1
|
Paudel S, McLeod S, Gjorcheska S, Barske L. Pax9 drives development of the upper jaw but not teeth in zebrafish. Dev Biol 2025; 524:1-16. [PMID: 40306478 DOI: 10.1016/j.ydbio.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Loss of dentition has occurred repeatedly throughout vertebrate evolution. Cyprinid fish, including zebrafish, form teeth only deep within the pharynx, not on their oral jaws. However, zebrafish still robustly express transcription factors associated with mammalian tooth development in the neural crest-derived mesenchyme surrounding the mouth. We investigated whether this expression is vestigial or whether these factors contribute to the formation of non-tooth mesenchymal structures in the oral region, using Pax9 as a test case. Zebrafish homozygous for two different pax9 mutant alleles develop the normal complement of pharyngeal teeth but fail to form the premaxilla bone, most of the maxilla, and nasal and maxillary barbels. Lack of most of the upper jaw complex does not preclude effective feeding in the laboratory environment. We observe a significant deficit of sp7:EGFP + osteoblasts and adjacent alx4a:DsRed+ condensing mesenchyme around the maxilla, and no accumulation of either in the premaxillary domain. Loss of pax9 may prevent osteoprogenitors from maintaining the state of condensation required for full osteogenic differentiation. We conclude that Pax9 is not unequivocally required for all vertebrate tooth development but instead may be involved in the development of a variety of organs forming through mesenchymal condensation around the mouth.
Collapse
Affiliation(s)
- Sandhya Paudel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah McLeod
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Nayak PK, Subramanian A, Schilling TF. Transcriptome profiling of tendon fibroblasts at the onset of embryonic muscle contraction reveals novel force-responsive genes. eLife 2025; 14:e105802. [PMID: 40145570 PMCID: PMC12040314 DOI: 10.7554/elife.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.
Collapse
Affiliation(s)
- Pavan K Nayak
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of CaliforniaIrvineUnited States
| |
Collapse
|
3
|
Psutkova V, Nickl P, Brezinova V, Machonova O, Machon O. Transcription factor Meis1b regulates craniofacial morphogenesis in zebrafish. Dev Dyn 2025; 254:40-60. [PMID: 39087648 DOI: 10.1002/dvdy.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Meis family of transcription factors operates in Pbx-Meis-Hox regulatory network controlling development of various tissues including eye, limbs, heart, hindbrain or craniofacial skeletal elements originating from the neural crest. Although studies in mouse provide abundant information about Meis factors function in embryogenesis, little is known about their role in zebrafish. RESULTS We generated zebrafish lines carrying null mutations in meis1a, meis1b, meis2a, and meis2b genes. Only meis1b mutants are lethal at larval stage around 13 dpf whereas the other mutant lines are viable and fertile. We focused on development of neural crest-derived craniofacial structures such as tendons, cranial nerves, cartilage and accompanying muscles. Meis1b mutants displayed morphogenetic abnormalities in the cartilage originating from the first and second pharyngeal arches. Meckel's cartilage was shorter and wider with fused anterior symphysis and abnormal chondrocyte organization. This resulted in impaired tendons and muscle fiber connections while tenocyte development was not largely affected. CONCLUSIONS Loss-of-function mutation in meis1b affects cartilage morphology in the lower jaw that leads to disrupted organization of muscles and tendons.
Collapse
Affiliation(s)
- Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Nickl
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Brezinova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Machonova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Bailon-Zambrano R, Keating MK, Sales EC, Nichols AR, Gustafson GE, Hopkins CA, Kocha KM, Huang P, Barske L, Nichols JT. The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development. Development 2024; 151:dev203025. [PMID: 39575996 DOI: 10.1242/dev.203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback (smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, the smb mutation is caused by an insertion of a sox10:Gal4VP16 transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb than in wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared, across evolutionary time.
Collapse
Affiliation(s)
- Raisa Bailon-Zambrano
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Margaret K Keating
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily C Sales
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Abigail R Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Grace E Gustafson
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colette A Hopkins
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katrinka M Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Blumenkrantz M, Woron F, Gagarin E, Weinstein E, Kamel MH, Campos L, Geras A, Anderson T, Mo J, Sherwood D, Gwin M, Dumitrascu B, Chahine NO, Smeeton J. Dynamic cell fate plasticity and tissue integration drive functional synovial joint regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628180. [PMID: 39713398 PMCID: PMC11661154 DOI: 10.1101/2024.12.12.628180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Adult mammalian synovial joints have limited regenerative capacity, where injuries heal with mechanically inferior fibrotic tissues. Here we developed a unilateral whole-joint resection model in adult zebrafish to advance our understanding of how to stimulate regrowth of native synovial joint tissues. Using a combination of microCT, histological, live imaging, and single-cell RNA sequencing (scRNAseq) approaches after complete removal of all joint tissues, we find de novo regeneration of articular cartilage, ligament, and synovium into a functional joint. Clonal lineage tracing and scRNAseq implicate a multipotent, neural crest-derived population in the adult skeleton as a cell source for these regenerating tissues. Together, our findings reveal latent molecular and cellular programs within the adult skeleton that are deployed to regenerate a complex joint with lubricated articular cartilage.
Collapse
|
6
|
Miller BM, Goessling W. The proteasome subunit psmb1 is essential for craniofacial cartilage maturation and morphogenesis. JCI Insight 2024; 9:e181723. [PMID: 39171526 PMCID: PMC11343588 DOI: 10.1172/jci.insight.181723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Craniofacial dysmorphisms are among the most common birth defects. Proteasome mutations frequently result in craniofacial dysmorphisms, including lower jaw malformations; however, the underlying mechanisms are unknown. Here, we used a zebrafish proteasome subunit β 1 (psmb1) mutant to define the cellular mechanisms underlying proteasome mutation-induced craniofacial dysmorphisms. psmb1 mutants exhibited a flattened ceratohyal and smaller Meckel's and palatoquadrate cartilages. Ceratohyal flattening was a result of failed chondrocyte convergent extension, accompanied by reduced numbers of chondrocytes in the lower jaw due to defects in chondrocyte differentiation. Morphogenesis of craniofacial muscles and tendons was similarly perturbed. psmb1 mutants lacked the hyohyal muscles, and craniofacial tendons were shortened and disorganized. We additionally identified a critical period for proteasome function in craniofacial development, specifically during chondrocyte and muscle differentiation. psmb1 overexpression in sox10+ cells of mutant embryos rescued both cartilage and tendon phenotypes but induced only a partial rescue of the muscle phenotype, indicating that psmb1 was required in both tissue-autonomous and nonautonomous fashions during craniofacial development. Overall, our work demonstrates that psmb1 is required for craniofacial cartilage, tendon, and muscle differentiation and morphogenesis.
Collapse
Affiliation(s)
- Bess M. Miller
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Rajan AM, Rosin NL, Labit E, Biernaskie J, Liao S, Huang P. Single-cell analysis reveals distinct fibroblast plasticity during tenocyte regeneration in zebrafish. SCIENCE ADVANCES 2023; 9:eadi5771. [PMID: 37967180 PMCID: PMC10651129 DOI: 10.1126/sciadv.adi5771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Despite their importance in tissue maintenance and repair, fibroblast diversity and plasticity remain poorly understood. Using single-cell RNA sequencing, we uncover distinct sclerotome-derived fibroblast populations in zebrafish, including progenitor-like perivascular/interstitial fibroblasts, and specialized fibroblasts such as tenocytes. To determine fibroblast plasticity in vivo, we develop a laser-induced tendon ablation and regeneration model. Lineage tracing reveals that laser-ablated tenocytes are quickly regenerated by preexisting fibroblasts. By combining single-cell clonal analysis and live imaging, we demonstrate that perivascular/interstitial fibroblasts actively migrate to the injury site, where they proliferate and give rise to new tenocytes. By contrast, perivascular fibroblast-derived pericytes or specialized fibroblasts, including tenocytes, exhibit no regenerative plasticity. Active Hedgehog (Hh) signaling is required for the proliferation of activated fibroblasts to ensure efficient tenocyte regeneration. Together, our work highlights the functional diversity of fibroblasts and establishes perivascular/interstitial fibroblasts as tenocyte progenitors that promote tendon regeneration in a Hh signaling-dependent manner.
Collapse
Affiliation(s)
- Arsheen M. Rajan
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L. Rosin
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shan Liao
- Inflammation Research Network, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
8
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Anderson T, Mo J, Gagarin E, Sherwood D, Blumenkrantz M, Mao E, Leon G, Levitz H, Chen HJ, Tseng KC, Fabian P, Crump JG, Smeeton J. Ligament injury in adult zebrafish triggers ECM remodeling and cell dedifferentiation for scar-free regeneration. NPJ Regen Med 2023; 8:51. [PMID: 37726321 PMCID: PMC10509200 DOI: 10.1038/s41536-023-00329-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain. Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration.
Collapse
Affiliation(s)
- Troy Anderson
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Julia Mo
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Ernesto Gagarin
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Desmarie Sherwood
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Maria Blumenkrantz
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Eric Mao
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Biological Sciences, Columbia College, Columbia University, New York, NY, 10027, USA
| | - Gianna Leon
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Packer Collegiate Institute, New York, NY, 11201, USA
| | - Hailey Levitz
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Chemistry, Barnard College, Columbia University, New York, NY, 10027, USA
| | - Hung-Jhen Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joanna Smeeton
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Tsai SL, Villaseñor S, Shah RR, Galloway JL. Endogenous tenocyte activation underlies the regenerative capacity of the adult zebrafish tendon. NPJ Regen Med 2023; 8:52. [PMID: 37726307 PMCID: PMC10509205 DOI: 10.1038/s41536-023-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Tendons are essential, frequently injured connective tissues that transmit forces from muscle to bone. Their unique highly ordered, matrix-rich structure is critical for proper function. While adult mammalian tendons heal after acute injuries, endogenous tendon cells, or tenocytes, fail to respond appropriately, resulting in the formation of disorganized fibrovascular scar tissue with impaired function and increased propensity for re-injury. Here, we show that, unlike mammals, adult zebrafish tenocytes activate upon injury and fully regenerate the tendon. Using a full tear injury model in the adult zebrafish craniofacial tendon, we defined the hallmark stages and cellular basis of tendon regeneration through multiphoton imaging, lineage tracing, and transmission electron microscopy approaches. Remarkably, we observe that zebrafish tendons regenerate and restore normal collagen matrix ultrastructure by 6 months post-injury (mpi). Tendon regeneration progresses in three main phases: inflammation within 24 h post-injury (hpi), cellular proliferation and formation of a cellular bridge between the severed tendon ends at 3-5 days post-injury (dpi), and re-differentiation and matrix remodeling beginning from 5 dpi to 6 mpi. Importantly, we demonstrate that pre-existing tenocytes are the main cellular source of regeneration, proliferating and migrating upon injury to ultimately bridge the tendon ends. Finally, we show that TGF-β signaling is required for tenocyte recruitment and bridge formation. Collectively, our work debuts and aptly positions the adult zebrafish tendon as an invaluable comparative system to elucidate regenerative mechanisms that may inspire new therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie L Tsai
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rishita R Shah
- Department of Biology, Barnard College, New York, NY, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
Packard M, Gilbert MC, Tetrault E, Albertson RC. Zebrafish crocc2 mutants exhibit divergent craniofacial shape, misregulated variability, and aberrant cartilage morphogenesis. Dev Dyn 2023; 252:1026-1045. [PMID: 37032317 PMCID: PMC10524572 DOI: 10.1002/dvdy.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Phenotypic variation is of paramount importance in development, evolution, and human health; however, the molecular mechanisms that influence organ shape and shape variability are not well understood. During craniofacial development, the behavior of skeletal precursors is regulated by both biochemical and environmental inputs, and the primary cilia play critical roles in transducing both types of signals. Here, we examine a gene that encodes a key constituent of the ciliary rootlets, crocc2, and its role in cartilage morphogenesis in larval zebrafish. RESULTS Geometric morphometric analysis of crocc2 mutants revealed altered craniofacial shapes and expanded variation. At the cellular level, we observed altered chondrocyte shapes and planar cell polarity across multiple stages in crocc2 mutants. Notably, cellular defects were specific to areas that experience direct mechanical input. Cartilage cell number, apoptosis, and bone patterning were not affected in crocc2 mutants. CONCLUSIONS Whereas "regulatory" genes are widely implicated in patterning the craniofacial skeleton, genes that encode "structural" aspects of the cell are increasingly implicated in shaping the face. Our results add crocc2 to this list, and demonstrate that it affects craniofacial geometry and canalizes phenotypic variation. We propose that it does so via mechanosensing, possibly through the ciliary rootlet. If true, this would implicate a new organelle in skeletal development and evolution.
Collapse
Affiliation(s)
- Mary Packard
- Department of Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Michelle C. Gilbert
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, U.S.A
- Current address, Department of Biology, Penn State University, University Park, PA 16802, U.S.A
| | - Emily Tetrault
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - R. Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| |
Collapse
|
12
|
Ghosal R, Borrego-Soto G, Eberhart JK. Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae. Front Physiol 2023; 14:1131075. [PMID: 36824468 PMCID: PMC9941677 DOI: 10.3389/fphys.2023.1131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Forming a vertebrate head involves the meticulous integration of multiple tissue types during development. Prenatal alcohol exposure is known to cause a variety of birth defects, especially to tissues in the vertebrate head. However, a systematic analysis of coordinated defects across tissues in the head is lacking. Here, we delineate the effects of ethanol on individual tissue types and their integration during craniofacial development. We found that exposure to 1% ethanol induced ectopic cranial muscle and nerve defects with only slight effects on skeletal pattern. Ectopic muscles were, however, unaccompanied by ectopic tendons and could be partially rescued by anesthetizing the larvae before muscle fibers appeared. This finding suggests that the ectopic muscles result from fiber detachment and are not due to an underlying muscle patterning defect. Interestingly, immobilization did not rescue the nerve defects, thus ethanol has an independent effect on each tissue even though they are linked in developmental time and space. Time-course experiments demonstrated an increase in nerve defects with ethanol exposure between 48hpf-4dpf. Time-lapse imaging confirmed the absence of nerve pathfinding or misrouting defects until 48hpf. These results indicate that ethanol-induced nerve defects occur at the time of muscle innervation and after musculoskeletal patterning. Further, we investigated the effect of ethanol on the neuromuscular junctions of the craniofacial muscles and found a reduced number of postsynaptic receptors with no significant effect on the presynaptic terminals. Our study shows that craniofacial soft tissues are particularly susceptible to ethanol-induced damage and that these defects appear independent from one another. Thus, the effects of ethanol on the vertebrate head appear highly pleiotropic.
Collapse
Affiliation(s)
| | | | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Anderson T, Mo J, Gagarin E, Sherwood D, Blumenkrantz M, Mao E, Leon G, Chen HJ, Tseng KC, Fabian P, Crump JG, Smeeton J. Ligament injury in adult zebrafish triggers ECM remodeling and cell dedifferentiation for scar-free regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527039. [PMID: 36778403 PMCID: PMC9915717 DOI: 10.1101/2023.02.03.527039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After traumatic injury, healing of mammalian ligaments is typically associated with fibrotic scarring as opposed to scar-free regeneration. In contrast, here we show that the ligament supporting the jaw joint of adult zebrafish is capable of rapid and complete scar-free healing. Following surgical transection of the jaw joint ligament, we observe breakdown of ligament tissue adjacent to the cut sites, expansion of mesenchymal tissue within the wound site, and then remodeling of extracellular matrix (ECM) to a normal ligament morphology. Lineage tracing of mature ligamentocytes following transection shows that they dedifferentiate, undergo cell cycle re-entry, and contribute to the regenerated ligament. Single-cell RNA sequencing of the regenerating ligament reveals dynamic expression of ECM genes in neural-crest-derived mesenchymal cells, as well as diverse immune cells expressing the endopeptidase-encoding gene legumain . Analysis of legumain mutant zebrafish shows a requirement for early ECM remodeling and efficient ligament regeneration. Our study establishes a new model of adult scar-free ligament regeneration and highlights roles of immune-mesenchyme cross-talk in ECM remodeling that initiates regeneration. Highlights Rapid regeneration of the jaw joint ligament in adult zebrafishDedifferentiation of mature ligamentocytes contributes to regenerationscRNAseq reveals dynamic ECM remodeling and immune activation during regenerationRequirement of Legumain for ECM remodeling and ligament healing.
Collapse
Affiliation(s)
- Troy Anderson
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Julia Mo
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Ernesto Gagarin
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Desmarie Sherwood
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Maria Blumenkrantz
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Eric Mao
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia College, Columbia University NY 10027, USA
| | - Gianna Leon
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
- Packer Collegiate Institute, New York, NY 11201, USA
| | - Hung-Jhen Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Joanna Smeeton
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Tsai SL, Villasenor S, Shah R, Galloway JL. Endogenous Tenocyte Activation Underlies the Regenerative Capacity of Adult Zebrafish Tendon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527141. [PMID: 36778338 PMCID: PMC9915736 DOI: 10.1101/2023.02.04.527141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tendons are essential, frequently injured connective tissues that transmit forces from muscle to bone. Their unique highly ordered, matrix-rich structure is critical for proper function. While adult mammalian tendons heal after acute injuries, endogenous tendon cells, or tenocytes, fail to respond appropriately, resulting in the formation of disorganized fibrovascular scar tissue with impaired function and increased propensity for re-injury. Here, we show that unlike mammals, adult zebrafish tenocytes activate upon injury and fully regenerate the tendon. Using a full tear injury model in the adult zebrafish craniofacial tendon, we defined the hallmark stages and cellular basis of tendon regeneration through multiphoton imaging, lineage tracing, and transmission electron microscopy approaches. Remarkably, we observe that the zebrafish tendon can regenerate and restore normal collagen matrix ultrastructure by 6 months post-injury (mpi). We show that tendon regeneration progresses in three main phases: inflammation within 24 hours post-injury (hpi), cellular proliferation and formation of a cellular bridge between the severed tendon ends at 3-5 days post-injury (dpi), and re-differentiation and matrix remodeling beginning from 5 dpi to 6 mpi. Importantly, we demonstrate that pre-existing tenocytes are the main cellular source of regeneration. Collectively, our work debuts the zebrafish tendon as one of the only reported adult tendon regenerative models and positions it as an invaluable comparative system to identify regenerative mechanisms that may inspire new tendon injury treatments in the clinic.
Collapse
|
15
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
16
|
Ziermann JM. Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:57-80. [PMID: 37955771 DOI: 10.1007/978-3-031-38215-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.
Collapse
|
17
|
Luderman LN, Michaels MT, Levic DS, Knapik EW. Zebrafish Erc1b mediates motor innervation and organization of craniofacial muscles in control of jaw movement. Dev Dyn 2023; 252:104-123. [PMID: 35708710 DOI: 10.1002/dvdy.511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Movement of the lower jaw, a common behavior observed among vertebrates, is required for eating and processing food. This movement is controlled by signals sent from the trigeminal motor nerve through neuromuscular junctions (NMJs) to the masticatory muscles. Dysfunctional jaw movements contribute to craniomandibular disorders, yet the pathophysiology of these disorders is not well understood, as limited studies have been conducted on the molecular mechanisms of jaw movement. RESULTS Using erc1b/kimm533 genetic loss of function mutant, we evaluated lower jaw muscle organization and innervation by the cranial motor nerves in developing zebrafish. Using time-lapse confocal imaging of the erc1b mutant in a transgenic fluorescent reporter line, we found delayed trigeminal nerve growth and disrupted nerve branching architecture during muscle innervation. By automated 3D image analysis of NMJ distribution, we identified an increased number of small, disorganized NMJ clusters in erc1b mutant larvae compared to WT siblings. Using genetic replacement experiments, we determined the Rab GTPase binding domain of Erc1b is required for cranial motor nerve branching, but not NMJ organization or muscle attachment. CONCLUSIONS We identified Erc1b/ERC1 as a novel component of a genetic pathway contributing to muscle organization, trigeminal nerve outgrowth, and NMJ spatial distribution during development that is required for jaw movement.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mackenzie T Michaels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel S Levic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Ela W Knapik
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
18
|
Korntner SH, Jana A, Kinnard E, Leo E, Beane T, Li X, Sengupta R, Becker L, Kuo CK. Craniofacial tendon development-Characterization of extracellular matrix morphology and spatiotemporal protein distribution. Front Cell Dev Biol 2022; 10:944126. [PMID: 36158210 PMCID: PMC9490420 DOI: 10.3389/fcell.2022.944126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Craniofacial (CF) tendons are often affected by traumatic injuries and painful disorders that can severely compromise critical jaw functions, such as mastication and talking. Unfortunately, tendons lack the ability to regenerate, and there are no solutions to restore their native properties or function. An understanding of jaw tendon development could inform tendon regeneration strategies to restore jaw function, however CF tendon development has been relatively unexplored. Using the chick embryo, we identified the jaw-closing Tendon of the musculus Adductor Mandibulae Externus (TmAM) and the jaw-opening Tendon of the musculus Depressor Mandibulae (TmDM) that have similar functions to the masticatory tendons in humans. Using histological and immunohistochemical (IHC) analyses, we characterized the TmAM and TmDM on the basis of cell and extracellular matrix (ECM) morphology and spatiotemporal protein distribution from early to late embryonic development. The TmAM and TmDM were detectable as early as embryonic day (d) 9 based on histological staining and tenascin-C (TNC) protein distribution. Collagen content increased and became more organized, cell density decreased, and cell nuclei elongated over time during development in both the TmAM and TmDM. The TmAM and TmDM exhibited similar spatiotemporal patterns for collagen type III (COL3), but differential spatiotemporal patterns for TNC, lysyl oxidase (LOX), and matrix metalloproteinases (MMPs). Our results demonstrate markers that play a role in limb tendon formation are also present in jaw tendons during embryonic development, implicate COL3, TNC, LOX, MMP2, and MMP9 in jaw tendon development, and suggest TmAM and TmDM possess different developmental programs. Taken together, our study suggests the chick embryo may be used as a model with which to study CF tendon extracellular matrix development, the results of which could ultimately inform therapeutic approaches for CF tendon injuries and disorders.
Collapse
Affiliation(s)
- Stefanie H Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Aniket Jana
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Elizabeth Kinnard
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Emily Leo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Timothy Beane
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Xianmu Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Rohit Sengupta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Lauren Becker
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Catherine K Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
19
|
Desvignes T, Robbins AE, Carey AZ, Bailon-Zambrano R, Nichols JT, Postlethwait JH, Stankunas K. Coordinated patterning of zebrafish caudal fin symmetry by a central and two peripheral organizers. Dev Dyn 2022; 251:1306-1321. [PMID: 35403297 PMCID: PMC9357109 DOI: 10.1002/dvdy.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Caudal fin symmetry characterizes teleosts and likely contributes to their evolutionary success. However, the coordinated development and patterning of skeletal elements establishing external symmetry remains incompletely understood. We explore the spatiotemporal emergence of caudal skeletal elements in zebrafish to consider evolutionary and developmental origins of caudal fin symmetry. RESULTS Transgenic reporters and skeletal staining reveal that the hypural diastema-defining gap between hypurals 2 and 3 forms early and separates progenitors of two plates of connective tissue. Two sets of central principal rays (CPRs) synchronously, sequentially, and symmetrically emerge around the diastema. The two dorsal- and ventral-most rays (peripheral principal rays, PPRs) arise independently and earlier than adjacent CPRs. Muscle and tendon markers reveal that different muscles attach to CPR and PPR sets. CONCLUSIONS We propose that caudal fin symmetry originates from a central organizer that establishes the hypural diastema and bidirectionally patterns surrounding tissue into two plates of connective tissue and two mirrored sets of CPRs. Further, two peripheral organizers unidirectionally specify PPRs, forming a symmetric "composite" fin derived from three fields. Distinct CPR and PPR ontogenies may represent developmental modules conferring ray identities, muscle connections, and biomechanical properties. Our model contextualizes mechanistic studies of teleost fin morphological variation.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA
| | - Amy E. Robbins
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA
| | - Andrew Z. Carey
- Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA
| | - Raisa Bailon-Zambrano
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora CO 80045, USA
| | | | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
20
|
Blackwell DL, Fraser SD, Caluseriu O, Vivori C, Tyndall AV, Lamont RE, Parboosingh JS, Innes AM, Bernier FP, Childs SJ. Hnrnpul1 controls transcription, splicing, and modulates skeletal and limb development in vivo. G3 GENES|GENOMES|GENETICS 2022; 12:6553027. [PMID: 35325113 PMCID: PMC9073674 DOI: 10.1093/g3journal/jkac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.
Collapse
Affiliation(s)
- Danielle L Blackwell
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sherri D Fraser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Amanda V Tyndall
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ryan E Lamont
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jillian S Parboosingh
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Micheil Innes
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - François P Bernier
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
21
|
Li K, Fan L, Tian Y, Lou S, Li D, Ma L, Wang L, Pan Y. Application of zebrafish in the study of craniomaxillofacial developmental anomalies. Birth Defects Res 2022; 114:583-595. [PMID: 35437950 DOI: 10.1002/bdr2.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Craniomaxillofacial developmental anomalies are one of the most prevalent congenital defects worldwide and could result from any disruption of normal development processes, which is generally influenced by interactions between genes and the environment. Currently, with the advances in genetic screening strategies, an increasing number of novel variants and their roles in orofacial diseases have been explored. Zebrafish is recognized as a powerful animal model, and its homologous genes and similar oral structure and development process provide an ideal platform for studying the contributions of genetic and environmental factors to human craniofacial malformations. Here, we reviewed zebrafish models for the study of craniomaxillofacial developmental anomalies, such as human nonsyndromic cleft lip with or without an affected palate and jaw and tooth developmental anomalies. Due to its potential for gene expression and regulation research, zebrafish may provide new perspectives for understanding craniomaxillofacial diseaseand its treatment.
Collapse
Affiliation(s)
- Kang Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Tian
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dandan Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Paudel S, Gjorcheska S, Bump P, Barske L. Patterning of cartilaginous condensations in the developing facial skeleton. Dev Biol 2022; 486:44-55. [DOI: 10.1016/j.ydbio.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
23
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
24
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
25
|
Zhang J, Lin C, Song Y, Zhang Y, Chen J. Augmented BMP4 signal impairs tongue myogenesis. J Mol Histol 2021; 52:651-659. [PMID: 34076834 DOI: 10.1007/s10735-021-09987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Tongue muscles are derived from mesodermal cells, while signals driven by cranial neural crest cells (CNCCs) regulate tongue myogenesis via tissue-tissue interaction. Based on such mechanisms of interaction, congenital tongue defects occur in CNC-related syndromes in humans. This study utilized a pathologic model for the syndrome of congenital bony syngnathia, Wnt1-Cre;pMes-Bmp4 mouse line, to explore impacts of enhanced CNCCs-originated BMP4 signal on tongue myogenesis via tissue-tissue interaction. Our results revealed that microglossia, a clinical phenotype of congenital bony syngnathia in humans exhibited in Wnt1-Cre;pMes-Bmp4 mice due to impaired myogenesis. The augmented BMP4 signal affected the distal distribution, proliferation, and differentiation of myogenic cells as well as tendon patterning, resulting in disarrangement and atrophy of tongue muscles and the loss of the anterior digastric muscle. This study demonstrated how a CNCCs-originated ligand impaired tongue myogenesis via a non-autonomous way, which provided potential formation mechanisms for understanding tongue abnormalities in CNC-related syndromes.
Collapse
Affiliation(s)
- Jian Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Yingnan Song
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
26
|
Kaji DA, Montero AM, Patel R, Huang AH. Transcriptional profiling of mESC-derived tendon and fibrocartilage cell fate switch. Nat Commun 2021; 12:4208. [PMID: 34244516 PMCID: PMC8270956 DOI: 10.1038/s41467-021-24535-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulators underlying induction and differentiation of dense connective tissues such as tendon and related fibrocartilaginous tissues (meniscus and annulus fibrosus) remain largely unknown. Using an iterative approach informed by developmental cues and single cell RNA sequencing (scRNA-seq), we establish directed differentiation models to generate tendon and fibrocartilage cells from mouse embryonic stem cells (mESCs) by activation of TGFβ and hedgehog pathways, achieving 90% induction efficiency. Transcriptional signatures of the mESC-derived cells recapitulate embryonic tendon and fibrocartilage signatures from the mouse tail. scRNA-seq further identify retinoic acid signaling as a critical regulator of cell fate switch between TGFβ-induced tendon and fibrocartilage lineages. Trajectory analysis by RNA sequencing define transcriptional modules underlying tendon and fibrocartilage fate induction and identify molecules associated with lineage-specific differentiation. Finally, we successfully generate 3-dimensional engineered tissues using these differentiation protocols and show activation of mechanotransduction markers with dynamic tensile loading. These findings provide a serum-free approach to generate tendon and fibrocartilage cells and tissues at high efficiency for modeling development and disease.
Collapse
Affiliation(s)
- Deepak A Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angela M Montero
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Bobzin L, Roberts RR, Chen HJ, Crump JG, Merrill AE. Development and maintenance of tendons and ligaments. Development 2021; 148:239823. [PMID: 33913478 DOI: 10.1242/dev.186916] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments are fibrous connective tissues vital to the transmission of force and stabilization of the musculoskeletal system. Arising in precise regions of the embryo, tendons and ligaments share many properties and little is known about the molecular differences that differentiate them. Recent studies have revealed heterogeneity and plasticity within tendon and ligament cells, raising questions regarding the developmental mechanisms regulating tendon and ligament identity. Here, we discuss recent findings that contribute to our understanding of the mechanisms that establish and maintain tendon progenitors and their differentiated progeny in the head, trunk and limb. We also review the extent to which these findings are specific to certain anatomical regions and model organisms, and indicate which findings similarly apply to ligaments. Finally, we address current research regarding the cellular lineages that contribute to tendon and ligament repair, and to what extent their regulation is conserved within tendon and ligament development.
Collapse
Affiliation(s)
- Lauren Bobzin
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan R Roberts
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hung-Jhen Chen
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy E Merrill
- Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Mitchell JM, Sucharov J, Pulvino AT, Brooks EP, Gillen AE, Nichols JT. The alx3 gene shapes the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. Development 2021; 148:dev197483. [PMID: 33741714 PMCID: PMC8077506 DOI: 10.1242/dev.197483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022]
Abstract
During craniofacial development, different populations of cartilage- and bone-forming cells develop in precise locations in the head. Most of these cells are derived from pluripotent cranial neural crest cells and differentiate with distinct developmental timing and cellular morphologies. The mechanisms that divide neural crest cells into discrete populations are not fully understood. Here, we use single-cell RNA sequencing to transcriptomically define different populations of cranial neural crest cells. We discovered that the gene family encoding the Alx transcription factors is enriched in the frontonasal population of neural crest cells. Genetic mutant analyses indicate that alx3 functions to regulate the distinct differentiation timing and cellular morphologies among frontonasal neural crest cell subpopulations. This study furthers our understanding of how genes controlling developmental timing shape craniofacial skeletal elements.
Collapse
Affiliation(s)
- Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony T. Pulvino
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Austin E. Gillen
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Medicine, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Comai GE, Tesařová M, Dupé V, Rhinn M, Vallecillo-García P, da Silva F, Feret B, Exelby K, Dollé P, Carlsson L, Pryce B, Spitz F, Stricker S, Zikmund T, Kaiser J, Briscoe J, Schedl A, Ghyselinck NB, Schweitzer R, Tajbakhsh S. Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biol 2020; 18:e3000902. [PMID: 33201874 PMCID: PMC7707851 DOI: 10.1371/journal.pbio.3000902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 12/01/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.
Collapse
Affiliation(s)
- Glenda Evangelina Comai
- Stem Cells & Development Unit, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
- * E-mail: (GEC); (ST)
| | - Markéta Tesařová
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Valérie Dupé
- Université de Rennes, CNRS, IGDR, Rennes, France
| | - Muriel Rhinn
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | | | - Fabio da Silva
- Université Côte d'Azur, INSERM, CNRS, iBV, Nice, France
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Betty Feret
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | | | - Pascal Dollé
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Brian Pryce
- Research Division, Shriners Hospital for Children, Portland, United States of America
| | - François Spitz
- Genomics of Animal Development Unit, Institut Pasteur, Paris, France
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | | | | | - Norbert B. Ghyselinck
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, United States of America
| | - Shahragim Tajbakhsh
- Stem Cells & Development Unit, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
- * E-mail: (GEC); (ST)
| |
Collapse
|
30
|
Niu X, Subramanian A, Hwang TH, Schilling TF, Galloway JL. Tendon Cell Regeneration Is Mediated by Attachment Site-Resident Progenitors and BMP Signaling. Curr Biol 2020; 30:3277-3292.e5. [PMID: 32649909 PMCID: PMC7484193 DOI: 10.1016/j.cub.2020.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The musculoskeletal system is a striking example of how cell identity and position is coordinated across multiple tissues to ensure function. However, it is unclear upon tissue loss, such as complete loss of cells of a central musculoskeletal connecting tendon, whether neighboring tissues harbor progenitors capable of mediating regeneration. Here, using a zebrafish model, we genetically ablate all embryonic tendon cells and find complete regeneration of tendon structure and pattern. We identify two regenerative progenitor populations, sox10+ perichondrial cells surrounding cartilage and nkx2.5+ cells surrounding muscle. Surprisingly, laser ablation of sox10+ cells, but not nkx2.5+ cells, increases tendon progenitor number in the perichondrium, suggesting a mechanism to regulate attachment location. We find BMP signaling is active in regenerating progenitor cells and is necessary and sufficient for generating new scxa+ cells. Our work shows that muscle and cartilage connective tissues harbor progenitor cells capable of fully regenerating tendons, and this process is regulated by BMP signaling.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tyler H Hwang
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Chen JW, Niu X, King MJ, Noedl MT, Tabin CJ, Galloway JL. The mevalonate pathway is a crucial regulator of tendon cell specification. Development 2020; 147:dev.185389. [PMID: 32467241 DOI: 10.1242/dev.185389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Tendons and ligaments are crucial components of the musculoskeletal system, yet the pathways specifying these fates remain poorly defined. Through a screen of known bioactive chemicals in zebrafish, we identified a new pathway regulating tendon cell induction. We established that statin, through inhibition of the mevalonate pathway, causes an expansion of the tendon progenitor population. Co-expression and live imaging studies indicate that the expansion does not involve an increase in cell proliferation, but rather results from re-specification of cells from the neural crest-derived sox9a+/sox10+ skeletal lineage. The effect on tendon cell expansion is specific to the geranylgeranylation branch of the mevalonate pathway and is mediated by inhibition of Rac activity. This work establishes a novel role for the mevalonate pathway and Rac activity in regulating specification of the tendon lineage.
Collapse
Affiliation(s)
- Jessica W Chen
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xubo Niu
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Matthew J King
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Marie-Therese Noedl
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
32
|
Busse B, Galloway JL, Gray RS, Harris MP, Kwon RY. Zebrafish: An Emerging Model for Orthopedic Research. J Orthop Res 2020; 38:925-936. [PMID: 31773769 PMCID: PMC7162720 DOI: 10.1002/jor.24539] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/16/2019] [Indexed: 02/04/2023]
Abstract
Advances in next-generation sequencing have transformed our ability to identify genetic variants associated with clinical disorders of the musculoskeletal system. However, the means to functionally validate and analyze the physiological repercussions of genetic variation have lagged behind the rate of genetic discovery. The zebrafish provides an efficient model to leverage genetic analysis in an in vivo context. Its utility for orthopedic research is becoming evident in regard to both candidate gene validation as well as therapeutic discovery in tissues such as bone, tendon, muscle, and cartilage. With the development of new genetic and analytical tools to better assay aspects of skeletal tissue morphology, mineralization, composition, and biomechanics, researchers are emboldened to systematically approach how the skeleton develops and to identify the root causes, and potential treatments, of skeletal disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:925-936, 2020.
Collapse
Affiliation(s)
- Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
- all authors contributed equally to this work and are listed in alphabetical order
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street Boston, MA 02114, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School; Department of Orthopedic Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine; Department of Mechanical Engineering; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- all authors contributed equally to this work and are listed in alphabetical order
| |
Collapse
|
33
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
34
|
Rosero Salazar DH, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Orofacial Muscles: Embryonic Development and Regeneration after Injury. J Dent Res 2019; 99:125-132. [PMID: 31675262 PMCID: PMC6977159 DOI: 10.1177/0022034519883673] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Orofacial congenital defects such as cleft lip and/or palate are associated with impaired muscle regeneration and fibrosis after surgery. Also, other orofacial reconstructions or trauma may end up in defective muscle regeneration and fibrosis. The aim of this review is to discuss current knowledge on the development and regeneration of orofacial muscles in comparison to trunk and limb muscles. The orofacial muscles include the tongue muscles and the branchiomeric muscles in the lower face. Their main functions are chewing, swallowing, and speech. All orofacial muscles originate from the mesoderm of the pharyngeal arches under the control of cranial neural crest cells. Research in vertebrate models indicates that the molecular regulation of orofacial muscle development is different from that of trunk and limb muscles. In addition, the regenerative ability of orofacial muscles is lower, and they develop more fibrosis than other skeletal muscles. Therefore, specific approaches need to be developed to stimulate orofacial muscle regeneration. Regeneration may be stimulated by growth factors such fibroblast growth factors and hepatocyte growth factor, while fibrosis may be reduced by targeting the transforming growth factor β1 (TGFβ1)/myofibroblast axis. New approaches that combine these 2 aspects will improve the surgical treatment of orofacial muscle defects.
Collapse
Affiliation(s)
- D H Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - P L Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - F A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
35
|
Kague E, Hughes SM, Lawrence EA, Cross S, Martin-Silverstone E, Hammond CL, Hinits Y. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish. FASEB J 2019; 33:9116-9130. [PMID: 31100023 PMCID: PMC6662971 DOI: 10.1096/fj.201802654rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 01/19/2023]
Abstract
Tendons are an essential part of the musculoskeletal system, connecting muscle and skeletal elements to enable force generation. The transcription factor scleraxis marks vertebrate tendons from early specification. Scleraxis-null mice are viable and have a range of tendon and bone defects in the trunk and limbs but no described cranial phenotype. We report the expression of zebrafish scleraxis orthologs: scleraxis homolog (scx)-a and scxb in cranial and intramuscular tendons and in other skeletal elements. Single mutants for either scxa or scxb, generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), are viable and fertile as adult fish. Although scxb mutants show no obvious phenotype, scxa mutant embryos have defects in cranial tendon maturation and muscle misalignment. Mutation of both scleraxis genes results in more severe defects in cranial tendon differentiation, muscle and cartilage dysmorphogenesis and paralysis, and lethality by 2-5 wk, which indicates an essential function of scleraxis for craniofacial development. At juvenile and adult stages, ribs in scxa mutants fail to mineralize and/or are small and heavily fractured. Scxa mutants also have smaller muscle volume, abnormal swim movement, and defects in bone growth and composition. Scleraxis function is therefore essential for normal craniofacial form and function and vital for fish development.-Kague, E., Hughes, S. M., Lawrence, E. A., Cross, S., Martin-Silverstone, E., Hammond, C. L., Hinits, Y. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish.
Collapse
Affiliation(s)
- Erika Kague
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Simon M. Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elizabeth A. Lawrence
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Martin-Silverstone
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Yaniv Hinits
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
36
|
Subramanian A, Kanzaki LF, Galloway JL, Schilling TF. Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling. eLife 2018; 7:e38069. [PMID: 30475205 PMCID: PMC6345564 DOI: 10.7554/elife.38069] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022] Open
Abstract
Mechanical forces between cells and extracellular matrix (ECM) influence cell shape and function. Tendons are ECM-rich tissues connecting muscles with bones that bear extreme tensional force. Analysis of transgenic zebrafish expressing mCherry driven by the tendon determinant scleraxis reveals that tendon fibroblasts (tenocytes) extend arrays of microtubule-rich projections at the onset of muscle contraction. In the trunk, these form a dense curtain along the myotendinous junctions at somite boundaries, perpendicular to myofibers, suggesting a role as force sensors to control ECM production and tendon strength. Paralysis or destabilization of microtubules reduces projection length and surrounding ECM, both of which are rescued by muscle stimulation. Paralysis also reduces SMAD3 phosphorylation in tenocytes and chemical inhibition of TGFβ signaling shortens tenocyte projections. These results suggest that TGFβ, released in response to force, acts on tenocytes to alter their morphology and ECM production, revealing a feedback mechanism by which tendons adapt to tension.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineUnited States
| | - Lauren Fallon Kanzaki
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineUnited States
| | - Jenna Lauren Galloway
- Center for Regenerative Medicine, Department of Orthopaedic SurgeryMassachusetts General Hospital, Harvard Stem Cell InstituteBostonUnited States
| | | |
Collapse
|
37
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
38
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|