost fish and synchronous with the mid Cretaceous anoxic event, a period of rapid extinction for marine species. Finally, we reveal a mismatch between phylogenetic placement and gene nomenclature for up to 50% of TLRs found in clades such as ray-finned fishes, cyclostomes, amphibians, and elasmobranchs. Collectively, these results provide an unparalleled perspective of TLR diversity and offer a ready framework for testing gene annotations in non-model species.
Collapse
Affiliation(s)
- Kara B Carlson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
| | - Cameron Nguyen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
7
|
Roitershtein A, Rastegar R, Chapkin RS, Ivanov I. Extinction scenarios in evolutionary processes: a multinomial Wright-Fisher approach. J Math Biol 2023; 87:63. [PMID: 37751048 PMCID: PMC10586398 DOI: 10.1007/s00285-023-01993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
We study a discrete-time multi-type Wright-Fisher population process. The mean-field dynamics of the stochastic process is induced by a general replicator difference equation. We prove several results regarding the asymptotic behavior of the model, focusing on the impact of the mean-field dynamics on it. One of the results is a limit theorem that describes sufficient conditions for an almost certain path to extinction, first eliminating the type which is the least fit at the mean-field equilibrium. The effect is explained by the metastability of the stochastic system, which under the conditions of the theorem spends almost all time before the extinction event in a neighborhood of the equilibrium. In addition to the limit theorems, we propose a maximization principle for a general deterministic replicator dynamics and study its implications for the stochastic model.
Collapse
Affiliation(s)
| | - Reza Rastegar
- Occidental Petroleum Corporation, Houston, TX, 77046, USA
| | - Robert S Chapkin
- Department of Nutrition - Program in Integrative Nutrition & Complex Diseases, Texas A &M University, College Station, TX, 77843, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A &M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Schmitz DA, Allen RC, Kümmerli R. Negative interactions and virulence differences drive the dynamics in multispecies bacterial infections. Proc Biol Sci 2023; 290:20231119. [PMID: 37491967 PMCID: PMC10369020 DOI: 10.1098/rspb.2023.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Bacterial infections are often polymicrobial, leading to intricate pathogen-pathogen and pathogen-host interactions. There is increasing interest in studying the molecular basis of pathogen interactions and how such mechanisms impact host morbidity. However, much less is known about the ecological dynamics between pathogens and how they affect virulence and host survival. Here we address these open issues by co-infecting larvae of the insect model host Galleria mellonella with one, two, three or four bacterial species, all of which are opportunistic human pathogens. We found that host mortality was always determined by the most virulent species regardless of the number of species and pathogen combinations injected. In certain combinations, the more virulent pathogen simply outgrew the less virulent pathogen. In other combinations, we found evidence for negative interactions between pathogens inside the host, whereby the more virulent pathogen typically won a competition. Taken together, our findings reveal positive associations between a pathogen's growth inside the host, its competitiveness towards other pathogens and its virulence. Beyond being generalizable across species combinations, our findings predict that treatments against polymicrobial infections should first target the most virulent species to reduce host morbidity, a prediction we validated experimentally.
Collapse
Affiliation(s)
- Désirée A. Schmitz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Richard C. Allen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Schrom E, Kinzig A, Forrest S, Graham AL, Levin SA, Bergstrom CT, Castillo-Chavez C, Collins JP, de Boer RJ, Doupé A, Ensafi R, Feldman S, Grenfell BT, Halderman JA, Huijben S, Maley C, Moses M, Perelson AS, Perrings C, Plotkin J, Rexford J, Tiwari M. Challenges in cybersecurity: Lessons from biological defense systems. Math Biosci 2023:109024. [PMID: 37270102 DOI: 10.1016/j.mbs.2023.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Defending against novel, repeated, or unpredictable attacks, while avoiding attacks on the 'self', are the central problems of both mammalian immune systems and computer systems. Both systems have been studied in great detail, but with little exchange of information across the different disciplines. Here, we present a conceptual framework for structured comparisons across the fields of biological immunity and cybersecurity, by framing the context of defense, considering different (combinations of) defensive strategies, and evaluating defensive performance. Throughout this paper, we pose open questions for further exploration. We hope to spark the interdisciplinary discovery of general principles of optimal defense, which can be understood and applied in biological immunity, cybersecurity, and other defensive realms.
Collapse
Affiliation(s)
- Edward Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America
| | - Ann Kinzig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Stephanie Forrest
- Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America; School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America.
| | - Carl T Bergstrom
- Department of Biology, University of Washington, Seattle, WA 98195, United States of America
| | - Carlos Castillo-Chavez
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States of America
| | - James P Collins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Adam Doupé
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85287, United States of America; Center for Cybersecurity and Trusted Foundations, Global Security Initiative, Arizona State University, Tempe, AZ 85287, United States of America
| | - Roya Ensafi
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Stuart Feldman
- Schmidt Futures, New York, NY 10011, United States of America
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States of America; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, United States of America
| | - J Alex Halderman
- Department of Electrical Engineering and Computer Science, Computer Science and Engineering Division, University of Michigan, Ann Arbor, MI 48109, United States of America; Center for Computer Security and Society, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Carlo Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, United States of America; Biodesign Center for Biocomputation, Security and Society, Arizona State University, Tempe, AZ 85287, United States of America
| | - Melanie Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, United States of America; Department of Biology, University of New Mexico, Albuquerque, NM 87131, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America; Santa Fe Institute, Santa Fe, NM 87501, United States of America
| | - Charles Perrings
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Joshua Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jennifer Rexford
- Department of Computer Science, Princeton University, Princeton, NJ 08540, United States of America
| | - Mohit Tiwari
- Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, United States of America
| |
Collapse
|
10
|
Mazzolini A, Mora T, Walczak AM. Inspecting the interaction between human immunodeficiency virus and the immune system through genetic turnover. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220056. [PMID: 37004725 PMCID: PMC10067267 DOI: 10.1098/rstb.2022.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/15/2022] [Indexed: 04/04/2023] Open
Abstract
Chronic infections of the human immunodeficiency virus (HIV) create a very complex coevolutionary process, where the virus tries to escape the continuously adapting host immune system. Quantitative details of this process are largely unknown and could help in disease treatment and vaccine development. Here we study a longitudinal dataset of ten HIV-infected people, where both the B-cell receptors and the virus are deeply sequenced. We focus on simple measures of turnover, which quantify how much the composition of the viral strains and the immune repertoire change between time points. At the single-patient level, the viral-host turnover rates do not show any statistically significant correlation, however, they correlate if one increases the amount of statistics by aggregating the information across patients. We identify an anti-correlation: large changes in the viral pool composition come with small changes in the B-cell receptor repertoire. This result seems to contradict the naïve expectation that when the virus mutates quickly, the immune repertoire needs to change to keep up. However, a simple model of antagonistically evolving populations can explain this signal. If it is sampled at intervals comparable with the sweep time, one population has had time to sweep while the second cannot start a counter-sweep, leading to the observed anti-correlation. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Andrea Mazzolini
- Laboratoire de physique de l’École normale supérieure, PSL Université, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, PSL Université, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure, PSL Université, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| |
Collapse
|
11
|
Yang L, Caradonna TM, Schmidt AG, Chakraborty AK. Mechanisms that promote the evolution of cross-reactive antibodies upon vaccination with designed influenza immunogens. Cell Rep 2023; 42:112160. [PMID: 36867533 PMCID: PMC10184763 DOI: 10.1016/j.celrep.2023.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/18/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Immunogens that elicit broadly neutralizing antibodies targeting the conserved receptor-binding site (RBS) on influenza hemagglutinin may serve as candidates for a universal influenza vaccine. Here, we develop a computational model to interrogate antibody evolution by affinity maturation after immunization with two types of immunogens: a heterotrimeric "chimera" hemagglutinin that is enriched for the RBS epitope relative to other B cell epitopes and a cocktail composed of three non-epitope-enriched homotrimers of the monomers that comprise the chimera. Experiments in mice find that the chimera outperforms the cocktail for eliciting RBS-directed antibodies. We show that this result follows from an interplay between how B cells engage these antigens and interact with diverse helper T cells and requires T cell-mediated selection of germinal center B cells to be a stringent constraint. Our results shed light on antibody evolution and highlight how immunogen design and T cells modulate vaccination outcomes.
Collapse
Affiliation(s)
- Leerang Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Guillemet M, Chabas H, Nicot A, Gatchich F, Ortega-Abboud E, Buus C, Hindhede L, Rousseau GM, Bataillon T, Moineau S, Gandon S. Competition and coevolution drive the evolution and the diversification of CRISPR immunity. Nat Ecol Evol 2022; 6:1480-1488. [PMID: 35970864 DOI: 10.1038/s41559-022-01841-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
The diversity of resistance challenges the ability of pathogens to spread and to exploit host populations. Yet, how this host diversity evolves over time remains unclear because it depends on the interplay between intraspecific competition among host genotypes and coevolution with pathogens. Here we study experimentally the effect of coevolving phage populations on the diversification of bacterial CRISPR immunity across space and time. We demonstrate that the negative-frequency-dependent selection generated by coevolution is a powerful force that maintains host resistance diversity and selects for new resistance mutations in the host. We also find that host evolution is driven by asymmetries in competitive abilities among different host genotypes. Even if the fittest host genotypes are targeted preferentially by the evolving phages, they often escape extinctions through the acquisition of new CRISPR immunity. Together, these fluctuating selective pressures maintain diversity, but not by preserving the pre-existing host composition. Instead, we repeatedly observe the introduction of new resistance genotypes stemming from the fittest hosts in each population. These results highlight the importance of competition on the transient dynamics of host-pathogen coevolution.
Collapse
Affiliation(s)
| | - Hélène Chabas
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, Zurich, Switzerland
| | - Antoine Nicot
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | | | | | - Cornelia Buus
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Hindhede
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Geneviève M Rousseau
- Département de biochimie, microbiologie, et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Sylvain Moineau
- Département de biochimie, microbiologie, et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
13
|
LaMont C, Otwinowski J, Vanshylla K, Gruell H, Klein F, Nourmohammad A. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. eLife 2022; 11:76004. [PMID: 35852143 PMCID: PMC9467514 DOI: 10.7554/elife.76004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control.
Collapse
Affiliation(s)
- Colin LaMont
- Max Planck Institute for Dynamics and Self-Organization
| | | | | | | | | | | |
Collapse
|
14
|
Vaidehi Narayanan H, Hoffmann A. From Antibody Repertoires to Cell-Cell Interactions to Molecular Networks: Bridging Scales in the Germinal Center. Front Immunol 2022; 13:898078. [PMID: 35603162 PMCID: PMC9114758 DOI: 10.3389/fimmu.2022.898078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 01/02/2023] Open
Abstract
Antibody-mediated adaptive immunity must provide effective long-term protection with minimal adverse effects, against rapidly mutating pathogens, in a human population with diverse ages, genetics, and immune histories. In order to grasp and leverage the complexities of the antibody response, we advocate for a mechanistic understanding of the multiscale germinal center (GC) reaction - the process by which precursor B-cells evolve high-affinity antigen-specific antibodies, forming an effector repertoire of plasma and memory cells for decades-long protection. The regulatory dynamics of B-cells within the GC are complex, and unfold across multiple interacting spatial and temporal scales. At the organism scale, over weeks to years, the antibody sequence repertoire formed by various B-cell clonal lineages modulates antibody quantity and quality over time. At the tissue and cellular scale, over hours to weeks, B-cells undergo selection via spatially distributed interactions with local stroma, antigen, and helper T-cells. At the molecular scale, over seconds to days, intracellular signaling, transcriptional, and epigenetic networks modulate B-cell fates and shape their clonal lineages. We summarize our current understanding within each of these scales, and identify missing links in connecting them. We suggest that quantitative multi-scale mathematical models of B-cell and GC reaction dynamics provide predictive frameworks that can apply basic immunological knowledge to practical challenges such as rational vaccine design.
Collapse
Affiliation(s)
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Evolution during primary HIV infection does not require adaptive immune selection. Proc Natl Acad Sci U S A 2022; 119:2109172119. [PMID: 35145025 PMCID: PMC8851487 DOI: 10.1073/pnas.2109172119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Modern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The optimal model of primary infection required no positive selection, suggesting that the host adaptive immune system reduces viral load but surprisingly does not drive observed viral evolution. Rather, the fitness (infectivity) of mutant variants is drawn from an exponential distribution in which most variants are slightly less infectious than their parents (nearly neutral evolution). This distribution was not largely different from either in vivo fitness distributions recorded beyond primary infection or in vitro distributions that are observed without adaptive immunity, suggesting the intrinsic viral fitness distribution may drive evolution. Simulated phylogenetic trees also agree with independent data and illuminate how phylogenetic inference must consider viral and immune-cell population dynamics to gain accurate mechanistic insights.
Collapse
|
16
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
17
|
Robert PA, Arulraj T, Meyer-Hermann M. Ymir: A 3D structural affinity model for multi-epitope vaccine simulations. iScience 2021; 24:102979. [PMID: 34485861 PMCID: PMC8405928 DOI: 10.1016/j.isci.2021.102979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Vaccine development is challenged by the hierarchy of immunodominance between target antigen epitopes and the emergence of antigenic variants by pathogen mutation. The strength and breadth of antibody responses relies on selection and mutation in the germinal center and on the structural similarity between antigens. Computational methods for assessing the breadth of germinal center responses to multivalent antigens are critical to speed up vaccine development. Yet, such methods have poorly reflected the 3D antigen structure and antibody breadth. Here, we present Ymir, a new 3D-lattice-based framework that calculates in silico antibody-antigen affinities. Key physiological properties naturally emerge from Ymir such as affinity jumps, cross-reactivity, and differential epitope accessibility. We validated Ymir by replicating known features of germinal center dynamics. We show that combining antigens with mutated but structurally related epitopes enhances vaccine breadth. Ymir opens a new avenue for understanding vaccine potency based on the structural relationship between vaccine antigens.
Collapse
Affiliation(s)
- Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Lewitus E, Sanders-Buell E, Bose M, O'Sullivan AM, Poltavee K, Li Y, Bai H, Mdluli T, Donofrio G, Slike B, Zhao H, Wong K, Chen L, Miller S, Lee J, Ahani B, Lepore S, Muhammad S, Grande R, Tran U, Dussupt V, Mendez-Rivera L, Nitayaphan S, Kaewkungwal J, Pitisuttithum P, Rerks-Ngarm S, O'Connell RJ, Janes H, Gilbert PB, Gramzinski R, Vasan S, Robb ML, Michael NL, Krebs SJ, Herbeck JT, Edlefsen PT, Mullins JI, Kim JH, Tovanabutra S, Rolland M. RV144 vaccine imprinting constrained HIV-1 evolution following breakthrough infection. Virus Evol 2021; 7:veab057. [PMID: 34532060 PMCID: PMC8438874 DOI: 10.1093/ve/veab057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
The scale of the HIV-1 epidemic underscores the need for a vaccine. The multitude of circulating HIV-1 strains together with HIV-1’s high evolvability hints that HIV-1 could adapt to a future vaccine. Here, we wanted to investigate the effect of vaccination on the evolution of the virus post-breakthrough infection. We analyzed 2,635 HIV-1 env sequences sampled up to a year post-diagnosis from 110 vaccine and placebo participants who became infected in the RV144 vaccine efficacy trial. We showed that the Env signature sites that were previously identified to distinguish vaccine and placebo participants were maintained over time. In addition, fewer sites were under diversifying selection in the vaccine group than in the placebo group. These results indicate that HIV-1 would possibly adapt to a vaccine upon its roll-out.
Collapse
Affiliation(s)
- Eric Lewitus
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Meera Bose
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Kultida Poltavee
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Yifan Li
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Hongjun Bai
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Thembi Mdluli
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Gina Donofrio
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Bonnie Slike
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Kim Wong
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Shana Miller
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Jenica Lee
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Bahar Ahani
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Steven Lepore
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Sevan Muhammad
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Rebecca Grande
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Ursula Tran
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Vincent Dussupt
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Sorachai Nitayaphan
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Robert J O'Connell
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Holly Janes
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Peter B Gilbert
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Robert Gramzinski
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, WRAIR, Silver Spring, MD 20910, USA
| | - Shelly J Krebs
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Paul T Edlefsen
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Jerome H Kim
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Morgane Rolland
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| |
Collapse
|
19
|
Meijers M, Vanshylla K, Gruell H, Klein F, Lässig M. Predicting in vivo escape dynamics of HIV-1 from a broadly neutralizing antibody. Proc Natl Acad Sci U S A 2021; 118:e2104651118. [PMID: 34301904 PMCID: PMC8325275 DOI: 10.1073/pnas.2104651118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Broadly neutralizing antibodies are promising candidates for treatment and prevention of HIV-1 infections. Such antibodies can temporarily suppress viral load in infected individuals; however, the virus often rebounds by escape mutants that have evolved resistance. In this paper, we map a fitness model of HIV-1 interacting with broadly neutralizing antibodies using in vivo data from a recent clinical trial. We identify two fitness factors, antibody dosage and viral load, that determine viral reproduction rates reproducibly across different hosts. The model successfully predicts the escape dynamics of HIV-1 in the course of an antibody treatment, including a characteristic frequency turnover between sensitive and resistant strains. This turnover is governed by a dosage-dependent fitness ranking, resulting from an evolutionary trade-off between antibody resistance and its collateral cost in drug-free growth. Our analysis suggests resistance-cost trade-off curves as a measure of antibody performance in the presence of resistance evolution.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institut für Biologische Physik, University of Cologne, 50937 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Partner Site Bonn-Cologne, German Center for Infection Research, 50931 Cologne, Germany
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Michael Lässig
- Institut für Biologische Physik, University of Cologne, 50937 Cologne, Germany;
| |
Collapse
|
20
|
Sheng J, Wang S. Coevolutionary transitions emerging from flexible molecular recognition and eco-evolutionary feedback. iScience 2021; 24:102861. [PMID: 34401660 PMCID: PMC8353512 DOI: 10.1016/j.isci.2021.102861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/16/2021] [Accepted: 07/13/2021] [Indexed: 01/16/2023] Open
Abstract
Highly mutable viruses evolve to evade host immunity that exerts selective pressure and adapts to viral dynamics. Here, we provide a framework for identifying key determinants of the mode and fate of viral-immune coevolution by linking molecular recognition and eco-evolutionary dynamics. We find that conservation level and initial diversity of antigen jointly determine the timing and efficacy of narrow and broad antibody responses, which in turn control the transition between viral persistence, clearance, and rebound. In particular, clearance of structurally complex antigens relies on antibody evolution in a larger antigenic space than where selection directly acts; viral rebound manifests binding-mediated feedback between ecology and rapid evolution. Finally, immune compartmentalization can slow viral escape but also delay clearance. This work suggests that flexible molecular binding allows a plastic phenotype that exploits potentiating neutral variations outside direct contact, opening new and shorter paths toward highly adaptable states. A scale-crossing framework identifies key determinants of viral-immune coevolution Fast specific response influences slow broad response by shaping antigen dynamics Antibody footprint shift enables breadth acquisition and viral clearance Model explains divergent kinetics and outcomes of HCV infection in humans
Collapse
Affiliation(s)
- Jiming Sheng
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Abstract
The evolution of many microbes and pathogens, including circulating viruses such as seasonal influenza, is driven by immune pressure from the host population. In turn, the immune systems of infected populations get updated, chasing viruses even farther away. Quantitatively understanding how these dynamics result in observed patterns of rapid pathogen and immune adaptation is instrumental to epidemiological and evolutionary forecasting. Here we present a mathematical theory of coevolution between immune systems and viruses in a finite-dimensional antigenic space, which describes the cross-reactivity of viral strains and immune systems primed by previous infections. We show the emergence of an antigenic wave that is pushed forward and canalized by cross-reactivity. We obtain analytical results for shape, speed, and angular diffusion of the wave. In particular, we show that viral-immune coevolution generates an emergent timescale, the persistence time of the wave's direction in antigenic space, which can be much longer than the coalescence time of the viral population. We compare these dynamics to the observed antigenic turnover of influenza strains, and we discuss how the dimensionality of antigenic space impacts the predictability of the evolutionary dynamics. Our results provide a concrete and tractable framework to describe pathogen-host coevolution.
Collapse
|
22
|
Bergelson J, Kreitman M, Petrov DA, Sanchez A, Tikhonov M. Functional biology in its natural context: A search for emergent simplicity. eLife 2021; 10:e67646. [PMID: 34096867 PMCID: PMC8184206 DOI: 10.7554/elife.67646] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
The immeasurable complexity at every level of biological organization creates a daunting task for understanding biological function. Here, we highlight the risks of stripping it away at the outset and discuss a possible path toward arriving at emergent simplicity of understanding while still embracing the ever-changing complexity of biotic interactions that we see in nature.
Collapse
Affiliation(s)
- Joy Bergelson
- Department of Ecology & Evolution, University of ChicagoChicagoUnited States
| | - Martin Kreitman
- Department of Ecology & Evolution, University of ChicagoChicagoUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale UniversityNew HavenUnited States
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St LouisSt. LouisUnited States
| |
Collapse
|
23
|
Impfstoffe für alle? Dodecin als Impfstoffplattform. BIOSPEKTRUM 2021; 27:250-253. [PMID: 33994672 PMCID: PMC8111370 DOI: 10.1007/s12268-021-1564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Ganti RS, Chakraborty AK. Mechanisms underlying vaccination protocols that may optimally elicit broadly neutralizing antibodies against highly mutable pathogens. Phys Rev E 2021; 103:052408. [PMID: 34134229 DOI: 10.1103/physreve.103.052408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/01/2021] [Indexed: 01/16/2023]
Abstract
Effective prophylactic vaccines usually induce the immune system to generate potent antibodies that can bind to an antigen and thus prevent it from infecting host cells. B cells produce antibodies by a Darwinian evolutionary process called affinity maturation (AM). During AM, the B cell population evolves in response to the antigen to produce antibodies that bind specifically and strongly to the antigen. Highly mutable pathogens pose a major challenge to the development of effective vaccines because antibodies that are effective against one strain of the virus may not protect against a mutant strain. Antibodies that can protect against diverse strains of a mutable pathogen have high "breadth" and are called broadly neutralizing antibodies (bnAbs). In spite of extensive studies, an effective vaccination strategy that can generate bnAbs in humans does not exist for any highly mutable pathogen. Here we study a minimal model to explore the mechanisms underlying how the selection forces imposed by antigens can be optimally chosen to guide AM to maximize the evolution of bnAbs. For logistical reasons, only a finite number of antigens can be administered in a finite number of vaccinations; that is, guiding the nonequilibrium dynamics of AM to produce bnAbs must be accomplished nonadiabatically. The time-varying Kullback-Leibler divergence (KLD) between the existing B cell population distribution and the fitness landscape imposed by antigens is a quantitative metric of the thermodynamic force acting on B cells. If this force is too small, adaptation is minimal. If the force is too large, contrary to expectations, adaptation is not faster; rather, the B cell population is extinguished for reasons that we describe. We define the conditions necessary for the force to be set optimally such that the flux of B cells from low to high breadth states is maximized. Even in this case we show why the dynamics of AM prevent perfect adaptation. If two shots of vaccination are allowed, the optimal protocol is characterized by a relatively low optimal KLD during the first shot that appropriately increases the diversity of the B cell population so that the surviving B cells have a high chance of evolving into bnAbs upon subsequently increasing the KLD during the second shot. Phylogenetic tree analysis further reveals the evolutionary pathways that lead to bnAbs. The connections between the mechanisms revealed by our analyses and recent simulation studies of bnAb evolution, the problem of generalist versus specialist evolution, and learning theory are discussed.
Collapse
Affiliation(s)
- Raman S Ganti
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Department of Physics, and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Desikan R, Antia R, Dixit NM. Physical 'strength' of the multi-protein chain connecting immune cells: Does the weakest link limit antibody affinity maturation?: The weakest link in the multi-protein chain facilitating antigen acquisition by B cells in germinal centres limits antibody affinity maturation. Bioessays 2021; 43:e2000159. [PMID: 33448042 DOI: 10.1002/bies.202000159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
The affinities of antibodies (Abs) for their target antigens (Ags) gradually increase in vivo following an infection or vaccination, but reach saturation at values well below those realisable in vitro. This 'affinity ceiling' could in many cases restrict our ability to fight infections and compromise vaccines. What determines the affinity ceiling has been an unresolved question for decades. Here, we argue that it arises from the strength of the chain of protein complexes that is pulled by B cells during the process of Ag acquisition. The affinity ceiling is determined by the strength of the weakest link in the chain. We identify the weakest link and show that the resulting affinity ceiling can explain the Ab affinities realized in vivo, providing a conceptual understanding of Ab affinity maturation. We explore plausible evolutionary underpinnings of the affinity ceiling, examine supporting evidence and alternative hypotheses and discuss implications for vaccination strategies.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
26
|
Takayanagi T. Presence of long-term stable quasispecies of human immunodeficiency virus type 1 inferred using a quasi-steady-state multiscale model. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Yan L, Wang S. Shaping Polyclonal Responses via Antigen-Mediated Antibody Interference. iScience 2020; 23:101568. [PMID: 33083735 PMCID: PMC7530306 DOI: 10.1016/j.isci.2020.101568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/05/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) recognize conserved features of rapidly mutating pathogens and confer universal protection, but they emerge rarely in natural infection. Increasing evidence indicates that seemingly passive antibodies may interfere with natural selection of B cells. Yet, how such interference modulates polyclonal responses is unknown. Here we provide a framework for understanding the role of antibody interference—mediated by multi-epitope antigens—in shaping B cell clonal makeup and the fate of bnAb lineages. We find that, under heterogeneous interference, clones with different intrinsic fitness can collectively persist. Furthermore, antagonism among fit clones (specific for variable epitopes) promotes expansion of unfit clones (targeting conserved epitopes), at the cost of repertoire potency. This trade-off, however, can be alleviated by synergy toward the unfit. Our results provide a physical basis for antigen-mediated clonal interactions, stress system-level impacts of molecular synergy and antagonism, and offer principles to amplify naturally rare clones. Multi-epitope antigens mediate antibody interference that couples B cell lineages Trade-off exists between repertoire potency and persistence of broad lineages Antigen-mediated synergy toward intrinsically unfit clones alleviates the trade-off Amplifying rare clones by leveraging molecular interference structure
Collapse
Affiliation(s)
- Le Yan
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Optimizing immunization protocols to elicit broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2020; 117:20077-20087. [PMID: 32747563 DOI: 10.1073/pnas.1919329117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural infections and vaccination with a pathogen typically stimulate the production of potent antibodies specific for the pathogen through a Darwinian evolutionary process known as affinity maturation. Such antibodies provide protection against reinfection by the same strain of a pathogen. A highly mutable virus, like HIV or influenza, evades recognition by these strain-specific antibodies via the emergence of new mutant strains. A vaccine that elicits antibodies that can bind to many diverse strains of the virus-known as broadly neutralizing antibodies (bnAbs)-could protect against highly mutable pathogens. Despite much work, the mechanisms by which bnAbs emerge remain uncertain. Using a computational model of affinity maturation, we studied a wide variety of vaccination strategies. Our results suggest that an effective strategy to maximize bnAb evolution is through a sequential immunization protocol, wherein each new immunization optimally increases the pressure on the immune system to target conserved antigenic sites, thus conferring breadth. We describe the mechanisms underlying why sequentially driving the immune system increasingly further from steady state, in an optimal fashion, is effective. The optimal protocol allows many evolving B cells to become bnAbs via diverse evolutionary paths.
Collapse
|
29
|
Abstract
Vaccinations and therapies targeting evolving pathogens aim to curb the pathogen and to steer it toward a controlled evolutionary state. Control is leveraged against the pathogen’s intrinsic evolutionary forces, which in turn, can drive an escape from control. Here, we analyze a simple model of control, in which a host produces antibodies that bind the pathogen. We show that the leverages of host (or external intervention) and pathogen are often highly imbalanced: an error threshold separates parameter regions of efficient control from regions of compromised control, where the pathogen retains the upper hand. Because control efficiency can be predicted from few measurable fitness parameters, our results establish a proof of principle how control theory can guide interventions against evolving pathogens. Control can alter the eco-evolutionary dynamics of a target pathogen in two ways, by changing its population size and by directed evolution of new functions. Here, we develop a payoff model of eco-evolutionary control based on strategies of evolution, regulation, and computational forecasting. We apply this model to pathogen control by molecular antibody–antigen binding with a tunable dosage of antibodies. By analytical solution, we obtain optimal dosage protocols and establish a phase diagram with an error threshold delineating parameter regimes of successful and compromised control. The solution identifies few independently measurable fitness parameters that predict the outcome of control. Our analysis shows how optimal control strategies depend on mutation rate and population size of the pathogen, and how monitoring and computational forecasting affect protocols and efficiency of control. We argue that these results carry over to more general systems and are elements of an emerging eco-evolutionary control theory.
Collapse
|
30
|
Sachdeva V, Husain K, Sheng J, Wang S, Murugan A. Tuning environmental timescales to evolve and maintain generalists. Proc Natl Acad Sci U S A 2020; 117:12693-12699. [PMID: 32457160 PMCID: PMC7293598 DOI: 10.1073/pnas.1914586117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural environments can present diverse challenges, but some genotypes remain fit across many environments. Such "generalists" can be hard to evolve, outcompeted by specialists fitter in any particular environment. Here, inspired by the search for broadly neutralizing antibodies during B cell affinity maturation, we demonstrate that environmental changes on an intermediate timescale can reliably evolve generalists, even when faster or slower environmental changes are unable to do so. We find that changing environments on timescales comparable with evolutionary transients in a population enhance the rate of evolving generalists from specialists, without enhancing the reverse process. The yield of generalists is further increased in more complex dynamic environments, such as a "chirp" of increasing frequency. Our work offers design principles for how nonequilibrium fitness "seascapes" can dynamically funnel populations to genotypes unobtainable in static environments.
Collapse
Affiliation(s)
- Vedant Sachdeva
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60627
| | - Kabir Husain
- Department of Physics, The University of Chicago, Chicago, IL 60627
| | - Jiming Sheng
- Department of Physics and Astronomy, The University of California, Los Angeles, CA 90095
| | - Shenshen Wang
- Department of Physics and Astronomy, The University of California, Los Angeles, CA 90095
| | - Arvind Murugan
- Department of Physics, The University of Chicago, Chicago, IL 60627;
| |
Collapse
|
31
|
Princepe D, De Aguiar MAM. Modeling Mito-nuclear Compatibility and Its Role in Species Identification. Syst Biol 2020; 70:133-144. [PMID: 32497198 DOI: 10.1093/sysbio/syaa044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/27/2023] Open
Abstract
Mitochondrial genetic material (mtDNA) is widely used for phylogenetic reconstruction and as a barcode for species identification. The utility of mtDNA in these contexts derives from its particular molecular properties, including its high evolutionary rate, uniparental inheritance, and small size. But mtDNA may also play a fundamental role in speciation-as suggested by recent observations of coevolution with the nuclear DNA, along with the fact that respiration depends on coordination of genes from both sources. Here, we study how mito-nuclear interactions affect the accuracy of species identification by mtDNA, as well as the speciation process itself. We simulate the evolution of a population of individuals who carry a recombining nuclear genome and a mitochondrial genome inherited maternally. We compare a null model fitness landscape that lacks any mito-nuclear interaction against a scenario in which interactions influence fitness. Fitness is assigned to individuals according to their mito-nuclear compatibility, which drives the coevolution of the nuclear and mitochondrial genomes. Depending on the model parameters, the population breaks into distinct species and the model output then allows us to analyze the accuracy of mtDNA barcode for species identification. Remarkably, we find that species identification by mtDNA is equally accurate in the presence or absence of mito-nuclear coupling and that the success of the DNA barcode derives mainly from population geographical isolation during speciation. Nevertheless, selection imposed by mito-nuclear compatibility influences the diversification process and leaves signatures in the genetic content and spatial distribution of the populations, in three ways. First, speciation is delayed and the resulting phylogenetic trees are more balanced. Second, clades in the resulting phylogenetic tree correlate more strongly with the spatial distribution of species and clusters of more similar mtDNA's. Third, there is a substantial increase in the intraspecies mtDNA similarity, decreasing the number of alleles substitutions per locus and promoting the conservation of genetic information. We compare the evolutionary patterns observed in our model to empirical data from copepods (Tigriopus californicus). We find good qualitative agreement in the geographic patterns and the topology of the phylogenetic tree, provided the model includes selection based on mito-nuclear interactions. These results highlight the role of mito-nuclear compatibility in the speciation process and its reconstruction from genetic data.[Mito-nuclear coevolution; mtDNA barcode; parapatry; phylogeny.].
Collapse
Affiliation(s)
| | - Marcus A M De Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas - 13083-859, Campinas, SP, Brazil
| |
Collapse
|
32
|
Abstract
Some bacteria possess an adaptive immune system that maintains a memory of past viral infections in the CRISPR loci of their genomes. This memory is used to mount targeted responses against later threats but is remarkably shallow: it remembers only a few dozen to a few hundred viruses. We present a statistical theory of CRISPR-based immunity that quantitatively predicts the depth of bacterial immune memory in terms of a tradeoff with fundamental constraints of the cellular biochemical machinery. Some bacteria and archaea possess an immune system, based on the CRISPR-Cas mechanism, that confers adaptive immunity against viruses. In such species, individual prokaryotes maintain cassettes of viral DNA elements called spacers as a memory of past infections. Typically, the cassettes contain several dozen expressed spacers. Given that bacteria can have very large genomes and since having more spacers should confer a better memory, it is puzzling that so little genetic space would be devoted by prokaryotes to their adaptive immune systems. Here, assuming that CRISPR functions as a long-term memory-based defense against a diverse landscape of viral species, we identify a fundamental tradeoff between the amount of immune memory and effectiveness of response to a given threat. This tradeoff implies an optimal size for the prokaryotic immune repertoire in the observational range.
Collapse
|
33
|
Nourmohammad A, Otwinowski J, Łuksza M, Mora T, Walczak AM. Fierce Selection and Interference in B-Cell Repertoire Response to Chronic HIV-1. Mol Biol Evol 2020; 36:2184-2194. [PMID: 31209469 PMCID: PMC6759071 DOI: 10.1093/molbev/msz143] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host's adaptive immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the characteristics of the somatic evolution that shape the immune response are still unknown. Traditional population genetics methods fail to distinguish chronic immune response from healthy repertoire evolution. Here, we infer the evolutionary modes of B-cell repertoires and identify complex dynamics with a constant production of better B-cell receptor (BCR) mutants that compete, maintaining large clonal diversity and potentially slowing down adaptation. A substantial fraction of mutations that rise to high frequencies in pathogen-engaging CDRs of BCRs are beneficial, in contrast to many such changes in structurally relevant frameworks that are deleterious and circulate by hitchhiking. We identify a pattern where BCRs in patients who experience larger viral expansions undergo stronger selection with a rapid turnover of beneficial mutations due to clonal interference in their CDR3 regions. Using population genetics modeling, we show that the extinction of these beneficial mutations can be attributed to the rise of competing beneficial alleles and clonal interference. The picture is of a dynamic repertoire, where better clones may be outcompeted by new mutants before they fix.
Collapse
Affiliation(s)
- Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, WA
| | - Jakub Otwinowski
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thierry Mora
- Laboratoire de Physique Statistique, CNRS, Sorbonne University, Paris-Diderot University, École Normale Supérieure (PSL), Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, CNRS, Sorbonne University, École Normale Supérieure (PSL), Paris, France
| |
Collapse
|
34
|
|
35
|
Marchi J, Lässig M, Mora T, Walczak AM. Multi-Lineage Evolution in Viral Populations Driven by Host Immune Systems. Pathogens 2019; 8:E115. [PMID: 31362404 PMCID: PMC6789611 DOI: 10.3390/pathogens8030115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Viruses evolve in the background of host immune systems that exert selective pressure and drive viral evolutionary trajectories. This interaction leads to different evolutionary patterns in antigenic space. Examples observed in nature include the effectively one-dimensional escape characteristic of influenza A and the prolonged coexistence of lineages in influenza B. Here, we use an evolutionary model for viruses in the presence of immune host systems with finite memory to obtain a phase diagram of evolutionary patterns in a two-dimensional antigenic space. We find that, for small effective mutation rates and mutation jump ranges, a single lineage is the only stable solution. Large effective mutation rates combined with large mutational jumps in antigenic space lead to multiple stably co-existing lineages over prolonged evolutionary periods. These results combined with observations from data constrain the parameter regimes for the adaptation of viruses, including influenza.
Collapse
Affiliation(s)
- Jacopo Marchi
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Michael Lässig
- Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany
| | - Thierry Mora
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France.
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, 75005 Paris, France.
| |
Collapse
|
36
|
Abstract
The interplay between immune response and HIV is intensely studied via mathematical modeling, with significant insights but few direct answers. In this short review, we highlight advances and knowledge gaps across different aspects of immunity. In particular, we identify the innate immune response and its role in priming the adaptive response as ripe for modeling. The latter have been the focus of most modeling studies, but we also synthesize key outstanding questions regarding effector mechanisms of cellular immunity and development of broadly neutralizing antibodies. Thus far, most modeling studies aimed to infer general immune mechanisms; we foresee that significant progress will be made next by detailed quantitative fitting of models to data, and prediction of immune responses.
Collapse
Affiliation(s)
- Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park PA 16802, USA
| | - Ruy M Ribeiro
- Laboratorio de Biomatematica, Faculdade de Medicina da Universidade de Lisboa, Portugal and Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
37
|
Induction of broadly neutralizing antibodies in Germinal Centre simulations. Curr Opin Biotechnol 2018; 51:137-145. [DOI: 10.1016/j.copbio.2018.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 11/16/2022]
|
38
|
Victora GD, Mouquet H. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Lessons from the Antibody Response to HIV-1. Cold Spring Harb Perspect Biol 2018. [PMID: 28630079 DOI: 10.1101/cshperspect.a029389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Most broadly neutralizing antibodies to HIV-1 have in common an extreme degree of somatic hypermutation (SHM), which correlates with their ability to neutralize multiple viral strains. However, achieving such extreme SHM by immunization remains a challenge. Here, we discuss how antigenic variation during HIV-1 infection may work to exacerbate SHM by permitting multiple iterative cycles of affinity maturation in germinal centers, and speculate on how this could be recapitulated through vaccination.
Collapse
Affiliation(s)
- Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, New York 10065
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Institut Pasteur, Paris 75015, France.,INSERM, U1222, Paris 75015, France
| |
Collapse
|
39
|
Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, Rizvi NA, Merghoub T, Levine AJ, Chan TA, Wolchok JD, Greenbaum BD. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 2017; 551:517-520. [PMID: 29132144 DOI: 10.1038/nature24473] [Citation(s) in RCA: 489] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma and anti-PD-1-treated patients with lung cancer. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens.
Collapse
Affiliation(s)
- Marta Łuksza
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vladimir Makarov
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vinod P Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew D Hellmann
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Alexander Solovyov
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Naiyer A Rizvi
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Taha Merghoub
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arnold J Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Benjamin D Greenbaum
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
40
|
Chakraborty AK, Barton JP. Rational design of vaccine targets and strategies for HIV: a crossroad of statistical physics, biology, and medicine. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:032601. [PMID: 28059778 DOI: 10.1088/1361-6633/aa574a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.
Collapse
Affiliation(s)
- Arup K Chakraborty
- Departments of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Departments of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Departments of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Ragon Institute of MIT, MGH, & Harvard, Cambridge, MA 02139, United States of America
| | | |
Collapse
|
41
|
|
42
|
Wang S. Optimal Sequential Immunization Can Focus Antibody Responses against Diversity Loss and Distraction. PLoS Comput Biol 2017; 13:e1005336. [PMID: 28135270 PMCID: PMC5279722 DOI: 10.1371/journal.pcbi.1005336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Affinity maturation is a Darwinian process in which B lymphocytes evolve potent antibodies to encountered antigens and generate immune memory. Highly mutable complex pathogens present an immense antigenic diversity that continues to challenge natural immunity and vaccine design. Induction of broadly neutralizing antibodies (bnAbs) against this diversity by vaccination likely requires multiple exposures to distinct but related antigen variants, and yet how affinity maturation advances under such complex stimulation remains poorly understood. To fill the gap, we present an in silico model of affinity maturation to examine two realistic new aspects pertinent to vaccine development: loss in B cell diversity across successive immunization periods against different variants, and the presence of distracting epitopes that entropically disfavor the evolution of bnAbs. We find these new factors, which introduce additional selection pressures and constraints, significantly influence antibody breadth development, in a way that depends crucially on the temporal pattern of immunization (or selection forces). Curiously, a less diverse B cell seed may even favor the expansion and dominance of cross-reactive clones, but only when conflicting selection forces are presented in series rather than in a mixture. Moreover, the level of frustration due to evolutionary conflict dictates the degree of distraction. We further describe how antigenic histories select evolutionary paths of B cell lineages and determine the predominant mode of antibody responses. Sequential immunization with mutationally distant variants is shown to robustly induce bnAbs that focus on conserved elements of the target epitope, by thwarting strain-specific and distracted lineages. An optimal range of antigen dose underlies a fine balance between efficient adaptation and persistent reaction. These findings provide mechanistic guides to aid in design of vaccine strategies against fast mutating pathogens.
Collapse
Affiliation(s)
- Shenshen Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|