1
|
Schäfer JH, Clausmeyer L, Körner C, Esch BM, Wolf VN, Sapia J, Ahmed Y, Walter S, Vanni S, Januliene D, Moeller A, Fröhlich F. Structure of the yeast ceramide synthase. Nat Struct Mol Biol 2025; 32:441-449. [PMID: 39528796 DOI: 10.1038/s41594-024-01415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Ceramides are essential lipids involved in forming complex sphingolipids and acting as signaling molecules. They result from the N-acylation of a sphingoid base and a CoA-activated fatty acid, a reaction catalyzed by the ceramide synthase (CerS) family of enzymes. Yet, the precise structural details and catalytic mechanisms of CerSs have remained elusive. Here we used cryo-electron microscopy single-particle analysis to unravel the structure of the yeast CerS complex in both an active and a fumonisin B1-inhibited state. Our results reveal the complex's architecture as a dimer of Lip1 subunits bound to the catalytic subunits Lag1 and Lac1. Each catalytic subunit forms a hydrophobic crevice connecting the cytosolic site with the intermembrane space. The active site, located centrally in the tunnel, was resolved in a substrate preloaded state, representing one intermediate in ceramide synthesis. Our data provide evidence for competitive binding of fumonisin B1 to the acyl-CoA-binding tunnel.
Collapse
Affiliation(s)
- Jan-Hannes Schäfer
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany
| | - Lena Clausmeyer
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Carolin Körner
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Bianca M Esch
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Verena N Wolf
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yara Ahmed
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefan Walter
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research (NCCR), Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Dovile Januliene
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany.
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany.
| | - Florian Fröhlich
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany.
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
2
|
Shin SH, Moon HY, Park HE, Nam GJ, Baek JH, Jeon CO, Jung H, Cha MS, Choi S, Han JJ, Hou CY, Park CS, Kang HA. Elucidation and engineering of Sphingolipid biosynthesis pathway in Yarrowia lipolytica for enhanced production of human-type sphingoid bases and glucosylceramides. Metab Eng 2025; 87:68-85. [PMID: 39603335 DOI: 10.1016/j.ymben.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast Yarrowia lipolytica by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the SUR2 gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation. The Y. lipolytica SUR2 deletion (Ylsur2Δ) strain displayed retarded growth, increased pseudohyphal formation and stress sensitivity, along with the altered profiles of inositolphosphate-containing ceramides, GlcCers, and sterols. The subsequent disruption of the SLD1 gene, encoding a fungal/plant-specific Δ8 sphingolipid desaturase, restored filamentous growth in the Ylsur2Δ strain to a yeast-type form and further increased the production of human-type GlcCers. Additional introduction of mouse alkaline ceramidase 1 (maCER1) into the Ylsur2Δsld1Δ double mutants considerably increased DHS and So production while decreasing GlcCers. The production yields of LCBs from the Ylsur2Δsld1Δ/maCER1 strain increased in proportion to the C/N ratio in the N-source optimized medium, leading to production of 1.4 g/L non-acetylated DHS at the 5 L fed-batch fermentation with glucose feeding. This study highlights the feasibility of using the engineered Y. lipolytica strains as a cell factory for valuable sphingolipid derivatives for pharmaceuticals, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Seo Hyeon Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hye Yun Moon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hae Eun Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Gi Jeong Nam
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyunwook Jung
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | | | - Sol Choi
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Jeong Jun Han
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Chen Yuan Hou
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Chang Seo Park
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
3
|
Han S, Wu K, Wang Y, Li F, Chen Y. Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast. Synth Syst Biotechnol 2024; 9:861-870. [PMID: 39777162 PMCID: PMC11704421 DOI: 10.1016/j.synbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025] Open
Abstract
Saccharomyces cerevisiae, a widely utilized model organism, has seen continuous updates to its genome-scale metabolic model (GEM) to enhance the prediction performance for metabolic engineering and systems biology. This study presents an auxotrophy-based curation of the yeast GEM, enabling facile upgrades to yeast GEMs in future endeavors. We illustrated that the curation bolstered the predictive capability of the yeast GEM particularly in predicting auxotrophs without compromising accuracy in other simulations, and thus could be an effective manner for GEM refinement. Last, we leveraged the curated yeast GEM to systematically predict auxotrophs, thereby furnishing a valuable reference for the design of nutrient-dependent cell factories and synthetic yeast consortia.
Collapse
Affiliation(s)
- Siyu Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feiran Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Sagarika P, Dobriyal N, Deepsika P, Vairagkar A, Das A, Sahi C. Specificity of Membrane-Associated J-Domain Protein, Caj1, in Amphotericin B Tolerance in Budding Yeast. Mol Microbiol 2024; 122:819-830. [PMID: 39289920 DOI: 10.1111/mmi.15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Hsp70:J-domain protein (JDP) machineries play pivotal roles in maintaining cellular proteostasis and governing various aspects of fungal physiology. While Hsp70 is known for its involvement in conferring tolerance to diverse antifungal drugs, the specific contribution of JDPs remains unclear. In this study, we examined the sensitivity of cytosolic JDP deletion strains of budding yeast to amphotericin B (AmB), a polyene antifungal agent widely utilized in fungal disease treatment due to its ability to disrupt the fungal plasma membrane (PM). Deleting Caj1, a PM-associated class II JDP, heightened susceptibility to AmB, and the protection conferred by Caj1 against AmB necessitated both its N-terminal J-domain and C-terminal lipid binding domain. Moreover, Caj1 deficiency compromised PM integrity as evidenced by increased phosphate efflux and exacerbated AmB sensitivity, particularly at elevated temperatures. Notably, phytosphingosine (PHS) addition as well as overexpression of PMP3, a positive PM integrity regulator, significantly rescued AmB sensitivity of caj1Δ cells. Our results align with the notion that Caj1 associates with the PM and cooperates with Hsp70 to regulate PM proteostasis, thereby influencing PM integrity in budding yeast. Loss of Caj1 function at the PM compromises PM protein quality control, thereby rendering yeast cells more susceptible to AmB.
Collapse
Affiliation(s)
| | | | | | - Avanti Vairagkar
- Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, IISER, Bhopal, India
| |
Collapse
|
5
|
DeVeaux SA, Vyshnya S, Propsom K, Gbotosho OT, Singh AS, Horning RZ, Sharma M, Jegga AG, Niu L, Botchwey EA, Hyacinth HI. Neuroinflammation underlies the development of social stress induced cognitive deficit in male sickle cell mice. Exp Biol Med (Maywood) 2024; 249:10361. [PMID: 39629138 PMCID: PMC11612828 DOI: 10.3389/ebm.2024.10361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
Cognitive deficit is a debilitating complication of sickle cell disease (SCD), with a multifactorial etiopathogenesis. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Male Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition and fear conditioning tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that social stress induces cognitive deficit in SS mice, concurrently with neuroinflammation and lipid dysregulation.
Collapse
Affiliation(s)
- S’Dravious A. DeVeaux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Sofiya Vyshnya
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Katherine Propsom
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Asem S. Singh
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert Z. Horning
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mihika Sharma
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, OH, United States
| | - Anil G. Jegga
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, OH, United States
| | - Liang Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Edward A. Botchwey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
6
|
Körner C, Schäfer JH, Esch BM, Parey K, Walter S, Teis D, Januliene D, Schmidt O, Moeller A, Fröhlich F. The structure of the Orm2-containing serine palmitoyltransferase complex reveals distinct inhibitory potentials of yeast Orm proteins. Cell Rep 2024; 43:114627. [PMID: 39167489 DOI: 10.1016/j.celrep.2024.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Sphingolipid levels are crucial determinants of neurodegenerative disorders and therefore require tight regulation. The Orm protein family and ceramides inhibit the rate-limiting step of sphingolipid biosynthesis-the condensation of L-serine and palmitoyl-coenzyme A (CoA). The yeast isoforms Orm1 and Orm2 form a complex with the serine palmitoyltransferase (SPT). While Orm1 and Orm2 have highly similar sequences, they are differentially regulated, though the mechanistic details remain elusive. Here, we determine the cryoelectron microscopy structure of the SPT complex containing Orm2. Complementary in vitro activity assays and genetic experiments with targeted lipidomics demonstrate a lower activity of the SPT-Orm2 complex than the SPT-Orm1 complex. Our results suggest a higher inhibitory potential of Orm2, despite the similar structures of the Orm1- and Orm2-containing complexes. The high conservation of SPT from yeast to man implies different regulatory capacities for the three human ORMDL isoforms, which might be key for understanding their role in sphingolipid-mediated neurodegenerative disorders.
Collapse
Affiliation(s)
- Carolin Körner
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Jan-Hannes Schäfer
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Bianca M Esch
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Kristian Parey
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dovile Januliene
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Arne Moeller
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany.
| |
Collapse
|
7
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
8
|
Esch BM, Walter S, Schmidt O, Fröhlich F. Identification of distinct active pools of yeast serine palmitoyltransferase in sub-compartments of the ER. J Cell Sci 2023; 136:jcs261353. [PMID: 37982431 DOI: 10.1242/jcs.261353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism to changing environmental conditions. Therefore, the Orm proteins are phosphorylated by two signaling pathways originating from either the plasma membrane or the lysosome (or vacuole in yeast). Moreover, uptake of exogenous serine is necessary for the regulation of SP biosynthesis, which suggests the existence of differentially regulated SPT pools based on their intracellular localization. However, measuring lipid metabolic enzyme activity in different cellular sub-compartments has been challenging. Combining a nanobody recruitment approach with SP flux analysis, we show that the nuclear endoplasmic reticulum (ER)-localized SPT and the peripheral ER localized SPT pools are differentially active. Thus, our data add another layer to the complex network of SPT regulation. Moreover, combining lipid metabolic enzyme re-localization with flux analysis serves as versatile tool to measure lipid metabolism with subcellular resolution.
Collapse
Affiliation(s)
- Bianca M Esch
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Florian Fröhlich
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
9
|
Gupta P, Gupta H, Tripathi S, Poluri KM. Biochemical and metabolomic insights into antifungal mechanism of berberine against Candida glabrata. Appl Microbiol Biotechnol 2023; 107:6085-6102. [PMID: 37555948 DOI: 10.1007/s00253-023-12714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
An unprecedented expansion of antifungal therapy failure incidences in healthcare settings of Candida glabrata is the matter of global concern that needs to be addressed efficiently and effectively. In this pursuit, the present study has investigated the antifungal mechanism of benzylisoquinoline alkaloid berberine using biochemical, metabolic, and gene expression analysis, with the aim to delineate its therapeutic activity against C. glabrata and differentially fluconazole-responsive clinical isolates. Interestingly, the clinical isolates were found to be highly susceptible to berberine. Berberine was found to control the surface properties like hydrophobicity and charge of the cells. The cell membrane composition was altered by berberine, where the ergosterol and fatty acids were affected. The efflux pump activity was inhibited, and osmotic stress was generated in C. glabrata cells upon berberine exposure. The berberine has also generated oxidative stress and activated antioxidant system in C. glabrata cells. Furthermore, these observations were supported by the transcriptional expression study of C. glabrata cell genes (CDR1, RLM1, SLT2, SUR4, KRE1) and metabolomics analysis. Based on fold change analysis, the study identified 20 differential metabolites upon berberine treatment, which belong to central carbon, amino acids, and nucleotide pathways. The checkerboard analysis revealed the potentiation of some classically used antifungal drugs by berberine, thus suggesting it as a combinatorial nutraceutical adjuvant for the eradication of fungal infections. KEY POINTS: • Berberine exhibited better potency against azole-resistant clinical isolates • Berberine modulated metabolites of different pathways • Berberine generated oxidative stress and blocked efflux pump activity.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee), Roorkee, 247667, Uttarakhand, India
- Department of Biotechnology, Graphic Era (Deemed To Be University), Dehradun, 248002, Uttarakhand, India
| | - Hrishikesh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee), Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee), Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee), Roorkee, 247667, Uttarakhand, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
10
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
11
|
Limar S, Körner C, Martínez-Montañés F, Stancheva VG, Wolf VN, Walter S, Miller EA, Ejsing CS, Galassi VV, Fröhlich F. Yeast Svf1 binds ceramides and contributes to sphingolipid metabolism at the ER cis-Golgi interface. J Cell Biol 2023; 222:e202109162. [PMID: 36897280 PMCID: PMC10038888 DOI: 10.1083/jcb.202109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Ceramides are essential precursors of complex sphingolipids and act as potent signaling molecules. Ceramides are synthesized in the endoplasmic reticulum (ER) and receive their head-groups in the Golgi apparatus, yielding complex sphingolipids (SPs). Transport of ceramides between the ER and the Golgi is executed by the essential ceramide transport protein (CERT) in mammalian cells. However, yeast cells lack a CERT homolog, and the mechanism of ER to Golgi ceramide transport remains largely elusive. Here, we identified a role for yeast Svf1 in ceramide transport between the ER and the Golgi. Svf1 is dynamically targeted to membranes via an N-terminal amphipathic helix (AH). Svf1 binds ceramide via a hydrophobic binding pocket that is located in between two lipocalin domains. We showed that Svf1 membrane-targeting is important to maintain flux of ceramides into complex SPs. Together, our results show that Svf1 is a ceramide binding protein that contributes to sphingolipid metabolism at Golgi compartments.
Collapse
Affiliation(s)
- Sergej Limar
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Carolin Körner
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Verena N. Wolf
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| | | | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vanesa Viviana Galassi
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Florian Fröhlich
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| |
Collapse
|
12
|
Nichenametla SN, Mattocks DAL, Cooke D, Midya V, Malloy VL, Mansilla W, Øvrebø B, Turner C, Bastani N, Sokolová J, Pavlíková M, Richie JP, Shoveller A, Refsum H, Olsen T, Vinknes KJ, Kožich V, Ables GP. Cysteine restriction-specific effects of sulfur amino acid restriction on lipid metabolism. Aging Cell 2022; 21:e13739. [PMID: 36403077 PMCID: PMC9741510 DOI: 10.1111/acel.13739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022] Open
Abstract
Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.
Collapse
Affiliation(s)
- Sailendra N. Nichenametla
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Dwight A. L. Mattocks
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Diana Cooke
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Vishal Midya
- Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Virginia L. Malloy
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| | - Wilfredo Mansilla
- Department of Animal BioscienceUniversity of GuelphGuelphOntarioCanada
| | - Bente Øvrebø
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Cheryl Turner
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Nasser E. Bastani
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in PragueCharles University‐First Faculty of MedicinePragueCzech Republic
| | - Markéta Pavlíková
- Department of Probability and Mathematical StatisticsCharles University ‐ Faculty of Mathematics and PhysicsPragueCzech Republic
| | - John P. Richie
- Departments of Public Health Sciences and PharmacologyPenn State University College of MedicineHersheyPennsylvaniaUSA
| | - Anna K. Shoveller
- Department of Animal BioscienceUniversity of GuelphGuelphOntarioCanada
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway,Department of PharmacologyUniversity of OxfordOxfordUK
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in PragueCharles University‐First Faculty of MedicinePragueCzech Republic
| | - Gene P. Ables
- Animal Science LaboratoryOrentreich Foundation for the Advancement of ScienceCold Spring‐on‐HudsonNew YorkUSA
| |
Collapse
|
13
|
Feng MW, Delneri D, Millar CB, O'Keefe RT. Eisosome disruption by noncoding RNA deletion increases protein secretion in yeast. PNAS NEXUS 2022; 1:pgac241. [PMID: 36712349 PMCID: PMC9802208 DOI: 10.1093/pnasnexus/pgac241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Noncoding RNAs (ncRNAs) regulate many aspects of gene expression. We investigated how ncRNAs affected protein secretion in yeast by large-scale screening for improved endogenous invertase secretion in ncRNA deletion strains with deletion of stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), tRNAs, or snRNAs. We identified three candidate ncRNAs, SUT418, SUT390, and SUT125, that improved endogenous invertase secretion when deleted. As SUTs can affect expression of nearby genes, we quantified adjacent gene transcription and found that the PIL1 gene was down-regulated in the SUT125 deletion strain. Pil1 is a core component of eisosomes, nonmobile invaginations found throughout the plasma membrane. PIL1 knockout alone, or in combination with eisosome components LSP1 or SUR7, resulted in further increased secretion of invertase. Secretion of heterologous GFP was also increased upon PIL1 deletion, but this increase was signal sequence dependent. To reveal the potential for increased biopharmaceutical production, secretion of monoclonal antibody Pexelizumab scFv peptide was increased by PIL1 deletion. Global analysis of secreted proteins revealed that approximately 20% of secreted proteins, especially serine-enriched secreted proteins, including invertase, were increased upon eisosome disruption. Eisosomes are enriched with APC transporters and sphingolipids, which are essential components for secretory vesicle formation and protein sorting. Sphingolipid and serine biosynthesis pathways were up-regulated upon PIL1 deletion. We propose that increased secretion of endogenous and heterologous proteins upon PIL1 deletion resulted from sphingolipid redistribution in the plasma membrane and up-regulated sphingolipid biosynthesis. Overall, a new pathway to improve protein secretion in yeast via eisosome disruption has been identified.
Collapse
Affiliation(s)
- Matthew Wenjie Feng
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Daniela Delneri
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK,Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, 131 Princess street, Manchester, M1 7DN, UK
| | - Catherine B Millar
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
14
|
Jedlitzke B, Mootz HD. A light-activatable photocaged variant of the ultra-high affinity ALFA-tag nanobody. Chembiochem 2022; 23:e202200079. [PMID: 35411584 PMCID: PMC9324849 DOI: 10.1002/cbic.202200079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Indexed: 11/25/2022]
Abstract
Nanobodies against short linear peptide‐epitopes are widely used to detect and bind proteins of interest (POI) in fusion constructs. Engineered nanobodies that can be controlled by light have found very recent attention for various extra‐ and intracellular applications. We here report the design of a photocaged variant of the ultra‐high affinity ALFA‐tag nanobody, also termed ALFA‐tag photobody. ortho‐Nitrobenzyl tyrosine was incorporated into the paratope region of the nanobody by genetic code expansion technology and resulted in a ≥9,200 to 100,000‐fold impairment of the binding affinity. Irradiation with light (365 nm) leads to decaging and reconstitutes the native nanobody. We show the light‐dependent binding of the ALFA‐tag photobody to HeLa cells presenting the ALFA‐tag. The generation of the first photobody directed against a short peptide epitope underlines the generality of our photobody design concept. We envision that this photobody will be useful for the spatiotemporal control of proteins in many applications using cultured cells.
Collapse
Affiliation(s)
- Benedikt Jedlitzke
- Institute of BiochemistryDepartment of Chemistry and PharmacyUniversity of MuensterCorrensstr. 3648149MünsterGermany
| | - Henning D. Mootz
- Institute of BiochemistryDepartment of Chemistry and PharmacyUniversity of MuensterCorrensstr. 3648149MünsterGermany
| |
Collapse
|
15
|
Abstract
The tight association of Candida albicans with the human host has driven the evolution of mechanisms that permit metabolic flexibility. Amino acids, present in a free or peptide-bound form, are abundant carbon and nitrogen sources in many host niches. In C. albicans, the capacity to utilize certain amino acids, like proline, is directly connected to fungal morphogenesis and virulence. Yet the precise nature of proline sensing and uptake in this pathogenic fungus has not been investigated. Since C. albicans encodes 10 putative orthologs of the four Saccharomyces cerevisiae proline transporters, we tested deletion strains of the respective genes and identified Gnp2 (CR_09920W) as the main C. albicans proline permease. In addition, we found that this specialization of Gnp2 was reflected in its transcriptional regulation and further assigned distinct substrate specificities for the other orthologs, indicating functional differences of the C. albicans amino acid permeases compared to the model yeast. The physiological relevance of proline uptake is exemplified by the findings that strains lacking GNP2 were unable to filament in response to extracellular proline and had a reduced capacity to damage macrophages and impaired survival following phagocytosis. Furthermore, GNP2 deletion rendered the cells more sensitive to oxidative stress, illustrating new connections between amino acid uptake and stress adaptation in C. albicans. IMPORTANCE The utilization of various nutrients is of paramount importance for the ability of Candida albicans to successfully colonize and infect diverse host niches. In this context, amino acids are of special interest due to their ubiquitous availability, relevance for fungal growth, and direct influence on virulence traits like filamentation. In this study, we identify a specialized proline transporter in C. albicans encoded by GNP2. The corresponding amino acid permease is essential for proline-induced filamentation, oxidative stress resistance, and fungal survival following interaction with macrophages. Altogether, this work highlights the importance of amino acid uptake for metabolic and stress adaptation in this fungus.
Collapse
|
16
|
Körner C, Fröhlich F. Compartmentation and functions of sphingolipids. Curr Opin Cell Biol 2022; 74:104-111. [DOI: 10.1016/j.ceb.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023]
|
17
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|
18
|
Schlarmann P, Ikeda A, Funato K. Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis. MEMBRANES 2021; 11:971. [PMID: 34940472 PMCID: PMC8707754 DOI: 10.3390/membranes11120971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
Sphingolipids are the most diverse class of membrane lipids, in terms of their structure and function. Structurally simple sphingolipid precursors, such as ceramides, act as intracellular signaling molecules in various processes, including apoptosis, whereas mature and complex forms of sphingolipids are important structural components of the plasma membrane. Supplying complex sphingolipids to the plasma membrane, according to need, while keeping pro-apoptotic ceramides in check is an intricate task for the cell and requires mechanisms that tightly control sphingolipid synthesis, breakdown, and storage. As each of these processes takes place in different organelles, recent studies, using the budding yeast Saccharomyces cerevisiae, have investigated the role of membrane contact sites as hubs that integrate inter-organellar sphingolipid transport and regulation. In this review, we provide a detailed overview of the findings of these studies and put them into the context of established regulatory mechanisms of sphingolipid homeostasis. We have focused on the role of membrane contact sites in sphingolipid metabolism and ceramide transport, as well as the mechanisms that prevent toxic ceramide accumulation.
Collapse
Affiliation(s)
| | | | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (P.S.); (A.I.)
| |
Collapse
|
19
|
Matos GS, Madeira JB, Fernandes CM, Dasilva D, Masuda CA, Del Poeta M, Montero-Lomelí M. Regulation of sphingolipid synthesis by the G1/S transcription factor Swi4. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158983. [PMID: 34062255 PMCID: PMC8512607 DOI: 10.1016/j.bbalip.2021.158983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
SBF (Swi4/Swi6 Binding Factor) complex is a crucial regulator of G1/S transition in Saccharomyces cerevisiae. Here, we show that SBF complex is required for myriocin resistance, an inhibitor of sphingolipid synthesis. This phenotype was not shared with MBF complex mutants nor with deletion of the Swi4p downstream targets, CLN1/CLN2. Based on data mining results, we selected putative Swi4p targets related to sphingolipid metabolism and studied their gene transcription as well as metabolite levels during progression of the cell cycle. Genes which encode key enzymes for the synthesis of long chain bases (LCBs) and ceramides were periodically transcribed during the mitotic cell cycle, having a peak at G1/S, and required SWI4 for full transcription at this stage. In addition, HPLC-MS/MS data indicated that swi4Δ cells have decreased levels of sphingolipids during progression of the cell cycle, particularly, dihydrosphingosine (DHS), C24-phytoceramides and C24-inositolphosphoryl ceramide (IPC) while it had increased levels of mannosylinositol phosphorylceramide (MIPC). Furthermore, we demonstrated that both inhibition of de novo sphingolipid synthesis by myriocin or SWI4 deletion caused partial arrest at the G2/M phase. Importantly, our lipidomic data demonstrated that the sphingolipid profile of WT cells treated with myriocin resembled that of swi4Δ cells, with lower levels of DHS, IPC and higher levels of MIPC. Taken together, these results show that SBF complex plays an essential role in the regulation of sphingolipid homeostasis, which reflects in the correct progression through the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Gabriel S Matos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana B Madeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Deveney Dasilva
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Veteran Administration Medical Center, Northport, NY, USA; MicroRid Technologies Inc., Dix Hills, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
| | - Monica Montero-Lomelí
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Kumar R, Reichert AS. Autophagy promotes mitochondrial respiration by providing serine for one-carbon-metabolism. Autophagy 2021; 17:4480-4483. [PMID: 33870861 DOI: 10.1080/15548627.2021.1909408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Whether macroautophagy/autophagy is physiologically relevant to regulate mitochondrial function for a rapid and dynamic adaptation of yeast cells to respiratory growth was not fully understood until recently. May et al. (2020. Nat Commun) report that bulk autophagy provides serine as a one-carbon (1C) metabolite that controls respiratory growth onset by initiating mitochondrial initiator tRNAMet modification and mitochondrial translation linking autophagy mechanistically to mitochondrial function. We discuss the mechanistic interplay between autophagy, one-carbon-metabolism, and mitochondrial function and the possible implications in neurodegeneration, aging, and carcinogenesis.
Collapse
Affiliation(s)
- Rajesh Kumar
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|