1
|
Kashatnikova DA, Gracheva AS, Redkin IV, Zakharchenko VE, Krylova TN, Kuzovlev AN, Salnikova LE. Red Blood Cell-Related Phenotype-Genotype Correlations in Chronic and Acute Critical Illnesses (Traumatic Brain Injury Cohort and COVID-19 Cohort). Int J Mol Sci 2025; 26:1239. [PMID: 39941007 PMCID: PMC11818277 DOI: 10.3390/ijms26031239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in red blood cell (RBC)-related parameters and anemia are common in both severe chronic and acute diseases. RBC-related phenotypes have a heritable component. However, it is unclear whether the contribution of genetic variability is pronounced when hematological parameters are affected by physiological stress. In this study, we analyzed RBC-related phenotypes and phenotype-genotype correlations in two exome-sequenced patient cohorts with or at a high risk for a critical illness: chronic TBI patients admitted for rehabilitation and patients with acute COVID-19. In the analysis of exome data, we focused on the cumulative effects of rare high-impact variants (qualifying variants, QVs) in specific gene sets, represented by Notch signaling pathway genes, based on the results of enrichment analysis in anemic TBI patients and three predefined gene sets for phenotypes of interest derived from GO, GWAS, and HPO resources. In both patient cohorts, anemia was associated with the cumulative effects of QVs in the GO (TBI: p = 0.0003, OR = 2.47 (1.54-4.88); COVID-19: p = 0.0004, OR = 2.12 (1.39-3.25)) and Notch pathway-derived (TBI: p = 0.0017, OR = 2.33 (1.35-4.02); COVID-19: p = 0.0012, OR =8.00 (1.79-35.74)) gene sets. In the multiple linear regression analysis, genetic variables contributed to RBC indices in patients with TBI. In COVID-19 patients, QVs in Notch pathway genes influenced RBC, HGB, and HCT levels, whereas genes from other sets influenced MCHC levels. Thus, in this exploratory study, exome data analysis yielded similar and different results in the two patient cohorts, supporting the view that genetic factors may contribute to RBC-related phenotypic performance in both severe chronic and acute health conditions.
Collapse
Affiliation(s)
- Darya A. Kashatnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alesya S. Gracheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Ivan V. Redkin
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Vladislav E. Zakharchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Tatyana N. Krylova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Lyubov E. Salnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
- National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
2
|
Brito-Robinson T, Ayinuola YA, Ploplis VA, Castellino FJ. Plasminogen missense variants and their involvement in cardiovascular and inflammatory disease. Front Cardiovasc Med 2024; 11:1406953. [PMID: 38984351 PMCID: PMC11231438 DOI: 10.3389/fcvm.2024.1406953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Human plasminogen (PLG), the zymogen of the fibrinolytic protease, plasmin, is a polymorphic protein with two widely distributed codominant alleles, PLG/Asp453 and PLG/Asn453. About 15 other missense or non-synonymous single nucleotide polymorphisms (nsSNPs) of PLG show major, yet different, relative abundances in world populations. Although the existence of these relatively abundant allelic variants is generally acknowledged, they are often overlooked or assumed to be non-pathogenic. In fact, at least half of those major variants are classified as having conflicting pathogenicity, and it is unclear if they contribute to different molecular phenotypes. From those, PLG/K19E and PLG/A601T are examples of two relatively abundant PLG variants that have been associated with PLG deficiencies (PD), but their pathogenic mechanisms are unclear. On the other hand, approximately 50 rare and ultra-rare PLG missense variants have been reported to cause PD as homozygous or compound heterozygous variants, often leading to a debilitating disease known as ligneous conjunctivitis. The true abundance of PD-associated nsSNPs is unknown since they can remain undetected in heterozygous carriers. However, PD variants may also contribute to other diseases. Recently, the ultra-rare autosomal dominant PLG/K311E has been found to be causative of hereditary angioedema (HAE) with normal C1 inhibitor. Two other rare pathogenic PLG missense variants, PLG/R153G and PLG/V709E, appear to affect platelet function and lead to HAE, respectively. Herein, PLG missense variants that are abundant and/or clinically relevant due to association with disease are examined along with their world distribution. Proposed molecular mechanisms are discussed when known or can be reasonably assumed.
Collapse
Affiliation(s)
| | | | | | - Francis J. Castellino
- Department of Chemistry and Biochemistry and the W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
3
|
Constantinescu AE, Hughes DA, Bull CJ, Fleming K, Mitchell RE, Zheng J, Kar S, Timpson NJ, Amulic B, Vincent EE. A genome-wide association study of neutrophil count in individuals associated to an African continental ancestry group facilitates studies of malaria pathogenesis. Hum Genomics 2024; 18:26. [PMID: 38491524 PMCID: PMC10941368 DOI: 10.1186/s40246-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND 'Benign ethnic neutropenia' (BEN) is a heritable condition characterized by lower neutrophil counts, predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of extensive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe malaria (MalariaGEN, N = 17,056). RESULTS We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-LMM was reliable when conducted in a non-European population, and additional covariates added to the model did not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neutrophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe anaemia, although the confidence intervals crossed the null. CONCLUSION Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further exploring the link between neutrophils and severe malaria.
Collapse
Affiliation(s)
- Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Louisiana State University, Louisiana, USA
| | - Caroline J Bull
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
- Health Data Research UK, London, UK
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases, National Health Commission, Shanghai, People's Republic of China
- Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Early Cancer Insitute, University of Cambridge, Cambridge, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK.
- School of Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Clay S, Alladina J, Smith NP, Visness CM, Wood RA, O'Connor GT, Cohen RT, Khurana Hershey GK, Kercsmar CM, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Rivera-Spoljaric K, Robison RG, Gergen PJ, Busse WW, Villani AC, Cho JL, Medoff BD, Gern JE, Jackson DJ, Ober C, Dapas M. Gene-based association study of rare variants in children of diverse ancestries implicates TNFRSF21 in the development of allergic asthma. J Allergy Clin Immunol 2024; 153:809-820. [PMID: 37944567 PMCID: PMC10939893 DOI: 10.1016/j.jaci.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.
Collapse
Affiliation(s)
- Selene Clay
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| | - Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | | | - Robert A Wood
- Pediatric Allergy and Immunology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - George T O'Connor
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | - Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | | | - Carolyn M Kercsmar
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca S Gruchalla
- Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Michelle A Gill
- Pediatric Infectious Diseases, St. Louis Children's Hospital, St Louis, Mo
| | - Andrew H Liu
- Breathing Institute, Children's Hospital Colorado, Aurora, Colo
| | - Haejin Kim
- Allergy and Immunology, Henry Ford Health, Detroit, Mich
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Deepa Rastogi
- Division of Pulmonology and Sleep Medicine, Children's National Hospital, Washington, DC
| | - Katherine Rivera-Spoljaric
- Department of Pediatric Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Rachel G Robison
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn; Ann & Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
5
|
Ma S, Wang C, Khan A, Liu L, Dalgleish J, Kiryluk K, He Z, Ionita-Laza I. BIGKnock: fine-mapping gene-based associations via knockoff analysis of biobank-scale data. Genome Biol 2023; 24:24. [PMID: 36782330 PMCID: PMC9926792 DOI: 10.1186/s13059-023-02864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
We propose BIGKnock (BIobank-scale Gene-based association test via Knockoffs), a computationally efficient gene-based testing approach for biobank-scale data, that leverages long-range chromatin interaction data, and performs conditional genome-wide testing via knockoffs. BIGKnock can prioritize causal genes over proxy associations at a locus. We apply BIGKnock to the UK Biobank data with 405,296 participants for multiple binary and quantitative traits, and show that relative to conventional gene-based tests, BIGKnock produces smaller sets of significant genes that contain the causal gene(s) with high probability. We further illustrate its ability to pinpoint potential causal genes at [Formula: see text] of the associated loci.
Collapse
Affiliation(s)
- Shiyang Ma
- Department of Biostatistics, Columbia University, New York, NY, USA
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wang
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linxi Liu
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Dalgleish
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zihuai He
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
6
|
Grimm D, Hwang PH, Lin YT. The link between allergic rhinitis and chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2023; 31:3-10. [PMID: 36729858 DOI: 10.1097/moo.0000000000000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Allergic rhinitis and chronic rhinosinusitis (CRS) are common disorders affecting millions of people worldwide. Although allergic rhinitis and CRS are distinct clinical entities, certain CRS endotypes share similar pathological mechanisms as those seen in patients with allergic rhinitis. This review assesses the literature behind the similarities and differences seen in patients with CRS and allergic rhinitis, and the role atopy might play in the pathophysiology of CRS. RECENT FINDINGS In examining the associations between allergic rhinitis and CRS, most studies have focused primarily on CRS with nasal polyps and type 2 inflammation in CRS. Recent studies have demonstrated the similarities and differences in pathologic mechanisms behind allergic rhinitis and CRS, with an emphasis on patient endotypes, genetics, and the nasoepithelial immunologic barrier. Related immunopathology shared by allergic rhinitis and type 2 inflammation in CRS has allowed for therapeutic overlap with biologic treatments. SUMMARY Allergic rhinitis and CRS often present as comorbid conditions, and understanding the relationship between allergic rhinitis and CRS is important when considering treatment options. Advances in understanding the genetics and immunology, as well as biologic and immunotherapeutic treatments have improved outcomes in patients with CRS, especially in the setting of atopy.
Collapse
Affiliation(s)
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Tsen Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians. Nat Commun 2022; 13:6642. [PMID: 36333282 PMCID: PMC9636136 DOI: 10.1038/s41467-022-34163-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic traits are heritable phenotypes widely-used in assessing the risk of various diseases. We conduct a genome-wide association analysis (GWAS) of nine metabolic traits (including glycemic, lipid, liver enzyme levels) in 125,872 Korean subjects genotyped with the Korea Biobank Array. Following meta-analysis with GWAS from Biobank Japan identify 144 novel signals (MAF ≥ 1%), of which 57.0% are replicated in UK Biobank. Additionally, we discover 66 rare (MAF < 1%) variants, 94.4% of them co-incident to common loci, adding to allelic series. Although rare variants have limited contribution to overall trait variance, these lead, in carriers, substantial loss of predictive accuracy from polygenic predictions of disease risk from common variant alone. We capture groups with up to 16-fold variation in type 2 diabetes (T2D) prevalence by integration of genetic risk scores of fasting plasma glucose and T2D and the I349F rare protective variant. This study highlights the need to consider the joint contribution of both common and rare variants on inherited risk of metabolic traits and related diseases.
Collapse
|
8
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
9
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022; 156:155891. [DOI: 10.1016/j.cyto.2022.155891] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
|
10
|
Krayem I, Sohrabi Y, Javorková E, Volkova V, Strnad H, Havelková H, Vojtíšková J, Aidarova A, Holáň V, Demant P, Lipoldová M. Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse. Front Immunol 2022; 12:760881. [PMID: 35154069 PMCID: PMC8826059 DOI: 10.3389/fimmu.2021.760881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in frequencies of blood cell subpopulations were reported to influence the course of infections, atopic and autoimmune diseases, and cancer. We have discovered a unique mouse strain B10.O20 containing extremely high frequency of myeloid-derived cells (MDC) in spleen. B10.O20 carries 3.6% of genes of the strain O20 on the C57BL/10 genetic background. It contains much higher frequency of CD11b+Gr1+ cells in spleen than both its parents. B10.O20 carries O20-derived segments on chromosomes 1, 15, 17, and 18. Their linkage with frequencies of blood cell subpopulations in spleen was tested in F2 hybrids between B10.O20 and C57BL/10. We found 3 novel loci controlling MDC frequencies: Mydc1, 2, and 3 on chromosomes 1, 15, and 17, respectively, and a locus controlling relative spleen weight (Rsw1) that co-localizes with Mydc3 and also influences proportion of white and red pulp in spleen. Mydc1 controls numbers of CD11b+Gr1+ cells. Interaction of Mydc2 and Mydc3 regulates frequency of CD11b+Gr1+ cells and neutrophils (Gr1+Siglec-F- cells from CD11b+ cells). Interestingly, Mydc3/Rsw1 is orthologous with human segment 6q21 that was shown previously to determine counts of white blood cells. Bioinformatics analysis of genomic sequence of the chromosomal segments bearing these loci revealed polymorphisms between O20 and C57BL/10 that change RNA stability and genes’ functions, and we examined expression of relevant genes. This identified potential candidate genes Smap1, Vps52, Tnxb, and Rab44. Definition of genetic control of MDC can help to personalize therapy of diseases influenced by these cells.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eliška Javorková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Aigerim Aidarova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Holáň
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
11
|
Little A, Hu Y, Sun Q, Jain D, Broome J, Chen MH, Thibord F, McHugh C, Surendran P, Blackwell TW, Brody JA, Bhan A, Chami N, de Vries PS, Ekunwe L, Heard-Costa N, Hobbs BD, Manichaikul A, Moon JY, Preuss MH, Ryan K, Wang Z, Wheeler M, Yanek LR, Abecasis GR, Almasy L, Beaty TH, Becker LC, Blangero J, Boerwinkle E, Butterworth AS, Choquet H, Correa A, Curran JE, Faraday N, Fornage M, Glahn DC, Hou L, Jorgenson E, Kooperberg C, Lewis JP, Lloyd-Jones DM, Loos RJF, Min YI, Mitchell BD, Morrison AC, Nickerson DA, North KE, O'Connell JR, Pankratz N, Psaty BM, Vasan RS, Rich SS, Rotter JI, Smith AV, Smith NL, Tang H, Tracy RP, Conomos MP, Laurie CA, Mathias RA, Li Y, Auer PL, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Thornton T, Reiner AP, Johnson AD, Raffield LM. Whole genome sequence analysis of platelet traits in the NHLBI Trans-Omics for Precision Medicine (TOPMed) initiative. Hum Mol Genet 2022; 31:347-361. [PMID: 34553764 PMCID: PMC8825339 DOI: 10.1093/hmg/ddab252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.
Collapse
Affiliation(s)
- Amarise Little
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Caitlin McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | | | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Paul S de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ani Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA 98101, USA
| | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA 98101, USA
- Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, WA 98108, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT 05446, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | - Timothy Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Li B, Kamarck ML, Peng Q, Lim FL, Keller A, Smeets MAM, Mainland JD, Wang S. From musk to body odor: Decoding olfaction through genetic variation. PLoS Genet 2022; 18:e1009564. [PMID: 35113854 PMCID: PMC8812863 DOI: 10.1371/journal.pgen.1009564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
The olfactory system combines input from multiple receptor types to represent odor information, but there are few explicit examples relating olfactory receptor (OR) activity patterns to odor perception. To uncover these relationships, we performed genome-wide scans on odor-perception phenotypes for ten odors in 1000 Han Chinese and validated results for six of these odors in an ethnically diverse population (n = 364). In both populations, consistent with previous studies, we replicated three previously reported associations (β-ionone/OR5A1, androstenone/OR7D4, cis-3-hexen-1-ol/OR2J3 LD-band), but not for odors containing aldehydes, suggesting that olfactory phenotype/genotype studies are robust across populations. Two novel associations between an OR and odor perception contribute to our understanding of olfactory coding. First, we found a SNP in OR51B2 that associated with trans-3-methyl-2-hexenoic acid, a key component of human underarm odor. Second, we found two linked SNPs associated with the musk Galaxolide in a novel musk receptor, OR4D6, which is also the first human OR shown to drive specific anosmia to a musk compound. We noticed that SNPs detected for odor intensity were enriched with amino acid substitutions, implying functional changes of odor receptors. Furthermore, we also found that the derived alleles of the SNPs tend to be associated with reduced odor intensity, supporting the hypothesis that the primate olfactory gene repertoire has degenerated over time. This study provides information about coding for human body odor, and gives us insight into broader mechanisms of olfactory coding, such as how differential OR activation can converge on a similar percept.
Collapse
Affiliation(s)
- Bingjie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Skin and Cosmetics Research, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Marissa L. Kamarck
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qianqian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei-Ling Lim
- Unilever Research & Development, Colworth, United Kingdom
| | - Andreas Keller
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York State, United States of America
| | | | - Joel D. Mainland
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Yang Y, Sun Q, Huang L, Broome JG, Correa A, Reiner A, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Raffield LM, Yang Y, Li Y. eSCAN: scan regulatory regions for aggregate association testing using whole-genome sequencing data. Brief Bioinform 2022; 23:bbab497. [PMID: 34882196 PMCID: PMC8898002 DOI: 10.1093/bib/bbab497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple statistical methods for aggregate association testing have been developed for whole-genome sequencing (WGS) data. Many aggregate variants in a given genomic window and ignore existing knowledge to define test regions, resulting in many identified regions not clearly linked to genes, and thus, limiting biological understanding. Functional information from new technologies (such as Hi-C and its derivatives), which can help link enhancers to their effector genes, can be leveraged to predefine variant sets for aggregate testing in WGS data. Here, we propose the eSCAN (scan the enhancers) method for genome-wide assessment of enhancer regions in sequencing studies, combining the advantages of dynamic window selection in SCANG (SCAN the Genome), a previously developed method, with the advantages of incorporating putative regulatory regions from annotation. eSCAN, by searching in putative enhancers, increases statistical power and aids mechanistic interpretation, as demonstrated by extensive simulation studies. We also apply eSCAN for blood cell traits using NHLBI Trans-Omics for Precision Medicine WGS data. Results from real data analysis show that eSCAN is able to capture more significant signals, and these signals are of shorter length (indicating higher resolution fine-mapping capability) and drive association of larger regions detected by other methods.
Collapse
Affiliation(s)
- Yingxi Yang
- Department of Statistics and Data Science, Yale University, New Haven, CT, 06511, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Le Huang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Adolfo Correa
- Department of Medicine and Population Health Science, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Alexander Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, 98195, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
14
|
Hu Y, Bien SA, Nishimura KK, Haessler J, Hodonsky CJ, Baldassari AR, Highland HM, Wang Z, Preuss M, Sitlani CM, Wojcik GL, Tao R, Graff M, Huckins LM, Sun Q, Chen MH, Mousas A, Auer PL, Lettre G, Tang W, Qi L, Thyagarajan B, Buyske S, Fornage M, Hindorff LA, Li Y, Lin D, Reiner AP, North KE, Loos RJF, Raffield LM, Peters U, Avery CL, Kooperberg C. Multi-ethnic genome-wide association analyses of white blood cell and platelet traits in the Population Architecture using Genomics and Epidemiology (PAGE) study. BMC Genomics 2021; 22:432. [PMID: 34107879 PMCID: PMC8191001 DOI: 10.1186/s12864-021-07745-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circulating white blood cell and platelet traits are clinically linked to various disease outcomes and differ across individuals and ancestry groups. Genetic factors play an important role in determining these traits and many loci have been identified. However, most of these findings were identified in populations of European ancestry (EA), with African Americans (AA), Hispanics/Latinos (HL), and other races/ethnicities being severely underrepresented. RESULTS We performed ancestry-combined and ancestry-specific genome-wide association studies (GWAS) for white blood cell and platelet traits in the ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) Study, including 16,201 AA, 21,347 HL, and 27,236 EA participants. We identified six novel findings at suggestive significance (P < 5E-8), which need confirmation, and independent signals at six previously established regions at genome-wide significance (P < 2E-9). We confirmed multiple previously reported genome-wide significant variants in the single variant association analysis and multiple genes using PrediXcan. Evaluation of loci reported from a Euro-centric GWAS indicated attenuation of effect estimates in AA and HL compared to EA populations. CONCLUSIONS Our results highlighted the potential to identify ancestry-specific and ancestry-agnostic variants in participants with diverse backgrounds and advocate for continued efforts in improving inclusion of racially/ethnically diverse populations in genetic association studies for complex traits.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katherine K Nishimura
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chani J Hodonsky
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antoine R Baldassari
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | | | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Quan Sun
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming-Huei Chen
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Abdou Mousas
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Paul L Auer
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Weihong Tang
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Lihong Qi
- School of Medicine, University of California Davis, Davis, CA, USA
| | | | - Steve Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ, USA
| | - Myriam Fornage
- Brown Foundation Institute for Molecular Medicine, the University of Texas Health Science Center, Houston, TX, USA
| | - Lucia A Hindorff
- Division of Genomic Medicine, NIH National Human Genome Research Institute, Bethesda, MD, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danyu Lin
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Raffield
- Department of Genetics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
15
|
Hu Y, Stilp AM, McHugh CP, Rao S, Jain D, Zheng X, Lane J, Méric de Bellefon S, Raffield LM, Chen MH, Yanek LR, Wheeler M, Yao Y, Ren C, Broome J, Moon JY, de Vries PS, Hobbs BD, Sun Q, Surendran P, Brody JA, Blackwell TW, Choquet H, Ryan K, Duggirala R, Heard-Costa N, Wang Z, Chami N, Preuss MH, Min N, Ekunwe L, Lange LA, Cushman M, Faraday N, Curran JE, Almasy L, Kundu K, Smith AV, Gabriel S, Rotter JI, Fornage M, Lloyd-Jones DM, Vasan RS, Smith NL, North KE, Boerwinkle E, Becker LC, Lewis JP, Abecasis GR, Hou L, O'Connell JR, Morrison AC, Beaty TH, Kaplan R, Correa A, Blangero J, Jorgenson E, Psaty BM, Kooperberg C, Walton RT, Kleinstiver BP, Tang H, Loos RJF, Soranzo N, Butterworth AS, Nickerson D, Rich SS, Mitchell BD, Johnson AD, Auer PL, Li Y, Mathias RA, Lettre G, Pankratz N, Laurie CC, Laurie CA, Bauer DE, Conomos MP, Reiner AP. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:874-893. [PMID: 33887194 DOI: 10.1016/j.ajhg.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Nancy Heard-Costa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia and Department of Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL 60208, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Russell T Walton
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
16
|
Sun P, Zhou W, Fu Y, Cheung CYY, Dong Y, Yang ML, Zhang H, Jia J, Huo Y, Willer CJ, Chen YE, Tang CS, Tse HF, Lam KSL, Gao W, Xu M, Yu H, Sham PC, Zhang Y, Ganesh SK. An Asian-specific MPL genetic variant alters JAK-STAT signaling and influences platelet count in the population. Hum Mol Genet 2021; 30:836-842. [PMID: 33693786 DOI: 10.1093/hmg/ddab062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Genomic discovery efforts for hematological traits have been successfully conducted through genome-wide association study on samples of predominantly European ancestry. We sought to conduct unbiased genetic discovery for coding variants that influence hematological traits in a Han Chinese population. A total of 5257 Han Chinese subjects from Beijing, China were included in the discovery cohort and analyzed by an Illumina ExomeChip array. Replication analyses were conducted in 3827 independent Chinese subjects. We analyzed 12 hematological traits and identified 22 exome-wide significant single-nucleotide polymorphisms (SNP)-trait associations with 15 independent SNPs. Our study provides replication for two associations previously reported but not replicated. Further, one association was identified and replicated in the current study, of a coding variant in the myeloproliferative leukemia (MPL) gene, c.793C > T, p.Leu265Phe (L265F) with increased platelet count (β = 20.6 109 cells/l, Pmeta-analysis = 2.6 × 10-13). This variant is observed at ~2% population frequency in East Asians, whereas it has not been reported in gnomAD European or African populations. Functional analysis demonstrated that expression of MPL L265F in Ba/F3 cells resulted in enhanced phosphorylation of Stat3 and ERK1/2 as compared with the reference MPL allele, supporting altered activation of the JAK-STAT signal transduction pathway as the mechanism underlying the novel association between MPL L265F and platelet count.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhou
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chloe Y Y Cheung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing 100034, China
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - He Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Cristen J Willer
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Clara S Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Hung-Fat Tse
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Karen S L Lam
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wei Gao
- Department of Cardiology, Peking University Third Hospital, Beijing 100083, China
| | - Ming Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100083, China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital, Beijing 100083, China
| | - Pak Chung Sham
- Department of Psychiatry and Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China.,Institute of Cardiovascular Disease?Peking University First Hospital, Beijing, 100034, China
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Trottier AM, Druhan LJ, Kraft IL, Lance A, Feurstein S, Helgeson M, Segal JP, Das S, Avalos BR, Godley LA. Heterozygous germ line CSF3R variants as risk alleles for development of hematologic malignancies. Blood Adv 2020; 4:5269-5284. [PMID: 33108454 PMCID: PMC7594406 DOI: 10.1182/bloodadvances.2020002013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Colony-stimulating factor 3 receptor (CSF3R) encodes the receptor for granulocyte colony-stimulating factor (G-CSF), a cytokine vital for granulocyte proliferation and differentiation. Acquired activating heterozygous variants in CSF3R are the main cause of chronic neutrophilic leukemia, a hyperproliferative disorder. In contrast, biallelic germ line hypomorphic variants in CSF3R are a rare cause of severe congenital neutropenia, a hypoproliferative condition. The impact of heterozygous germ line CSF3R variants, however, is unknown. We identified CSF3R as a new germ line hematologic malignancy predisposition gene through analysis of 832 next-generation sequencing tests conducted in 632 patients with hematologic malignancies. Among germ line CSF3R variants, 3 were abnormal in functional testing, indicating their deleterious nature. p.Trp547* was identified in 2 unrelated men with myelodysplastic syndromes diagnosed at 76 and 33 years of age, respectively. p.Trp547* is a loss-of-function nonsense variant in the extracellular domain that results in decreased CSF3R messenger RNA expression and abrogation of CSF3R surface expression and proliferative responses to G-CSF. p.Ala119Thr is a missense variant found in 2 patients with multiple myeloma and acute lymphoblastic leukemia, respectively. This variant is located between the extracellular immunoglobulin-like and cytokine receptor homology domains and results in decreased G-CSF sensitivity. p.Pro784Thr was identified in a 67-year-old man with multiple myeloma. p.Pro784Thr is a missense variant in the cytoplasmic domain that inhibits CSF3R internalization, producing a gain-of-function phenotype and G-CSF hypersensitivity. Our findings identify germ line heterozygous CSF3R variants as risk factors for development of myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Amy M Trottier
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | - Lawrence J Druhan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Ira L Kraft
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Internal Medicine-Pediatrics Residency Program, Department of Medicine
| | - Amanda Lance
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | | | - Jeremy P Segal
- Department of Pathology, University of Chicago, Chicago, IL
| | - Soma Das
- Department of Human Genetics, and
| | - Belinda R Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Department of Human Genetics, and
| |
Collapse
|
18
|
Lee DH, Yao C, Bhan A, Schlaeger T, Keefe J, Rodriguez BAT, Hwang SJ, Chen MH, Levy D, Johnson AD. Integrative Genomic Analysis Reveals Four Protein Biomarkers for Platelet Traits. Circ Res 2020; 127:1182-1194. [PMID: 32781905 PMCID: PMC8411925 DOI: 10.1161/circresaha.119.316447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
RATIONALE Mean platelet volume (MPV) and platelet count (PLT) are platelet measures that have been linked to cardiovascular disease (CVD) and mortality risk. Identifying protein biomarkers for these measures may yield insights into CVD mechanisms. OBJECTIVE We aimed to identify causal protein biomarkers for MPV and PLT among 71 CVD-related plasma proteins measured in FHS (Framingham Heart Study) participants. METHODS AND RESULTS We conducted integrative analyses of genetic variants associated with PLT/MPV with protein quantitative trait locus variants associated with plasma proteins followed by Mendelian randomization to infer causal relations of proteins for PLT/MPV. We also tested protein-PLT/MPV association in FHS participants. Using induced pluripotent stem cell-derived megakaryocyte clones that produce functional platelets, we conducted RNA-sequencing and analyzed expression differences between low- and high-platelet producing clones. We then performed small interfering RNA gene knockdown experiments targeting genes encoding proteins with putatively causal platelet effects in megakaryocyte clones to examine effects on platelet production. In protein-trait association analyses, ten proteins were associated with MPV and 31 with PLT. Mendelian randomization identified 4 putatively causal proteins for MPV and 4 for PLT. GP-5 (Glycoprotein V), GRN (granulin), and MCAM (melanoma cell adhesion molecule) were associated with PLT, while MPO (myeloperoxidase) showed significant association with MPV in both analyses. RNA-sequencing analysis results were directionally concordant with observed and Mendelian randomization-inferred associations for GP-5, GRN, and MCAM. In siRNA gene knockdown experiments, silencing GP-5, GRN, and MPO decreased PLTs. Genome-wide association study results suggest several of these may be linked to CVD risk. CONCLUSIONS We identified 4 proteins that are causally linked to PLTs. These proteins may also have roles in the pathogenesis of CVD via a platelet/blood coagulation-based mechanism.
Collapse
Affiliation(s)
- Dong Heon Lee
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Chen Yao
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | | | | | - Joshua Keefe
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Benjamin A T Rodriguez
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Ming-Huei Chen
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| | - Andrew D Johnson
- The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.)
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD (D.H.L., C.Y., J.K., B.A.T.R., S.-J.H., M.-H.C., D.L., A.D.J.)
| |
Collapse
|
19
|
Ferraro NM, Strober BJ, Einson J, Abell NS, Aguet F, Barbeira AN, Brandt M, Bucan M, Castel SE, Davis JR, Greenwald E, Hess GT, Hilliard AT, Kember RL, Kotis B, Park Y, Peloso G, Ramdas S, Scott AJ, Smail C, Tsang EK, Zekavat SM, Ziosi M, Aradhana, Ardlie KG, Assimes TL, Bassik MC, Brown CD, Correa A, Hall I, Im HK, Li X, Natarajan P, Lappalainen T, Mohammadi P, Montgomery SB, Battle A. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science 2020; 369:eaaz5900. [PMID: 32913073 PMCID: PMC7646251 DOI: 10.1126/science.aaz5900] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Rare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant function, validated these predictions in additional cohorts and through experimental assays, and used them to assess RVs in the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands of RVs to diverse molecular effects and provide evidence to associate RVs affecting the transcriptome with human traits.
Collapse
Affiliation(s)
- Nicole M Ferraro
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | - Benjamin J Strober
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jonah Einson
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Margot Brandt
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Maja Bucan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephane E Castel
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Joe R Davis
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Emily Greenwald
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Austin T Hilliard
- Palo Alto Veterans Institute for Research, Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Rachel L Kember
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Bence Kotis
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Gina Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Shweta Ramdas
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra J Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Smail
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | - Emily K Tsang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Seyedeh M Zekavat
- Medical & Population Genomics, Yale School of Medicine and Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Themistocles L Assimes
- Palo Alto Veterans Institute for Research, Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Ira Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Xin Li
- Department of Pathology, Stanford University, Stanford, CA, USA
- Shanghai Institutes for Biological Sciences, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Pejman Mohammadi
- New York Genome Center, New York, NY, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Translational Science Institute, La Jolla, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, Trivedi B, Jiang T, Akbari P, Vuckovic D, Bao EL, Zhong X, Manansala R, Laplante V, Chen M, Lo KS, Qian H, Lareau CA, Beaudoin M, Hunt KA, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJA, Chitrala K, Cho K, Choquet H, Correa A, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Floyd JS, Broer L, Grarup N, Guo MH, Greinacher A, Haessler J, Hansen T, Howson JMM, Huang QQ, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Lerch MM, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Martin HC, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nauck M, Nikus K, Ouwehand WH, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Roberts DJ, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Trembath RC, Ghanbari M, Völker U, Völzke H, Watkins NA, Zonderman AB, Wilson PWF, Li Y, Butterworth AS, Gauchat JF, Chiang CWK, Li B, Loos RJF, et alChen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, Trivedi B, Jiang T, Akbari P, Vuckovic D, Bao EL, Zhong X, Manansala R, Laplante V, Chen M, Lo KS, Qian H, Lareau CA, Beaudoin M, Hunt KA, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJA, Chitrala K, Cho K, Choquet H, Correa A, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Floyd JS, Broer L, Grarup N, Guo MH, Greinacher A, Haessler J, Hansen T, Howson JMM, Huang QQ, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Lerch MM, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Martin HC, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nauck M, Nikus K, Ouwehand WH, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Roberts DJ, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Trembath RC, Ghanbari M, Völker U, Völzke H, Watkins NA, Zonderman AB, Wilson PWF, Li Y, Butterworth AS, Gauchat JF, Chiang CWK, Li B, Loos RJF, Astle WJ, Evangelou E, van Heel DA, Sankaran VG, Okada Y, Soranzo N, Johnson AD, Reiner AP, Auer PL, Lettre G. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell 2020; 182:1198-1213.e14. [PMID: 32888493 PMCID: PMC7480402 DOI: 10.1016/j.cell.2020.06.045] [Show More Authors] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.
Collapse
Affiliation(s)
- Ming-Huei Chen
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abdou Mousas
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bhavi Trivedi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Tao Jiang
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Parsa Akbari
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK; Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Regina Manansala
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Véronique Laplante
- Département de Pharmacologie et Physiologie, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Minhui Chen
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ken Sin Lo
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Huijun Qian
- Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | | | - Karen A Hunt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA 98101, USA
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Andrew Beswick
- Translational Health Sciences, Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Hasso-Plattner-Institut, Universität Potsdam, Potsdam 14469, Germany
| | - Jennifer A Brody
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
| | - Kumaraswamynaidu Chitrala
- Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD 21224, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Division on Aging, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK; British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Emanuele Di Angelantonio
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK; British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon 69008, France; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Jingzhong Ding
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK; Imperial Biomedical Research Centre, Imperial College London and Imperial College NHS Healthcare Trust, London SW7 2AZ, UK; Medical Research Council-Public Health England Centre for Environment, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK; Health Data Research UK - London, London SW7 2AZ, UK
| | - Tõnu Esko
- Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD 21224, USA
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael H Guo
- Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Joanna M M Howson
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Novo Nordisk Research Centre Oxford, Innovation Building, Old Road Campus, Oxford OX3 7FZ, UK
| | - Qin Qin Huang
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI), Shanghai 201203, China
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Tim Kacprowski
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany; Chair of Experimental Bioinformatics, Research Group Computational Systems Medicine, Technical University of Munich, Freising-Weihenstephan 85354, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland; Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Savita Karthikeyan
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Fotis Koskeridis
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Markus M Lerch
- Department of Internal Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg 2000, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27701, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hilary C Martin
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthias Nauck
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany; Institue of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere 33521, Finland; Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Willem H Ouwehand
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA; Department of Health Services, University of Washington, Seattle, WA 98101, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku 20521, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20521, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20521, Finland
| | - David J Roberts
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Department of Haematology, Churchill Hospital, Oxford OX3 7LE, UK; NHS Blood and Transplant - Oxford Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Benjamin A T Rodriguez
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA
| | - Jonathan D Rosen
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Petra Schubert
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA 01002, USA
| | - Praveen Surendran
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Richard C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam 3015, the Netherlands; Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany
| | - Henry Völzke
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Nicholas A Watkins
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD 21224, USA
| | | | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
| | - Jean-François Gauchat
- Département de Pharmacologie et Physiologie, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William J Astle
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Strangeways Laboratory, Cambridge CB1 8RN, UK
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece; Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
| | - David A van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Laboratory of Statistical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Nicole Soranzo
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Andrew D Johnson
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98109, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
21
|
Cheng W, Ramachandran S, Crawford L. Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits. PLoS Genet 2020; 16:e1008855. [PMID: 32542026 PMCID: PMC7316356 DOI: 10.1371/journal.pgen.1008855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/25/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Traditional univariate genome-wide association studies generate false positives and negatives due to difficulties distinguishing associated variants from variants with spurious nonzero effects that do not directly influence the trait. Recent efforts have been directed at identifying genes or signaling pathways enriched for mutations in quantitative traits or case-control studies, but these can be computationally costly and hampered by strict model assumptions. Here, we present gene-ε, a new approach for identifying statistical associations between sets of variants and quantitative traits. Our key insight is that enrichment studies on the gene-level are improved when we reformulate the genome-wide SNP-level null hypothesis to identify spurious small-to-intermediate SNP effects and classify them as non-causal. gene-ε efficiently identifies enriched genes under a variety of simulated genetic architectures, achieving greater than a 90% true positive rate at 1% false positive rate for polygenic traits. Lastly, we apply gene-ε to summary statistics derived from six quantitative traits using European-ancestry individuals in the UK Biobank, and identify enriched genes that are in biologically relevant pathways.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America
- Center for Statistical Sciences, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
22
|
Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, Jain D, Argos M, Arnett DK, Avery C, Barnes KC, Becker LC, Bien SA, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Buyske S, Cai J, Cho MH, Choi SH, Choquet H, Cupples LA, Cushman M, Daya M, de Vries PS, Ellinor PT, Faraday N, Fornage M, Gabriel S, Ganesh SK, Graff M, Gupta N, He J, Heckbert SR, Hidalgo B, Hodonsky CJ, Irvin MR, Johnson AD, Jorgenson E, Kaplan R, Kardia SLR, Kelly TN, Kooperberg C, Lasky-Su JA, Loos RJF, Lubitz SA, Mathias RA, McHugh CP, Montgomery C, Moon JY, Morrison AC, Palmer ND, Pankratz N, Papanicolaou GJ, Peralta JM, Peyser PA, Rich SS, Rotter JI, Silverman EK, Smith JA, Smith NL, Taylor KD, Thornton TA, Tiwari HK, Tracy RP, Wang T, Weiss ST, Weng LC, Wiggins KL, Wilson JG, Yanek LR, Zöllner S, North KE, Auer PL, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Hematology & Hemostasis Working Group, Raffield LM, Reiner AP, Li Y. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet 2019; 15:e1008500. [PMID: 31869403 PMCID: PMC6953885 DOI: 10.1371/journal.pgen.1008500] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/10/2020] [Accepted: 10/30/2019] [Indexed: 01/10/2023] Open
Abstract
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
Collapse
Affiliation(s)
- Madeline H. Kowalski
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Huijun Qian
- Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ziyi Hou
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan D. Rosen
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amanda L. Tapia
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yue Shan
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christy Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kathleen C. Barnes
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Eric Boerwinkle
- Human Genome Sequencing Center, University of Texas Health Science Center at Houston; Baylor College of Medicine, Houston, Texas, United States of America
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Steve Buyske
- Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Mary Cushman
- Departments of Medicine & Pathology, Larner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
| | - Michelle Daya
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nauder Faraday
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Myriam Fornage
- School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Stacey Gabriel
- Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Santhi K. Ganesh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Misa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Namrata Gupta
- Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, United States of America
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, United States of America
| | - Bertha Hidalgo
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chani J. Hodonsky
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew D. Johnson
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, United States of America
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Robert Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Steven A. Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Caitlin P. McHugh
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Courtney Montgomery
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jee-Young Moon
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, Division of Cardiovascular Sciences, PPSP/EB, NIH, Bethesda, Maryland, United States of America
| | - Juan M. Peralta
- Department of Human Genetics and South Texas Diabetes Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, United States of America
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Hemant K. Tiwari
- Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Russell P. Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lu-Chen Weng
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | | | | | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
23
|
Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity 2019; 50:975-991. [PMID: 30995510 DOI: 10.1016/j.immuni.2019.03.018] [Citation(s) in RCA: 709] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Asthma is a chronic inflammatory airway disease associated with type 2 cytokines interleukin-4 (IL-4), IL-5, and IL-13, which promote airway eosinophilia, mucus overproduction, bronchial hyperresponsiveness (BHR), and immunogloubulin E (IgE) synthesis. However, only half of asthma patients exhibit signs of an exacerbated Type 2 response. "Type 2-low" asthma has different immune features: airway neutrophilia, obesity-related systemic inflammation, or in some cases, few signs of immune activation. Here, we review the cytokine networks driving asthma, placing these in cellular context and incorporating insights from cytokine-targeting therapies in the clinic. We discuss established and emerging paradigms in the context of the growing appreciation of disease heterogeneity and argue that the development of new and improved therapeutics will require understanding the diverse mechanisms underlying the spectrum of asthma pathologies.
Collapse
Affiliation(s)
- Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Hamida Hammad
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
24
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
25
|
Identification of rare variants of allergic rhinitis based on whole genome sequencing and gene expression profiling: A preliminary investigation in four families. World Allergy Organ J 2019; 12:100038. [PMID: 31236190 PMCID: PMC6581771 DOI: 10.1016/j.waojou.2019.100038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/02/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite the success of genome-wide association studies for allergic rhinitis (AR), no definitive causal variants have been identified, and a substantial portion of the heritability of the disease is yet to be discovered. Methods Four families, each with at least 1 parent and one child suffering from dust mite (DM) AR, were recruited, and whole-genome sequencing was performed on samples from 9 eligible individuals from these families. Conjoint analysis was performed for existing gene expression profiling data in the literature and the whole genome sequencing data obtained for these individuals; for presence of family-specific variants segregating with AR and the pathways involved. Similar analyses were also performed with data obtained for 96 sporadic house dust mite (HDM) AR patients and 96 healthy controls. Results Three rare variants in three genes (FLT1_c.603A > T; VEGFB_c.322A > C; and ITGA2_c.502+1G > A), which are involved in Focal Adhesion pathway, were identified in affected, but not unaffected, subjects in two families. VEGFB_c.322A > C and/or ITGA2_c.502+1G > A were further detected in all DM AR patients but not in any healthy individuals in 1 family; which was further investigated for members. The 3 identified variants were not found in any of the sporadic DM AR patients or healthy controls. Conclusion Despite the relatively small sample size, this study has identified several potentially functional rare variants in AR candidate genes, and it provides a platform for future work in larger numbers of families and sporadic individuals for a better understanding of the genetic basis of AR.
Collapse
|
26
|
Lindström S, Brody JA, Turman C, Germain M, Bartz TM, Smith EN, Chen MH, Puurunen M, Chasman D, Hassler J, Pankratz N, Basu S, Guan W, Gyorgy B, Ibrahim M, Empana JP, Olaso R, Jackson R, Brækkan SK, McKnight B, Deleuze JF, O’Donnell CJ, Jouven X, Frazer KA, Psaty BM, Wiggins KL, Taylor K, Reiner AP, Heckbert SR, Kooperberg C, Ridker P, Hansen JB, Tang W, Johnson AD, Morange PE, Trégouët DA, Kraft P, Smith NL, Kabrhel C. A large-scale exome array analysis of venous thromboembolism. Genet Epidemiol 2019; 43:449-457. [PMID: 30659681 PMCID: PMC6520188 DOI: 10.1002/gepi.22187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/26/2018] [Accepted: 12/11/2019] [Indexed: 01/12/2023]
Abstract
Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk.
Collapse
Affiliation(s)
- Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, United States
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jennifer A. Brody
- Department of Medicine, University of Washington, Seattle, United States
| | - Constance Turman
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, United States
| | - Marine Germain
- University of Bordeaux, Inserm 1219, Bordeaux Population Health Research Center, Bordeaux, France
| | - Traci M. Bartz
- Department of Medicine, University of Washington, Seattle, United States
- Department of Biostatistics University of Washington, Seattle, United States
| | - Erin N. Smith
- Department of Pediatrics and Rady Children’s Hospital University of California, San Diego, La Jolla, United State
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung and Blood Institute’s The Framingham Heart Study, Framingham, United States
| | - Marja Puurunen
- School of Medicine, Boston University, Boston, United States
| | - Daniel Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, United States
| | - Jeffrey Hassler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Saonli Basu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Beata Gyorgy
- Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S 1166, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Manal Ibrahim
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Aix-Marseille University, INSERM, INSERM, INRA, C2VN, Marseille, France
- CRB Assistance Publique Hopitaux de Marseille HemoVasc, Marseille, France
| | - Jean-Philippe Empana
- Department of Epidemiology, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 970, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Direction de la Recherche Fondamentale, CEA, Institut de Biologie François Jacob, Evry, France
| | | | - Sigrid K. Brækkan
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Barbara McKnight
- Department of Biostatistics University of Washington, Seattle, United States
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Direction de la Recherche Fondamentale, CEA, Institut de Biologie François Jacob, Evry, France
| | | | - Xavier Jouven
- Department of Epidemiology, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 970, Paris, France
- Department of Cardiology, Georges Pompidou European Hospital, APHP, Paris, France
| | - Kelly A. Frazer
- Department of Pediatrics and Rady Children’s Hospital University of California, San Diego, La Jolla, United State
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, United States
| | - Bruce M. Psaty
- Department of Epidemiology, University of Washington, Seattle, United States
- Department of Medicine, University of Washington, Seattle, United States
- Department of Health Services, University of Washington, Seattle, United States
- Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle, United States
| | - Kerri L. Wiggins
- Department of Medicine, University of Washington, Seattle, United States
| | | | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, United States
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, United States
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Paul Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, United States
| | - John-Bjarne Hansen
- Department of Clinical Medicine, UiT - The Arctic University of Norway, K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, United States
| | - Andrew D. Johnson
- Population Sciences Branch, National Heart, Lung and Blood Institute’s The Framingham Heart Study, Framingham, United States
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- Aix-Marseille University, INSERM, INSERM, INRA, C2VN, Marseille, France
- CRB Assistance Publique Hopitaux de Marseille HemoVasc, Marseille, France
| | - David A. Trégouët
- University of Bordeaux, Inserm 1219, Bordeaux Population Health Research Center, Bordeaux, France
| | - Peter Kraft
- Department of Epidemiology Harvard TH Chan School of Public Health, Boston, United States
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, United States
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, United States
- Kaiser Permanente Washington Research Institute, Kaiser Permanente Washington, Seattle, United States
- Department of Veteran Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, United States
| | - Christopher Kabrhel
- Center for Vascular Emergencies, Department of Emergency Medicine, Massachusetts General Hospital, Boston, United States
- Channing Network Medicine, Brigham and Women’s Hospital, Boston, United States
- Harvard Medical School, Boston, United States
| |
Collapse
|
27
|
Lessard S, Beaudoin M, Orkin SH, Bauer DE, Lettre G. 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts. Hum Mol Genet 2019; 27:1411-1420. [PMID: 29432581 DOI: 10.1093/hmg/ddy051] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
In humans, fetal erythropoiesis takes place in the liver whereas adult erythropoiesis occurs in the bone marrow. Fetal and adult erythroid cells are not only produced at different sites, but are also distinguished by their respective transcriptional program. In particular, whereas fetal erythroid cells express γ-globin chains to produce fetal hemoglobin (HbF), adult cells express β-globin chains to generate adult hemoglobin. Understanding the transcriptional regulation of the fetal-to-adult hemoglobin switch is clinically important as re-activation of HbF production in adult erythroid cells would represent a promising therapy for the hemoglobin disorders sickle cell disease and β-thalassemia. We used RNA-sequencing to measure global gene and microRNA (miRNA) expression in human erythroblasts derived ex vivo from fetal liver (n = 12 donors) and bone marrow (n = 12 donors) hematopoietic stem/progenitor cells. We identified 7829 transcripts and 402 miRNA that were differentially expressed (false discovery rate <5%). The miRNA expression patterns were replicated in an independent collection of human erythroblasts using a different technology. By combining gene and miRNA expression data, we developed transcriptional networks which show substantial differences between fetal and adult human erythroblasts. Our analyses highlighted the miRNAs at the imprinted 14q32 locus in fetal erythroblasts and the let-7 miRNA family in adult erythroblasts as key regulators of stage-specific erythroid transcriptional programs. Altogether, our results provide a comprehensive resource to prioritize genes that may modify clinical severity in red blood cell (RBC) disorders, or genes that might be implicated in erythropoiesis by genome-wide association studies of RBC traits.
Collapse
Affiliation(s)
- Samuel Lessard
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada.,Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada.,Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
28
|
Kristjansson RP, Benonisdottir S, Davidsson OB, Oddsson A, Tragante V, Sigurdsson JK, Stefansdottir L, Jonsson S, Jensson BO, Arthur JG, Arnadottir GA, Sulem G, Halldorsson BV, Gunnarsson B, Halldorsson GH, Stefansson OA, Oskarsson GR, Deaton AM, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Onundarson PT, Gislason D, Gislason T, Ludviksson BR, Ludviksdottir D, Olafsdottir TA, Rafnar T, Masson G, Zink F, Bjornsdottir G, Magnusson OT, Bjornsdottir US, Thorleifsson G, Norddahl GL, Gudbjartsson DF, Thorsteinsdottir U, Jonsdottir I, Sulem P, Stefansson K. A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat Genet 2019; 51:267-276. [PMID: 30643255 DOI: 10.1038/s41588-018-0314-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
Nasal polyps (NP) are lesions on the nasal and paranasal sinus mucosa and are a risk factor for chronic rhinosinusitis (CRS). We performed genome-wide association studies on NP and CRS in Iceland and the UK (using UK Biobank data) with 4,366 NP cases, 5,608 CRS cases, and >700,000 controls. We found 10 markers associated with NP and 2 with CRS. We also tested 210 markers reported to associate with eosinophil count, yielding 17 additional NP associations. Of the 27 NP signals, 7 associate with CRS and 13 with asthma. Most notably, a missense variant in ALOX15 that causes a p.Thr560Met alteration in arachidonate 15-lipoxygenase (15-LO) confers large genome-wide significant protection against NP (P = 8.0 × 10-27, odds ratio = 0.32; 95% confidence interval = 0.26, 0.39) and CRS (P = 1.1 × 10-8, odds ratio = 0.64; 95% confidence interval = 0.55, 0.75). p.Thr560Met, carried by around 1 in 20 Europeans, was previously shown to cause near total loss of 15-LO enzymatic activity. Our findings identify 15-LO as a potential target for therapeutic intervention in NP and CRS.
Collapse
Affiliation(s)
| | | | | | | | - Vinicius Tragante
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Pall T Onundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspítali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - David Gislason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Thorarinn Gislason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Sleep, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Dora Ludviksdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Thorunn A Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Unnur S Bjornsdottir
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland.,The Medical Center Mjodd, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
29
|
Reiner AP, Johnson AD. Platelet Genomics. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Prokopenko D, Sakornsakolpat P, Fier HL, Qiao D, Parker MM, McDonald MLN, Manichaikul A, Rich SS, Barr RG, Williams CJ, Brantly ML, Lange C, Beaty TH, Crapo JD, Silverman EK, on behalf of COPDGene Study Investigators* and NHLBI TOPMed Investigators‡. Whole-Genome Sequencing in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2018; 59:614-622. [PMID: 29949718 PMCID: PMC6236690 DOI: 10.1165/rcmb.2018-0088oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/27/2018] [Indexed: 01/21/2023] Open
Abstract
Genome-wide association studies have identified common variants associated with chronic obstructive pulmonary disease (COPD). Whole-genome sequencing (WGS) offers comprehensive coverage of the entire genome, as compared with genotyping arrays or exome sequencing. We hypothesized that WGS in subjects with severe COPD and smoking control subjects with normal pulmonary function would allow us to identify novel genetic determinants of COPD. We sequenced 821 patients with severe COPD and 973 control subjects from the COPDGene and Boston Early-Onset COPD studies, including both non-Hispanic white and African American individuals. We performed single-variant and grouped-variant analyses, and in addition, we assessed the overlap of variants between sequencing- and array-based imputation. Our most significantly associated variant was in a known region near HHIP (combined P = 1.6 × 10-9); additional variants approaching genome-wide significance included previously described regions in CHRNA5, TNS1, and SERPINA6/SERPINA1 (the latter in African American individuals). None of our associations were clearly driven by rare variants, and we found minimal evidence of replication of genes identified by previously reported smaller sequencing studies. With WGS, we identified more than 20 million new variants, not seen with imputation, including more than 10,000 of potential importance in previously identified COPD genome-wide association study regions. WGS in severe COPD identifies a large number of potentially important functional variants, with the strongest associations being in known COPD risk loci, including HHIP and SERPINA1. Larger sample sizes will be needed to identify associated variants in novel regions of the genome.
Collapse
Affiliation(s)
- Dmitry Prokopenko
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Heide Loehlein Fier
- Working Group of Genomic Mathematics, University of Bonn, Bonn, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Margaret M. Parker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Merry-Lynn N. McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Christopher J. Williams
- Division of Pulmonary Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mark L. Brantly
- Division of Pulmonary Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Christoph Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Terri H. Beaty
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| | | | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - on behalf of COPDGene Study Investigators* and NHLBI TOPMed Investigators‡
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Working Group of Genomic Mathematics, University of Bonn, Bonn, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
- Department of Medicine, College of Physicians and Surgeons and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
- Division of Pulmonary Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
- National Jewish Health, Denver, Colorado
| |
Collapse
|
31
|
Abstract
Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits, and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic contributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge. Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mechanisms at GWAS loci-including multiple signals, multiple variants, and/or multiple genes-and the implications these complexities hold for experimental study design and interpretation of GWAS mechanisms.
Collapse
Affiliation(s)
- Maren E Cannon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
32
|
Izzi B, Bonaccio M, de Gaetano G, Cerletti C. Learning by counting blood platelets in population studies: survey and perspective a long way after Bizzozero. J Thromb Haemost 2018; 16:1711-1721. [PMID: 29888860 DOI: 10.1111/jth.14202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 01/13/2023]
Abstract
Platelet count represents a useful tool in clinical practice to discriminate individuals at higher risk of bleeding. Less obvious is the role of platelet count variability within the normal range of distribution in shaping the individual's disease risk profile. Epidemiological studies have shown that platelet count in the adult general population is associated with a number of health outcomes related to hemostasis and thrombosis. However, recent studies are suggesting a possible role of this platelet index also as an independent risk factor. In this review of adult population studies, we will first focus on known genetic and non-genetic determinants of platelet number variability. Next, we will evaluate platelet count as a marker and/or a predictor of disease risk and its interaction with other risk factors. We will then discuss the role of platelet count variability within the normal distribution range as a contribution to disease and mortality risk. The possibility of considering platelet count as a simple, inexpensive indicator of increased risk of disease and death in general populations could open new opportunities to investigate novel platelet pathophysiological roles as well as therapeutic opportunities. Future studies should also consider platelet count, not only platelet function, as a modulator of disease and mortality risk.
Collapse
Affiliation(s)
- B Izzi
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy
| | - M Bonaccio
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy
| | - G de Gaetano
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy
| | - C Cerletti
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
33
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Identification of nine novel loci related to hematological traits in a Japanese population. Physiol Genomics 2018; 50:758-769. [PMID: 29958078 PMCID: PMC6172615 DOI: 10.1152/physiolgenomics.00088.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent genome-wide association studies have identified various genetic variants associated with hematological traits. Although it is possible that quantitative data of hematological traits are varied among the years examined, conventional genome-wide association studies have been conducted in a cross-sectional manner that measures traits at a single point in time. To address this issue, we have traced blood profiles in 4,884 Japanese individuals who underwent annual health check-ups for several years. In the present study, longitudinal exome-wide association studies were conducted to identify genetic variants related to 13 hematological phenotypes. The generalized estimating equation model showed that a total of 67 single nucleotide polymorphisms (SNPs) were significantly [false discovery rate (FDR) of <0.01] associated with hematological phenotypes. Of the 67 SNPs, nine SNPs were identified as novel hematological markers: rs4686683 of SENP2 for red blood cell count (FDR = 0.008, P = 5.5 × 10−6); rs3917688 of SELP for mean corpuscular volume (FDR = 0.005, P = 2.4 × 10−6); rs3133745 of C8orf37-AS1 for white blood cell count (FDR = 0.003, P = 1.3 × 10−6); rs13121954 at 4q31.2 for basophil count (FDR = 0.007, P = 3.1 × 10−5); rs7584099 at 2q22.3 (FDR = 2.6 × 10−5, P = 8.8 × 10−8), rs1579219 of HCG17 (FDR = 0.003, P = 2.0 × 10−5), and rs10757049 of DENND4C (FDR = 0.008, P = 5.6 × 10−5) for eosinophil count; rs12338 of CTSB for neutrophil count (FDR = 0.007, P = 2.9 × 10−5); and rs395967 of OSMR-AS1 for monocyte count (FDR = 0.008, P = 3.2 × 10−5).
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Ibaraki , Japan.,RIKEN Center for Advanced Intelligence Project , Tokyo , Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan.,RIKEN Center for Advanced Intelligence Project , Tokyo , Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Aichi , Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Aichi , Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Aichi , Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Mie , Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu , Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie , Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama , Japan
| |
Collapse
|
34
|
Dichotomous function of IL-33 in health and disease: From biology to clinical implications. Biochem Pharmacol 2018; 148:238-252. [PMID: 29309756 DOI: 10.1016/j.bcp.2018.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-33 is a cytokine that is released from epithelial and endothelial cells at barrier surfaces upon tissue stress or damage to operate as an alarmin. IL-33 has been primarily implicated in the induction of T helper (Th) 2 type immune responses. Therefore, IL-33 has attracted a lot of interest as a potential therapeutic target in asthma and other allergic diseases. Over the years, it has become clear that IL-33 has a much broader activity and also contributes to Th1 immunity, expanding the possibilities for therapeutic modulation of IL-33 activity to multiple inflammatory diseases. However, more recently IL-33 has also been shown to mediate immunosuppression and tissue repair by activating regulatory T cells (Treg) and promoting M2 macrophage polarization. These pleiotropic activities of IL-33 illustrate the need for a tight molecular regulation of IL-33 activity, and have to be taken into account when IL-33 or its receptor is targeted for therapeutic modulation. Here we review the multiple molecular mechanisms that regulate IL-33 activity and describe how IL-33 can shape innate and adaptive immune responses by promoting Th1, Th2 and Treg function. Finally, we will discuss the possibilities for therapeutic modulation of IL-33 signaling as well as possible safety issues.
Collapse
|