1
|
Sanna A, Lambert Y, Pelleau S, Musset L, Lazrek Y, Hureau L, Cairo H, Vreden S, White M, Douine M. Assessment of Plasmodium vivax transmission and asymptomatic carriage risk among artisanal gold miners in western French Guiana, 2014-2020. Infect Dis Poverty 2025; 14:40. [PMID: 40414891 DOI: 10.1186/s40249-025-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/13/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND The final challenge for malaria elimination in many countries is to interrupt the circulation of Plasmodium vivax. Given the unique biology of this parasite, innovative approaches are imperative, with a focus on identifying asymptomatic carriers of dormant parasite forms. This article delineates the recent epidemiological patterns of P. vivax malaria within a highly mobile and hard-to-reach population in the Guiana Shield. It further proposes an assessment of the potential reservoir of asymptomatic carriers. METHODS This analysis was based on data from: (i) two cross-sectional surveys carried out at the French-Surinamese border in 2015 and 2019, including adults returning from gold mining sites located in French Guiana (FG), [questionnaires and blood samples, tested for polymerase chain reaction (PCR) and P. vivax serological exposure markers (SEM) of recent infection]; (ii) epidemiological malaria surveillance system in Suriname, including cases imported from gold mining sites located in western FG between 2014 and 2020. Factors associated with P. vivax seropositivity were analysed by multiple logistic regression. The probability of carrying P. vivax parasites (blood-stage or hypnozoite) was estimated by a classification drawn from PCR results, SEM and reported recent history of illness. RESULTS Surveillance data showed a decrease in malaria imported cases from French Guiana between beginning and end of the analysed period (236 in 2014 to 74 in 2020) and an increase in the proportion of cases associated with P. vivax (52.4% in 2014 to 100% in 2020). The PCR-prevalence of P. vivax in survey samples decreased from 11.4% in 2015 to 4.0% in 2019; P. vivax seropositivity decreased from 44.7% to 28.4%. P. vivax seropositivity was positively associated with male sex, age and number of years spent in gold mining, type of activity, and reported malaria history (episode within less than nine months OR = 10.73, 95% CI: 5.87-19.6, or history of repeated older episodes OR = 5.31, 95% CI: 3.13-9.01). CONCLUSIONS Our analysis shows an epidemiological evolution typical of a scenario of decreasing malaria circulation. Nevertheless, in 2020, gold miners in western FG still showed a moderate level of P. vivax circulation. Biological methods and epidemiological criteria can help to select potential parasite carriers, who could benefit from targeted drug administration.
Collapse
Affiliation(s)
- Alice Sanna
- Centre d'Investigation Clinique (Inserm 1424), Institut Santé des Populations en Amazonie, Centre Hospitalier de Cayenne, Cayenne, French Guiana.
| | - Yann Lambert
- Centre d'Investigation Clinique (Inserm 1424), Institut Santé des Populations en Amazonie, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Stéphane Pelleau
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lise Musset
- Parasitology Laboratory, National Malaria Reference Center, Institut Pasteur de La Guyane, Cayenne, French Guiana
| | - Yassamine Lazrek
- Parasitology Laboratory, National Malaria Reference Center, Institut Pasteur de La Guyane, Cayenne, French Guiana
| | - Louise Hureau
- Centre d'Investigation Clinique (Inserm 1424), Institut Santé des Populations en Amazonie, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Hedley Cairo
- National Malaria Programme, Ministry of Health, Paramaribo, Suriname
| | - Stephen Vreden
- Foundation for the Advancement of Scientific Research in Suriname (SWOS), Paramaribo, Suriname
| | - Michael White
- Infectious Disease Epidemiology and Analytics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maylis Douine
- Centre d'Investigation Clinique (Inserm 1424), Institut Santé des Populations en Amazonie, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| |
Collapse
|
2
|
Guntur RD, Lobo M, Sihotang DM, Bria YP, Kusumaningrum D. Health Education Campaign to Improve Malaria Knowledge, Prevention, and Treatment Behaviors in Rural East Nusa Tenggara Province, Indonesia: Protocol for a Cluster-Assigned Quasi-Experimental Study. JMIR Res Protoc 2025; 14:e66982. [PMID: 40310678 DOI: 10.2196/66982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Malaria is a major health issue that is distributed across 85 countries globally including Indonesia. Indonesia is in the process of achieving malaria elimination. Currently, a high burden of malaria exists in the rural eastern part of the nation, including East Nusa Tenggara Province where the number of malaria cases increased significantly during COVID-19. To achieve malaria elimination, malaria awareness must be measurable and integrated into malaria policy. Currently, malaria awareness among rural communities in the region is low, and interventional studies aiming at improving malaria awareness in rural areas in Indonesia are poorly documented. OBJECTIVE This study aims to investigate the impact of a local wisdom-based health education campaign combining local music, the voice of subdistrict leaders, and loudspeaker announcements on malaria-related behaviors in rural communities. Specifically, we aim to assess the effect of this intervention on (1) improvement in the malaria awareness index among rural communities and their associated factors, (2) changes in appropriate malaria treatment-seeking behavior (AMTSB) and its associated factors, (3) enhancements in knowledge and practice of malaria prevention measures and their associated factors, and (4) increased use of long-lasting insecticide-treated nets and their associated factors. METHODS This study used a cluster-assigned quasi-experimental design with pretest and posttest assessments in control and intervention groups. The control group, consisting of 12 villages, received malaria education integrated into routine health services provided by local health centers. The intervention group, comprising 13 villages, received the same education as the control group, in addition to a malaria campaign conducted once a week for 20 weeks. Before and after the campaign, a household survey was conducted to assess behavioral aspects of malaria, including general knowledge of malaria, AMTSB, and malaria prevention measures knowledge and practice. Improvement in the malaria awareness index, AMTSB, good level of malaria prevention measure knowledge, and good level of malaria prevention measure practice will be determined based on the difference scores for each index before and after the intervention in both groups. The chi-square test will be used to assess score differences. Binary logistic regression analysis will be conducted to identify key risk factors associated with changes in each index. RESULTS The intervention was conducted from the last week of August 2024 to the second week of January 2025. A total of 894 respondents participated before and after the intervention. The project is currently in progress, with multiple papers being drafted for publication in peer-reviewed journals. CONCLUSIONS This study is expected to provide significant findings to comprehensively investigate the change in behavioral aspects of malaria due to a local wisdom-based malaria education campaign. The findings could assist stakeholders in Indonesia with developing malaria health policies that are contextually relevant, thereby supporting global efforts to achieve malaria-free status by 2030. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/66982.
Collapse
Affiliation(s)
- Robertus Dole Guntur
- Faculty of Science and Engineering, Nusa Cendana University, Kupang NTT, Indonesia
| | - Maria Lobo
- Faculty of Science and Engineering, Nusa Cendana University, Kupang NTT, Indonesia
| | | | - Yulianti Paula Bria
- Faculty of Engineering, Widya Mandira Catholic University, Kupang NTT, Indonesia
| | - Damai Kusumaningrum
- Department of Husbandry, State Agricultural Polytechnic, Kupang NTT, Indonesia
| |
Collapse
|
3
|
Groves ES, Simpson JA, Edler P, Daher A, Pasaribu AP, Pereira DB, Saravu K, von Seidlein L, Rajasekhar M, Price RN, Commons RJ, on behalf of the WorldWide Antimalarial Resistance Network (WWARN) P. vivax Fever Study Group. Parasitaemia and fever in uncomplicated Plasmodium vivax malaria: A systematic review and individual patient data meta-analysis. PLoS Negl Trop Dis 2025; 19:e0012951. [PMID: 40153391 PMCID: PMC11978046 DOI: 10.1371/journal.pntd.0012951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/08/2025] [Accepted: 02/26/2025] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Parasite density thresholds used for diagnosing symptomatic malaria are defined by the relationship between parasitaemia and fever. This relationship can inform the design and development of novel diagnostic tests but appropriate parasitaemia thresholds for Plasmodium vivax malaria remain poorly defined. METHODOLOGY/PRINCIPAL FINDINGS We undertook an individual patient data meta-analysis of P. vivax clinical trials mapped to the WorldWide Antimalarial Resistance Network (WWARN) repository and used parasitaemia centiles of febrile patients at enrolment to derive proportions of patients who would have been diagnosed at different parasite densities. Febrile and afebrile patients with recurrent infections were selected to estimate pyrogenic densities using receiver operating characteristic curve analysis. In total 13,263 patients from 50 studies were included in the analysis. In 27 studies (8,378 febrile patients) in which a parasitaemia threshold was not applied as an inclusion criterion, the median parasitaemia at enrolment was 3,280/µL (interquartile range, 968 - 8,320); 90% of patients had a parasitaemia above 278/µL (10th centile), and 95% above 120/µL (5th centile). The 10th centile was higher in children <5 years old (368/µL) compared to adults ≥15 years (240/µL). In high relapse periodicity regions (Southeast Asia and Oceania) febrile patients presented with lower parasitaemias (10th centile 185/µL vs. 504/µL) and a wider range of parasitaemias compared to those from low relapse periodicity regions (interquartile range 760/µL - 8,774/µL vs. 1,204/µL - 8,000/µL). In total 2,270 patients from 41 studies had at least one episode of recurrent P. vivax parasitaemia, of whom 43% (849/1,983) were febrile at their first recurrence. The P. vivax pyrogenic density at first recurrence was 1,063/µL, defining fever with 74% sensitivity and 65% specificity. The pyrogenic density was lower in young children compared to adults ≥15 years (935/µL vs. 1,179/µL). CONCLUSIONS/SIGNIFICANCE The derived parasitaemia centiles will inform the use of current and the design of novel point-of-care tests to diagnose patients with symptomatic vivax malaria. Variation by age and location should be considered when selecting diagnostic thresholds and interpreting results. TRIAL REGISTRATION This trial was registered with PROSPERO: CRD42021254905. The date of the first registration was 17th May 2021.
Collapse
Affiliation(s)
- Emily S. Groves
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Julie A. Simpson
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, Australia
| | - Peta Edler
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - André Daher
- Fiocruz Clinical Research Platform, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Vice‑presidency of Research and Biological Collections, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ayodhia P. Pasaribu
- Department of Pediatrics, Medical Faculty, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Dhelio B. Pereira
- Centro de Pesquisa em Medicina Tropical de Rondonia, Porto Velho, Brazil
- Fundação Universidade Federal de Rondonia, Porto Velho, Brazil
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lorenz von Seidlein
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ric N. Price
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, Australia
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Robert J. Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, Australia
- General and Subspecialty Medicine, Grampians Health - Ballarat, Ballarat, Victoria, Australia
| | | |
Collapse
|
4
|
Chaudhury S, Bolton JS, Kamau E, Bergmann-Leitner ES. Assessing the Feasibility of Using a Multiplex Serological Assay to Conduct Serosurveillance for Malaria Exposure in Deployed Military Personnel. Trop Med Infect Dis 2025; 10:13. [PMID: 39852664 PMCID: PMC11768601 DOI: 10.3390/tropicalmed10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Reproducibly assessing malaria exposure is critical for force health protection for military service members deployed to malaria-endemic regions as well as for civilians making public health decisions and evaluating malaria eradication efforts. However, malaria disease surveillance is challenged by under-reporting, natural immunity, and chemoprophylaxis, which can mask malaria exposure and lead to an underestimation of malaria prevalence. In this study, we determined the feasibility of using a serosurveillance-based approach to measure Anopheles vector exposure, Plasmodium sporozoite exposure, and blood-stage parasitemia using a multiplex serological panel. We tested post-deployment samples obtained from U.S. service members returning from regions with malaria risk to assess the potential of this serosurveillance panel. The results identified that some service members had anti-CSP antibody levels comparable to those found in endemic populations, suggesting exposure to sporozoites while those individuals were on chemoprophylaxis. We also observed isolated cases of anti-MSP1 levels that were as high as those observed in endemic populations and in CHMI studies, suggesting possible cases of clinical or subclinical parasitemia. The study demonstrated the feasibility of implementing a multiplex serology approach for conducting serosurveillance for Anopheles vector exposure and Plasmodium parasite exposure in samples collected following military deployments and its potential to support public health policies.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Bacterial and Parasitic Diseases Department, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand;
| | - Jessica S. Bolton
- Biologics Research & Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Edwin Kamau
- Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Elke S. Bergmann-Leitner
- Biologics Research & Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| |
Collapse
|
5
|
Winnicki AC, Dietrich MH, Yeoh LM, Carias LL, Roobsoong W, Drago CL, Malachin AN, Redinger KR, Feufack-Donfack LB, Baldor L, Jung NC, McLaine OS, Skomorovska-Prokvolit Y, Orban A, Opi DH, Kirtley P, Nielson K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK, Sattabongkot J, Tham WH, Popovici J, Beeson JG, Bosch J, King CL. Potent AMA1-specific human monoclonal antibody against Plasmodium vivax Pre-erythrocytic and Blood Stages. Nat Commun 2024; 15:10556. [PMID: 39632799 PMCID: PMC11618605 DOI: 10.1038/s41467-024-53848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. We show that humAb 826827 blocks the invasion of human reticulocytes using Pv clinical isolates and inhibits sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 - 3.7 µg/mL). Inoculation of human liver transgenic (FRG-humHep) female mice with humAb 826827 significantly reduces liver infection in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate-transcendent, blocks both pre-erythrocytic and blood stage infection, and could be a potential therapy for Pv.
Collapse
MESH Headings
- Plasmodium vivax/immunology
- Animals
- Humans
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/drug therapy
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Female
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Hepatocytes/parasitology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Antibodies, Protozoan/immunology
- Sporozoites/immunology
- Reticulocytes/parasitology
- Reticulocytes/metabolism
- Reticulocytes/immunology
- Erythrocytes/parasitology
- Erythrocytes/immunology
- Leukocytes, Mononuclear/immunology
- Liver/parasitology
Collapse
Affiliation(s)
- Anna C Winnicki
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Melanie H Dietrich
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lee M Yeoh
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Lenore L Carias
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chiara L Drago
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Alyssa N Malachin
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Karli R Redinger
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | | | - Lea Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Nicolai C Jung
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Olivia S McLaine
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Yelenna Skomorovska-Prokvolit
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kiersey Nielson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nastaran Rezakhani
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jürgen Bosch
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- InterRayBio LLC, Cleveland, USA.
| | - Christopher L King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
6
|
Wei X, Malla P, Wang Z, Yang Z, Cao Y, Wang C, Cui L. Genetic diversity of Plasmodium vivax population in northeast Myanmar assessed by amplicon sequencing of PvMSP1 and PvMSP3α. Acta Trop 2024; 260:107461. [PMID: 39536889 DOI: 10.1016/j.actatropica.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to assess the baseline genetic diversity of the Plasmodium vivax population in an endemic area of northeast Myanmar at the onset of the malaria elimination campaign in the Greater Mekong Subregion. We genotyped 125 P vivax clinical samples at two merozoite surface protein loci, PvMSP1 and PvMSP3α, by amplicon deep sequencing. Our study revealed that the parasite population in this region was highly diverse, identifying 60 PvMSP1 and 98 PvMSP3α haplotypes, with haplotype diversity of 0.929 and 0.944, respectively. Remarkably, 97.6 % (122/125) of the patients harbored multiclonal infections with a mean multiplicity of infection of 4.18, indicating a relatively high transmission intensity. Neutrality tests and network analysis suggested a recent parasite population expansion, consistent with the concurrent malaria outbreak in the region. These findings underscore the existence of a highly diverse P. vivax population at the China-Myanmar border, highlighting the need for effective malaria control strategies to achieve the goal of regional malaria elimination.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Pallavi Malla
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Zenglei Wang
- MHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, China
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, Liaoning, China
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Martínez JC, Vélez-Marín V, Lopez-Perez M, Patiño-Lugo DF, Florez ID. Diagnostic accuracy of the point-of-care standard G6PD test™ (SD Biosensor) for glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Malar J 2024; 23:327. [PMID: 39488711 PMCID: PMC11531698 DOI: 10.1186/s12936-024-05144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Glucose-6-Phosphate Dehydrogenase deficiency (G6PDd) is a common genetic enzymopathy that can induce haemolysis triggered by various factors, including some anti-malarial drugs. Although many Point-of-Care (PoC) tests, such as Standard G6PD™ are available to detect G6PDd, its pooled diagnostic test accuracy (DTA) remains unknown. METHODS To estimate the DTA of StandG6PD-BS at various thresholds of G6PDd, a systematic review with a DTA meta-analysis were conducted, searching EMBASE, MEDLINE, and SciELO databases up to April 4, 2024.The included studies were those that measured G6PD activity using StandG6PD-BS (reference test) and spectrophotometry (gold standard) in patients suspected of having G6PDd. The risk of bias (RoB) of the studies was assessed using the QUADAS-2 tool and the certainty of evidence (CoE) with the GRADE approach. For the estimation of within-study DTA, a random-effect bivariate meta-analysis was performed to determine the pooled sensitivity and specificity for 30%, 70%, and 80% enzyme levels' thresholds, and a graphical analysis of the heterogeneity using crosshair and Confidence Regions on receiver operating characteristic (ROC) space plots. RESULTS After screening 2496 reports, four studies were included with 7864 participants covering all thresholds. Two studies had high RoB in QUADAS-2 domains 2 and 3, and the others had low RoB, with low, moderate, and high heterogeneity at the 30%, 70%, and 80% thresholds, respectively. The pooled sensitivity was 99.1%, 95.7%, and 90% for 30%, 70%, and 80% thresholds, respectively. The pooled specificity was 97.4%; 92.9%; and 89.0% for 30%, 70%, and 80% thresholds, respectively. CONCLUSION StandG6PD-BS is a PoC test with high sensitivity and specificity to detect G6PDd at different thresholds.
Collapse
Affiliation(s)
- Juan Camilo Martínez
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Viviana Vélez-Marín
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Mary Lopez-Perez
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel F Patiño-Lugo
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Ivan D Florez
- Unit of Evidence and Deliberation for Decision Making UNED, Medical Research Institute, School of Medicine, University of Antioquia, Medellin, Colombia.
- Department of Pediatrics, School of Medicine, University of Antioquia, Av. St 70 No. 52-21, Medellin, Colombia.
- School of Rehabilitation Science, McMaster University, Hamilton, Canada.
- Pediatric Intensive Care Unit, Clinica Las Americas-AUNA, Medellin, Colombia.
| |
Collapse
|
8
|
Antinori S, Giacomelli A, Casalini G, Ridolfo AL. How to manage adult patients with malaria in the non-endemic setting. Clin Microbiol Infect 2024; 30:1374-1383. [PMID: 38960312 DOI: 10.1016/j.cmi.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The diagnosis and management of malaria in non-endemic countries presents a continuing challenge. Plasmodium falciparum, which is capable of rapidly inducing severe and life-threatening multiorgan disease, is the species most frequently diagnosed in Europe and North America. OBJECTIVES To summarise the more relevant diagnostic findings and clinical features of malaria observed in non-endemic settings and to provide an update of the key management decision points using three illustrative clinical scenarios of uncomplicated and severe malaria. SOURCES The discussion is based on a relevant literature search spanning the last 20 years. Recommendations are based on available clinical guidelines including those of the WHO, observational studies conducted in non-endemic settings, and, when available, extrapolation from randomised studies from malaria-endemic settings. CONTENT The following topics are covered: diagnosis, including the use of molecular biology; clinical characteristics; management with a specific focus on complicated (severe) and uncomplicated malaria; and areas of resistance to available antimalarial drugs. IMPLICATIONS Malaria imported to non-endemic settings, especially P. falciparum malaria, is sometimes initially overlooked and the delayed diagnosis is responsible for every year of preventable deaths. This review aims to raise awareness of malaria outside endemic countries and to provide clinicians with a practical guide for efficient diagnosis and targeted therapy for the different species involved.
Collapse
Affiliation(s)
- Spinello Antinori
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy.
| | - Andrea Giacomelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| | - Giacomo Casalini
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| | - Anna Lisa Ridolfo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| |
Collapse
|
9
|
Commons RJ, Rajasekhar M, Allen EN, Yilma D, Chotsiri P, Abreha T, Adam I, Awab GR, Barber BE, Brasil LW, Chu CS, Cui L, Edler P, Gomes MDSM, Gonzalez-Ceron L, Grigg MJ, Hamid MMA, Hwang J, Karunajeewa H, Lacerda MVG, Ladeia-Andrade S, Leslie T, Longley RJ, Monteiro WM, Pasaribu AP, Poespoprodjo JR, Richmond CL, Rijal KR, Taylor WRJ, Thanh PV, Thriemer K, Vieira JLF, White NJ, Zuluaga-Idarraga LM, Workman LJ, Tarning J, Stepniewska K, Guerin PJ, Simpson JA, Barnes KI, Price RN. Primaquine for uncomplicated Plasmodium vivax malaria in children younger than 15 years: a systematic review and individual patient data meta-analysis. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:798-808. [PMID: 39332427 PMCID: PMC11480364 DOI: 10.1016/s2352-4642(24)00210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Primaquine, the only widely available treatment to prevent relapsing Plasmodium vivax malaria, is produced as 15 mg tablets, and new paediatric formulations are being developed. To inform the optimal primaquine dosing regimen for children, we aimed to determine the efficacy and safety of different primaquine dose strategies in children younger than 15 years. METHODS We undertook a systematic review (Jan 1, 2000-July 26, 2024) for P vivax efficacy studies with at least one treatment group that was administered primaquine over multiple days, that enrolled children younger than 15 years, that followed up patients for at least 28 days, and that had data available for inclusion by June 30, 2022. Patients were excluded if they were aged 15 years or older, presented with severe malaria, received adjunctive antimalarials within 14 days of diagnosis, commenced primaquine more than 7 days after starting schizontocidal treatment, had a protocol violation in the original study, or were missing data on age, sex, or primaquine dose. Available individual patient data were collated and standardised. To evaluate efficacy, the risk of recurrent P vivax parasitaemia between days 7 and 180 was assessed by time-to-event analysis for different total mg/kg primaquine doses (low total dose of ∼3·5 mg/kg and high total dose of ∼7 mg/kg). To evaluate tolerability and safety, the following were assessed by daily mg/kg primaquine dose (low daily dose of ∼0·25 mg/kg, intermediate daily dose of ∼0·5 mg/kg, and high daily dose of ∼1 mg/kg): gastrointestinal symptoms (vomiting, anorexia, or diarrhoea) on days 5-7, haemoglobin decrease of at least 25% to less than 7g/dL (severe haemolysis), absolute change in haemoglobin from day 0 to days 2-3 or days 5-7, and any serious adverse events within 28 days. This study is registered with PROSPERO, CRD42021278085. FINDINGS In total, 3514 children from 27 studies and 15 countries were included. The cumulative incidence of recurrence by day 180 was 51·4% (95% CI 47·0-55·9) following treatment without primaquine, 16·0% (12·4-20·3) following a low total dose of primaquine, and 10·2% (8·4-12·3) following a high total dose of primaquine. The hazard of recurrent P vivax parasitaemia in children younger than 15 years was reduced following primaquine at low total doses (adjusted hazard ratio [HR] 0·17, 95% CI 0·11-0·25) and high total doses (0·09, 0·07-0·12), compared with no primaquine. In 525 children younger than 5 years, the relative rates of recurrence were also reduced, with an adjusted HR of 0·33 (95% CI 0·18-0·59) for a low total dose and 0·13 (0·08-0·21) for a high total dose of primaquine compared with no primaquine. The rate of recurrence following a high total dose was reduced compared with a low dose in children younger than 15 years (adjusted HR 0·54, 95% CI 0·35-0·85) and children younger than 5 years (0·41, 0·21-0·78). Compared with no primaquine, children treated with any dose of primaquine had a greater risk of gastrointestinal symptoms on days 5-7 after adjustment for confounders, with adjusted risks of 3·9% (95% CI 0-8·6) in children not treated with primaquine, 9·2% (0-18·7) with a low daily dose of primaquine, 6·8% (1·7-12·0) with an intermediate daily dose of primaquine, and 9·6% (4·8-14·3) with a high daily dose of primaquine. In children with 30% or higher glucose-6-phosphate dehydrogenase (G6PD) activity, there were few episodes of severe haemolysis following no primaquine (0·4%, 95% CI 0·1-1·5), a low daily dose (0·0%, 0·0-1·6), an intermediate daily dose (0·5%, 0·1-1·4), or a high daily dose (0·7%, 0·2-1·9). Of 15 possibly drug-related serious adverse events in children, two occurred following a low, four following an intermediate, and nine following a high daily dose of primaquine. INTERPRETATION A high total dose of primaquine was highly efficacious in reducing recurrent P vivax parasitaemia in children compared with a low dose, particularly in children younger than 5 years. In children treated with high and intermediate daily primaquine doses compared with low daily doses, there was no increase in gastrointestinal symptoms or haemolysis (in children with 30% or higher G6PD activity), but there were more serious adverse events. FUNDING Medicines for Malaria Venture, Bill & Melinda Gates Foundation, and Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, VIC, Australia; General and Subspecialty Medicine, Grampians Health Ballarat, Ballarat, VIC, Australia.
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth N Allen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; WorldWide Antimalarial Resistance Network Pharmacology Scientific Group, University of Cape Town, Cape Town, South Africa; Infectious Diseases Data Observatory, Oxford, UK
| | - Daniel Yilma
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; Infectious Diseases Data Observatory, Oxford, UK; Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Ishag Adam
- Department of Obstetrics and Gynecology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ghulam Rahim Awab
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Larissa W Brasil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Programa de Pós‑Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Peta Edler
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margarete do Socorro M Gomes
- Superintendência de Vigilância em Saúde do Estado do Amapá - SVS/AP, Macapá, Amapá, Brazil; Federal University of aMAPA (Universidade Federal do Amapá - UNIFAP), Macapá, Amapá, Brazil
| | - Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Jimee Hwang
- US President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Harin Karunajeewa
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas & Maria Deane, Fiocruz, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; HealthNet-TPO, Kabul, Afghanistan
| | - Rhea J Longley
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Universidade do Estado do Amazonas, Manaus, Brazil
| | - Ayodhia Pitaloka Pasaribu
- Department of Pediatrics, Medical Faculty, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Jeanne Rini Poespoprodjo
- Mimika District Hospital, Timika, Indonesia; Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia; Paediatric Research Office, Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito Hospital, Yogyakarta, Indonesia
| | - Caitlin L Richmond
- Infectious Diseases Data Observatory, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Oxford, UK
| | - Komal Raj Rijal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pham Vinh Thanh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - José Luiz F Vieira
- Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Pará, Brazil
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lina M Zuluaga-Idarraga
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Facultad Nacional de Salud Publica, Universidad de Antioquia, Medellín, Colombia
| | - Lesley J Workman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; WorldWide Antimalarial Resistance Network Pharmacology Scientific Group, University of Cape Town, Cape Town, South Africa
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kasia Stepniewska
- Infectious Diseases Data Observatory, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Oxford, UK
| | - Philippe J Guerin
- Infectious Diseases Data Observatory, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Oxford, UK
| | - Julie A Simpson
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa; WorldWide Antimalarial Resistance Network Pharmacology Scientific Group, University of Cape Town, Cape Town, South Africa; Infectious Diseases Data Observatory, Oxford, UK
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Chaumeau V, Wasisakun P, Watson JA, Oo T, Aryalamloed S, Sue MP, Htoo GN, Tha NM, Archusuksan L, Sawasdichai S, Gornsawun G, Mehra S, White NJ, Nosten FH. Transmission-blocking activities of artesunate, chloroquine, and methylene blue on Plasmodium vivax gametocytes. Antimicrob Agents Chemother 2024; 68:e0085324. [PMID: 39058023 PMCID: PMC11382624 DOI: 10.1128/aac.00853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium vivax is now the main cause of malaria outside Africa. The gametocytocidal effects of antimalarial drugs are important to reduce malaria transmissibility, particularly in low-transmission settings, but they are not well characterized for P. vivax. The transmission-blocking effects of chloroquine, artesunate, and methylene blue on P. vivax gametocytes were assessed. Blood specimens were collected from patients presenting with vivax malaria, incubated with or without the tested drugs, and then fed to mosquitos from a laboratory-adapted colony of Anopheles dirus (a major malaria vector in Southeast Asia). The effects on oocyst and sporozoite development were analyzed under a multi-level Bayesian model accounting for assay variability and the heterogeneity of mosquito Plasmodium infection. Artesunate and methylene blue, but not chloroquine, exhibited potent transmission-blocking effects. Gametocyte exposures to artesunate and methylene blue reduced the mean oocyst count 469-fold (95% CI: 345 to 650) and 1,438-fold (95% CI: 970 to 2,064), respectively. The corresponding estimates for the sporozoite stage were a 148-fold reduction (95% CI: 61 to 470) and a 536-fold reduction (95% CI: 246 to 1,311) in the mean counts, respectively. In contrast, high chloroquine exposures reduced the mean oocyst count only 1.40-fold (95% CI: 1.20 to 1.64) and the mean sporozoite count 1.34-fold (95% CI: 1.12 to 1.66). This suggests that patients with vivax malaria often remain infectious to anopheline mosquitos after treatment with chloroquine. Use of artemisinin combination therapies or immediate initiation of primaquine radical cure should reduce the transmissibility of P. vivax infections.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Praphan Wasisakun
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - James A Watson
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Thidar Oo
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Sarang Aryalamloed
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Mu Phang Sue
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Gay Nay Htoo
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Naw Moo Tha
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Laypaw Archusuksan
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Somya Mehra
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
11
|
Jakhan J, Kojom Foko LP, Narang G, Singh V. Glucose-6-phosphate Dehydrogenase Variants: Analysing in Indian Plasmodium vivax Patients. Acta Parasitol 2024; 69:1522-1529. [PMID: 39164542 DOI: 10.1007/s11686-024-00883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Primaquine (PQ) is recommended for radical cure of Plasmodium vivax (Pv) malaria, but its utilization is still limited due to high risk of severe haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency (G6PD-d). The aim of the present study is to assess the different genotypic variants leading to G6PD-d in Delhi and Goa regions of India. METHODS A total of 46 samples (34 retrospective Pv-mono-infected samples and 12 Pv-uninfected samples) were included in the study. Various genetic variants leading to G6PD-d were analysed by PCR amplification and DNA sequencing of different targeted exons of G6PD gene. RESULTS Molecular analysis showed presence of four mutations in study population viz. 1311 C > T, 34.1% & IVSXI 93T > C, 45.5% and two novel mutations 1388G > T, 2.3% and 1398 C > T, 2.3% (silent mutation). The bioinformatics and computational analysis demonstrate that the slight conformational changes caused by R643L mutation in protein are deleterious in nature. CONCLUSION The observed mutations do not clarify the role or association between G6PD-d and Pv-infected cases. Further investigation is required in order to fully comprehend and analyse the precise role of these mutations with context to malaria infections.
Collapse
Affiliation(s)
- Jahnvi Jakhan
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India
| | - Geetika Narang
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Winnicki AC, King CL, Bosch J, Malachin AN, Carias LL, Skomorovska-Prokvolit Y, Tham WH, Dietrich MH, Popovici J, Roobsoong W, Beeson JG, Sattabongkot J, Yeoh LM, Opi DH, Feufack-Donfack LB, Orban A, Drago CL, McLaine OS, Redinger KR, Jung NC, Baldor L, Kirtley P, Neilsen K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK. Potent AMA1-specific human monoclonal antibody against P. vivax Pre-erythrocytic and Blood Stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579302. [PMID: 38370683 PMCID: PMC10871283 DOI: 10.1101/2024.02.07.579302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. We isolated 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. HumAb 826827 blocked the invasion of human erythrocytes using Pv clinical isolates and inhibited sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 to 3.7 ug/mL). It also significantly reduced liver infection of chimeric FRG humHep mice in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate transcendent, blocks both pre erythrocytic and blood stage infection, and could be a new therapy for Pv.
Collapse
|
13
|
Rodríguez-Hernández D, Fenwick MK, Zigweid R, Sankaran B, Myler PJ, Sunnerhagen P, Kaushansky A, Staker BL, Grøtli M. Exploring Subsite Selectivity within Plasmodium vivax N-Myristoyltransferase Using Pyrazole-Derived Inhibitors. J Med Chem 2024; 67:7312-7329. [PMID: 38680035 PMCID: PMC11089503 DOI: 10.1021/acs.jmedchem.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
- Department
of Structural and Functional Biology, Synthetic Biology Laboratory,
Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Michael K. Fenwick
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Rachael Zigweid
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Molecular
Biophysics and Integrated Bioimaging, Berkeley Center for Structural
Biology, Advanced Light Source, Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Peter J. Myler
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Alexis Kaushansky
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98195, United States
| | - Bart L. Staker
- Seattle
Structural Genomics Center for Infectious Disease, Seattle, Washington 98109, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Morten Grøtli
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
14
|
Amanzougaghene N, Tajeri S, Franetich JF, Ashraf K, Soulard V, Bigeard P, Guindo CO, Bouillier C, Lemaitre J, Relouzat F, Legrand R, Kocken CHM, Zeeman AM, Roobsoong W, Sattabongkot J, Yang Z, Snounou G, Mazier D. Azithromycin disrupts apicoplast biogenesis in replicating and dormant liver stages of the relapsing malaria parasites Plasmodium vivax and Plasmodium cynomolgi. Int J Antimicrob Agents 2024; 63:107112. [PMID: 38367843 DOI: 10.1016/j.ijantimicag.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.
Collapse
Affiliation(s)
- Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France; Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Kutub Ashraf
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Valérie Soulard
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Pierre Bigeard
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Cheick Oumar Guindo
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Camille Bouillier
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Julien Lemaitre
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Roger Legrand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Chenggong New Town, Kunming, Yunnan Province,China
| | - Georges Snounou
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses and Kremlin-Bicêtre, France.
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France.
| |
Collapse
|
15
|
Inayaturohmat F, Anggriani N, Supriatna AK, Biswas MHA. A Systematic Literature Review of Mathematical Models for Coinfections: Tuberculosis, Malaria, and HIV/AIDS. J Multidiscip Healthc 2024; 17:1091-1109. [PMID: 38510530 PMCID: PMC10951863 DOI: 10.2147/jmdh.s446508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Tuberculosis, malaria, and HIV are among the most lethal diseases, with AIDS (Acquired Immune Deficiency Syndrome) being a chronic and potentially life-threatening condition caused by the human immunodeficiency virus (HIV). Individually, each of these infections presents a significant health challenge. However, when tuberculosis, malaria, and HIV co-occur, the symptoms can worsen, leading to an increased mortality risk. Mathematical models have been created to study coinfections involving tuberculosis, malaria, and HIV. This systematic literature review explores the importance of coinfection models by examining articles from reputable databases such as Dimensions, ScienceDirect, Scopus, and PubMed. The primary emphasis is on investigating coinfection models related to tuberculosis, malaria, and HIV. The findings demonstrate that each article thoroughly covers various aspects, including model development, mathematical analysis, sensitivity analysis, optimal control strategies, and research discoveries. Based on our comprehensive evaluation, we offer valuable recommendations for future research efforts in this field.
Collapse
Affiliation(s)
- Fatuh Inayaturohmat
- Doctoral in Mathematics Study Programme, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Nursanti Anggriani
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Asep K Supriatna
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Md Haider Ali Biswas
- Mathematics Discipline, Science, Engineering and Technology School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
16
|
Champagne C, Gerhards M, Lana JT, Le Menach A, Pothin E. Quantifying the impact of interventions against Plasmodium vivax: A model for country-specific use. Epidemics 2024; 46:100747. [PMID: 38330786 PMCID: PMC10944169 DOI: 10.1016/j.epidem.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
In order to evaluate the impact of various intervention strategies on Plasmodium vivax dynamics in low endemicity settings without significant seasonal pattern, we introduce a simple mathematical model that can be easily adapted to reported case numbers similar to that collected by surveillance systems in various countries. The model includes case management, vector control, mass drug administration and reactive case detection interventions and is implemented in both deterministic and stochastic frameworks. It is available as an R package to enable users to calibrate and simulate it with their own data. Although we only illustrate its use on fictitious data, by simulating and comparing the impact of various intervention combinations on malaria risk and burden, this model could be a useful tool for strategic planning, implementation and resource mobilization.
Collapse
Affiliation(s)
- C Champagne
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - M Gerhards
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - J T Lana
- Clinton Health Access Initiative, Boston, USA
| | - A Le Menach
- Clinton Health Access Initiative, Boston, USA
| | - E Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Clinton Health Access Initiative, Boston, USA
| |
Collapse
|
17
|
Parvatkar P, Maher SP, Zhao Y, Cooper CA, de Castro ST, Péneau J, Vantaux A, Witkowski B, Kyle DE, Manetsch R. In Vitro Antimalarial Activity of Trichothecenes against Liver and Blood Stages of Plasmodium Species. JOURNAL OF NATURAL PRODUCTS 2024; 87:315-321. [PMID: 38262446 PMCID: PMC10897926 DOI: 10.1021/acs.jnatprod.3c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Trichothecenes (TCNs) are a large group of tricyclic sesquiterpenoid mycotoxins that have intriguing structural features and remarkable biological activities. Herein, we focused on three TCNs (anguidine, verrucarin A, and verrucarol) and their ability to target both the blood and liver stages of Plasmodium species, the parasite responsible for malaria. Anguidine and verrucarin A were found to be highly effective against the blood and liver stages of malaria, while verrucarol had no effect at the highest concentration tested. However, these compounds were also found to be cytotoxic and, thus, not selective, making them unsuitable for drug development. Nonetheless, they could be useful as chemical probes for protein synthesis inhibitors due to their direct impact on parasite synthesis processes.
Collapse
Affiliation(s)
- Prakash
T. Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Steven P. Maher
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Yingzhao Zhao
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Caitlin A. Cooper
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Sagan T. de Castro
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Julie Péneau
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Amélie Vantaux
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Benoît Witkowski
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Dennis E. Kyle
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Roman Manetsch
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute
of Chemical and Biological Analysis, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Rajasekhar M, Simpson JA, Ley B, Edler P, Chu CS, Abreha T, Awab GR, Baird JK, Bancone G, Barber BE, Grigg MJ, Hwang J, Karunajeewa H, Lacerda MVG, Ladeia-Andrade S, Llanos-Cuentas A, Pukrittayakamee S, Rijal KR, Saravu K, Sutanto I, Taylor WRJ, Thriemer K, Watson JA, Guerin PJ, White NJ, Price RN, Commons RJ. Primaquine dose and the risk of haemolysis in patients with uncomplicated Plasmodium vivax malaria: a systematic review and individual patient data meta-analysis. THE LANCET. INFECTIOUS DISEASES 2024; 24:184-195. [PMID: 37748497 PMCID: PMC7615565 DOI: 10.1016/s1473-3099(23)00431-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Primaquine radical cure is used to treat dormant liver-stage parasites and prevent relapsing Plasmodium vivax malaria but is limited by concerns of haemolysis. We undertook a systematic review and individual patient data meta-analysis to investigate the haematological safety of different primaquine regimens for P vivax radical cure. METHODS For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, if they included a treatment group with daily primaquine given over multiple days where primaquine was commenced within 3 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine), and if they recorded haemoglobin or haematocrit concentrations on day 0. We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. The main outcome was haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL by day 14. Haemoglobin concentration changes between day 0 and days 2-3 and between day 0 and days 5-7 were assessed by mixed-effects linear regression for patients with glucose-6-phosphate dehydrogenase (G6PD) activity of (1) 30% or higher and (2) between 30% and less than 70%. The study was registered with PROSPERO, CRD42019154470 and CRD42022303680. FINDINGS Of 226 identified studies, 18 studies with patient-level data from 5462 patients from 15 countries were included in the analysis. A haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL occurred in one (0·1%) of 1208 patients treated without primaquine, none of 893 patients treated with a low daily dose of primaquine (<0·375 mg/kg per day), five (0·3%) of 1464 patients treated with an intermediate daily dose (0·375 mg/kg per day to <0·75 mg/kg per day), and six (0·5%) of 1269 patients treated with a high daily dose (≥0·75 mg/kg per day). The covariate-adjusted mean estimated haemoglobin changes at days 2-3 were -0·6 g/dL (95% CI -0·7 to -0·5), -0·7 g/dL (-0·8 to -0·5), -0·6 g/dL (-0·7 to -0·4), and -0·5 g/dL (-0·7 to -0·4), respectively. In 51 patients with G6PD activity between 30% and less than 70%, the adjusted mean haemoglobin concentration on days 2-3 decreased as G6PD activity decreased; two patients in this group who were treated with a high daily dose of primaquine had a reduction of more than 25% to a concentration of less than 7 g/dL. 17 of 18 included studies had a low or unclear risk of bias. INTERPRETATION Treatment of patients with G6PD activity of 30% or higher with 0·25-0·5 mg/kg per day primaquine regimens and patients with G6PD activity of 70% or higher with 0·25-1 mg/kg per day regimens were associated with similar risks of haemolysis to those in patients treated without primaquine, supporting the safe use of primaquine radical cure at these doses. FUNDING Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.
Collapse
Affiliation(s)
- Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Peta Edler
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Ghulam R Awab
- MORU, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Jimee Hwang
- US President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Harin Karunajeewa
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Alejandro Llanos-Cuentas
- Unit of Leishmaniasis and Malaria, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Komal R Rijal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, and Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Walter R J Taylor
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam; WWARN, Oxford, UK
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WWARN, Oxford, UK; Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; MORU, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert J Commons
- WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; General and Subspecialty Medicine, Grampians Health-Ballarat, Ballarat, VIC, Australia.
| |
Collapse
|
19
|
Win KM, Aung PL, Ring Z, Linn NYY, Kyaw MP, Nguitragool W, Cui L, Sattabongkot J, Lawpoolsri S. Interventions for promoting patients' adherence to 14-day primaquine treatment in a highly malaria-endemic township in Myanmar: a qualitative study among key stakeholders. Malar J 2023; 22:302. [PMID: 37814267 PMCID: PMC10563334 DOI: 10.1186/s12936-023-04743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria is considered a major threat to malaria eradication. The radical cure for P. vivax malaria normally requires a 14-day administration of primaquine (PQ) to clear hypnozoites. However, maintaining adherence to PQ treatment is a significant challenge, particularly in malaria-endemic rural areas. Hence, this study aimed to formulate interventions for promoting patients' commitment to PQ treatment in a highly malaria-endemic township in Myanmar. METHODS A qualitative study was conducted in Waingmaw Township in northern Myanmar, where P. vivax malaria is highly endemic. Key stakeholders including public health officers and community members participated in focus group discussions (FGDs) and in-depth interviews (IDIs) in September 2022. Data were collected using validated guidelines, translated into English, and visualized through thematic analysis. RESULTS Responsible individuals from different levels of the Myanmar National Malaria Control Programme participated in the IDIs. Most of them reported being aware of the markedly increasing trend of P. vivax and the possibility of relapse cases, especially among migrants who are lost to follow-up. Workload was a key concern surrounding intervention implementation. The respondents discussed possible interventions, such as implementing directly observed treatment (DOT) by family members, piloting a shorter PQ regimen, expanding the community's malaria volunteer network, and strengthening health education activities using local languages to promote reasonable drug adherence. FGDs among community members revealed that although people were knowledgeable about malaria symptoms, places to seek treatment, and the use of bed nets to prevent mosquito bites, most of them still preferred to be treated by quack doctors and rarely used insecticide-treated nets at worksites. Many often stopped taking the prescribed drugs once the symptoms disappeared. Nevertheless, some respondents requested more bed nets to be distributed and health promotion activities to be conducted. CONCLUSION In rural areas where human resources are limited, interventions such as implementing family member DOT or shortening PQ regimens should be introduced to enhance the radical cure for the P. vivax infection. Disseminating information about the importance of taking the entire treatment course and emphasizing the burden of relapse is also essential.
Collapse
Affiliation(s)
- Kyawt Mon Win
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Public Health, Ministry of Health, Naypyitaw, Myanmar
| | - Pyae Linn Aung
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zau Ring
- State Public Health Department, Kachin State, Ministry of Health, Myitkyina, Myanmar
| | - Nay Yi Yi Linn
- Department of Public Health, Ministry of Health, Naypyitaw, Myanmar
| | | | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
20
|
Win KM, Aung PL, Ring Z, Linn NYY, Kyaw MP, Nguitragool W, Cui L, Sattabongkot J, Lawpoolsri S. Interventions for promoting patients' adherence to 14-day primaquine treatment in a highly malaria-endemic township in Myanmar: A qualitative study among key stakeholders. RESEARCH SQUARE 2023:rs.3.rs-3312278. [PMID: 37720045 PMCID: PMC10503836 DOI: 10.21203/rs.3.rs-3312278/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Background Plasmodium vivax malaria is considered a major threat to malaria eradication. The radical cure for P. vivax malaria normally requires a 14-day administration of primaquine (PQ) to clear hypnozoites. However, maintaining adherence to PQ treatment is a significant challenge, particularly in malaria-endemic rural areas. Hence, this study aimed to formulate interventions for promoting patients' commitment to PQ treatment in a highly malaria-endemic township in Myanmar. Methods A qualitative study was conducted in Waingmaw Township in northern Myanmar, where P. vivax malaria is highly endemic. Key stakeholders including public health officers and community members participated in focus group discussions (FGDs) and in-depth interviews (IDIs) in September 2022. Data were collected using validated guidelines, translated into English, and visualized through thematic analysis. Results Responsible individuals from different levels of the Myanmar National Malaria Control Program participated in the IDIs. Most of them reported being aware of the markedly increasing trend of P. vivax and the possibility of relapse cases, especially among migrants who are lost to follow-up. Workload was a key concern surrounding intervention implementation. The respondents discussed possible interventions, such as implementing directly observed treatment (DOT) by family members, piloting a shorter PQ regimen, expanding the community's malaria volunteer network, and strengthening health education activities using local languages to promote reasonable drug adherence. FGDs among community members revealed that although people were knowledgeable about malaria symptoms, places to seek treatment, and the use of bed nets to prevent mosquito bites, most of them still preferred to be treated by quack doctors and rarely used insecticide-treated nets at worksites. Many often stopped taking the prescribed drugs once the symptoms disappeared. Nevertheless, some respondents requested more bed nets to be distributed and health promotion activities to be conducted. Conclusion In rural areas where human resources are limited, interventions such as implementing family member DOT or shortening PQ regimens should be introduced to enhance the radical cure for the P. vivax infection. Disseminating information about the importance of taking the entire treatment course and emphasizing the burden of relapse is also essential.
Collapse
|
21
|
Rodríguez-Hernández D, Vijayan K, Zigweid R, Fenwick MK, Sankaran B, Roobsoong W, Sattabongkot J, Glennon EKK, Myler PJ, Sunnerhagen P, Staker BL, Kaushansky A, Grøtli M. Identification of potent and selective N-myristoyltransferase inhibitors of Plasmodium vivax liver stage hypnozoites and schizonts. Nat Commun 2023; 14:5408. [PMID: 37669940 PMCID: PMC10480161 DOI: 10.1038/s41467-023-41119-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Drugs targeting multiple stages of the Plasmodium vivax life cycle are needed to reduce the health and economic burdens caused by malaria worldwide. N-myristoyltransferase (NMT) is an essential eukaryotic enzyme and a validated drug target for combating malaria. However, previous PvNMT inhibitors have failed due to their low selectivity over human NMTs. Herein, we apply a structure-guided hybridization approach combining chemical moieties of previously reported NMT inhibitors to develop the next generation of PvNMT inhibitors. A high-resolution crystal structure of PvNMT bound to a representative selective hybrid compound reveals a unique binding site architecture that includes a selective conformation of a key tyrosine residue. The hybridized compounds significantly decrease P. falciparum blood-stage parasite load and consistently exhibit dose-dependent inhibition of P. vivax liver stage schizonts and hypnozoites. Our data demonstrate that hybridized NMT inhibitors can be multistage antimalarials, targeting dormant and developing forms of liver and blood stage.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Department of Chemistry and Molecular Biology, University of Gothenburg; S-405 30, Gothenburg, Sweden
- Department of Chemistry, University of Bergen, Allegaten 41, NO-5007, Bergen, Norway
| | - Kamalakannan Vijayan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Rachael Zigweid
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109, USA
| | - Michael K Fenwick
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Advanced Light Source; Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Elizabeth K K Glennon
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Peter J Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg; S-405 30, Gothenburg, Sweden
| | - Bart L Staker
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109, USA
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg; S-405 30, Gothenburg, Sweden.
| |
Collapse
|
22
|
Kojom Foko LP, Narang G, Jakhan J, Tamang S, Moun A, Singh V. Nationwide spatiotemporal drug resistance genetic profiling from over three decades in Indian Plasmodium falciparum and Plasmodium vivax isolates. Malar J 2023; 22:236. [PMID: 37582796 PMCID: PMC10428610 DOI: 10.1186/s12936-023-04651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Drug resistance is a serious impediment to efficient control and elimination of malaria in endemic areas. METHODS This study aimed at analysing the genetic profile of molecular drug resistance in Plasmodium falciparum and Plasmodium vivax parasites from India over a ~ 30-year period (1993-2019). Blood samples of P. falciparum and/or P. vivax-infected patients were collected from 14 regions across India. Plasmodial genome was extracted and used for PCR amplification and sequencing of drug resistance genes in P. falciparum (crt, dhps, dhfr, mdr1, k13) and P. vivax (crt-o, dhps, dhfr, mdr1, k12) field isolates. RESULTS The double mutant pfcrt SVMNT was highly predominant across the country over three decades, with restricted presence of triple mutant CVIET from Maharashtra in 2012. High rates of pfdhfr-pfdhps quadruple mutants were observed with marginal presence of "fully resistant" quintuple mutant ACIRNI-ISGEAA. Also, resistant pfdhfr and pfdhps haplotype has significantly increased in Delhi between 1994 and 2010. For pfmdr1, only 86Y and 184F mutations were present while no pfk13 mutations associated with artemisinin resistance were observed. Regarding P. vivax isolates, the pvcrt-o K10 "AAG" insertion was absent in all samples collected from Delhi in 2017. Pvdhps double mutant SGNAV was found only in Goa samples of year 2008 for the first time. The pvmdr1 908L, 958M and 1076L mutations were highly prevalent in Delhi and Haryana between 2015 and 2019 at complete fixation. One nonsynonymous novel pvk12 polymorphism was identified (K264R) in Goa. CONCLUSIONS These findings support continuous surveillance and characterization of P. falciparum and P. vivax populations as proxy for effectiveness of anti-malarial drugs in India, especially for independent emergence of artemisinin drug resistance as recently seen in Africa.
Collapse
Affiliation(s)
- Loick P Kojom Foko
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Geetika Narang
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Jahnvi Jakhan
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Suman Tamang
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Amit Moun
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India
| | - Vineeta Singh
- Parasite & Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi, 110077, India.
| |
Collapse
|
23
|
Kim YJ, Shin JS, Lee KW, Eom HJ, Jo BG, Lee JW, Kim JH, Kim SY, Kang JH, Choi JW. Expression, Purification, and Characterization of Plasmodium vivax Lactate Dehydrogenase from Bacteria without Codon Optimization. Int J Mol Sci 2023; 24:11083. [PMID: 37446261 DOI: 10.3390/ijms241311083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Plasmodium vivax is the most widespread cause of malaria, especially in subtropical and temperate regions such as Asia-Pacific and America. P. vivax lactate dehydrogenase (PvLDH), an essential enzyme in the glycolytic pathway, is required for the development and reproduction of the parasite. Thus, LDH from these parasites has garnered attention as a diagnostic biomarker for malaria and as a potential molecular target for developing antimalarial drugs. In this study, we prepared a transformed Escherichia coli strain for the overexpression of PvLDH without codon optimization. We introduced this recombinant plasmid DNA prepared by insertion of the PvLDH gene in the pET-21a(+) expression vector, into the Rosetta(DE3), an E. coli strain suitable for eukaryotic protein expression. The time, temperature, and inducer concentration for PvLDH expression from this E. coli Rosetta(DE3), containing the original PvLDH gene, were optimized. We obtained PvLDH with a 31.0 mg/L yield and high purity (>95%) from this Rosetta(DE3) strain. The purified protein was characterized structurally and functionally. The PvLDH expressed and purified from transformed bacteria without codon optimization was successfully demonstrated to exhibit its potential tetramer structure and enzyme activity. These findings are expected to provide valuable insights for research on infectious diseases, metabolism, diagnostics, and therapeutics for malaria caused by P. vivax.
Collapse
Affiliation(s)
- Yeon-Jun Kim
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jun-Seop Shin
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Kang Woo Lee
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Hyo-Ji Eom
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Byung Gwan Jo
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jun Hyoung Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - So Yeon Kim
- Department of Dental Hygiene, Cheongju University, Cheongju 28503, Republic of Korea
| | - Jung Hoon Kang
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jae-Won Choi
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| |
Collapse
|
24
|
Risk of hemolysis in Plasmodium vivax malaria patients receiving standard primaquine treatment in a population with high prevalence of G6PD deficiency. Infection 2023; 51:213-222. [PMID: 35976559 PMCID: PMC9892342 DOI: 10.1007/s15010-022-01905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/07/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Primaquine is essential for the radical cure of Plasmodium vivax malaria, but it poses a potential danger of severe hemolysis in G6PD-deficient (G6PDd) patients. This study aimed to determine whether primaquine is safe in a population with high G6PD prevalence but lacking G6PD diagnosis capacity. METHODS In Myanmar, 152 vivax patients were gender- and age-matched at 1:3 for G6PDd versus G6PD-normal (G6PDn). Their risk of acute hemolysis was followed for 28 days after treatment with the standard chloroquine and 14-day primaquine (0.25 mg/kg/day) regimen. RESULTS Patients anemic and non-anemic at enrollment showed a rising and declining trend in the mean hemoglobin level, respectively. In males, the G6PDd group showed substantially larger magnitudes of hemoglobin reduction and lower hemoglobin nadir levels than the G6PDn group, but this trend was not evident in females. Almost 1/3 of the patients experienced clinically concerning declines in hemoglobin, with five requiring blood transfusion. CONCLUSIONS The standard 14-day primaquine regimen carries a significant risk of acute hemolytic anemia (AHA) in vivax patients without G6PD testing in a population with a high prevalence of G6PD deficiency and anemia. G6PD testing would avoid most of the clinically significant Hb reductions and AHA in male patients.
Collapse
|
25
|
Ibrahim A, Manko E, Dombrowski JG, Campos M, Benavente ED, Nolder D, Sutherland CJ, Nosten F, Fernandez D, Vélez-Tobón G, Castaño AT, Aguiar ACC, Pereira DB, da Silva Santos S, Suarez-Mutis M, Di Santi SM, Regina de Souza Baptista A, Dantas Machado RL, Marinho CR, Clark TG, Campino S. Population-based genomic study of Plasmodium vivax malaria in seven Brazilian states and across South America. LANCET REGIONAL HEALTH. AMERICAS 2023; 18:100420. [PMID: 36844008 PMCID: PMC9950661 DOI: 10.1016/j.lana.2022.100420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Abstract
Background Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).
Collapse
Affiliation(s)
- Amy Ibrahim
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Jamille G. Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Mónica Campos
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Colin J. Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak,
Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of
Clinical Medicine Research Building, University of Oxford Old Road Campus,
Oxford, UK
| | - Diana Fernandez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | | | | | | | - Simone da Silva Santos
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | - Martha Suarez-Mutis
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Claudio R.F. Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Taane G. Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Faculty of Epidemiology & Population Health, London School of Hygiene
& Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| |
Collapse
|
26
|
Baba MS, Abd Jalil MA. In Vivo Antimalarial Activity of Trichosanthes cucumerina Against Plasmodium berghei NK65 in Mice. MALAYSIAN APPLIED BIOLOGY 2022; 51:187-192. [DOI: 10.55230/mabjournal.v51i5.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Undoubtedly, malaria is a vector-borne infectious disease that is increasingly being given attention by many researchers in their efforts to find the best drugs for its treatment. Four groups of mice (6-8 weeks old, 20-25 gram body weight (g bw) were inoculated with Plasmodium berghei NK65 intraperitoneally (i.p.) at 1.0 × 106 infected red blood cells (RBC) before being orally treated for the prophylactic and curative treatment regime with 0.2 mL of 100 mg/kg bw freeze-dried T. cucumerina aqueous extract. Parasitemia levels and inhibition rates were microscopically measured using Giemsa stained blood smear method. Trichosanthes cucumerina possessed strong antimalarial activities against P. berghei NK65 infection in mice. A significant correlation was successfully recorded between the survival time of the seven-day prophylactic treatment group (P7) with its ability to inhibit parasite growth as compared to the curative treatment groups. However, these values are still incomparable to the control group treated with the commercial drugs primaquine and chloroquine. In addition, blood biochemical toxicity analysis of ALT, AST, ALP, and STP showed that acute and sub-acute toxicity treatments of T. cucumerina did not cause liver injury and were non-toxic to the animals. Thus, this study significantly proves (p≤0.05, n=6) that T. cucumerina has antiparasitic properties that can be manipulated as an alternative antimalarial drug.
Collapse
|
27
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
28
|
Shankar VS, Purti N, Stephen LC, Mohan PM, Narshimulu G, Satyakeerthy TR, Jacob S. Elucidating the status of malaria in Andaman and Nicobar Islands post-millennium 2000. J Parasit Dis 2022; 46:1062-1069. [PMID: 36457779 PMCID: PMC9606159 DOI: 10.1007/s12639-022-01528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Malaria is a major vector-borne disease in the Indian sub-continent and has been pestering Andaman and Nicobar islands (ANI's) as well since British colonial times. A retrospective data mining technique has been adhered to assess the status of malaria for nineteen years from 2000 to 2019 in ANI's. The altered environment due to 2004 tsunami had increased malaria incidence significantly during (2005-2010). The Nicobar district recorded high incidence of malaria while the least in the north and middle Andaman district. Comparative high incidence of malaria was documented due to Plasmodium falciparum than Plasmodium vivax in the Nicobar district between 2005 and 2009. The declining trend of malaria-positive cases in ANI's was observed post 2010, articulating various initiatives taken by the local Andaman and Nicobar administration to curb this vector-borne disease. The initiatives were like (1) large-scale release of larvivorous fish, Gambusia affinis in the transient water pools, (2) outdoor application of DDT, (3) indoor application of Pyrethrum, (4) malaria awareness drive that led to the curbing of the proliferation not only the malaria vector but also other potential mosquito vector species as well, and (5) implementation of revised drug policy.
Collapse
Affiliation(s)
- Venkatesan Shiva Shankar
- Faculty of Environmental Science, ANCOL, Chakargaon, Port Blair, Andaman and Nicobar Islands 744112 India
| | - Neelam Purti
- Department of Environment and Forest, Manglutan Range, Port Balir, Andaman and Nicobar Islands 744105 India
| | - Lena Charlette Stephen
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Madurai, 625008 India
| | - P. M. Mohan
- Department of Ocean Studies and Marine Biology, Brookashabad Campus, Pondicherry University, Port Blair, 744112 India
| | - G. Narshimulu
- Department of Geography, JNRM, Port Blair, 744102 India
| | | | - Sunil Jacob
- Department of Chemistry, Catholicate College, Mahatma Gandhi University, Pathanamthitta, 689695 India
| |
Collapse
|
29
|
Plasmodium cynomolgi in humans: current knowledge and future directions of an emerging zoonotic malaria parasite. Infection 2022; 51:623-640. [PMID: 36401673 PMCID: PMC9676733 DOI: 10.1007/s15010-022-01952-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Plasmodium cynomolgi (Pcy), a simian malaria parasite, is a recent perfect example of emerging zoonotic transfer in human. This review summarizes the current knowledge on the epidemiology of natural Pcy infections in humans, mosquitoes and monkeys, along with its biological, clinical and drug sensitivity patterns. Knowledge gaps and further studies on Pcy in humans are also discussed. This parasite currently seems to be geographically limited in South-East Asia (SEA) with a global prevalence in human ranging from 0 to 1.4%. The Pcy infections were reported in local SEA populations and European travelers, and range from asymptomatic carriage to mild/moderate attacks with no evidence of pathognomonic clinical and laboratory patterns but with Pcy strain-shaped clinical differences. Geographical distribution and competence of suitable mosquito vectors and non-primate hosts, globalization, climate change, and increased intrusion of humans into the habitat of monkeys are key determinants to emergence of Pcy parasites in humans, along with its expansion outside SEA. Sensitization/information campaigns coupled with training and assessment sessions of microscopists and clinicians on Pcy are greatly needed to improve data on the epidemiology and management of human Pcy infection. There is a need for development of sensitive and specific molecular tools for individual diagnosis and epidemiological studies. The development of safe and efficient anti-hypnozoite drugs is the main therapeutic challenge for controlling human relapsing malaria parasites. Experience gained from P. knowlesi malaria, development of integrated measures and strategies—ideally with components related to human, monkeys, mosquito vectors, and environment—could be very helpful to prevent emergence of Pcy malaria in humans through disruption of transmission chain from monkeys to humans and ultimately contain its expansion in SEA and potential outbreaks in a context of malaria elimination.
Collapse
|
30
|
Cortopassi WA, Gunderson E, Annunciato Y, Silva A, dos Santos Ferreira A, Garcia Teles CB, Pimentel AS, Ramamoorthi R, Gazarini ML, Meneghetti MR, Guido R, Pereira DB, Jacobson MP, Krettli AU, Caroline C Aguiar A. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues. Int J Parasitol Drugs Drug Resist 2022; 20:121-128. [PMID: 36375339 PMCID: PMC9771834 DOI: 10.1016/j.ijpddr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Malaria is among the tropical diseases that cause the most deaths in Africa. Around 500,000 malaria deaths are reported yearly among African children under the age of five. Chloroquine (CQ) is a low-cost antimalarial used worldwide for the treatment of Plasmodium vivax malaria. Due to resistance mechanisms, CQ is no longer effective against most malaria cases caused by P. falciparum. The World Health Organization recommends artemisinin combination therapies for P. falciparum malaria, but resistance is emerging in Southeast Asia and some parts of Africa. Therefore, new medicines for treating malaria are urgently needed. Previously, our group identified the 4-aminoquinoline DAQ, a CQ analog containing an acetylenic bond in its side chain, which overcomes CQ resistance in K1 P. falciparum strains. In this work, the antiplasmodial profile, drug-like properties, and pharmacokinetics of DAQ were further investigated. DAQ showed no cross-resistance against standard CQ-resistant strains (e.g., Dd2, IPC 4912, RF12) nor against P. falciparum and P. vivax isolates from patients in the Brazilian Amazon. Using drug pressure assays, DAQ showed a low propensity to generate resistance. DAQ showed considerable solubility but low metabolic stability. The main metabolite was identified as a mono N-deethylated derivative (DAQM), which also showed significant inhibitory activity against CQ-resistant P. falciparum strains. Our findings indicated that the presence of a triple bond in CQ-analogues may represent a low-cost opportunity to overcome known mechanisms of resistance in the malaria parasite.
Collapse
Affiliation(s)
- Wilian A. Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Antony.E.S. Silva
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | | | - Andre S. Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, RJ, Brazil
| | | | - Marcos L Gazarini
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Mario R. Meneghetti
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Rafael.V.C. Guido
- São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Dhelio B. Pereira
- Research Center in Tropical Medicine of Rondônia, Porto Velho, Rondônia, Brazil
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Antoniana U. Krettli
- Malaria Laboratory, René Rachou Research Center, FIOCRUZ, Belo Horizonte, MG, Brazil,Corresponding author.
| | - Anna Caroline C Aguiar
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil,São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil,Corresponding author.Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This is a review of Plasmodium vivax epidemiology, pathogenesis, disease presentation, treatment and innovations in control and elimination. Here, we examine the recent literature and summarize new advances and ongoing challenges in the management of P. vivax . RECENT FINDINGS P. vivax has a complex life cycle in the human host which impacts disease severity and treatment regimens. There is increasing data for the presence of cryptic reservoirs in the spleen and bone marrow which may contribute to chronic vivax infections and possibly disease severity. Methods to map the geospatial epidemiology of P. vivax chloroquine resistance are advancing, and they will inform local treatment guidelines. P. vivax treatment requires an 8-aminoquinoline to eradicate the dormant liver stage. Evidence suggests that higher doses of 8-aminoquinolines may be needed for radical cure of tropical frequent-relapsing strains. SUMMARY P. vivax is a significant global health problem. There have been recent developments in understanding the complexity of P. vivax biology and optimization of antimalarial therapy. Studies toward the development of best practices for P. vivax control and elimination programs are ongoing.
Collapse
Affiliation(s)
- Nazia Khan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| | - Johanna P. Daily
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
32
|
Pandurangi U, Biswas M, Shetty PP, Belle VS. Comparison of various RBC indices and Glucose 6 phosphate dehydrogenase activity in patients with and without malaria. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i4.1599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Malaria is endemic in many parts of India. Glucose 6 phosphate dehydrogenase (G6PD) deficiency is known to protect against malaria. G6PD deficient individuals afflicted with malaria when treated with primaquine, the first line oxidant drug of malaria, encounter adverse to fatal complications due to acute precipitation of hemolytic anemia. There is a need to assess RBC indices in malaria, its implications in G6PD deficiency, and its acute manifestations. The aim of this study was to compare and correlate various RBC indices and G6PD activity in patients with and without malaria and to find a prevalence of G6PD deficiency in a tertiary care hospital.
Materials and Methods: The present study was carried out by the Biochemistry Department of Kasturba Medical College, Manipal in 363 participants (with malaria and without malaria). Mann Whitney U test and Spearman’s Rank correlation were employed to assess group differences and correlation, respectively.
Results: 218 cases of malaria in 365 days from a tertiary care hospital in South India is an alarming incidence and annuls the fact that the malaria prevalence is relatively low in South India. Complete blood counts and red blood indices did not show any statistically significant difference between the study groups. No statistically significant correlation was found between G6PD activity and RBC indices in the present study.
Conclusion: No significant differences between hematological indicators and malaria with or without G6PD deficiency hint towards the necessity of G6PD tests for radical treatment of malaria as hematological indices are unable to predict the defective enzyme activity.
Collapse
|
33
|
Abstract
IMPORTANCE Malaria is caused by protozoa parasites of the genus Plasmodium and is diagnosed in approximately 2000 people in the US each year who have returned from visiting regions with endemic malaria. The mortality rate from malaria is approximately 0.3% in the US and 0.26% worldwide. OBSERVATIONS In the US, most malaria is diagnosed in people who traveled to an endemic region. More than 80% of people diagnosed with malaria in the US acquired the infection in Africa. Of the approximately 2000 people diagnosed with malaria in the US in 2017, an estimated 82.4% were adults and about 78.6% were Black or African American. Among US residents diagnosed with malaria, 71.7% had not taken malaria chemoprophylaxis during travel. In 2017 in the US, P falciparum was the species diagnosed in approximately 79% of patients, whereas P vivax was diagnosed in an estimated 11.2% of patients. In 2017 in the US, severe malaria, defined as vital organ involvement including shock, pulmonary edema, significant bleeding, seizures, impaired consciousness, and laboratory abnormalities such as kidney impairment, acidosis, anemia, or high parasitemia, occurred in approximately 14% of patients, and an estimated 0.3% of those receiving a diagnosis of malaria in the US died. P falciparum has developed resistance to chloroquine in most regions of the world, including Africa. First-line therapy for P falciparum malaria in the US is combination therapy that includes artemisinin. If P falciparum was acquired in a known chloroquine-sensitive region such as Haiti, chloroquine remains an alternative option. When artemisinin-based combination therapies are not available, atovaquone-proguanil or quinine plus clindamycin is used for chloroquine-resistant malaria. P vivax, P ovale, P malariae, and P knowlesi are typically chloroquine sensitive, and treatment with either artemisinin-based combination therapy or chloroquine for regions with chloroquine-susceptible infections for uncomplicated malaria is recommended. For severe malaria, intravenous artesunate is first-line therapy. Treatment of mild malaria due to a chloroquine-resistant parasite consists of a combination therapy that includes artemisinin or chloroquine for chloroquine-sensitive malaria. P vivax and P ovale require additional therapy with an 8-aminoquinoline to eradicate the liver stage. Several options exist for chemoprophylaxis and selection should be based on patient characteristics and preferences. CONCLUSIONS AND RELEVANCE Approximately 2000 cases of malaria are diagnosed each year in the US, most commonly in travelers returning from visiting endemic areas. Prevention and treatment of malaria depend on the species and the drug sensitivity of parasites from the region of acquisition. Intravenous artesunate is first-line therapy for severe malaria.
Collapse
Affiliation(s)
- Johanna P Daily
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| | - Aurelia Minuti
- D. Samuel Gottesman Library, Albert Einstein College of Medicine, Bronx, New York
| | - Nazia Khan
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
34
|
Lu G, Cao Y, Chen Q, Zhu G, Müller O, Cao J. Care-seeking delay of imported malaria to China: implications for improving post-travel healthcare for migrant workers. J Travel Med 2022; 29:6377256. [PMID: 34581417 PMCID: PMC9282091 DOI: 10.1093/jtm/taab156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Imported malaria cases continue to pose major challenges in China as well as in other countries having achieved elimination. Our study aims to identify the factors influencing the timing of care-seeking after symptom onset among migrant workers with imported malaria, in order to develop innovative interventions to improve access and provision of post-travel healthcare for returning migrants. METHODS We analysed the timing and types of healthcare service utilization after symptom onset among patients with imported malaria between 2012 and 2019 in Jiangsu Province, China. Moreover, decision tree models were used to explore the factors influencing the care-seeking timing after symptom onset among patients with imported malaria. RESULTS A total of 2255 cases of imported malaria were identified from 1 June 2012 through 31 December 2019. Patients with malaria imported into China were mainly male migrant labourers returning from sub-Saharan Africa (96.8%). A substantial number of patients with imported malaria sought healthcare >3 days after symptom onset, which clearly represented delayed healthcare-seeking behaviour. According to the decision tree analysis, initial healthcare seeking from healthcare facilities at higher administrative levels, infection with Plasmodium vivax and absence of malaria infection history were significantly associated with delayed healthcare seeking in patients with imported malaria. CONCLUSION The delay in seeking of medical care among migrant workers with imported malaria should be considered and addressed by specific interventions. In addition to increasing awareness about these issues among health care professionals, improved access to healthcare facilities at higher administrative levels as well as improved diagnostic capacity of healthcare facilities at lower administrative levels should be developed. Moreover, education programs targeting populations at risk of malaria importation and delayed healthcare seeking should be improved to facilitate early healthcare seeking and service use.
Collapse
Affiliation(s)
- Guangyu Lu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yuanyuan Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Qi Chen
- Institute of Global Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Olaf Müller
- Institute of Global Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Kar S, Sinha A. Plasmodium vivax Duffy Binding Protein-Based Vaccine: a Distant Dream. Front Cell Infect Microbiol 2022; 12:916702. [PMID: 35909975 PMCID: PMC9325973 DOI: 10.3389/fcimb.2022.916702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host’s reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.
Collapse
|
36
|
Anwar MN, Hickson RI, Mehra S, McCaw JM, Flegg JA. A Multiscale Mathematical Model of Plasmodium Vivax Transmission. Bull Math Biol 2022; 84:81. [PMID: 35778540 PMCID: PMC9249727 DOI: 10.1007/s11538-022-01036-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Malaria is caused by Plasmodium parasites which are transmitted to humans by the bite of an infected Anopheles mosquito. Plasmodium vivax is distinct from other malaria species in its ability to remain dormant in the liver (as hypnozoites) and activate later to cause further infections (referred to as relapses). Mathematical models to describe the transmission dynamics of P. vivax have been developed, but most of them fail to capture realistic dynamics of hypnozoites. Models that do capture the complexity tend to involve many governing equations, making them difficult to extend to incorporate other important factors for P. vivax, such as treatment status, age and pregnancy. In this paper, we have developed a multiscale model (a system of integro-differential equations) that involves a minimal set of equations at the population scale, with an embedded within-host model that can capture the dynamics of the hypnozoite reservoir. In this way, we can gain key insights into dynamics of P. vivax transmission with a minimum number of equations at the population scale, making this framework readily scalable to incorporate more complexity. We performed a sensitivity analysis of our multiscale model over key parameters and found that prevalence of P. vivax blood-stage infection increases with both bite rate and number of mosquitoes but decreases with hypnozoite death rate. Since our mathematical model captures the complex dynamics of P. vivax and the hypnozoite reservoir, it has the potential to become a key tool to inform elimination strategies for P. vivax.
Collapse
Affiliation(s)
- Md Nurul Anwar
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.,Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Roslyn I Hickson
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.,Australian Institute of Tropical Health and Medicine, and College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia.,Health and Biosecurity, CSIRO, Townsville, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
37
|
Račková L, Csekes E. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia. Toxicol Appl Pharmacol 2022; 447:116084. [PMID: 35618033 DOI: 10.1016/j.taap.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Erika Csekes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
38
|
MalariaGEN, Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, Andrianaranjaka V, Anstey NM, Aseffa A, Ashley E, Assefa A, Auburn S, Barber BE, Barry A, Batista Pereira D, Cao J, Chau NH, Chotivanich K, Chu C, Dondorp AM, Drury E, Echeverry DF, Erko B, Espino F, Fairhurst R, Faiz A, Fernanda Villegas M, Gao Q, Golassa L, Goncalves S, Grigg MJ, Hamedi Y, Hien TT, Htut Y, Johnson KJ, Karunaweera N, Khan W, Krudsood S, Kwiatkowski DP, Lacerda M, Ley B, Lim P, Liu Y, Llanos-Cuentas A, Lon C, Lopera-Mesa T, Marfurt J, Michon P, Miotto O, Mohammed R, Mueller I, Namaik-larp C, Newton PN, Nguyen TN, Nosten F, Noviyanti R, Pava Z, Pearson RD, Petros B, Phyo AP, Price RN, Pukrittayakamee S, Rahim AG, Randrianarivelojosia M, Rayner JC, Rumaseb A, Siegel SV, Simpson VJ, Thriemer K, Tobon-Castano A, Trimarsanto H, Urbano Ferreira M, Vélez ID, Wangchuk S, Wellems TE, White NJ, William T, Yasnot MF, Yilma D. An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples. Wellcome Open Res 2022; 7:136. [PMID: 35651694 PMCID: PMC9127374 DOI: 10.12688/wellcomeopenres.17795.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
Collapse
Affiliation(s)
| | - Ishag Adam
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Sisay Alemu
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
- MilliporeSigma (Bioreliance), Rockville, USA
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | - Elizabeth Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alyssa Barry
- Walter and Eliza Hall Institute, Parkville, Australia
- Deakin University, Geelong, Australia
- Burnet Institute, Melbourne, Australia
| | | | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Arjen M. Dondorp
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Diego F. Echeverry
- Departamento de Microbiologia, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fe Espino
- Research Institute for Tropical Medicine, Department of Health, Manila, Philippines
| | | | | | | | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Yangon, Myanmar
| | | | - Nadira Karunaweera
- University of Colombo, Colombo, Sri Lanka
- School of Public Health, Harvard University, Boston, USA
| | - Wasif Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | | | | | - Marcus Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
- Parsons Corporation, Walter Reed Army Institute of Research (WRAIR), Silver Spring, USA
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Chanthap Lon
- National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Rezika Mohammed
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
| | | | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thuy-Nhien Nguyen
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Zuleima Pava
- Centro Internacionale de Entrenamiento e Investigaciones Medicas, Cali, Colombia
| | | | | | - Aung P Phyo
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Awab Ghulam Rahim
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Jalalabad, Afghanistan
| | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | - Marcelo Urbano Ferreira
- Universidade de São Paulo, São Paulo, Brazil
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | | | - Sonam Wangchuk
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Thomas E Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Maria F Yasnot
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Monteria, Colombia
| | | |
Collapse
|
39
|
Jongdeepaisal M, Khonputsa P, Prasert O, Maneenet S, Pongsoipetch K, Jatapai A, Rotejanaprasert C, Sudathip P, Maude RJ, Pell C. Forest malaria and prospects for anti-malarial chemoprophylaxis among forest goers: findings from a qualitative study in Thailand. Malar J 2022; 21:47. [PMID: 35164759 PMCID: PMC8845363 DOI: 10.1186/s12936-022-04070-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Across the Greater Mekong Subregion, malaria remains a dangerous infectious disease, particularly for people who visit forested areas where residual transmission continues. Because vector control measures offer incomplete protection to forest goers, chemoprophylaxis has been suggested as a potential supplementary measure for malaria prevention and control. To implement prophylaxis effectively, additional information is needed to understand forest goers' activities and their willingness to use malaria prevention measures, including prophylaxis, and how it could be delivered in communities. Drawing on in-depth interviews with forest goers and stakeholders, this article examines the potential acceptability and implementation challenges of malaria prophylaxis for forest goers in northeast Thailand. METHODS In-depth interviews were conducted with forest goers (n = 11) and stakeholders (n = 16) including healthcare workers, community leaders, and policymakers. Interviews were audio-recorded, transcribed and coded using NVivo, employing an inductive and deductive approach, for thematic analysis. RESULTS Forest goers were well aware of their (elevated) malaria risk and reported seeking care for malaria from local health care providers. Forest goers and community members have a close relationship with the forest but are not a homogenous group: their place and time-at-risk varied according to their activities and length of stay in the forest. Among stakeholders, the choice and cost of anti-malarial prophylactic regimen-its efficacy, length and complexity, number of tablets, potential side effects, and long-term impact on users-were key considerations for its feasibility. They also expressed concern about adherence to the preventive therapy and potential difficulty treating malaria patients with the same regimen. Prophylaxis was considered a low priority in areas with perceived accessible health system and approaching malaria elimination. CONCLUSIONS In the context of multi-drug resistance, there are several considerations for implementing malaria prophylaxis: the need to target forest goers who are at-risk with a clear period of exposure, to ensure continued use of vector control measures and adherence to prophylactic anti-malarials, and to adopt an evidence-based approach to determine an appropriate regimen. Beyond addressing current intervention challenges and managing malaria incidence in low-transmission setting, it is crucial to keep malaria services available and accessible at the village level especially in areas home to highly mobile populations.
Collapse
Affiliation(s)
- Monnaphat Jongdeepaisal
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Panarasri Khonputsa
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orathai Prasert
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suphitsara Maneenet
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kulchada Pongsoipetch
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anchalee Jatapai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chawarat Rotejanaprasert
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prayuth Sudathip
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Harvard TH Chan School of Public Health, Harvard University, Boston, USA.
- The Open University, Milton Keynes, UK.
| | - Christopher Pell
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
- Department of Global Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Guntur RD, Kingsley J, Islam FMA. Malaria treatment-seeking behaviour and its associated factors: A cross-sectional study in rural East Nusa Tenggara Province, Indonesia. PLoS One 2022; 17:e0263178. [PMID: 35120136 PMCID: PMC8815915 DOI: 10.1371/journal.pone.0263178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The World Health Organization recommends seeking medical treatment within 24 hours after transmission of malaria to reduce the risk of severe complications and its onwards spread. However, in some parts of Indonesia, including East Nusa Tenggara Province (ENTP), this adherence is not achieved for a range of reasons including delays in visiting health centres. This study aims to determine factors related to the poor understanding of appropriate malaria treatment-seeking behaviour (AMTSB) of rural adults in ENTP. AMTSB was defined as seeking treatment at professional health facilities within 24 hours of the onset of malaria symptoms. METHODS A cross-sectional study was conducted in the East Sumba, Belu, and East Manggarai district of ENTP between October and December 2019. A multi-stage cluster sampling procedure was applied to enrol 1503 participants aged between 18 and 89 years of age. Data were collected through face-to-face interviews. Multivariable logistic regression analyses were used to assess significant factors associated with the poor understanding of AMTSB. RESULTS Eighty-six percent of participants were found to be familiar with the term malaria. However, poor understanding level of AMTSB in rural adults of ENTP achieved 60.4% with a 95% confidence interval (CI): 56.9-63.8. Poor understanding of AMTSB was significantly higher for adults with no education (adjusted odds ratio (AOR) 3.42, 95% CI: 1.81, 6.48) compared to those with a diploma or above education level; having low SES (AOR: 1.87, 95% CI: 1.19, 2.96) compared to those having high SES; residing at least three kilometres (km) away from the nearest health facilities (AOR: 1.73, 95% CI: 1.2, 2.5) compared to those living within one km from the nearest health service; and working as farmer (AOR: 1.63, 95% CI: 1.01-2.63) compared to those working at government or non-government sector. Whilst, other factors such as ethnicity and family size were not associated with the poor understanding of AMTSB. CONCLUSION The proportion of rural adults having a poor understanding of AMTSB was high leading to ineffective implementation of artemisinin-based combination therapies as the method to treat malaria in ENTP. Improving awareness of AMTSB for rural adults having low level education, low SES, working as a farmer, and living at least three km from the nearest health facilities is critical to support the efficacy of malaria treatment in ENTP. This method will support the Indonesian government's objective to achieve malaria elimination by 2030.
Collapse
Affiliation(s)
- Robertus Dole Guntur
- Department of Health Science and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Department of Mathematics, Faculty of Science and Engineering, Nusa Cendana University, Kupang, NTT, Indonesia
| | - Jonathan Kingsley
- Department of Health Science and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Centre of Urban Transitions, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Fakir M. Amirul Islam
- Department of Health Science and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
41
|
Pasaribu AP, Nasution IS, Sembiring K, Fahmi F, Pasaribu S. Comparison of the performance of the CareStart Malaria Pf/Pan Combo test and field microscopy in the diagnosis of Plasmodium vivax malaria in North Sumatera, Indonesia. Malar J 2022; 21:27. [PMID: 35093067 PMCID: PMC8800299 DOI: 10.1186/s12936-022-04057-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background In areas where malaria is endemic and where trained microscopists are not available, rapid diagnostic tests (RDTs) are needed not only to allow prompt treatment without delay but also to prevent overdiagnosis and overtreatment based on clinical judgements that may lead to drug resistance. This study aimed to compare the performances of the CareStart Pf/Pan Combo test to field microscopy, which is considered to be the gold standard for malaria diagnosis. Methods Any person with a fever or a history of fever within 48 h who came to the health centre was recruited for the study and tested both by the CareStart Pf/Pan test and by field microscopy. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were analysed with both methods. Results Two-hundred study participants were enrolled: 96 (48%) were found to be positive through microscopy, while 100 (50%) participants were found to be positive through RDT. The RDT produced four false-positive results. High sensitivity and specificity were observed for the CareStart Pf/Pan test (100 and 96.15%, respectively). The CareStart Pf/Pan test also showed excellent agreement with the field microscopy results. Conclusion The Carestart Pf/Pan could be used as an alternative diagnostic test in malaria-endemic areas where facility for performing microscopy is not available.
Collapse
|
42
|
Wångdahl A, Sondén K, Wyss K, Stenström C, Björklund D, Zhang J, Hervius Askling H, Carlander C, Hellgren U, Färnert A. Relapse of Plasmodium vivax and Plasmodium ovale malaria with and without primaquine treatment in a non-endemic area. Clin Infect Dis 2021; 74:1199-1207. [PMID: 34216464 PMCID: PMC8994585 DOI: 10.1093/cid/ciab610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 01/14/2023] Open
Abstract
Background The effect of primaquine in preventing Plasmodium vivax relapses from dormant stages is well established. For Plasmodium ovale, the relapse characteristics and the use of primaquine is not as well studied. We set to evaluate the relapsing properties of these 2 species, in relation to primaquine use among imported malaria cases in a nonendemic setting. Methods We performed a nationwide retrospective study of malaria diagnosed in Sweden 1995–2019, by reviewing medical records of 3254 cases. All episodes of P. vivax (n = 972) and P. ovale (n = 251) were selected for analysis. Results First time relapses were reported in 80/857 (9.3%) P. vivax and 9/220 (4.1%) P. ovale episodes, respectively (P < .01). Without primaquine, the risk for relapse was higher in P. vivax, 20/60 (33.3%), compared to 3/30 (10.0%) in P. ovale (hazard ratio [HR] 3.5, 95% confidence interval [CI] 1.0–12.0). In P. vivax, patients prescribed primaquine had a reduced risk of relapse compared to episodes without relapse preventing treatment, 7.1% vs 33.3% (HR 0.2, 95% CI .1–.3). In P. ovale, the effect of primaquine on the risk of relapse did not reach statistical significance, with relapses seen in 2.8% of the episodes compared to 10.0% in patients not receiving relapse preventing treatment (HR 0.3, 95% CI .1–1.1). Conclusions The risk of relapse was considerably lower in P. ovale than in P. vivax infections indicating different relapsing features between the two species. Primaquine was effective in preventing P. vivax relapse. In P. ovale, relapse episodes were few, and the supportive evidence for primaquine remains limited.
Collapse
Affiliation(s)
- Andreas Wångdahl
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Västerås Hospital, Västerås, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Katja Wyss
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christine Stenström
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - David Björklund
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Zhang
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helena Hervius Askling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Carlander
- Department of Infectious Diseases, Västerås Hospital, Västerås, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Urban Hellgren
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Abstract
Lorenz von Seidlein and Nicholas White introduce a Collection on Plasmodium vivax malaria.
Collapse
|