1
|
Mercado Soto NM, Horn A, Keller NP, Huttenlocher A, Wagner AS. Larval zebrafish burn wound infection model reveals conserved innate immune responses against diverse pathogenic fungi. mBio 2025; 16:e0348024. [PMID: 40197062 PMCID: PMC12077223 DOI: 10.1128/mbio.03480-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Secondary fungal infections represent a major complication following thermal injuries. However, the mechanisms of fungal colonization of burn tissue and how the host subsequently responds to fungi within this niche remain unclear. We have previously reported a zebrafish model of thermal injury that recapitulates many of the features of human burn wounds. Here, we characterize host-fungal interaction dynamics within the burn wound niche using two of the most common fungal pathogens isolated from burn injuries, Aspergillus fumigatus and Candida albicans. Both A. fumigatus and C. albicans colonize burned tissue in zebrafish larvae and induce a largely conserved innate immune response following colonization. Using drug-induced cell-depletion strategies and transgenic zebrafish lines with impaired innate immune function, we found that macrophages control fungal burden, whereas neutrophils primarily control invasive hyphal growth at the early stages of infection. However, we also found that loss of either immune cell can be compensated by the other at the later stages of infection and that fish with both macrophage and neutrophil deficiencies show more invasive hyphal growth that is sustained throughout the infection process, suggesting redundancy in their antifungal activities. Finally, we demonstrate that C. albicans strains with increased β(1,3)-glucan exposure are cleared faster from the burn wound, demonstrating a need for shielding this immunogenic cell wall epitope for the successful fungal colonization of burn tissue. Together, our findings support the use of zebrafish larvae as a model to study host-fungal interaction dynamics within burn wounds.IMPORTANCESecondary fungal infections within burn wound injuries are a significant problem that delays wound healing and increases the risk of patient mortality. Currently, little is known about how fungi colonize and infect burn tissue or how the host responds to pathogen presence. In this report, we expand upon an existing thermal injury model using zebrafish larvae to begin elucidating both the host immune response to fungal burn colonization and fungal mechanisms for persistence within burn tissue. We found that both Aspergillus fumigatus and Candida albicans, common fungal burn wound isolates, successfully colonize burn tissue and are effectively cleared in immunocompetent zebrafish by both macrophages and neutrophils. We also find that C. albicans mutants harboring mutations that impact their ability to evade host immune system recognition are cleared more readily from burn tissue. Collectively, our work highlights the efficacy of using zebrafish to study host-fungal interaction dynamics within burn wounds.
Collapse
Affiliation(s)
- Nayanna M. Mercado Soto
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison Department of Pediatrics, Madison, Wisconsin, USA
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
2
|
Zhao Y, Zhou Z, Cai G, Zhang D, Yu X, Li D, Li S, Zhang Z, Zhang D, Luo J, Hu Y, Gao A, Zhang H. Systemic infection by Candida albicans requires FASN-α subunit induced cell wall remodeling to perturb immune response. PLoS Pathog 2025; 21:e1012865. [PMID: 40138332 PMCID: PMC11940687 DOI: 10.1371/journal.ppat.1012865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/29/2024] [Indexed: 03/29/2025] Open
Abstract
Invasive fungal infections are a leading cause of mortality and morbidity in patients with severely impaired host defenses, while treatment options remain limited. Fatty acid synthase (FASN), the key enzyme regulating de novo biosynthesis of fatty acids, is crucial for the lethal infection of fungi; however, its pathogenic mechanism is still far from clear. Here, we identified the α subunit of FASN as a potential immunotherapeutic target against systemic Candida albicans infection. The avirulence of the encoded gene (FAS2) -deleted mutant in a mouse model of systemic candidiasis is not due to its fitness defects, because sufficient exogenous fatty acids in serum can overcome FASN inhibition. However, the FAS2-deleted mutant displays increased circulating innate immune responses and enhances activated neutrophil fungicidal activity through the unmasking of immunogenic cell wall epitopes via the Rho-1 dependent Mkc1-MAPK signaling pathway, which facilitates fungal clearance, reduces renal tissue damage and inflammatory cell infiltration, ultimately lowers fungal pathogenicity. Priming with the FAS2-deleted mutant provided significant protection against subsequent lethal infection with wild-type C. albicans in mice as early as one week, and it was well-tolerated with limited toxicity. Our findings indicate that the FASN-α subunit plays key roles in the regulation of neutrophil-associated antifungal immunity and could be a potential target for immunotherapeutic intervention.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Zhishan Zhou
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Guiyue Cai
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Dandan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Xiaoting Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington District of Columbia, United States of America
| | - Shuixiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Zhanpeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Dongli Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Jiyao Luo
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Aili Gao
- Guangzhou Dermatology Hospital, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Mycology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Pan Y, Shi Z, Wang Y, Chen F, Yang Y, Ma K, Li W. Baicalin promotes β-1,3-glucan exposure in Candida albicans and enhances macrophage response. Front Cell Infect Microbiol 2024; 14:1487173. [PMID: 39717547 PMCID: PMC11664218 DOI: 10.3389/fcimb.2024.1487173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Among the diverse fungal opportunistic pathogens, Candida albicans garners significant attention due to its wide range of infections and high frequency of occurrence. The emergence of resistance and the limited number of antifungals drives the need to develop novel antifungal drugs. Although the natural product baicalin has been shown to trigger apoptosis in C. albicans in previous experiments, its influence on cell wall (CW) structure along with immune recognition remains elusive. In this work, baicalin showed a significant killing effect against C. albicans SC5314. Moreover, CW destruction, characterized by β-1,3-glucan unmasking and chitin deposition, was observed as a consequence of the treatment with baicalin. The RNA sequencing analysis revealed that treatment with baicalin resulted in eight hundred forty-two differentially expressed genes (DEGs). Sixty-five genes, such as GSC1, ENG1, CHS3, GWT1, and MKC1, were associated with CW organization or biogenesis. Baicalin-pretreated C. albicans SC5314 was phagocytosed more efficiently by RAW264.7 macrophages, accompanied by increased TNF-α and IL-1β production. Accordingly, it is hypothesized that baicalin could stimulate β-1,3-glucan unmasking by governing CW-associated gene expression in C. albicans SC5314, which contributes to macrophage recognition and clearance.
Collapse
Affiliation(s)
- Yiyuan Pan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Zhaoling Shi
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Yadong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Chen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Yue Yang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Wenqian Li
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| |
Collapse
|
4
|
Mercado Soto NM, Horn A, Keller NP, Huttenlocher A, Wagner AS. A conserved in vivo burn wound infection model for diverse pathogenic fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623264. [PMID: 39605401 PMCID: PMC11601320 DOI: 10.1101/2024.11.12.623264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Secondary fungal infections represent a major complication following thermal injuries. However, the mechanisms of fungal colonization of burn tissue and how the host subsequently responds to fungi within this niche remain unclear. We have previously reported a zebrafish model of thermal injury that recapitulates many of the features of human burn wounds. Here, we characterize host-fungal interaction dynamics within the burn wound niche using two of the most common fungal pathogens isolated from burn injuries, Aspergillus fumigatus and Candida albicans . Both A. fumigatus and C. albicans colonize burned tissue in zebrafish larvae and induce a largely conserved innate immune response following colonization. Using drug-induced cell depletion strategies and transgenic zebrafish lines with impaired innate immune function, we found that macrophages control fungal burden while neutrophils primarily control invasive hyphal growth at the early stages of infection. However, we also found that loss of either immune cell can be compensated by the other at the later stages of infection, and that fish with both macrophage and neutrophil deficiencies show more invasive hyphal growth that is sustained throughout the infection process, suggesting redundancy in their antifungal activities. Finally, we demonstrate that C. albicans strains with increased β(1,3)-glucan exposure are cleared faster from the burn wound, demonstrating a need for shielding this immunogenic cell wall epitope for successful fungal colonization of burn tissue. Together, our findings support the use of zebrafish larvae as a model to study host-fungal interaction dynamics within burn wounds. Importance Secondary fungal infections within burn wound injuries are a significant problem that delay wound healing and increase the risk of patient mortality. Currently, little is known about how fungi colonize and infect burn tissue or how the host responds to pathogen presence. In this report, we expand upon an existing thermal injury model using zebrafish larvae to begin to elucidate both the host immune response to fungal burn colonization and fungal mechanisms for persistence within burn tissue. We found that both Aspergillus fumigatus and Candida albicans , common fungal burn wound isolates, successfully colonize burn tissue and are effectively cleared in immunocompetent zebrafish by both macrophages and neutrophils. We also find that C. albicans mutants harboring mutations that impact their ability to evade host immune system recognition are cleared more readily from burn tissue. Collectively, our work highlights the efficacy of using zebrafish to study host-fungal interaction dynamics within burn wounds.
Collapse
|
5
|
Miao J, Williams DL, Kruppa MD, Peters BM. Glycogen synthase activity in Candida albicans is partly controlled by the functional ortholog of Saccharomyces cerevisiae Gac1p. mSphere 2024; 9:e0057524. [PMID: 39315809 PMCID: PMC11520303 DOI: 10.1128/msphere.00575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
To adapt to various host microenvironments, the human fungal pathogen Candida albicans possesses the capacity to accumulate and store glycogen as an internal carbohydrate source. In the model yeast Saccharomyces cerevisiae, ScGlc7p and ScGac1p are the serine/threonine type 1 protein phosphatase catalytic and regulatory subunits that control glycogen synthesis by altering the phosphorylation state of the glycogen synthase Gsy2p. Despite recent delineation of the glycogen synthesis pathway in C. albicans, the molecular events driving synthase activation are currently undefined. In this study, using a combination of microbiologic and genetic techniques, we determined that the protein encoded by uncharacterized gene C1_01140C, and not the currently annotated C. albicans Gac1p, is the major regulatory subunit involved in glycogen synthesis. C1_01140Cp contains a conserved GVNK motif observed across multiple starch/glycogen-binding proteins in various species, and alanine substitution of each residue in this motif significantly impaired glycogen accumulation in C. albicans. Fluorescent protein tagging and microscopy indicated that C1_01140Cp-GFPy colocalized with CaGlc7p-tdTomato and CaGsy1p-tdTomato accordingly. Co-immunoprecipitation assays further confirmed that C1_01140Cp associates with CaGlc7p and CaGsy1p during glycogen synthesis. Lastly, c1_01140cΔ/Δ exhibited colonization defects in a murine model of vulvovaginal candidiasis. Collectively, our data indicate that uncharacterized C1_01140Cp is the functional ortholog of the PPP1R subunit ScGac1p in C. albicans.IMPORTANCEThe capacity to synthesize glycogen offers microbes metabolic flexibility, including the fungal pathogen Candida albicans. In Saccharomyces cerevisiae, dephosphorylation of glycogen synthase by the ScGlc7p-containing phosphatase is a critical rate-limiting step in glycogen synthesis. Subunits, including ScGac1p, target ScGlc7p to α-1,4-glucosyl primers for efficient ScGsy2p synthase activation. However, this process in C. albicans had not been delineated. Here, we show that the C. albicans genome encodes for two homologous phosphatase-binding subunits, annotated CaGac1p and uncharacterized C1_01140Cp, both containing a GVNK motif required for polysaccharide affinity. Surprisingly, loss of CaGac1p only moderately reduced glycogen accumulation, whereas loss of C1_01140Cp ablated it. Fluorescence microscopy and co-immunoprecipitation approaches revealed that C1_01140Cp associates with CaGlc7p and CaGsy1p during glycogen synthesis. Moreover, C1_01140Cp contributed to fungal fitness at the vaginal mucosa during murine vaginitis. Therefore, this work demonstrates that glycogen synthase regulation is conserved in C. albicans and C1_01140Cp is the functional ortholog of ScGac1p.
Collapse
Affiliation(s)
- Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David L. Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Michael D. Kruppa
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Ma Q, Pradhan A, Leaves I, Hickey E, Roselletti E, Dambuza I, Larcombe DE, de Assis LJ, Wilson D, Erwig LP, Netea MG, Childers DS, Brown GD, Gow NA, Brown AJ. Impact of secreted glucanases upon the cell surface and fitness of Candida albicans during colonisation and infection. Cell Surf 2024; 11:100128. [PMID: 38938582 PMCID: PMC11208952 DOI: 10.1016/j.tcsw.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Host recognition of the pathogen-associated molecular pattern (PAMP), β-1,3-glucan, plays a major role in antifungal immunity. β-1,3-glucan is an essential component of the inner cell wall of the opportunistic pathogen Candida albicans. Most β-1,3-glucan is shielded by the outer cell wall layer of mannan fibrils, but some can become exposed at the cell surface. In response to host signals such as lactate, C. albicans shaves the exposed β-1,3-glucan from its cell surface, thereby reducing the ability of innate immune cells to recognise and kill the fungus. We have used sets of barcoded xog1 and eng1 mutants to compare the impacts of the secreted β-glucanases Xog1 and Eng1 upon C. albicans in vitro and in vivo. Flow cytometry of Fc-dectin-1-stained strains revealed that Eng1 plays the greater role in lactate-induced β-1,3-glucan masking. Transmission electron microscopy and stress assays showed that neither Eng1 nor Xog1 are essential for cell wall maintenance, but the inactivation of either enzyme compromised fungal adhesion to gut and vaginal epithelial cells. Competitive barcode sequencing suggested that neither Eng1 nor Xog1 strongly influence C. albicans fitness during systemic infection or vaginal colonisation in mice. However, the deletion of XOG1 enhanced C. albicans fitness during gut colonisation. We conclude that both Eng1 and Xog1 exert subtle effects on the C. albicans cell surface that influence fungal adhesion to host cells and that affect fungal colonisation in certain host niches.
Collapse
Affiliation(s)
- Qinxi Ma
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Arnab Pradhan
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Ian Leaves
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Emer Hickey
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Roselletti
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Ivy Dambuza
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Daniel E. Larcombe
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Leandro Jose de Assis
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Duncan Wilson
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Alistair J.P. Brown
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
7
|
Chen T, Gao C. Innate immune signal transduction pathways to fungal infection: Components and regulation. CELL INSIGHT 2024; 3:100154. [PMID: 38464417 PMCID: PMC10924179 DOI: 10.1016/j.cellin.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Candida species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
8
|
Zhou Y, Phelps GA, Mangrum MM, McLeish J, Phillips EK, Lou J, Ancajas CF, Rybak JM, Oelkers PM, Lee RE, Best MD, Reynolds TB. The small molecule CBR-5884 inhibits the Candida albicans phosphatidylserine synthase. mBio 2024; 15:e0063324. [PMID: 38587428 PMCID: PMC11077991 DOI: 10.1128/mbio.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter M. Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Wang Q, Wang Z, Xu C, Wu D, Wang T, Wang C, Shao J. Physical impediment to sodium houttuyfonate conversely reinforces β-glucan exposure stimulated innate immune response to Candida albicans. Med Mycol 2024; 62:myae014. [PMID: 38389246 DOI: 10.1093/mmy/myae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Candida albicans is a dimorphic opportunistic pathogen in immunocompromised individuals. We have previously demonstrated that sodium houttuyfonate (SH), a derivative of medicinal herb Houttuynia cordata Thunb, was effective for antifungal purposes. However, the physical impediment of SH by C. albicans β-glucan may weaken the antifungal activity of SH. In this study, the interactions of SH with cell wall (CW), extracellular matrix (EM), CW β-glucan, and a commercial β-glucan zymosan A (ZY) were inspected by XTT assay and total plate count in a standard reference C. albicans SC5314 as well as two clinical fluconazole-resistant strains Z4935 and Z5172. After treatment with SH, the content and exposure of CW β-glucan, chitin, and mannan were detected, the fungal clearance by phagocytosis of RAW264.7 and THP-1 was examined, and the gene expressions and levels of cytokines TNF-ɑ and IL-10 were also monitored. The results showed that SH could be physically impeded by β-glucan in CW, EM, and ZY. This impediment subsequently triggered the exposure of CW β-glucan and chitin with mannan masked in a time-dependent manner. SH-induced β-glucan exposure could significantly enhance the phagocytosis and inhibit the growth of C. albicans. Meanwhile, the SH-pretreated fungal cells could greatly stimulate the cytokine gene expressions and levels of TNF-ɑ and IL-10 in the macrophages. In sum, the strategy that the instant physical impediment of C. albicans CW to SH, which can induce the exposure of CW β-glucan may be universal for C. albicans in response to physical deterrent by antifungal drugs.
Collapse
Affiliation(s)
- Qirui Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Zixu Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Daqiang Wu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Tianming Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Changzhong Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| |
Collapse
|
10
|
Avelar GM, Pradhan A, Ma Q, Hickey E, Leaves I, Liddle C, Rodriguez Rondon AV, Kaune AK, Shaw S, Maufrais C, Sertour N, Bain JM, Larcombe DE, de Assis LJ, Netea MG, Munro CA, Childers DS, Erwig LP, Brown GD, Gow NAR, Bougnoux ME, d'Enfert C, Brown AJP. A CO 2 sensing module modulates β-1,3-glucan exposure in Candida albicans. mBio 2024; 15:e0189823. [PMID: 38259065 PMCID: PMC10865862 DOI: 10.1128/mbio.01898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, β-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced β-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced β-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger β-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences β-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (β-1,3-glucan) at its cell surface. Most of the β-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some β-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases β-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to β-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in β-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates β-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Alejandra V. Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ann-Kristin Kaune
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Carol A. Munro
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Gordon D. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Dong Y, Du J, Deng Y, Cheng M, Shi Z, Zhu H, Sun H, Yu Q, Li M. Reduction of histone proteins dosages increases CFW sensitivity and attenuates virulence of Candida albicans. Microbiol Res 2024; 279:127552. [PMID: 38000336 DOI: 10.1016/j.micres.2023.127552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Histone proteins are important components of nucleosomes, which play an important role in regulating the accessibility of DNA and the function of genomes. However, the effect of histone proteins dosages on physiological processes is not clear in the human fungal pathogen Candida albicans. In this study, we found that the deletion of the histone protein H3 coding gene HHT21 and the histone protein H4 coding gene HHF1 resulted in a significant decrease in the expression dosage of the histone proteins H3 and H4, which had a significant impact on the localization of the histone protein H2A and plasmid maintenance. Stress sensitivity experiments showed that the mutants hht21Δ/Δ, hhf1Δ/Δ and hht21Δ/Δhhf1Δ/Δ were more sensitive to cell wall stress induced by Calcofluor White (CFW) than the wild-type strain. Further studies showed that the decrease in the dosage of the histone proteins H3 and H4 led to the change of cell wall components, increased chitin contents, and down-regulated expression of the SAP9, KAR2, and CRH11 genes involved in the cell wall integrity (CWI) pathway. Overexpression of SAP9 could rescue the sensitivity of the mutants to CFW. Moreover, the decrease in the histone protein s dosages affected the FAD-catalyzed oxidation of Ero1 protein, resulting in the obstruction of protein folding in the ER, and thus reduced resistance to CFW. It was also found that CFW induced a large amount of ROS accumulation in the mutants, and the addition of ROS scavengers could restore the growth of the mutants under CFW treatment. In addition, the reduction of the histone proteins dosages greatly weakened systemic infection and kidney fungal burden in mice, and hyphal development was significantly impaired in the mutants under macrophage treatment, indicating that the histone proteins dosages is very important for the virulence of C. albicans. This study revealed that histone proteins dosages play a key role in the cell wall stress response and pathogenicity in C. albicans.
Collapse
Affiliation(s)
- Yixuan Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiawen Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ying Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengjuan Cheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhishang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hao Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Sah SK, Yadav A, Kruppa MD, Rustchenko E. Identification of 10 genes on Candida albicans chromosome 5 that control surface exposure of the immunogenic cell wall epitope β-glucan and cell wall remodeling in caspofungin-adapted mutants. Microbiol Spectr 2023; 11:e0329523. [PMID: 37966256 PMCID: PMC10714753 DOI: 10.1128/spectrum.03295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Candida infections are often fatal in immuno-compromised individuals, resulting in many thousands of deaths per year. Caspofungin has proven to be an excellent anti-Candida drug and is now the frontline treatment for infections. However, as expected, the number of resistant cases is increasing; therefore, new treatment modalities are needed. We are determining metabolic pathways leading to decreased drug susceptibility in order to identify mechanisms facilitating evolution of clinical resistance. This study expands the understanding of genes that modulate drug susceptibility and reveals new targets for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Sudisht K. Sah
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Anshuman Yadav
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael D. Kruppa
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
13
|
Wagner AS, Lumsdaine SW, Mangrum MM, Reynolds TB. Caspofungin-induced β(1,3)-glucan exposure in Candida albicans is driven by increased chitin levels. mBio 2023; 14:e0007423. [PMID: 37377417 PMCID: PMC10470516 DOI: 10.1128/mbio.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
To successfully induce disease, Candida albicans must effectively evade the host immune system. One mechanism used by C. albicans to achieve this is to mask immunogenic β(1,3)-glucan epitopes within its cell wall under an outer layer of mannosylated glycoproteins. Consequently, induction of β(1,3)-glucan exposure (unmasking) via genetic or chemical manipulation increases fungal recognition by host immune cells in vitro and attenuates disease during systemic infection in mice. Treatment with the echinocandin caspofungin is one of the most potent drivers of β(1,3)-glucan exposure. Several reports using murine infection models suggest a role for the immune system, and specifically host β(1,3)-glucan receptors, in mediating the efficacy of echinocandin treatment in vivo. However, the mechanism by which caspofungin-induced unmasking occurs is not well understood. In this report, we show that foci of unmasking co-localize with areas of increased chitin within the yeast cell wall in response to caspofungin, and that inhibition of chitin synthesis via nikkomycin Z attenuates caspofungin-induced β(1,3)-glucan exposure. Furthermore, we find that both the calcineurin and Mkc1 mitogen-activated protein kinase pathways work synergistically to regulate β(1,3)-glucan exposure and chitin synthesis in response to drug treatment. When either of these pathways are interrupted, it results in a bimodal population of cells containing either high or low chitin content. Importantly, increased unmasking correlates with increased chitin content within these cells. Microscopy further indicates that caspofungin-induced unmasking correlates with actively growing cells. Collectively, our work presents a model in which chitin synthesis induces unmasking within the cell wall in response to caspofungin in growing cells. IMPORTANCE Systemic candidiasis has reported mortality rates ranging from 20% to 40%. The echinocandins, including caspofungin, are first-line antifungals used to treat systemic candidiasis. However, studies in mice have shown that echinocandin efficacy relies on both its cidal impacts on Candida albicans, as well as a functional immune system to successfully clear invading fungi. In addition to direct C. albicans killing, caspofungin increases exposure (unmasking) of immunogenic β(1,3)-glucan moieties. To evade immune detection, β(1,3)-glucan is normally masked within the C. albicans cell wall. Consequently, unmasked β(1,3)-glucan renders these cells more visible to the host immune system and attenuates disease progression. Therefore, discovery of how caspofungin-induced unmasking occurs is needed to elucidate how the drug facilitates host immune system-mediated clearance in vivo. We report a strong and consistent correlation between chitin deposition and unmasking in response to caspofungin and propose a model in which altered chitin synthesis drives increased unmasking during drug exposure.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Chen KZ, Wang LL, Liu JY, Zhao JT, Huang SJ, Xiang MJ. P4-ATPase subunit Cdc50 plays a role in yeast budding and cell wall integrity in Candida glabrata. BMC Microbiol 2023; 23:99. [PMID: 37046215 PMCID: PMC10100066 DOI: 10.1186/s12866-023-02810-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND As highly-conserved types of lipid flippases among fungi, P4-ATPases play a significant role in various cellular processes. Cdc50 acts as the regulatory subunit of flippases, forming heterodimers with Drs2 to translocate aminophospholipids. Cdc50 homologs have been reported to be implicated in protein trafficking, drug susceptibility, and virulence in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans. It is likely that Cdc50 has an extensive influence on fungal cellular processes. The present study aimed to determine the function of Cdc50 in Candida glabrata by constructing a Δcdc50 null mutant and its complemented strain. RESULTS In Candida glabrata, the loss of Cdc50 led to difficulty in yeast budding, probably caused by actin depolarization. The Δcdc50 mutant also showed hypersensitivity to azoles, caspofungin, and cell wall stressors. Further experiments indicated hyperactivation of the cell wall integrity pathway in the Δcdc50 mutant, which elevated the major cell wall contents. An increase in exposure of β-(1,3)-glucan and chitin on the cell surface was also observed through flow cytometry. Interestingly, we observed a decrease in the phagocytosis rate when the Δcdc50 mutant was co-incubated with THP-1 macrophages. The Δcdc50 mutant also exhibited weakened virulence in nematode survival tests. CONCLUSION The results suggested that the lipid flippase subunit Cdc50 is implicated in yeast budding and cell wall integrity in C. glabrata, and thus have a broad influence on drug susceptibility and virulence. This work highlights the importance of lipid flippase, and offers potential targets for new drug research.
Collapse
Affiliation(s)
- Ke-Zhi Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Ling Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Yan Liu
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Tao Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Jia Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Xiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Loh JT, Lam KP. Fungal infections: Immune defense, immunotherapies and vaccines. Adv Drug Deliv Rev 2023; 196:114775. [PMID: 36924530 DOI: 10.1016/j.addr.2023.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Invasive fungal infection is an under recognized and emerging global health threat. Recently, the World Health Organization (WHO) released the first ever list of health-threatening fungi to guide research and public health interventions to strengthen global response to fungi infections and antifungal resistance. Currently, antifungal drugs only demonstrate partial success in improving prognosis of infected patients, and this is compounded by the rapid evolution of drug resistance among fungi species. The increased prevalence of fungal infections in individuals with underlying immunological deficiencies reflects the importance of an intact host immune system in controlling mycoses, and further highlights immunomodulation as a potential new avenue for the treatment of disseminated fungal diseases. In this review, we will summarize how host innate immune cells sense invading fungi through their pattern recognition receptors, and subsequently initiate a series of effector mechanisms and adaptive immune responses to mediate fungal clearance. In addition, we will discuss emerging preclinical and clinical data on antifungal immunotherapies and fungal vaccines which can potentially expand our antifungal armamentarium in future.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, S138648, Republic of Singapore.
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, S138648, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5, Science Drive 2, S117545, Republic of Singapore; School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, S637551, Republic of Singapore.
| |
Collapse
|
16
|
Du J, Dong Y, Zhao H, Peng L, Wang Y, Yu Q, Li M. Transcriptional regulation of autophagy, cell wall stress response and pathogenicity by Pho23 in C. albicans. FEBS J 2023; 290:855-871. [PMID: 36152022 DOI: 10.1111/febs.16636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 02/04/2023]
Abstract
The modification of chromatin by histone deacetylases (HDACs) has critical roles in transcriptional regulation. In this study, we identified the Rpd3 HDAC complex component Pho23 in Candida albicans and explored its role in the transcriptional regulation of physiological processes. PHO23 deletion increased autophagic activity and upregulated the transcription of ATG genes. Moreover, the deletion of PHO23 severely impaired cell wall stress resistance and reduced the cell wall integrity (CWI) pathway in response to cell wall stress. Furthermore, the pho23Δ/Δ mutant had partial defects in hyphal development and protease secretion, which were associated with the downregulation of genes involved in hyphal development (e.g. HWP1, ALS3 and ECE1) and genes encoding secreted aspartic proteases (e.g. SAP4, SAP5, SAP6 and SAP9). In addition, the deletion of PHO23 strongly attenuated systemic infection and kidney fungal burden in mice, demonstrating that Pho23 is required for the virulence of C. albicans. Together, our results revealed that Pho23 regulates many key physiological processes in C. albicans at the transcriptional level. These data also shed light on the potential for exploiting Rpd3 HDAC complex-related proteins as antifungal targets.
Collapse
Affiliation(s)
- Jiawen Du
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yixuan Dong
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - He Zhao
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Liping Peng
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yao Wang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qilin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Mingchun Li
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
17
|
de Assis LJ, Bain JM, Liddle C, Leaves I, Hacker C, Peres da Silva R, Yuecel R, Bebes A, Stead D, Childers DS, Pradhan A, Mackenzie K, Lagree K, Larcombe DE, Ma Q, Avelar GM, Netea MG, Erwig LP, Mitchell AP, Brown GD, Gow NAR, Brown AJP. Nature of β-1,3-Glucan-Exposing Features on Candida albicans Cell Wall and Their Modulation. mBio 2022; 13:e0260522. [PMID: 36218369 PMCID: PMC9765427 DOI: 10.1128/mbio.02605-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/15/2023] Open
Abstract
Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as β-1,3-glucan. In C. albicans, most β-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some β-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed β-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that β-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed β-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces β-1,3-glucan exposure at bud scars and at punctate foci. β-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates β-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that β-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP β-1,3-glucan, which is an essential component of its cell wall. Most of this β-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed β-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of β-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that β-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.
Collapse
Affiliation(s)
- Leandro José de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Judith M. Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | | | - Roberta Peres da Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - Attila Bebes
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - David Stead
- Aberdeen Proteomics Facility, Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Kevin Mackenzie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Daniel E. Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gabriela Mol Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
18
|
Chang W, Zhang M, Jin X, Zhang H, Zheng H, Zheng S, Qiao Y, Yu H, Sun B, Hou X, Lou H. Inhibition of fungal pathogenicity by targeting the H 2S-synthesizing enzyme cystathionine β-synthase. SCIENCE ADVANCES 2022; 8:eadd5366. [PMID: 36525499 PMCID: PMC9757746 DOI: 10.1126/sciadv.add5366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global emergence of antifungal resistance threatens the limited arsenal of available treatments and emphasizes the urgent need for alternative antifungal agents. Targeting fungal pathogenic functions is an appealing alternative therapeutic strategy. Here, we show that cystathionine β-synthase (CBS), compared with cystathionine γ-lyase, is the major enzyme that synthesizes hydrogen sulfide in the pathogenic fungus Candida albicans. Deletion of CBS leads to deficiencies in resistance to oxidative stress, retarded cell growth, defective hyphal growth, and increased β-glucan exposure, which, together, reduce the pathogenicity of C. albicans. By high-throughput screening, we identified protolichesterinic acid, a natural molecule obtained from a lichen, as an inhibitor of CBS that neutralizes the virulence of C. albicans and exhibits therapeutic efficacy in a murine candidiasis model. These findings support the application of CBS as a potential therapeutic target to fight fungal infections.
Collapse
Affiliation(s)
- Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haijuan Zhang
- School of Pharmacy, Linyi University, Linyi, Shandong Province, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Sha Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yanan Qiao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haina Yu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong Province, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
19
|
Wagner AS, Vogel AK, Lumsdaine SW, Phillips EK, Willems HME, Peters BM, Reynolds TB. Mucosal Infection with Unmasked Candida albicans Cells Impacts Disease Progression in a Host Niche-Specific Manner. Infect Immun 2022; 90:e0034222. [PMID: 36374100 PMCID: PMC9753624 DOI: 10.1128/iai.00342-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Shielding the immunogenic cell wall epitope β(1, 3)-glucan under an outer layer of mannosylated glycoproteins is an essential virulence factor deployed by Candida albicans during systemic infection. Accordingly, mutants with increased β(1, 3)-glucan exposure (unmasking) display increased immunostimulatory capabilities in vitro and attenuated virulence during systemic infection in mice. However, little work has been done to assess the impact of increased unmasking during the two most common manifestations of candidiasis, namely, oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC). We have shown previously that the expression of a single hyperactive allele of the MAP3K STE11ΔN467 induces unmasking via the Cek1 MAPK pathway, attenuates fungal burden, and prolongs survival during systemic infection in mice. Here, we expand on these findings and show that infection with an unmasked STE11ΔN467 mutant also impacts disease progression during OPC and VVC murine infection models. Male mice sublingually infected with the STE11ΔN467 mutant showed a significant reduction in tongue fungal burden at 2 days postinfection and a modest reduction at 5 days postinfection. However, we find that selection for STE11ΔN467 suppressor mutants that no longer display increased unmasking occurs within the oral cavity and is likely responsible for the restoration of fungal burden trends to wild-type levels later in the infection. In the VVC infection model, no attenuation in fungal burden was observed. However, polymorphonuclear cell recruitment and interleukin-1β (IL-1β) levels within the vaginal lumen, markers of immunopathogenesis, were increased in mice infected with unmasked STE11ΔN467 cells. Thus, our data suggest a niche-specific impact for unmasking on disease progression.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Amanda K. Vogel
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Hubertine M. E. Willems
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
20
|
Basante-Bedoya MA, Bogliolo S, Garcia-Rodas R, Zaragoza O, Arkowitz RA, Bassilana M. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans. PLoS Genet 2022; 18:e1010549. [PMID: 36516161 PMCID: PMC9797089 DOI: 10.1371/journal.pgen.1010549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
Collapse
Affiliation(s)
| | | | - Rocio Garcia-Rodas
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Health Institute Carlos III, Madrid, Spain
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- * E-mail:
| |
Collapse
|
21
|
López-Ramírez LA, Martínez-Duncker I, Márquez-Márquez A, Vargas-Macías AP, Mora-Montes HM. Silencing of ROT2, the Encoding Gene of the Endoplasmic Reticulum Glucosidase II, Affects the Cell Wall and the Sporothrix schenckii-Host Interaction. J Fungi (Basel) 2022; 8:1220. [PMID: 36422041 PMCID: PMC9692468 DOI: 10.3390/jof8111220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/01/2023] Open
Abstract
Sporothrix schenckii is a member of the Sporothrix pathogenic clade and one of the most common etiological agents of sporotrichosis, a subcutaneous fungal infection that affects both animal and human beings. Like other fungal pathogens, the Sporothrix cell wall is composed of structural polysaccharides and glycoproteins that are covalently modified with both N-linked and O-linked glycans. Thus far, little is known about the N-linked glycosylation pathway in this organism or its contribution to cell wall composition and interaction with the host. Here, we silenced ROT2, which encodes the catalytic subunit of the endoplasmic reticulum α-glucosidase II, a processing enzyme key for the N-linked glycan core processing. Silencing of ROT2 led to the accumulation of the Glc2Man9GlcNAC2 glycan core at the cell wall and a reduction in the total content of N-linked glycans found in the wall. However, the highly silenced mutants showed a compensatory mechanism with increased content of cell wall O-linked glycans. The phenotype of mutants with intermediate levels of ROT2 silencing was more informative, as they showed changes in the cell wall composition and exposure of β-1.3-glucans and chitin at the cell surface. Furthermore, the ability to stimulate cytokine production by human mononuclear cells was affected, along with the phagocytosis by human monocyte-derived macrophages, in a mannose receptor-, complement receptor 3-, and TLR4-dependent stimulation. In an insect model of experimental sporotrichosis, these mutant cells showed virulence attenuation. In conclusion, S. schenckii ROT2 is required for proper N-linked glycosylation, cell wall organization and composition, and interaction with the host.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Anayeli Márquez-Márquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Ana P. Vargas-Macías
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
22
|
Di Mambro T, Vanzolini T, Bianchi M, Crinelli R, Canonico B, Tasini F, Menotta M, Magnani M. Development and in vitro characterization of a humanized scFv against fungal infections. PLoS One 2022; 17:e0276786. [PMID: 36315567 PMCID: PMC9621433 DOI: 10.1371/journal.pone.0276786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
The resistance and the birth of new intrinsic and multidrug-resistant pathogenic species like C. auris is creating great concern in the antifungal world. Given the limited drug arsenal and the lack of effectiveness of the available compounds, there is an urgent need for innovative approaches. The murine mAb 2G8 was humanized and engineered in silico to develop a single-chain fragment variable (hscFv) antibody against β-1,3-glucans which was then expressed in E. coli. Among the recombinant proteins developed, a soluble candidate with high stability and affinity was obtained. This selected protein is VL-linker-VH oriented, and it is characterized by the presence of two ubiquitin monomers at the N-terminus and a His tag at the C-terminus. This construct, Ub2-hscFv-His, guaranteed stability, solubility, efficient purification and satisfactory recovery of the recombinant product. HscFv can bind β-1,3-glucans both as coated antigens and on C. auris and C. albicans cells similarly to its murine parental and showed long stability and retention of binding ability when stored at 4°, -20° and -80° C. Furthermore, it was efficient in enhancing the antifungal activity of drugs caspofungin and amphotericin B against C. auris. The use of biological drugs as antifungals is limited; here we present a promising hscFv which has the potential to be useful in combination with currently available antifungal drugs.
Collapse
Affiliation(s)
| | - Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Filippo Tasini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Magnani
- Diatheva s.r.l., Cartoceto, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
23
|
Avelar GM, Dambuza IM, Ricci L, Yuecel R, Mackenzie K, Childers DS, Bain JM, Pradhan A, Larcombe DE, Netea MG, Erwig LP, Brown GD, Duncan SH, Gow NA, Walker AW, Brown AJ. Impact of changes at the Candida albicans cell surface upon immunogenicity and colonisation in the gastrointestinal tract. CELL SURFACE (AMSTERDAM, NETHERLANDS) 2022; 8:100084. [PMID: 36299406 PMCID: PMC9589014 DOI: 10.1016/j.tcsw.2022.100084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The immunogenicity of Candida albicans cells is influenced by changes in the exposure of microbe-associated molecular patterns (MAMPs) on the fungal cell surface. Previously, the degree of exposure on the C. albicans cell surface of the immunoinflammatory MAMP β-(1,3)-glucan was shown to correlate inversely with colonisation levels in the gastrointestinal (GI) tract. This is important because life-threatening systemic candidiasis in critically ill patients often arises from translocation of C. albicans strains present in the patient's GI tract. Therefore, using a murine model, we have examined the impact of gut-related factors upon β-glucan exposure and colonisation levels in the GI tract. The degree of β-glucan exposure was examined by imaging flow cytometry of C. albicans cells taken directly from GI compartments, and compared with colonisation levels. Fungal β-glucan exposure was lower in the cecum than the small intestine, and fungal burdens were correspondingly higher in the cecum. This inverse correlation did not hold for the large intestine. The gut fermentation acid, lactate, triggers β-glucan masking in vitro, leading to attenuated anti-Candida immune responses. Additional fermentation acids are present in the GI tract, including acetate, propionate, and butyrate. We show that these acids also influence β-glucan exposure on C. albicans cells in vitro and, like lactate, they influence β-glucan exposure via Gpr1/Gpa2-mediated signalling. Significantly, C. albicans gpr1Δ gpa2Δ cells displayed elevated β-glucan exposure in the large intestine and a corresponding decrease in fungal burden, consistent with the idea that Gpr1/Gpa2-mediated β-glucan masking influences colonisation of this GI compartment. Finally, extracts from the murine gut and culture supernatants from the mannan grazing gut anaerobe Bacteroides thetaiotaomicron promote β-glucan exposure at the C. albicans cell surface. Therefore, the local microbiota influences β-glucan exposure levels directly (via mannan grazing) and indirectly (via fermentation acids), whilst β-glucan masking appears to promote C. albicans colonisation of the murine large intestine.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivy M. Dambuza
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Liviana Ricci
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kevin Mackenzie
- Microscopy & Histology Facility, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Delma S. Childers
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Judith M. Bain
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Arnab Pradhan
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E. Larcombe
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Johnson-Johnson Innovation, EMEA Innovation Centre, One Chapel Place, London W1G 0BG, UK
| | - Gordon D. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Sylvia H. Duncan
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil A.R. Gow
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alan W. Walker
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J.P. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- Corresponding author at: Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
24
|
Wagner AS, Lumsdaine SW, Mangrum MM, King AE, Hancock TJ, Sparer TE, Reynolds TB. Cek1 regulates ß(1,3)-glucan exposure through calcineurin effectors in Candida albicans. PLoS Genet 2022; 18:e1010405. [PMID: 36121853 PMCID: PMC9521907 DOI: 10.1371/journal.pgen.1010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
In order to successfully induce disease, the fungal pathogen Candida albicans regulates exposure of antigens like the cell wall polysaccharide ß(1,3)-glucan to the host immune system. C. albicans covers (masks) ß(1,3)-glucan with a layer of mannosylated glycoproteins, which aids in immune system evasion by acting as a barrier to recognition by host pattern recognition receptors. Consequently, enhanced ß(1,3)-glucan exposure (unmasking) makes fungal cells more visible to host immune cells and facilitates more robust fungal clearance. However, an understanding of how C. albicans regulates its exposure levels of ß(1,3)-glucan is needed to leverage this phenotype. Signal transduction pathways and their corresponding effector genes mediating these changes are only beginning to be defined. Here, we report that the phosphatase calcineurin mediates unmasking of ß(1,3)-glucan in response to inputs from the Cek1 MAPK pathway and in response to caspofungin exposure. In contrast, calcineurin reduces ß-glucan exposure in response to high levels of extracellular calcium. Thus, depending on the input, calcineurin acts as a switchboard to regulate ß(1,3)-glucan exposure levels. By leveraging these differential ß(1,3)-glucan exposure phenotypes, we identified two novel effector genes in the calcineurin regulon, FGR41 and C1_11990W_A, that encode putative cell wall proteins and mediate masking/unmasking. Loss of either effector caused unmasking and attenuated virulence during systemic infection in mice. Furthermore, immunosuppression restored the colonization decrease seen in mice infected with the fgr41Δ/Δ mutant to wild-type levels, demonstrating a reliance on the host immune system for virulence attenuation. Thus, calcineurin and its downstream regulon are general regulators of unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Ainsley E. King
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
25
|
Ye MS, Chen HL, Liu CX, Ren AJ, Yang HW, Wang SS. Caspofungin at Sub-inhibitory Concentration Promotes the Formation of Candida Albicans Persister Cells. J Appl Microbiol 2022; 133:2466-2473. [PMID: 35858676 DOI: 10.1111/jam.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
Abstract
AIMS Low caspofungin exposure is frequently encountered in patients with invasive candidiasis caused by Candida albicans (C. albicans). This study aimed to investigate the effects of caspofungin on C. albicans at sub-inhibitory concentrations. METHODS AND RESULTS First, a comparative transcriptomics analysis was performed on C. albicans receiving caspofungin at sub-minimum inhibitory concentrations (sub-MIC). The results showed that caspofungin significantly changed the mRNA expression profile in DAY185, with DE-mRNAs enriched in the functions of cell wall biosynthesis, metabolism, etc. Subsequently, cellular fitness, cell aggregation, energy metabolism activity, and the proportion of persister cells of C. albicans were quantitatively and/or qualitatively assessed after sub-MIC caspofungin exposure. No significant changes in cell fitness and aggregation formation were observed during treatment of C. albicans with sub-MIC caspofungin. In C. albicans aggregation treated with sub-MIC caspofungin, we observed a decrease in respiratory metabolism and an increase in persister cells; this effect was more pronounced in als1ΔΔ than in DAY185. CONCLUSIONS Pre-exposure to sub-MIC caspofungin suppresses C. albicans respiratory metabolism and promotes persister cell development. SIGNIFICANCE AND IMPACT OF STUDY Caspofungin should be used with caution in patients with C. albicans infections, as anti-infection therapy may fail due to persister cells.
Collapse
Affiliation(s)
| | - Hua-le Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Cai-Xia Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ai-Juan Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hai-Wei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Shi-Shi Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
26
|
Shao TY, Kakade P, Witchley JN, Frazer C, Murray KL, Ene IV, Haslam DB, Hagan T, Noble SM, Bennett RJ, Way SS. Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Rep 2022; 39:110837. [PMID: 35584674 PMCID: PMC9196946 DOI: 10.1016/j.celrep.2022.110837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Systemic immunity is stringently regulated by commensal intestinal microbes, including the pathobiont Candida albicans. This fungus utilizes various transcriptional and morphological programs for host adaptation, but how this heterogeneity affects immunogenicity remains uncertain. We show that UME6, a transcriptional regulator of filamentation, is essential for intestinal C. albicans-primed systemic Th17 immunity. UME6 deletion and constitutive overexpression strains are non-immunogenic during commensal colonization, whereas immunogenicity is restored by C. albicans undergoing oscillating UME6 expression linked with β-glucan and mannan production. In turn, intestinal reconstitution with these fungal cell wall components restores protective Th17 immunity to mice colonized with UME6-locked variants. These fungal cell wall ligands and commensal C. albicans stimulate Th17 immunity through multiple host pattern recognition receptors, including Toll-like receptor 2 (TLR2), TLR4, Dectin-1, and Dectin-2, which work synergistically for colonization-induced protection. Thus, dynamic gene expression fluctuations by C. albicans during symbiotic colonization are essential for priming host immunity against disseminated infection.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Immunobiology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Pallavi Kakade
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Jessica N Witchley
- Department of Microbiology and Immunology, University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Corey Frazer
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Kathryn L Murray
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Iuliana V Ene
- Fungal Heterogeneity Lab, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
27
|
Chen T, Wagner AS, Reynolds TB. When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ß(1,3)-Glucan Exposure in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:842501. [PMID: 36908584 PMCID: PMC10003681 DOI: 10.3389/ffunb.2022.842501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
Abstract
Candida spp. are an important source of systemic and mucosal infections in immune compromised populations. However, drug resistance or toxicity has put limits on the efficacy of current antifungals. The C. albicans cell wall is considered a good therapeutic target due to its roles in viability and fungal pathogenicity. One potential method for improving antifungal strategies could be to enhance the detection of fungal cell wall antigens by host immune cells. ß(1,3)-glucan, which is an important component of fungal cell walls, is a highly immunogenic epitope. Consequently, multiple host pattern recognition receptors, such as dectin-1, complement receptor 3 (CR3), and the ephrin type A receptor A (EphA2) are capable of recognizing exposed (unmasked) ß(1,3)-glucan moieties on the cell surface to initiate an anti-fungal immune response. However, ß(1,3)-glucan is normally covered (masked) by a layer of glycosylated proteins on the outer surface of the cell wall, hiding it from immune detection. In order to better understand possible mechanisms of unmasking ß(1,3)-glucan, we must develop a deeper comprehension of the pathways driving this phenotype. In this review, we describe the medical importance of ß(1,3)-glucan exposure in anti-fungal immunity, and highlight environmental stimuli and stressors encountered within the host that are capable of inducing changes in the levels of surface exposed ß(1,3)-glucan. Furthermore, particular focus is placed on how signal transduction cascades regulate changes in ß(1,3)-glucan exposure, as understanding the role that these pathways have in mediating this phenotype will be critical for future therapeutic development.
Collapse
Affiliation(s)
- Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
28
|
Tripathi A, Nahar A, Sharma R, Kanaskie T, Al-Hebshi N, Puri S. High iron-mediated increased oral fungal burden, oral-to-gut transmission, and changes to pathogenicity of Candida albicans in oropharyngeal candidiasis. J Oral Microbiol 2022; 14:2044110. [PMID: 35251523 PMCID: PMC8896197 DOI: 10.1080/20002297.2022.2044110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background Aim Methods Results Conclusion
Collapse
Affiliation(s)
- Aparna Tripathi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Anubhav Nahar
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Rishabh Sharma
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Trevor Kanaskie
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Nezar Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Zhou Y, Cassilly CD, Reynolds TB. Mapping the Substrate-Binding Sites in the Phosphatidylserine Synthase in Candida albicans. Front Cell Infect Microbiol 2022; 11:765266. [PMID: 35004345 PMCID: PMC8727905 DOI: 10.3389/fcimb.2021.765266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
The fungal phosphatidylserine (PS) synthase, a membrane protein encoded by the CHO1 gene, is a potential drug target for pathogenic fungi, such as Candida albicans. However, both substrate-binding sites of C. albicans Cho1 have not been characterized. Cho1 has two substrates: cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine. Previous studies identified a conserved CDP-alcohol phosphotransferase (CAPT) binding motif, which is present within Cho1. We tested the CAPT motif for its role in PS synthesis by mutating conserved residues using alanine substitution mutagenesis. PS synthase assays revealed that mutations in all but one conserved amino acid within the CAPT motif resulted in decreased Cho1 function. In contrast, there were no clear motifs in Cho1 for binding serine. Therefore, to identify the serine binding site, PS synthase sequences from three fungi were aligned with sequences of a similar enzyme, phosphatidylinositol (PI) synthase, from the same fungi. This revealed a motif that was unique to PS synthases. Using alanine substitution mutagenesis, we found that some of the residues in this motif are required for Cho1 function. Two alanine substitution mutants, L184A and R189A, exhibited contrasting impacts on PS synthase activity, and were characterized for their Michaelis-Menten kinetics. The L184A mutant displayed enhanced PS synthase activity and showed an increased Vmax. In contrast, R189A showed decreased PS synthase activity and increased Km for serine, suggesting that residue R189 is involved in serine binding. These results help to characterize PS synthase substrate binding, and should direct rational approaches for finding Cho1 inhibitors that may lead to better antifungals.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Chelsi D Cassilly
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, United States
| |
Collapse
|
30
|
Yang M, Solis NV, Marshall M, Garleb R, Zhou T, Wang D, Swidergall M, Pearlman E, Filler SG, Liu H. Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence. PLoS Pathog 2022; 18:e1010192. [PMID: 34995333 PMCID: PMC8775328 DOI: 10.1371/journal.ppat.1010192] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/20/2022] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.
Collapse
Affiliation(s)
- Mengli Yang
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Michaela Marshall
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Rachel Garleb
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Daidong Wang
- Amgen Inc. Thousand Oaks, California, United States of America
| | - Marc Swidergall
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
- Institute of Immunology, University of California, Irvine, California, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
- School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, United States of America
- Institute of Immunology, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Front Genome Ed 2021; 2:606281. [PMID: 34713231 PMCID: PMC8525362 DOI: 10.3389/fgeed.2020.606281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
The Candida genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of Candida species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the Candida genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is among the most recent of these advancements, bringing unparalleled versatility and precision to genetic manipulation of Candida species. Since its initial applications in Candida albicans, CRISPR-Cas9 platforms are rapidly evolving to permit efficient gene editing in other members of the genus. The technology has proven useful in elucidating the pathogenesis and host-pathogen interactions of medically relevant Candida species, and has led to novel insights on antifungal drug susceptibility and resistance, as well as innovative treatment strategies. CRISPR-Cas9 tools have also been exploited to uncover potential applications of Candida species in industrial contexts. This review is intended to provide a historical overview of genetic approaches used to study the Candida genus and to discuss the state of the art of CRISPR-based genetic manipulation of Candida species, highlighting its contributions to deciphering the biology of this genus, as well as providing perspectives for the future of Candida genetics.
Collapse
Affiliation(s)
- Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
32
|
Wagner AS, Hancock TJ, Lumsdaine SW, Kauffman SJ, Mangrum MM, Phillips EK, Sparer TE, Reynolds TB. Activation of Cph1 causes ß(1,3)-glucan unmasking in Candida albicans and attenuates virulence in mice in a neutrophil-dependent manner. PLoS Pathog 2021; 17:e1009839. [PMID: 34432857 PMCID: PMC8423308 DOI: 10.1371/journal.ppat.1009839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/07/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Masking the immunogenic cell wall epitope ß(1,3)-glucan under an outer layer of mannosylated glycoproteins is an important virulence factor deployed by Candida albicans during infection. Consequently, increased ß(1,3)-glucan exposure (unmasking) reveals C. albicans to the host's immune system and attenuates its virulence. We have previously shown that activation of the Cek1 MAPK pathway via expression of a hyperactive allele of an upstream kinase (STE11ΔN467) induced unmasking. It also increased survival of mice in a murine disseminated candidiasis model and attenuated kidney fungal burden by ≥33 fold. In this communication, we utilized cyclophosphamide-induced immunosuppression to test if the clearance of the unmasked STE11ΔN467 mutant was dependent on the host immune system. Suppression of the immune response by cyclophosphamide reduced the attenuation in fungal burden caused by the STE11ΔN467 allele. Moreover, specific depletion of neutrophils via 1A8 antibody treatment also reduced STE11ΔN467-dependent fungal burden attenuation, but to a lesser extent than cyclophosphamide, demonstrating an important role for neutrophils in mediating fungal clearance of unmasked STE11ΔN467 cells. In an effort to understand the mechanism by which Ste11ΔN467 causes unmasking, transcriptomics were used to reveal that several components in the Cek1 MAPK pathway were upregulated, including the transcription factor CPH1 and the cell wall sensor DFI1. In this report we show that a cph1ΔΔ mutation restored ß(1,3)-glucan exposure to wild-type levels in the STE11ΔN467 strain, confirming that Cph1 is the transcription factor mediating Ste11ΔN467-induced unmasking. Furthermore, Cph1 is shown to induce a positive feedback loop that increases Cek1 activation. In addition, full unmasking by STE11ΔN467 is dependent on the upstream cell wall sensor DFI1. However, while deletion of DFI1 significantly reduced Ste11ΔN467-induced unmasking, it did not impact activation of the downstream kinase Cek1. Thus, it appears that once stimulated by Ste11ΔN467, Dfi1 activates a parallel signaling pathway that is involved in Ste11ΔN467-induced unmasking.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Stephen W. Lumsdaine
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mikayla M. Mangrum
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
33
|
Hameed S, Hans S, Singh S, Dhiman R, Monasky R, Pandey RP, Thangamani S, Fatima Z. Revisiting the Vital Drivers and Mechanisms of β-Glucan Masking in Human Fungal Pathogen, Candida albicans. Pathogens 2021; 10:942. [PMID: 34451406 PMCID: PMC8399646 DOI: 10.3390/pathogens10080942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/31/2022] Open
Abstract
Among the several human fungal pathogens, Candida genus represents one of the most implicated in the clinical scenario. There exist several distinctive features that govern the establishment of Candida infections in addition to their capacity to adapt to multiple stress conditions inside humans which also include evasion of host immune responses. The complex fungal cell wall of the prevalent pathogen, Candida albicans, is one of the main targets of antifungal drugs and recognized by host immune cells. The wall consists of tiered arrangement of an outer thin but dense covering of mannan and inner buried layers of β-glucan and chitin. However, the pathogenic fungi adopt strategies to evade immune recognition by masking these molecules. This capacity to camouflage the immunogenic polysaccharide β-glucan from the host is a key virulence factor of C. albicans. The present review is an attempt to collate various underlying factors and mechanisms involved in Candida β-glucan masking from the available pool of knowledge and provide a comprehensive understanding. This will further improve therapeutic approaches to candidiasis by identifying new antifungal targets that blocks fungal immune evasion.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| | - Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India; (R.D.); (R.P.P.)
| | - Ross Monasky
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA; (R.M.); (S.T.)
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India; (R.D.); (R.P.P.)
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA; (R.M.); (S.T.)
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.H.); (S.H.); (S.S.)
| |
Collapse
|
34
|
Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE, Rodriguez Rondon AV, Nev OA, Brown AJP. Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens. Trends Microbiol 2021; 29:416-427. [PMID: 33059975 DOI: 10.1016/j.tim.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.
Collapse
Affiliation(s)
- Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Leandro J de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alejandra V Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Olga A Nev
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
35
|
Branco J, Martins-Cruz C, Rodrigues L, Silva RM, Araújo-Gomes N, Gonçalves T, Miranda IM, Rodrigues AG. The transcription factor Ndt80 is a repressor of Candida parapsilosis virulence attributes. Virulence 2021; 12:601-614. [PMID: 33538224 PMCID: PMC7872087 DOI: 10.1080/21505594.2021.1878743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Candida parapsilosis is an emergent opportunistic yeast among hospital settings that affects mainly neonates and immunocompromised patients. Its most remarkable virulence traits are the ability to adhere to prosthetic materials, as well as the formation of biofilm on abiotic surfaces. The Ndt80 transcription factor was identified as one of the regulators of biofilm formation by C. parapsilosis; however, its function in this process was not yet clarified. By knocking out NDT80 (CPAR2-213640) gene, or even just one single copy of the gene, we observed substantial alterations of virulence attributes, including morphogenetic changes, adhesion and biofilm growth profiles. Both ndt80Δ and ndt80ΔΔ mutants changed colony and cell morphologies from smooth, yeast-shaped to crepe and pseudohyphal elongated forms, exhibiting promoted adherence to polystyrene microspheres and notably, forming a higher amount of biofilm compared to wild-type strain. Interestingly, we identified transcription factors Ume6, Cph2, Cwh41, Ace2, Bcr1, protein kinase Mkc1 and adhesin Als7 to be under Ndt80 negative regulation, partially explaining the phenotypes displayed by the ndt80ΔΔ mutant. Furthermore, ndt80ΔΔ pseudohyphae adhered more rapidly and were more resistant to murine macrophage attack, becoming deleterious to such cells after phagocytosis. Unexpectedly, our findings provide the first evidence for a direct role of Ndt80 as a repressor of C. parapsilosis virulence attributes. This finding shows that C. parapsilosis Ndt80 functionally diverges from its homolog in the close related fungal pathogen C. albicans.
Collapse
Affiliation(s)
- Joana Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Cláudia Martins-Cruz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Lisa Rodrigues
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Raquel M Silva
- Faculdade De Medicina Dentária, CIIS - Centro De Investigação Interdisciplinar Em Saúde, Universidade Católica Portuguesa , Viseu, Portugal
| | - Nuno Araújo-Gomes
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Teresa Gonçalves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Acácio G Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto , Porto, Portugal
| |
Collapse
|
36
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
37
|
Candida albicans cell wall as a target of action for the protein-carbohydrate fraction from coelomic fluid of Dendrobaena veneta. Sci Rep 2020; 10:16352. [PMID: 33004852 PMCID: PMC7529762 DOI: 10.1038/s41598-020-73044-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
The protein-polysaccharide fraction (AAF) isolated from the coelomic fluid of the earthworm Dendrobaena veneta destroys C. albicans cells by changing their morphology, disrupting cell division, and leading to cell death. Morphological changes in C. albicans cells induced by treatment with AAF were documented using DIC, SEM, and AFM. Congo Red staining showed that the fungal wall structure was changed after incubation with AAF. The effect on C. albicans cell walls was shown by AFM analysis of the surface roughness of fungal cell walls and changes in the wall thickness were visualized using Cryo-SEM. The FTIR analysis of C. albicans cells incubated with AAF indicated attachment of protein or peptide compounds to the fungal walls. The intact LC-ESI-MS analysis allowed accurate determination of the masses of molecules present in AAF. As shown by the chromatographic study, the fraction does not cross biological membranes. The Cryo-TEM analysis of AAF demonstrated the ability of smaller subunits to combine into larger agglomerates. AAF is thermally stable, which was confirmed by Raman spectroscopy. AAF can be considered as a potential antifungal antibiotic with activity against clinical C. albicans strains.
Collapse
|
38
|
Inhibition of Respiration of Candida albicans by Small Molecules Increases Phagocytosis Efficacy by Macrophages. mSphere 2020; 5:5/2/e00016-20. [PMID: 32295866 PMCID: PMC7160677 DOI: 10.1128/msphere.00016-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida albicans adapts to various conditions in different body niches by regulating gene expression, protein synthesis, and metabolic pathways. These adaptive reactions not only allow survival but also influence the interaction with host cells, which is governed by the composition and structure of the fungal cell wall. Numerous studies had shown linkages between mitochondrial functionality, cell wall integrity and structure, and pathogenicity. Thus, we decided to inhibit single complexes of the respiratory chain of C. albicans and to analyze the resultant interaction with macrophages via their phagocytic activity. Remarkably, inhibition of the fungal bc1 complex by antimycin A increased phagocytosis, which correlated with an increased accessibility of β-glucans. To contribute to mechanistic insights, we performed metabolic studies, which highlighted significant changes in the abundance of constituents of the plasma membrane. Collectively, our results reinforce the strong linkage between fungal energy metabolism and other components of fungal physiology, which also determine the vulnerability to immune defense reactions.IMPORTANCE The yeast Candida albicans is one of the major fungal human pathogens, for which new therapeutic approaches are required. We aimed at enhancements of the phagocytosis efficacy of macrophages by targeting the cell wall structure of C. albicans, as the coverage of the β-glucan layer by mannans is one of the immune escape mechanisms of the fungus. We unambiguously show that inhibition of the fungal bc1 complex correlates with increased accessibilities of β-glucans and improved phagocytosis efficiency. Metabolic studies proved not only the known direct effects on reactive oxygen species (ROS) production and fermentative pathways but also the clear downregulation of the ergosterol pathway and upregulation of unsaturated fatty acids. The changed composition of the plasma membrane could also influence the interaction with the overlying cell wall. Thus, our work highlights the far-reaching relevance of energy metabolism, indirectly also for host-pathogen interactions, without affecting viability.
Collapse
|
39
|
Liu J, Li Q, Wang C, Shao J, Wang T, Wu D, Ma K, Yan G, Yin D. Antifungal evaluation of traditional herbal monomers and their potential for inducing cell wall remodeling in Candida albicans and Candida auris. BIOFOULING 2020; 36:319-331. [PMID: 32410461 DOI: 10.1080/08927014.2020.1759559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Traditional herbal monomers (THMs) are widely distributed in many traditional Chinese formulas (TCFs) and decoctions (TCDs) and are frequently used for the prevention and treatment of fungal infections. The antifungal activities of five common THMs, including sodium houttuyfonate (SH), berberine (BER), palmatine (PAL), jatrorrhizine (JAT) and cinnamaldehyde (CIN), and their potential for inducing cell wall remodeling (CWR), were evaluated against Candida albicans SC5314 and Candida auris 12372. SH/CIN plus BER/PAL/JAT showed synergistic antifungal activity against both Candida isolates. Furthermore, SH-associated combinations (SH plus BER/PAL/JAT) induced stronger exposure of β-glucan and chitin than their counterparts, while CIN triggered more marked exposure compared with CIN-associated combinations (CIN plus BER/PAL/JAT). Collectively, this study demonstrated the anti-Candida effect and the CWR induction potential of the five THMs and their associated combinations, providing a possibility of their in vivo application against fungal-associated infections.
Collapse
Affiliation(s)
- Juanjuan Liu
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Qianqian Li
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Changzhong Wang
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| | - Jing Shao
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| | - Tianming Wang
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| | - Daqiang Wu
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| | - Kelong Ma
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| | - Guiming Yan
- Laboratory of Infection and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| | - Dengke Yin
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
40
|
Pathways That Synthesize Phosphatidylethanolamine Impact Candida albicans Hyphal Length and Cell Wall Composition through Transcriptional and Posttranscriptional Mechanisms. Infect Immun 2020; 88:IAI.00480-19. [PMID: 31792076 DOI: 10.1128/iai.00480-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
Candida albicans is a leading cause of systemic bloodstream infections, and synthesis of the phospholipid phosphatidylethanolamine (PE) is required for virulence. The psd1Δ/Δ psd2Δ/Δ mutant, which cannot synthesize PE by the cytidine diphosphate diacylglycerol (CDP-DAG) pathway, is avirulent in the mouse model of systemic candidiasis. Similarly, an ept1Δ/Δ mutant, which cannot produce PE by the Kennedy pathway, exhibits decreased kidney fungal burden in systemically infected mice. Conversely, overexpression of EPT1 results in a hypervirulent phenotype in this model. Thus, mutations that increase PE synthesis increase virulence, and mutations that decrease PE synthesis decrease virulence. However, the mechanism by which virulence is regulated by PE synthesis is only partially understood. RNA sequencing was performed on strains with deficient or excessive PE biosynthesis to elucidate the mechanism. Decreased PE synthesis from loss of EPT1 or PSD1 and PSD2 leads to downregulation of genes that impact mitochondrial function. Losses of PSD1 and PSD2, but not EPT1, cause significant increases in transcription of glycosylation genes, which may reflect the substantial cell wall defects in the psd1Δ/Δ psd2Δ/Δ mutant. These accumulated defects could contribute to the decreased virulence observed for mutants with deficient PE synthesis. In contrast to mutants with decreased PE synthesis, there were no transcriptional differences between the EPT1 overexpression strain and the wild type, indicating that the hypervirulent phenotype is a consequence of posttranscriptional changes. It was found that overexpression of EPT1 causes increased chitin content and increased hyphal length. These phenotypes may help to explain the previously observed hypervirulence in the EPT1 overexpressor.
Collapse
|
41
|
Wagener J, Striegler K, Wagener N. α- and β-1,3-Glucan Synthesis and Remodeling. Curr Top Microbiol Immunol 2020; 425:53-82. [PMID: 32193600 DOI: 10.1007/82_2020_200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucans are characteristic and major constituents of fungal cell walls. Depending on the species, different glucan polysaccharides can be found. These differ in the linkage of the D-glucose monomers which can be either in α- or β-conformation and form 1,3, 1,4 or 1,6 O-glycosidic bonds. The linkages and polymer lengths define the physical properties of the glucan macromolecules, which may form a scaffold for other cell wall structures and influence the rigidity and elasticity of the wall. β-1,3-glucan is essential for the viability of many fungal pathogens. Therefore, the β-1,3-glucan synthase complex represents an excellent and primary target structure for antifungal drugs. Fungal cell wall β-glucan is also an important pathogen-associated molecular pattern (PAMP). To hide from innate immunity, many fungal pathogens depend on the synthesis of cell wall α-glucan, which functions as a stealth molecule to mask the β-glucans itself or links other masking structures to the cell wall. Here, we review the current knowledge about the biosynthetic machineries that synthesize β-1,3-glucan, β-1,6-glucan, and α-1,3-glucan. We summarize the discovery of the synthases, major regulatory traits, and the impact of glucan synthesis deficiencies on the fungal organisms. Despite all efforts, many aspects of glucan synthesis remain yet unresolved, keeping research directed toward cell wall biogenesis an exciting and continuously challenging topic.
Collapse
Affiliation(s)
- Johannes Wagener
- Institut Für Hygiene Und Mikrobiologie, University of Würzburg, Würzburg, Germany. .,National Reference Center for Invasive Fungal Infections (NRZMyk), Jena, Germany.
| | - Kristina Striegler
- Institut Für Hygiene Und Mikrobiologie, University of Würzburg, Würzburg, Germany
| | - Nikola Wagener
- Department of Cell Biology, Medical Faculty, University of Munich, Martinsried, Germany
| |
Collapse
|
42
|
Cooperative Role of MAPK Pathways in the Interaction of Candida albicans with the Host Epithelium. Microorganisms 2019; 8:microorganisms8010048. [PMID: 31881718 PMCID: PMC7023383 DOI: 10.3390/microorganisms8010048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is an important human fungal pathogen responsible for tens of millions of infections as well as hundreds of thousands of severe life-threatening infections each year. MAP kinase (MAPK) signal transduction pathways facilitate the sensing and adaptation to external stimuli and control the expression of key virulence factors such as the yeast-to-hypha transition, the biogenesis of the cell wall, and the interaction with the host. In the present study, we have combined molecular approaches and infection biology to analyse the role of C. albicans MAPK pathways during an epithelial invasion. Hog1 was found to be important for adhesion to abiotic surfaces but was dispensable for damage to epithelial cells. The Mkc1 cell wall integrity (CWI) and Cek1 pathways, on the other hand, were both required for oral epithelial damage. Analysis of the ability to penetrate nutrient-rich semi-solid media revealed a cooperative role for Cek1 and Mkc1 in this process. Finally, cek2Δ (as well as cek1Δ) but not mkc1Δ or hog1Δ mutants, exhibited elevated β-glucan unmasking as revealed by immunofluorescence studies. Therefore, the four MAPK pathways play distinct roles in adhesion, epithelial damage, invasion and cell wall remodelling that may contribute to the pathogenicity of C. albicans.
Collapse
|
43
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
44
|
Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun 2019; 10:5315. [PMID: 31757950 PMCID: PMC6876565 DOI: 10.1038/s41467-019-13298-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023] Open
Abstract
To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), β-glucan. Certain nutrients, stresses and antifungal drugs trigger β-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce β-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced β-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation. The authors show that the fungal pathogen Candida albicans exploits diverse host-associated signals, including specific nutrients and stresses, to promote immune evasion by masking cell wall β-glucan, a major pathogen-associated molecular pattern.
Collapse
|
45
|
Gopal D, Muddebihalkar AG, Skariyachan S, C AU, Kaveramma P, Praveen U, Shankar RR, Venkatesan T, Niranjan V. Mitogen activated protein kinase-1 and cell division control protein-42 are putative targets for the binding of novel natural lead molecules: a therapeutic intervention against Candida albicans. J Biomol Struct Dyn 2019; 38:4584-4599. [PMID: 31625462 DOI: 10.1080/07391102.2019.1682053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Candida albicans, fungal yeast causes several lethal infections in immune-suppressed patients and recently emerged as drug-resistant pathogens worldwide. The present study aimed to screen putative drug targets of Candia albicans and to study the binding potential of novel natural lead compounds towards these targets by computational virtual screening and molecular dynamic (MD) simulation. Through extensive analysis of mitogen-activated protein kinase (MAPK) signalling pathways, mitogen-activated protein kinase-1 (HOG1) and cell division control protein-42 (CDC42) genes were prioritized as putative targets based on their virulent functions. The three-dimensional structures of these genes, not available in their native forms, were computationally modeled and validated. 76 lead molecules from various natural sources were screened and their drug likeliness and pharmacokinetic features were predicted. Among these ligands, two lead molecules that demonstrated ideal drug-likeliness and pharmacokinetic features were docked against HOG1 and CDC42 and their binding potential was compared with the binding of conventional drug Fluconazole with their usual target. The prediction was computationally validated by MD simulation. The current study revealed that Cudraxanthone-S present in Cudrania cochinchinensis and Scutifoliamide-B present in Piper scutifolium exhibited ideal drug likeliness, pharmacokinetics and binding potential to the prioritized targets in comparison with the binding of Fluconazole and their usual target. MD simulation showed that CDC42-Cudraxanthone-S and HOG1-Scutifoliamide-B complexes were exhibited stability throughout MD simulation. Thus, the study provides significant insight into employing HOG1 and CDC42 of MAPK as putative drug targets of C. albicans and Cudraxanthone-S and Scutifoliamide-B as potential inhibitors for drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharshini Gopal
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bengaluru, India
| | - Aditi G Muddebihalkar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bengaluru, India.,Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | - Sinosh Skariyachan
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bengaluru, India
| | - Akshay Uttarkar C
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | - Prinith Kaveramma
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bengaluru, India
| | - Ulluvangada Praveen
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bengaluru, India
| | - Roshini Ravi Shankar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bengaluru, India
| | - Tejaswini Venkatesan
- Department of Biotechnology, Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bengaluru, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
46
|
Chen T, Wagner AS, Tams RN, Eyer JE, Kauffman SJ, Gann ER, Fernandez EJ, Reynolds TB. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. mBio 2019; 10:e01767-19. [PMID: 31530671 PMCID: PMC6751057 DOI: 10.1128/mbio.01767-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew S Wagner
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Robert N Tams
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - James E Eyer
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J Kauffman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
47
|
Negrini TDC, Koo H, Arthur RA. Candida–Bacterial Biofilms and Host–Microbe Interactions in Oral Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:119-141. [DOI: 10.1007/978-3-030-28524-1_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|