1
|
Wang J, Yang R, Miao Y, Zhang X, Paillard‐Borg S, Fang Z, Xu W. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Associated With Accelerated Brain Ageing: A Population-Based Study. Liver Int 2025; 45:e70109. [PMID: 40296771 PMCID: PMC12038381 DOI: 10.1111/liv.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to cognitive decline and dementia risk. We aimed to investigate the association between MASLD and brain ageing and explore the role of low-grade inflammation. METHODS Within the UK Biobank, 30 386 chronic neurological disorders-free participants who underwent brain magnetic resonance imaging (MRI) scans were included. Individuals were categorised into no MASLD/related SLD and MASLD/related SLD (including subtypes of MASLD, MASLD with increased alcohol intake [MetALD] and MASLD with other combined aetiology). Brain age was estimated using machine learning by 1079 brain MRI phenotypes. Brain age gap (BAG) was calculated as the difference between brain age and chronological age. Low-grade inflammation (INFLA) was calculated based on white blood cell count, platelet, neutrophil granulocyte to lymphocyte ratio and C-reactive protein. Data were analysed using linear regression and structural equation models. RESULTS At baseline, 7360 (24.2%) participants had MASLD/related SLD. Compared to participants with no MASLD/related SLD, those with MASLD/related SLD had significantly larger BAG (β = 0.86, 95% CI = 0.70, 1.02), as well as those with MASLD (β = 0.59, 95% CI = 0.41, 0.77) or MetALD (β = 1.57, 95% CI = 1.31, 1.83). The association between MASLD/related SLD and larger BAG was significant across middle-aged (< 60) and older (≥ 60) adults, males and females, and APOE ɛ4 carriers and non-carriers. INFLA mediated 13.53% of the association between MASLD/related SLD and larger BAG (p < 0.001). CONCLUSION MASLD/related SLD, as well as MASLD and MetALD, is associated with accelerated brain ageing, even among middle-aged adults and APOE ɛ4 non-carriers. Low-grade systemic inflammation may partially mediate this association.
Collapse
Affiliation(s)
- Jiao Wang
- Center of Gerontology and GeriatricsNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- Aging Research Center, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Rongrong Yang
- Aging Research Center, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- Public Health Science and Engineering CollegeTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuyang Miao
- Tianjin Key Laboratory of Elderly Health, Department of Geriatrics, Tianjin Geriatrics InstituteTianjin Medical University General HospitalTianjinChina
| | - Xinjie Zhang
- Department of Pediatric Neurosurgery, West China Second University HospitalSichuan UniversityChengduChina
| | | | - Zhongze Fang
- Department of Toxicology and Health Inspection and Quarantine, School of Public HealthTianjin Medical UniversityTianjinChina
| | - Weili Xu
- Aging Research Center, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- Tianjin Key Laboratory of Elderly Health, Department of Geriatrics, Tianjin Geriatrics InstituteTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
2
|
Stephenson M, Barr P, Thomas N, Cooke M, Latvala A, Rose RJ, Kaprio J, Dick D, Salvatore JE. Patterns and predictors of alcohol misuse trajectories from adolescence through early midlife. Dev Psychopathol 2025; 37:734-750. [PMID: 38465371 PMCID: PMC11387953 DOI: 10.1017/s0954579424000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We took a multilevel developmental contextual approach and characterized trajectories of alcohol misuse from adolescence through early midlife, examined genetic and environmental contributions to individual differences in those trajectories, and identified adolescent and young adult factors associated with change in alcohol misuse. Data were from two longitudinal population-based studies. FinnTwin16 is a study of Finnish twins assessed at 16, 17, 18, 25, and 35 years (N = 5659; 52% female; 32% monozygotic). The National Longitudinal Study of Adolescent to Adult Health (Add Health) is a study of adolescents from the United States, who were assessed at five time points from 1994 to 2018 (N = 18026; 50% female; 64% White, 21% Black, 4% Native American, 7% Asian, 9% Other race/ethnicity). Alcohol misuse was measured as frequency of intoxication in FinnTwin16 and frequency of binge drinking in Add Health. In both samples, trajectories of alcohol misuse were best described by a quadratic growth curve: Alcohol misuse increased across adolescence, peaked in young adulthood, and declined into early midlife. Individual differences in these trajectories were primarily explained by environmental factors. Several adolescent and young adult correlates were related to the course of alcohol misuse, including other substance use, physical and mental health, and parenthood.
Collapse
Affiliation(s)
- Mallory Stephenson
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Peter Barr
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nathaniel Thomas
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Megan Cooke
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Antti Latvala
- Institute of Criminology and Legal Policy, University of Helsinki, Helsinki, Finland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jaakko Kaprio
- Department of Public Health, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Danielle Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jessica E Salvatore
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Zhou B, Wu J, Zhao T, Yu Q, Jiang K, Zhang X, Wei Q, Zhang R, Fang H, Zhang H, Chen Y, Zhang X, Huang C. Quantification of infrapatellar fat pad fibrosis using magnetic resonance imaging-derived proton density fat fraction: a pathology-controlled study. Quant Imaging Med Surg 2025; 15:2694-2706. [PMID: 40235820 PMCID: PMC11994565 DOI: 10.21037/qims-24-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/23/2025] [Indexed: 04/17/2025]
Abstract
Background Knee osteoarthritis (KOA) is a degenerative joint disease leading to disability in the elderly. Fibrosis of the infrapatellar fat pad (IPFP) impacts knee joint function and disease progression. Accurate assessment of IPFP fibrosis aids early intervention and treatment. The aim of this study was to evaluate the diagnostic efficacy of proton density fat fraction (PDFF) and T2* measurements using mDixon-Quant technology in assessing IPFP fibrosis in KOA. Methods A total of 47 patients were included in this study (23 patients without fibrosis, 17 with mild fibrosis, and 7 with severe fibrosis). Knee magnetic resonance (MR) scans were performed on a 3.0 T MR system. MR sequences included 3.0 T, sagittal T2-weighted images, proton density-weighted spectral adiabatic inversion recovery (PDW-SPAIR), and three-dimensional (3D) six-echo gradient recalled echo sequence (mDixon-Quant). Two radiologists performed PDFF, T2* measurements, and the hypointense signal grade of the IPFP. Measurements were compared among the three subgroups, and correlations of the three parameters with pathology-derived IPFP fibrosis degree and diagnostic efficacy were evaluated. Intraclass correlation coefficient (ICC), one-way analysis of variance (ANOVA), and Spearman correlation analysis were used. The diagnostic performance was assessed using the area under the receiver operating characteristic (ROC) curve (AUC) and linear regression with leave-one-out cross validation. Statistical significance was set at P<0.05. Results MR measurements demonstrated good inter-observer reproducibility (ICC for PDFF =0.901, ICC for T2* =0.902). The PDFF and T2* values in the normal and mild fibrosis groups were higher than those in the severe fibrosis group. PDFF and T2* measurements were strongly correlated with IPFP fibrosis (ρ=-0.7083, -0.6028, respectively). PDFF and T2* showed good diagnostic performance for IPFP fibrosis (AUC =0.9529, 0.8098, respectively). Adjusted R2 indicated similar results (PDFF 0.6682, T2* 0.538, hypointense 0.1437). Using PDFF and T2* together showed good diagnostic performance for IPFP fibrosis (AUC =0.9601) and had the best R2 of 0.6995. Conclusions PDFF and T2* measurements based on mDixon technology provide a non-invasive and quantitative assessment of IPFP fibrosis, especially PDFF.
Collapse
Affiliation(s)
- Beibei Zhou
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinling Wu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Tianyun Zhao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Qingling Yu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Kexin Jiang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinru Zhang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Zhang
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanjun Chen
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodong Zhang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chuan Huang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Enderami A, Shariati B, Zarghami M, Aliasgharian A, Ghazaiean M, Darvishi‐Khezri H. Metformin and Cognitive Performance in Patients With Type 2 Diabetes: An Umbrella Review. Neuropsychopharmacol Rep 2025; 45:e12528. [PMID: 39871536 PMCID: PMC11772738 DOI: 10.1002/npr2.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/29/2025] Open
Abstract
Contradictory results for the association between metformin intake and changes in cognitive function have been reported. We attempted to overview systematic reviews and meta-analyses showing the role of metformin, as mono or combination therapy, in cognitive performance alterations among patients with type 2 diabetes mellitus (T2DM) and to determine the quality of the evidence as well. To find the English-written reviews, a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, Trip, and Google Scholar by May 1, 2023. The literature search unearthed 2672 records, 10 of which were included in the study. Metformin may provide cognitive benefits for patients with type 2 diabetes, as evidence suggests potential improvements in memory and a reduced risk of neurodegenerative diseases. Even though the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) score alterations correspond to raising concerns about cognitive decline, Mini-Mental State Examination (MMSE) and selective reminding test (SRT) score improvements support metformin's role in improving specific cognitive domains. As such, metformin may exert differential impacts on various aspects of cognitive performance in these patients. However, the inconsistency and low quality of current evidence point toward the need for accurate research to elucidate whether metformin's cognitive effects are protective, neutral, or context-dependent based on patient profiles.
Collapse
Affiliation(s)
- Athena Enderami
- Department of Psychiatry, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Behnam Shariati
- Mental Health Research CenterIran University of Medical SciencesTehranIran
| | - Mehran Zarghami
- Department of Psychiatry, School of Medicine and Psychiatry and Behavioral Sciences Research CenterAddiction Institute, Mazandaran University of Medical SciencesSariIran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC)Hemoglobinopathy Institute, Mazandaran University of Medical SciencesSariIran
| | - Mobin Ghazaiean
- Gut and Liver Research CenterNon‐communicable Disease Institute, Mazandaran University of Medical SciencesSariIran
| | - Hadi Darvishi‐Khezri
- Thalassemia Research Center (TRC)Hemoglobinopathy Institute, Mazandaran University of Medical SciencesSariIran
| |
Collapse
|
5
|
Zhang X, Wu W, Zhou G, Huang X, Xu M, Zhao Q, Yan H. Relationship between alcohol use and traumatic brain injury: evidence from Mendelian randomization. Brain Inj 2025; 39:610-617. [PMID: 39894956 DOI: 10.1080/02699052.2025.2460740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Observational studies suggest that alcohol consumption increases the risk of traumatic brain injury (TBI); however, the causality of this association remains unclear. OBJECTIVES This study aimed to identify which drinking pattern is the primary factor influencing TBI. METHOD Two-sample Mendelian randomization (MR) was used to assess whether drinking patterns (alcohol consumption, abuse, and intake frequency) are causally associated with TBI risk. RESULTS MR analysis revealed causal effects of alcohol intake frequency [odds ratio (OR) 0.806, 95% confidence interval (CI): 0.665-0.978, p = 0.028, beta: -0.215, se: 0.098], alcohol drinks per week (OR 1.772, 95% CI: 1.140-2.753, p = 0.011, beta: 0.572, se: 0.225), and alcohol abuse (OR 1.095, 95% CI: 1.006-1.192, p = 0.035, beta: 0.091, se: 0.043) on TBI. Additionally, no causal effect of alcohol consumption (OR 0.730, 95% CI: 0.264-2.025, p = 0.546, beta: -0.314, se: 0.520) or average monthly alcohol intake (OR 1.138, 95% CI: 0.805-1.609, p = 0.463, beta: 0.130, se: 0.177) on TBI was observed. Similarly, the effects of TBI on alcohol intake were statistically non-significant. CONCLUSION Drinking patterns, including alcohol intake frequency and abuse, influence TBI, whereas TBI rarely influences drinking patterns.
Collapse
Affiliation(s)
- Xiaohang Zhang
- School of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenze Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guisheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- School of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Xu
- School of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiulong Zhao
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Palmer WC, Stancampiano FF. Hemochromatosis. Ann Intern Med 2025; 178:ITC17-ITC32. [PMID: 39928951 DOI: 10.7326/annals-24-03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2025] Open
Abstract
Hemochromatosis is an inheritable condition that mainly affects White populations of European descent. Most patients remain asymptomatic, but others develop advanced organ damage that reduces quality of life and long-term survival. Arthropathy, diabetes mellitus, cirrhosis, hypogonadotropic hypogonadism, and cardiomyopathy are key clinical manifestations. Primary care and hospital medicine physicians play an essential role in early identification of this disease, which can be accomplished via standard hematologic testing. Early diagnosis and therapeutic phlebotomy improve clinical outcomes.
Collapse
Affiliation(s)
- William C Palmer
- Professor of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic Florida, Jacksonville, Florida (W.C.P.)
| | - Fernando F Stancampiano
- Associate Professor of Medicine, Division of Community Internal Medicine, Mayo Clinic Florida, Jacksonville, Florida (F.F.S.)
| |
Collapse
|
7
|
Zhao Q, Maimaitiaili S, Bi Y, Li M, Li X, Li Q, Shen X, Wu M, Fu L, Zhu Z, Zhang X, Chen J, Hu A, Zhang Z, Zhang W, Zhang B. Brain Iron Deposition Alterations in Type 2 Diabetes Mellitus Patients With Mild Cognitive Impairment Based on Quantitative Susceptibility Mapping. J Diabetes 2025; 17:e70052. [PMID: 39843980 PMCID: PMC11753919 DOI: 10.1111/1753-0407.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Iron is one of the most important elements in brain that may has a direct impact on the stability of central nervous system. The current study devoted to explore the alterations of iron distribution across the whole brain in type 2 diabetes mellitus (T2DM) patients with mild cognitive impairment (MCI). METHODS The quantitative susceptibility mapping (QSM) technique was used to quantify the intracranial iron content of 74 T2DM patients with MCI and 86 T2DM patients with normal cognition (NC). The group comparison was performed by a voxel-based analysis. Then we evaluated the relationships between cognitive indicators and magnetic susceptibility value (MSV) measured by QSM of the significant brain areas, which were set as the regions of interest (ROIs). In addition, we analyzed the moderation effects of grey matter volume (GMV) of the related brain areas and several metabolic and cerebrovascular factors on the associations between MSV of ROIs and cognitive characteristics. RESULTS T2DM patients with MCI exhibited a lower MSV in the right middle temporal gyrus (MTG) compared to NC group. And in the MCI group, there were significantly negative correlations between MSV of the right MTG and several memory indexes. Furthermore, the moderation effects of GMV of the whole brain and the bilateral MTG on the relationship between MSV of the right MTG and scores of list recognition were significant. CONCLUSIONS T2DM patients with MCI had a temporary decreased iron content in the right MTG, which may partially compensate for cognitive impairment. TRIAL REGISTRATION The study was registered at Clinicaltrials.gov (NCT02738671).
Collapse
Affiliation(s)
- Qiuyue Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Subinuer Maimaitiaili
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Qian Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xinyi Shen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Min Wu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Anning Hu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Zhou Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing City, Jiangsu ProvinceChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjing City, Jiangsu ProvinceChina
| |
Collapse
|
8
|
Gustavsson J, Ištvánfyová Z, Papenberg G, Falahati F, Laukka EJ, Lehtisalo J, Mangialasche F, Kalpouzos G. Lifestyle, biological, and genetic factors related to brain iron accumulation across adulthood. Neurobiol Aging 2024; 144:56-67. [PMID: 39277972 DOI: 10.1016/j.neurobiolaging.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Iron is necessary for many neurobiological mechanisms, but its overaccumulation can be harmful. Factors triggering age-related brain iron accumulation remain largely unknown and longitudinal data are insufficient. We examined associations between brain iron load and accumulation and, blood markers of iron metabolism, cardiovascular health, lifestyle factors (smoking, alcohol use, physical activity, diet), and ApoE status using longitudinal data from the IronAge study (n = 208, age = 20-79, mean follow-up time = 2.75 years). Iron in cortex and basal ganglia was estimated with magnetic resonance imaging using quantitative susceptibility mapping (QSM). Our results showed that (1) higher peripheral iron levels (i.e., composite score of blood iron markers) were related to greater iron load in the basal ganglia; (2) healthier diet was related to higher iron levels in the cortex and basal ganglia, although for the latter the association was significant only in younger adults (age = 20-39); (3) worsening cardiovascular health was related to increased iron accumulation; (4) younger ApoE ε4 carriers accumulated more iron in basal ganglia than younger non-carriers. Our results demonstrate that modifiable factors, including lifestyle, cardiovascular, and physiological ones, are linked to age-related brain iron content and accumulation, contributing novel information on potential targets for interventions in preventing brain iron-overload.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
| | - Zuzana Ištvánfyová
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Erika J Laukka
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Jenni Lehtisalo
- Finnish Institute for Health and Welfare, Helsinki, Finland; University of Eastern Finland, Kuopio, Finland
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| |
Collapse
|
9
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
10
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024; 29:3694-3705. [PMID: 38811691 PMCID: PMC11541208 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Jiesisibieke ZL, Schooling CM. Impact of Alcohol Consumption on Lifespan: a Mendelian randomization study in Europeans. Sci Rep 2024; 14:25321. [PMID: 39455599 PMCID: PMC11511936 DOI: 10.1038/s41598-024-73333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Alcohol is widely used but recognized as a risk factor for several adverse health outcomes based on observational studies. How alcohol affects lifespan remains controversial, with no trial to make such an assessment available or likely. We conducted a Mendelian randomization (MR) to assess the effect of alcohol on lifespan in men and women, including a possible role of smoking and education. Strong (p < 5e- 8), independent (r2 < 0.001) genetic predictors of alcohol consumption in 2,428,851 participants of European ancestry from the Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium genome wide association study (GWAS) were applied to sex-specific GWAS of lifespan (paternal and maternal attained age) and age at recruitment to the UK Biobank. We used multivariable MR to allow for smoking and education, with systolic and diastolic blood pressure as control outcomes. Inverse variance weighted was the primary analysis with sensitivity analysis. Alcohol consumption decreased lifespan overall (- 1.09 years (logged alcoholic drinks per week), - 1.89 to - 0.3) and in men (- 1.47 years, - 2.55 to - 0.38), which remained evident after adjusting for smoking (- 1.81 years, - 3.3 to - 0.32) and education (- 1.85 years, - 3.12 to - 0.58). Estimates from sensitivity analysis were similar, and when using the genetic variant physiologically associated with alcohol use. Alcohol consumption was associated with higher blood pressure as expected. Our study indicates that alcohol does not provide any advantages for men or women but could shorten lifespan. Appropriate interventions should be implemented.
Collapse
Affiliation(s)
- Zhu Liduzi Jiesisibieke
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, 7 Sassoon Road, Pokfulam, Hong Kong, Hong Kong
| | - C Mary Schooling
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, 7 Sassoon Road, Pokfulam, Hong Kong, Hong Kong.
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA.
| |
Collapse
|
12
|
Wang H, Liu X, Chen Y, Li W, Ge Y, Liang H, Xu B, Li X. The regulatory role of miR-21 in ferroptosis by targeting FTH1 and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135580. [PMID: 39186845 DOI: 10.1016/j.jhazmat.2024.135580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Xudan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Yao Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Wanying Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Yanhong Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Huning Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| | - Xin Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| |
Collapse
|
13
|
Thornton V, Chang Y, Chaloemtoem A, Anokhin AP, Bijsterbosch J, Foraker R, Hancock DB, Johnson EO, White JD, Hartz SM, Bierut LJ. Alcohol, smoking, and brain structure: common or substance specific associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.25.24313371. [PMID: 39399056 PMCID: PMC11469368 DOI: 10.1101/2024.09.25.24313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Alcohol use and smoking are common substance-use behaviors with well-established negative health effects, including decreased brain health. We examined whether alcohol use and smoking were associated with the same neuroimaging-derived brain measures. We further explored whether the effects of alcohol use and smoking on the brain were additive or interactive. We leveraged a cohort of 36,309 participants with neuroimaging data from the UK Biobank. We used linear regression to determine the association between 354 neuroimaging-derived brain measures and alcohol use defined as drinks per week, pack years of smoking, and drinks per week × pack years smoking interaction. To assess whether the brain associations with alcohol are broadly similar or different from the associations with smoking, we calculated the correlation between z-scores of association for drinks per week and pack years smoking. Results indicated overall moderate positive correlation in the associations across measures representing brain structure, magnetic susceptibility, and white matter tract microstructure, indicating greater similarity than difference in the brain measures associated with alcohol use and smoking. The only evidence of an interaction between drinks per week and pack years smoking was seen in measures representing magnetic susceptibility in subcortical structures. The effects of alcohol use and smoking on brain health appeared to be additive rather than multiplicative for all other brain measures studied. 97% (224/230) of associations with alcohol and 100% (167/167) of the associations with smoking that surpassed a p value threshold are in a direction that can be interpreted to reflect reduced brain health. Our results underscore the similarity of the adverse associations between use of these substances and neuroimaging derived brain measures.
Collapse
Affiliation(s)
- Vera Thornton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yoonhoo Chang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ariya Chaloemtoem
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrey P. Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Janine Bijsterbosch
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randi Foraker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
- Fellow Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Julie D. White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina, USA
| | - Sarah M. Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Ruan X, Li Y, Yuan M, Li H, Lou J, Liu Y, Cao J, Ma Y, Mi W, Zhang X. Preoperative serum ferritin as a biomarker for predicting delirium among elderly patients receiving non-cardiac surgery: a retrospective cohort study. Transl Psychiatry 2024; 14:377. [PMID: 39285170 PMCID: PMC11405726 DOI: 10.1038/s41398-024-03090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Iron metabolism disorder has been identified as a contributor to the pathogenesis and progression of multiple cognitive dysfunction-related diseases, including postoperative delirium. However, the association between preoperative iron reserves and postoperative delirium risk remains elusive. This retrospective cohort study aimed to explore the impact of preoperative serum ferritin levels on the risk of postoperative delirium in elderly patients undergoing non-neurosurgical and non-cardiac procedures. Conducted at the Chinese PLA General Hospital between January 2014 and December 2021, the study finally included 12,841 patients aged 65 years and above. Preoperative serum ferritin levels were assessed within 30 days before surgery, and postoperative delirium occurrence within the first seven days after surgery was determined through medical chart review. The analyses revealed that both low and high levels of serum ferritin were associated with an increased risk of postoperative delirium. Patients in the lowest quintile of serum ferritin exhibited an 81% increased risk, while those in the highest quintile faced a 91% increased risk compared to those in the second quintile. Furthermore, mediation analyses indicated that the direct effect of preoperative serum ferritin on postoperative delirium contradicted its indirect effect mediated by hemoglobin levels. These findings suggest that maintaining serum ferritin within moderate range preoperatively could be beneficial for managing postoperative delirium risk among elderly patients.
Collapse
Affiliation(s)
- Xianghan Ruan
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Yang Li
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mengyao Yuan
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingsheng Lou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiangbei Cao
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Xiaoying Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
15
|
Yao S, Han JZ, Guo J, Wang X, Qian L, Wu H, Shi W, Zhu RJ, Wang JH, Dong SS, Cui LL, Wang Y, Guo Y, Yang TL. The Causal Relationships Between Gut Microbiota, Brain Volume, and Intelligence: A Two-Step Mendelian Randomization Analysis. Biol Psychiatry 2024; 96:463-472. [PMID: 38432522 DOI: 10.1016/j.biopsych.2024.02.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Growing evidence indicates that dynamic changes in gut microbiome can affect intelligence; however, whether these relationships are causal remains elusive. We aimed to disentangle the poorly understood causal relationship between gut microbiota and intelligence. METHODS We performed a 2-sample Mendelian randomization (MR) analysis using genetic variants from the largest available genome-wide association studies of gut microbiota (N = 18,340) and intelligence (N = 269,867). The inverse-variance weighted method was used to conduct the MR analyses complemented by a range of sensitivity analyses to validate the robustness of the results. Considering the close relationship between brain volume and intelligence, we applied 2-step MR to evaluate whether the identified effect was mediated by regulating brain volume (N = 47,316). RESULTS We found a risk effect of the genus Oxalobacter on intelligence (odds ratio = 0.968 change in intelligence per standard deviation increase in taxa; 95% CI, 0.952-0.985; p = 1.88 × 10-4) and a protective effect of the genus Fusicatenibacter on intelligence (odds ratio = 1.053; 95% CI, 1.024-1.082; p = 3.03 × 10-4). The 2-step MR analysis further showed that the effect of genus Fusicatenibacter on intelligence was partially mediated by regulating brain volume, with a mediated proportion of 33.6% (95% CI, 6.8%-60.4%; p = .014). CONCLUSIONS Our results provide causal evidence indicating the role of the microbiome in intelligence. Our findings may help reshape our understanding of the microbiota-gut-brain axis and development of novel intervention approaches for preventing cognitive impairment.
Collapse
Affiliation(s)
- Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ji-Zhou Han
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Long Qian
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ren-Jie Zhu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia-Hao Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li-Li Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
Pang J, Xu Y, Liu Q, Huang J, Li P, Ma L, Zeng C, Ma X, Xie H. Trajectories of cognitive function development and predictive factors in disabled middle-aged and older adults. Front Public Health 2024; 12:1436722. [PMID: 39314790 PMCID: PMC11416970 DOI: 10.3389/fpubh.2024.1436722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Objective To explore the trajectories of cognitive function development and predictive factors in disabled middle-aged and older adults. Methods Utilizing data from 983 disabled middle-aged and older adults in the China Health and Retirement Longitudinal Study (CHARLS) from 2013 to 2020, latent growth mixture models were constructed to analyze the categories of cognitive function development trajectories and their predictive factors. Results The cognitive function trajectories of the disabled middle-aged and older adults were classified into three categories: rapid decline (32.6%), Slow decline (36.1%), and Stable (31.2%). Multinomial logistic regression analysis identified age, gender, residence, education, marital status, household income, sleep duration, depression, hearing ability, and social participation as predictors of these trajectories. Conclusion There is heterogeneity in the cognitive function development trajectories among disabled middle-aged and older adults. Healthcare professionals can implement targeted health management based on the characteristics of different groups to prevent the deterioration of cognitive function in this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Xie
- College of Nursing, Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
17
|
Shen Y, Wang Y, Lu J, Mo Y, Ma X, Hu G, Zhou J. Habitual use of glucosamine and adverse liver outcomes among patients with type 2 diabetes and MASLD. Liver Int 2024; 44:2359-2367. [PMID: 38842441 DOI: 10.1111/liv.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Glucosamine is a dietary supplement commonly used to support joint health. However, there has been interest in exploring other effects of glucosamine on health outcomes due to its ant-inflammation effect. OBJECTIVE This study compared the risks of major adverse liver outcomes (MALOs) between regular users and non-users of glucosamine among patients with type 2 diabetes and metabolic dysfunction associated steatotic liver disease (MASLD) using the data from a large prospective cohort study. METHODS Demographic, anthropometric, laboratory and medication prescription information among 18 753 patients with type 2 diabetes and MASLD was obtained from the UK Biobank. MASLD was identified based on hepatic steatosis defined by fatty liver index ≥60 plus the presence of any clues of metabolic dysregulation and cardio-metabolic risk factors, excluding patients with moderate to severe alcohol consumption. RESULTS During a mean follow-up of 11.4 years, 826 incident MALOs events were recorded. Patients not regularly using glucosamine compared with patients using glucosamine showed a significantly higher risk of the composite MALOs (HR 1.36, 95% confidence interval [CI] 1.09-1.69) as well as most individual MALOs except for ascites. The multivariable-adjusted HRs of MALOs within 3, 5 and 10 years among non-users of glucosamine compared with regular users were 1.79 (95% CI .69-2.03), 1.88 (95% CI 1.21-2.54) and 1.32 (95% CI 1.05-1.72), respectively. Further subgroup analyses in participants with different baseline characteristics and sensitivity analyses excluding participants who regularly took any other supplements and participants who used self-reports to diagnose diabetes confirmed the findings. CONCLUSIONS The present study indicated that habitual use of glucosamine was associated with a low risk of individual and composite MALOs among patients with type 2 diabetes and MASLD.
Collapse
Affiliation(s)
- Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai, China
- Chronic Disease Epidemiology, Pennington Biomedical Researcher Center, Baton Rouge, Louisiana, USA
| | - Yaxin Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai, China
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai, China
| | - Yifei Mo
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai, China
| | - Gang Hu
- Chronic Disease Epidemiology, Pennington Biomedical Researcher Center, Baton Rouge, Louisiana, USA
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai, China
| |
Collapse
|
18
|
Giannone F, Ebrahimi C, Endrass T, Hansson AC, Schlagenhauf F, Sommer WH. Bad habits-good goals? Meta-analysis and translation of the habit construct to alcoholism. Transl Psychiatry 2024; 14:298. [PMID: 39030169 PMCID: PMC11271507 DOI: 10.1038/s41398-024-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 07/21/2024] Open
Abstract
Excessive alcohol consumption remains a global public health crisis, with millions suffering from alcohol use disorder (AUD, or simply "alcoholism"), leading to significantly reduced life expectancy. This review examines the interplay between habitual and goal-directed behaviors and the associated neurobiological changes induced by chronic alcohol exposure. Contrary to a strict habit-goal dichotomy, our meta-analysis of the published animal experiments combined with a review of human studies reveals a nuanced transition between these behavioral control systems, emphasizing the need for refined terminology to capture the probabilistic nature of decision biases in individuals with a history of chronic alcohol exposure. Furthermore, we distinguish habitual responding from compulsivity, viewing them as separate entities with diverse roles throughout the stages of the addiction cycle. By addressing species-specific differences and translational challenges in habit research, we provide insights to enhance future investigations and inform strategies for combatting AUD.
Collapse
Affiliation(s)
- F Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - C Ebrahimi
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - T Endrass
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - A C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Schlagenhauf
- Department of Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin & St. Hedwig Hospital, 10117, Berlin, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, 68159, Mannheim, Germany.
| |
Collapse
|
19
|
Wang M, Wang Z, Wang Y, Zhou Q, Wang J. Causal relationships involving brain imaging-derived phenotypes based on UKB imaging cohort: a review of Mendelian randomization studies. Front Neurosci 2024; 18:1436223. [PMID: 39050670 PMCID: PMC11266110 DOI: 10.3389/fnins.2024.1436223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The UK Biobank (UKB) has the largest adult brain imaging dataset, which encompasses over 40,000 participants. A significant number of Mendelian randomization (MR) studies based on UKB neuroimaging data have been published to validate potential causal relationships identified in observational studies. Relevant articles published before December 2023 were identified following the PRISMA protocol. Included studies (n = 34) revealed that there were causal relationships between various lifestyles, diseases, biomarkers, and brain image-derived phenotypes (BIDPs). In terms of lifestyle habits and environmental factors, there were causal relationships between alcohol consumption, tea intake, coffee consumption, smoking, educational attainment, and certain BIDPs. Additionally, some BIDPs could serve as mediators between leisure/physical inactivity and major depressive disorder. Regarding diseases, BIDPs have been found to have causal relationships not only with Alzheimer's disease, stroke, psychiatric disorders, and migraine, but also with cardiovascular diseases, diabetes, poor oral health, osteoporosis, and ankle sprain. In addition, there were causal relationships between certain biological markers and BIDPs, such as blood pressure, LDL-C, IL-6, telomere length, and more.
Collapse
Affiliation(s)
- Mengdong Wang
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaoyi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Szczerbinska A, Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Kocki J, Cichoz-Lach H. Hemochromatosis-How Not to Overlook and Properly Manage "Iron People"-A Review. J Clin Med 2024; 13:3660. [PMID: 38999226 PMCID: PMC11242024 DOI: 10.3390/jcm13133660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Hemochromatosis (HC) is the main genetic disorder of iron overload and is regarded as metal-related human toxicosis. HC may result from HFE and rare non-HFE gene mutations, causing hepcidin deficiency or, sporadically, hepcidin resistance. This review focuses on HFE-related HC. The illness presents a strong biochemical penetrance, but its prevalence is low. Unfortunately, the majority of patients with HC remain undiagnosed at their disease-curable stage. The main aim of HC management is to prevent iron overload in its early phase and remove excess iron from the body by phlebotomy in its late stage. Raising global awareness of HC among health staff, teaching them how not to overlook early HC manifestations, and paying attention to careful patient monitoring remain critical management strategies for preventing treatment delays, upgrading its efficacy, and improving patient prognosis.
Collapse
Affiliation(s)
- Agnieszka Szczerbinska
- Faculty of Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Street, 20-080 Lublin, Poland;
| | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
21
|
Wilcockson TDW, Roy S. Could Alcohol-Related Cognitive Decline Be the Result of Iron-Induced Neuroinflammation? Brain Sci 2024; 14:520. [PMID: 38928521 PMCID: PMC11201715 DOI: 10.3390/brainsci14060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Excessive and prolonged alcohol use can have long-term severe neurological consequences. The mechanisms involved may be complicated; however, new evidence seems to indicate the involvement of iron accumulation and neuroinflammation. Prolonged alcohol consumption has been linked to the accumulation of iron in specific regions of the brain. Evidence suggests that excess iron in the brain can trigger microglia activation in response. This activation leads to the release of pro-inflammatory cytokines and reactive oxygen species, which can cause damage to neurons and surrounding brain tissue. Additionally, iron-induced oxidative stress and inflammation can disrupt the blood-brain barrier, allowing immune cells from the periphery to infiltrate the brain. This infiltration can lead to further neuroinflammatory responses. Inflammation in the brain subsequently disrupts neuronal networks, impairs synaptic plasticity, and accelerates neuronal cell death. Consequently, cognitive functions such as memory, attention, and decision-making are compromised. Additionally, chronic neuroinflammation can hasten the development and progression of neurodegenerative diseases, further exacerbating cognitive impairment. Therefore, alcohol could act as a trigger for iron-induced neuroinflammation and cognitive decline. Overall, the mechanisms at play here seem to strongly link alcohol with cognitive decline, with neuroinflammation resulting from alcohol-induced iron accumulation playing a pivotal role.
Collapse
Affiliation(s)
- Thomas D. W. Wilcockson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Sankanika Roy
- Department of Neurology, Leicester Royal Infirmary, Leicester LE1 5WW, UK;
| |
Collapse
|
22
|
Mewton L, Visontay R, Hughes G, Browning C, Wen W, Topiwala A, Draper B, Crawford JD, Brodaty H, Sachdev PS. Longitudinal alcohol-related brain changes in older adults: The Sydney Memory and Ageing Study. Addict Biol 2024; 29:e13402. [PMID: 38797559 PMCID: PMC11128337 DOI: 10.1111/adb.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Increases in harmful drinking among older adults indicate the need for a more thorough understanding of the relationship between later-life alcohol use and brain health. The current study investigated the relationships between alcohol use and progressive grey and white matter changes in older adults using longitudinal data. A total of 530 participants (aged 70 to 90 years; 46.0% male) were included. Brain outcomes assessed over 6 years included total grey and white matter volume, as well as volume of the hippocampus, thalamus, amygdala, corpus callosum, orbitofrontal cortex and insula. White matter integrity was also investigated. Average alcohol use across the study period was the main exposure of interest. Past-year binge drinking and reduction in drinking from pre-baseline were additional exposures of interest. Within the context of low-level average drinking (averaging 11.7 g per day), higher average amount of alcohol consumed was associated with less atrophy in the left (B = 7.50, pFDR = 0.010) and right (B = 5.98, pFDR = 0.004) thalamus. Past-year binge-drinking was associated with poorer white matter integrity (B = -0.013, pFDR = 0.024). Consuming alcohol more heavily in the past was associated with greater atrophy in anterior (B = -12.73, pFDR = 0.048) and posterior (B = -17.88, pFDR = 0.004) callosal volumes over time. Across alcohol exposures and neuroimaging markers, no other relationships were statistically significant. Within the context of low-level drinking, very few relationships between alcohol use and brain macrostructure were identified. Meanwhile, heavier drinking was negatively associated with white matter integrity.
Collapse
Affiliation(s)
- Louise Mewton
- The Matilda Centre for Mental Health and Substance Use, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Rachel Visontay
- The Matilda Centre for Mental Health and Substance Use, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Gerard Hughes
- Centre for Healthy Brain Ageing, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Catherine Browning
- Centre for Healthy Brain Ageing, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Wei Wen
- Centre for Healthy Brain Ageing, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Anya Topiwala
- Nuffield Department Population Health, Big Data InstituteUniversity of OxfordOxfordUK
| | - Brian Draper
- Centre for Healthy Brain Ageing, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - John D. Crawford
- Centre for Healthy Brain Ageing, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
| |
Collapse
|
23
|
Zhang X, Li H, Wang H, Zhang Q, Deng X, Zhang S, Wang L, Guo C, Zhao F, Yin Y, Zhou T, Zhong J, Feng H, Chen W, Zhang J, Feng H, Hu R. Iron/ROS/Itga3 mediated accelerated depletion of hippocampal neural stem cell pool contributes to cognitive impairment after hemorrhagic stroke. Redox Biol 2024; 71:103086. [PMID: 38367510 PMCID: PMC10883838 DOI: 10.1016/j.redox.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
Hemorrhagic stroke, specifically intracerebral hemorrhage (ICH), has been implicated in the development of persistent cognitive impairment, significantly compromising the quality of life for affected individuals. Nevertheless, the precise underlying mechanism remains elusive. Here, we report for the first time that the accumulation of iron within the hippocampus, distal to the site of ICH in the striatum, is causally linked to the observed cognitive impairment with both clinical patient data and animal model. Both susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) demonstrated significant iron accumulation in the hippocampus of ICH patients, which is far from the actual hematoma. Logistical regression analysis and multiple linear regression analysis identified iron level as an independent risk factor with a negative correlation with post-ICH cognitive impairment. Using a mouse model of ICH, we demonstrated that iron accumulation triggers an excessive activation of neural stem cells (NSCs). This overactivation subsequently leads to the depletion of the NSC pool, diminished neurogenesis, and the onset of progressive cognitive dysfunction. Mechanistically, iron accumulation elevated the levels of reactive oxygen species (ROS), which downregulated the expression of Itga3. Notably, pharmacological chelation of iron accumulation or scavenger of aberrant ROS levels, as well as conditionally overexpressed Itga3 in NSCs, remarkably attenuated the exhaustion of NSC pool, abnormal neurogenesis and cognitive decline in the mouse model of ICH. Together, these results provide molecular insights into ICH-induced cognitive impairment, shedding light on the value of maintaining NSC pool in preventing cognitive dysfunction in patients with hemorrhagic stroke or related conditions.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Haomiao Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xueyun Deng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chao Guo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fengchun Zhao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Tengyuan Zhou
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Zhang
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
24
|
Zeidan RS, Martenson M, Tamargo JA, McLaren C, Ezzati A, Lin Y, Yang JJ, Yoon HS, McElroy T, Collins JF, Leeuwenburgh C, Mankowski RT, Anton S. Iron homeostasis in older adults: balancing nutritional requirements and health risks. J Nutr Health Aging 2024; 28:100212. [PMID: 38489995 DOI: 10.1016/j.jnha.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Javier A Tamargo
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian McLaren
- Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Armin Ezzati
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jae Jeong Yang
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hyung-Suk Yoon
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James F Collins
- Department of Food Science & Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stephen Anton
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
25
|
Rosell-Díaz M, Santos-González E, Motger-Albertí A, Gallardo-Nuell L, Arnoriaga-Rodríguez M, Coll-Martínez C, Ramió-Torrentà L, Garre-Olmo J, Puig J, Ramos R, Mayneris-Perxachs J, Fernández-Real JM. Lower serum ferritin levels are associated with worse cognitive performance in aging. J Nutr Health Aging 2024; 28:100190. [PMID: 38368845 DOI: 10.1016/j.jnha.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Iron is important for neurogenesis, synaptic development, and neurotransmitter synthesis. Serum ferritin (SF) is a reliable marker for assessing iron stores. Therefore, we evaluated the cognitive function associated with SF levels. We also assessed brain iron content using R2* Magnetic Resonance Imaging (MRI) and its association with SF levels. DESIGN Data from three cross-sectional observational studies were used. Aging Imageomics (n = 1030) was conducted on aged subjects. Health Imageomics (n = 971) and IR0NMET (n = 175) were conducted in middle-aged subjects. SETTING AND PARTICIPANTS Participants were enrolled at Dr. Josep Trueta University Hospital facilities. The three cohorts included a total of 2176 subjects (mean age, 52 years; 48% men). MEASUREMENTS SF levels were measured by standard laboratory methods. Total Digits Span (TDS), and Phonemic Verbal Fluency (PVF) were used to assess executive function. Language function was assessed by semantic verbal fluency (SVF), attention by the Symbol Digit Modalities Test, and memory by the Memory Binding Tests - Total Free Recall and Total Delayed Free Recall. MRI was used to assess the iron content of the brain by R2*. RESULTS In subjects aged 65 years or older, SF levels were associated with increased TDS (β = 0.003, p = 0.02), PVF (β = 0.004, p = 0.01), and SVF (β = 0.004, p = 0.002) scores. After stratification by sex, these findings were significant only in men, where SF was associated with increased TDS (β = 0.003, p = 0.01), PVF (β = 0.004, p = 0.03), and SVF (β = 0.004, p = 0.009) scores. In middle-aged subjects, SF was also associated with increased SVF scores (β = 0.005, p = 0.011). Lastly, in men, SF levels were negatively associated with R2*, a surrogate marker of brain iron content, in both the left frontal inferior opercular area (r = -0.41, p = 0.005) and the right frontal inferior opercular area (r = -0.44, p = 0.002). CONCLUSIONS SF is significantly and positively associated with cognition. In older people with low SF levels, iron supplementation may be a promising therapy to improve cognition.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Anna Motger-Albertí
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Laura Gallardo-Nuell
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Clàudia Coll-Martínez
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Neurodegeneration and Neuroinflammation Research Group, (IDIBGI-CERCA), Girona, Spain; Research Group on Health, Gender, and Aging, Girona Biomedical Research Institute (IDIBGI-CERCA) and University of Girona, Girona, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Neurodegeneration and Neuroinflammation Research Group, (IDIBGI-CERCA), Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Health, Gender, and Aging, Girona Biomedical Research Institute (IDIBGI-CERCA) and University of Girona, Girona, Spain; Serra-Hunter Professor, Department of Nursing, University of Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Radiology Department CDI, Hospital Clinic of Barcelona, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud-RICAPPS- ISCIII, Spain; Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Catalonia, Spain.
| |
Collapse
|
26
|
Ahern J, Boyle ME, Thompson WK, Fan CC, Loughnan R. Dietary and Lifestyle Factors of Brain Iron Accumulation and Parkinson's Disease Risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.13.24304253. [PMID: 38559115 PMCID: PMC10980125 DOI: 10.1101/2024.03.13.24304253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Purpose Iron is an essential nutrient which can only be absorbed through an individual's diet. Excess iron accumulates in organs throughout the body including the brain. Iron dysregulation in the brain is commonly associated with neurodegenerative diseases like Alzheimer's disease and Parkinson's Disease (PD). Our previous research has shown that a pattern of iron accumulation in motor regions of the brain related to a genetic iron-storage disorder called hemochromatosis is associated with an increased risk of PD. To understand how diet and lifestyle factors relate to this brain endophenotype and risk of PD we analyzed the relationship between these measures, estimates of nutrient intake, and diet and lifestyle preference using data from UK Biobank. Methods Using distinct imaging and non-imaging samples (20,477 to 28,388 and 132,023 to 150,603 participants, respectively), we performed linear and logistic regression analyses using estimated dietary nutrient intake and food preferences to predict a) brain iron accumulation score (derived from T2-Weighted Magnetic Resonance Imaging) and b) PD risk. In addition, we performed a factor analysis of diet and lifestyle preferences to investigate if latent lifestyle factors explained significant associations. Finally, we performed an instrumental variable regression of our results related to iron accumulation and PD risk to identify if there were common dietary and lifestyle factors that were jointly associated with differences in brain iron accumulation and PD risk. Results We found multiple highly significant associations with measures of brain iron accumulation and preferences for alcohol (factor 7: t=4.02, pFDR=0.0003), exercise (factor 11: t=-4.31, pFDR=0.0001), and high-sugar foods (factor 2: t=-3.73, pFDR=0.0007). Preference for alcohol (factor 7: t=-5.83, pFDR<1×10-8), exercise (factor 11: t=-7.66, pFDR<1×10-13), and high sugar foods (factor 2: t=6.03, pFDR<1×10-8) were also associated with PD risk. Instrumental variable regression of individual preferences revealed a significant relationship in which dietary preferences associated with higher brain iron levels also appeared to be linked to a lower risk for PD (p=0.004). A similar relationship was observed for estimates of nutrient intake (p=0.0006). Voxel-wise analysis of i) high-sugar and ii) alcohol factors confirmed T2-weighted signal differences consistent with iron accumulation patterns in motor regions of the brain including the cerebellum and basal ganglia. Conclusion Dietary and lifestyle factors and preferences, especially those related to carbohydrates, alcohol, and exercise, are related to detectable differences in brain iron accumulation and alterations in risk of PD, suggesting a potential avenue for lifestyle interventions that could influence risk.
Collapse
Affiliation(s)
- Jonathan Ahern
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Mary Et Boyle
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9444 Medical Center Dr, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Wang X, Zhu Z, Sun J, Jia L, Cai L, Chen Q, Yang W, Wang Y, Zhang Y, Guo S, Liu W, Yang Z, Zhao P, Wang Z, Lv H. Changes in iron load in specific brain areas lead to neurodegenerative diseases of the central nervous system. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110903. [PMID: 38036035 DOI: 10.1016/j.pnpbp.2023.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The causes of neurodegenerative diseases remain largely elusive, increasing their personal and societal impacts. To reveal the causal effects of iron load on Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis and multiple sclerosis, we used Mendelian randomisation and brain imaging data from a UK Biobank genome-wide association study of 39,691 brain imaging samples (predominantly of European origin). Using susceptibility-weighted images, which reflect iron load, we analysed genetically significant brain regions. Inverse variance weighting was used as the main estimate, while MR Egger and weighted median were used to detect heterogeneity and pleiotropy. Nine clear associations were obtained. For AD and PD, an increased iron load was causative: the right pallidum for AD and the right caudate, left caudate and right accumbens for PD. However, a reduced iron load was identified in the right and left caudate for multiple sclerosis, the bilateral hippocampus for mixed vascular dementia and the left thalamus and bilateral accumbens for subcortical vascular dementia. Thus, changes in iron load in different brain regions have causal effects on neurodegenerative diseases. Our results are crucial for understanding the pathogenesis and investigating the treatment of these diseases.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Zaimin Zhu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, People's Republic of China
| | - Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Li Jia
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Linkun Cai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China; School of Biological Science and Medical Engineering, Beihang University, No.37 XueYuan Road, Beijing 100191, People's Republic of China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Yufan Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Sihui Guo
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Wenjuan Liu
- Department of Radiology, Aerospace Center Hospital, Beijing, People's Republic of China; Peking University Aerospace School of Clinical Medicine, Beijing 100049, People's Republic of China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China.
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 YongAn Road, Beijing 100050, People's Republic of China.
| |
Collapse
|
28
|
Chang Y, Thornton V, Chaloemtoem A, Anokhin AP, Bijsterbosch J, Bogdan R, Hancock DB, Johnson EO, Bierut LJ. Investigating the Relationship Between Smoking Behavior and Global Brain Volume. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:74-82. [PMID: 38130847 PMCID: PMC10733671 DOI: 10.1016/j.bpsgos.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 12/23/2023] Open
Abstract
Background Previous studies have shown that brain volume is negatively associated with cigarette smoking, but there is an ongoing debate about whether smoking causes lowered brain volume or a lower brain volume is a risk factor for smoking. We address this debate through multiple methods that evaluate directionality: Bradford Hill's criteria, which are commonly used to understand a causal relationship in epidemiological studies, and mediation analysis. Methods In 32,094 participants of European descent from the UK Biobank dataset, we examined the relationship between a history of daily smoking and brain volumes, as well as an association of genetic risk score to ever smoking with brain volume. Results A history of daily smoking was strongly associated with decreased brain volume, and a history of heavier smoking was associated with a greater decrease in brain volume. The strongest association was between total gray matter volume and a history of daily smoking (effect size = -2964 mm3, p = 2.04 × 10-16), and there was a dose-response relationship with more pack years smoked associated with a greater decrease in brain volume. A polygenic risk score for smoking initiation was strongly associated with a history of daily smoking (effect size = 0.05, p = 4.20 × 10-84), but only modestly associated with total gray matter volume (effect size = -424 mm3, p = .01). Mediation analysis indicated that a history of daily smoking mediated the relationship between the smoking initiation polygenic risk score and total gray matter volume. Conclusions A history of daily smoking is strongly associated with a decreased total brain volume.
Collapse
Affiliation(s)
- Yoonhoo Chang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Vera Thornton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Ariya Chaloemtoem
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Andrey P. Anokhin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Janine Bijsterbosch
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Dana B. Hancock
- Social, Statistical and Environmental Sciences, Research Triangle Institute International, Research Triangle Park, North Carolina
| | - Eric Otto Johnson
- Fellow Program, Research Triangle Institute International, Research Triangle Park, North Carolina
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
29
|
Schindler LS, Subramaniapillai S, Ambikairajah A, Barth C, Crestol A, Voldsbekk I, Beck D, Gurholt TP, Topiwala A, Suri S, Ebmeier KP, Andreassen OA, Draganski B, Westlye LT, de Lange AMG. Cardiometabolic health across menopausal years is linked to white matter hyperintensities up to a decade later. Front Glob Womens Health 2023; 4:1320640. [PMID: 38213741 PMCID: PMC10783171 DOI: 10.3389/fgwh.2023.1320640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
Introduction The menopause transition is associated with several cardiometabolic risk factors. Poor cardiometabolic health is further linked to microvascular brain lesions, which can be detected as white matter hyperintensities (WMHs) using T2-FLAIR magnetic resonance imaging (MRI) scans. Females show higher risk for WMHs post-menopause, but it remains unclear whether changes in cardiometabolic risk factors underlie menopause-related increase in brain pathology. Methods In this study, we assessed whether cross-sectional measures of cardiometabolic health, including body mass index (BMI) and waist-to-hip ratio (WHR), blood lipids, blood pressure, and long-term blood glucose (HbA1c), as well as longitudinal changes in BMI and WHR, differed according to menopausal status at baseline in 9,882 UK Biobank females (age range 40-70 years, n premenopausal = 3,529, n postmenopausal = 6,353). Furthermore, we examined whether these cardiometabolic factors were associated with WMH outcomes at the follow-up assessment, on average 8.78 years after baseline. Results Postmenopausal females showed higher levels of baseline blood lipids (HDL β = 0.14, p < 0.001, LDL β = 0.20, p < 0.001, triglycerides β = 0.12, p < 0.001) and HbA1c (β = 0.24, p < 0.001) compared to premenopausal women, beyond the effects of age. Over time, BMI increased more in the premenopausal compared to the postmenopausal group (β = -0.08, p < 0.001), while WHR increased to a similar extent in both groups (β = -0.03, p = 0.102). The change in WHR was however driven by increased waist circumference only in the premenopausal group. While the group level changes in BMI and WHR were in general small, these findings point to distinct anthropometric changes in pre- and postmenopausal females over time. Higher baseline measures of BMI, WHR, triglycerides, blood pressure, and HbA1c, as well as longitudinal increases in BMI and WHR, were associated with larger WMH volumes (β range = 0.03-0.13, p ≤ 0.002). HDL showed a significant inverse relationship with WMH volume (β = -0.27, p < 0.001). Discussion Our findings emphasise the importance of monitoring cardiometabolic risk factors in females from midlife through the menopause transition and into the postmenopausal phase, to ensure improved cerebrovascular outcomes in later years.
Collapse
Affiliation(s)
- Louise S. Schindler
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Sivaniya Subramaniapillai
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ananthan Ambikairajah
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arielle Crestol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Voldsbekk
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tiril P. Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anya Topiwala
- Nuffield Department Population Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lars T. Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ann-Marie G. de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Qi Y, Zhang Z, Fu X, Han P, Xu W, Cao L, Guo Q. Adherence to a healthy lifestyle and its association with cognitive impairment in community-dwelling older adults in Shanghai. Front Public Health 2023; 11:1291458. [PMID: 38179562 PMCID: PMC10765578 DOI: 10.3389/fpubh.2023.1291458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction There is a growing body of recent literature linking the association of specific or multiple lifestyles with cognitive impairment, but most of these studies have been conducted in Western populations, and it is necessary to study multiple lifestyles and cognitive abilities in different populations, with the primary population of this study being a select group of community-dwelling older adults in Shanghai, China. Methods The sample included 2,390 community-dwelling Chinese participants. Their cognitive function was assessed using the Mini-Mental State Examination (MMSE). We defined a healthy lifestyle score on the basis of being non-smoking, performing ≥210 min/wk moderate/vigorous-intensity physical activity, having light to moderate alcohol consumption, eating vegetables and fruits daily, having a body mass index (BMI) of 18.5-23.9 kg/m2, and having a waist-to-hip ratio (WHR) <0.90 for men and <0.85 for women, for an overall score ranging from 0 to 6. Results Compared with participants with ≤2 healthy lifestyle factors, the adjusted odds ratio (OR) and 95% confidence interval (CI) for participants with 4, 5, and 6 healthy lifestyle factors were 0.53 (95% CI, 0.29-0.98), 0.40 (95% CI, 0.21-0.75), and 0.36 (95% CI, 0.16-0.79), respectively. Only WHR (OR = 0.54, 95% CI = 0.37-0.78) and physical activity (OR = 0.69, 95% CI = 0.51-0.92) were associated with cognitive impairment. A healthy lifestyle correlated with overall cognition (β = 0.066, orientation (β = 0.049), language ability (β = 0.060), delayed recall (β = 0.045) and executive function (β = 0.044) (P all < 0.05). Conclusion The study provides evidence on an inverse association between healthy lifestyles and cognitive impairment. We investigated whether healthy lifestyle was related to specific cognitive functions to provide a theoretical basis for accurate clinical prescription.
Collapse
Affiliation(s)
- Yiqiong Qi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | | | - Xiya Fu
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Weixin Xu
- Department of Laboratory Medicine of Central Hospital of Jiading District Shanghai Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liou Cao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Jin J, Han W, Yang T, Xu Z, Zhang J, Cao R, Wang Y, Wang J, Hu X, Gu T, He F, Huang J, Li G. Artificial light at night, MRI-based measures of brain iron deposition and incidence of multiple mental disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166004. [PMID: 37544462 DOI: 10.1016/j.scitotenv.2023.166004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Epidemiologic evidence on whether iron accumulation in brain modified the association between artificial light at night (ALAN) and incident mental disorders is lacking. The authors aims to investigate modification of brain iron deposition on the associations of ALAN with multiple mental disorders in the middle-aged and older adults. METHODS This prospective study used data from the UK Biobank. ALAN was drawn from satellite datasets. Susceptibility-weighted magnetic resonance imaging was used to ascertain iron content of each brain region. T2* signal loss was used as indices of iron deposition. The main outcomes are impacts of ALAN exposure on onset of wide spectrum of physician-diagnosed mental disorders, which was estimated by time-varying Cox proportional hazard model. The authors further conducted stratified analyses by levels of iron brain deposition to examine the potential modifying effects. RESULTS Among 298,283 participants followed for a median of 10.91 years, higher ALAN exposure was associated with increased risk of mental disorders. An IQR (11.37 nW/cm2/sr) increase in annual levels of ALAN was associated with an HR of 1.050 (95 % CI: 1.034,1.066) for any mental disorder, 1.076 (95 % CI: 1.053,1.099) for substance use disorder, and 1.036 (95 % CI: 1.004,1.069) for depression disorder in fully adjusted models. The exposure-response curves showed steeper trends at lower ALAN levels and a plateau at higher exposures. The associations were stronger in participants with high iron deposition in left hippocampus, left accumbens and left pallidum. CONCLUSIONS ALAN was associated with multiple mental disorders in the middle-aged and older adults, and the findings indicated stricter standards of ALAN is needed and targeted preventive measures are warranted, especially with high brain iron deposition.
Collapse
Affiliation(s)
- Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Wenxing Han
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jin Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Xin Hu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Tiantian Gu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Fan He
- Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Peking University Institute for Global Health and Development, Beijing, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Environmental Research Group, School of Public Health, Imperial college London, London, UK.
| |
Collapse
|
32
|
Leaks K, Norden-Krichmar T, Brody JP. Predicting moderate drinking behaviors in National Health and Nutrition Examination Survey participants using biochemical and demographical factors with machine learning. Alcohol 2023; 113:1-10. [PMID: 37543050 DOI: 10.1016/j.alcohol.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Recent studies revealed that any amount of alcohol consumption is an overall health detriment to multiple populations, contrary to popular beliefs. In addition, very few alcohol use studies utilized machine learning methods to compare the biological health of moderate drinkers compared to those that abstain from alcohol consumption, opting instead to focus on binge drinking and heavy drinking. Using participant data of multiple factor types from the National Health and Nutrition Examination Survey, we created prediction models with stacked ensembles and gradient boosting models. Machine learning models were used to identify which factors most enabled the prediction of moderate drinking behaviors. Our combined factor runs produced a cross-validation area under the curve (AUC) of 0.929 and a validation area under the curve of 0.806. Runs that only included biochemical or demographical factors received cross-validation AUC values of 0.825 and 0.925, and validation AUC values of 0.757 and 0.783, respectively. The top predictive factors for our machine learning runs, including gamma glutamyl transferase, gender, iron levels, and cigarette and marijuana usage, corroborate past studies that link those factors to alcohol consumption. Our findings identified key differences in the biological health of moderate drinkers compared to those that abstain from drinking. These results reveal a need to further explore the health effects of moderate drinking, especially for vulnerable populations.
Collapse
Affiliation(s)
- Kalan Leaks
- Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, Irvine, CA 92697-2715, United States
| | - Trina Norden-Krichmar
- Department of Epidemiology & Biostatistics, University of California, Irvine, 856 Health Sciences Quad, Suite 3400, Irvine, CA 92617, United States
| | - James P Brody
- Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, Irvine, CA 92697-2715, United States.
| |
Collapse
|
33
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
34
|
Shalchi-Amirkhiz P, Bensch T, Proschmann U, Stock AK, Ziemssen T, Akgün K. Pilot study on the influence of acute alcohol exposure on biophysical parameters of leukocytes. Front Mol Biosci 2023; 10:1243155. [PMID: 37614440 PMCID: PMC10442941 DOI: 10.3389/fmolb.2023.1243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This pilot study explores the influence of acute alcohol exposure on cell mechanical properties of steady-state and activated leukocytes conducted with real-time deformability cytometry. Methods: Nineteen healthy male volunteers were enrolled to investigate the effect of binge drinking on biophysical properties and cell counts of peripheral blood leukocytes. Each participant consumed an individualized amount of alcohol to achieve a blood alcohol concentration of 1.2 ‰ as a mean peak. In addition, we also incubated whole blood samples from healthy donors with various ethanol concentrations and performed stimulation experiments using lipopolysaccharide and CytoStim™ in the presence of ethanol. Results: Our findings indicate that the biophysical properties of steady-state leukocytes are not significantly affected by a single episode of binge drinking within the first two hours. However, we observed significant alterations in relative cell counts and a shift toward a memory T cell phenotype. Moreover, exposure to ethanol during stimulation appears to inhibit the cytoskeleton reorganization of monocytes, as evidenced by a hindered increase in cell deformability. Conclusion: Our observations indicate the promising potential of cell mechanical analysis in understanding the influence of ethanol on immune cell functions. Nevertheless, additional investigations in this field are warranted to validate biophysical properties as biomarkers or prognostic indicators for alcohol-related changes in the immune system.
Collapse
Affiliation(s)
- Puya Shalchi-Amirkhiz
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tristan Bensch
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
35
|
Yehia A, Sousa RAL, Abulseoud OA. Sex difference in the association between blood alcohol concentration and serum ferritin. Front Psychiatry 2023; 14:1230406. [PMID: 37547205 PMCID: PMC10401063 DOI: 10.3389/fpsyt.2023.1230406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The sex difference in alcohol use disorder (AUD) is ingrained in distinctive neurobiological responses between men and women, which necessitates further investigation for a more tailored management. Methods Minding the findings of iron dysregulation in AUD and the sex difference in iron homeostasis in multiple physiological and pathological settings, we examined the sex difference in the association between serum ferritin and blood alcohol concentration (BAC) in intoxicated males (n = 125) and females (n = 59). We included patients with both serum ferritin tested of any value and a BAC above the level of detection during the same hospital admission period. We investigated sex difference in the relationship between BAC, serum ferritin and liver enzymes in intoxicated critically ill and noncritically ill patients. Results We found a negative association between serum ferritin and BAC in critically ill, intoxicated females [R2 = 0.44, F(1,14) = 11.02, p = 0.005], with much attenuated serum ferritin in females compared to their male counterparts (194.5 ± 280.4 vs. 806.3 ± 3405.7 ng/L, p = 0.002). We found a positive association between serum ferritin and liver enzymes [alanine transaminase (ALT) and aspartate transferase (AST)] in critically ill intoxicated females [ALT: R2 = 0.48, F(1,10) = 9.1, p = 0.013; AST: R2 = 0.68, F(1,10) = 21.2, p = 0.001] and in noncritically ill intoxicated males [ALT: R2 = 0.1, F(1,83) = 9.4, p = 0.003; AST: R2 = 0.1, F(1,78) = 10.5, p = 0.002]. The effect of BAC on serum ferritin was not mediated by ALT [indirect effect: (B = 0.13, p = 0.1)]. We also found a significant effect of sex, anemia, intensive care unit (ICU) admission and mortality on serum ferritin. Discussion Our results suggest that high BAC in intoxicated female patients is associated with attenuated serum ferritin levels, questioning the role of low serum ferritin in female vulnerability to alcohol.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ricardo A L Sousa
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
36
|
Maidman A, Wang L, Zhou XH, Sherwood B. Quantile partially linear additive model for data with dropouts and an application to modeling cognitive decline. Stat Med 2023; 42:2729-2745. [PMID: 37075804 DOI: 10.1002/sim.9745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/21/2023]
Abstract
The National Alzheimer's Coordinating Center Uniform Data Set includes test results from a battery of cognitive exams. Motivated by the need to model the cognitive ability of low-performing patients we create a composite score from ten tests and propose to model this score using a partially linear quantile regression model for longitudinal studies with non-ignorable dropouts. Quantile regression allows for modeling non-central tendencies. The partially linear model accommodates nonlinear relationships between some of the covariates and cognitive ability. The data set includes patients that leave the study prior to the conclusion. Ignoring such dropouts will result in biased estimates if the probability of dropout depends on the response. To handle this challenge, we propose a weighted quantile regression estimator where the weights are inversely proportional to the estimated probability a subject remains in the study. We prove that this weighted estimator is a consistent and efficient estimator of both linear and nonlinear effects.
Collapse
Affiliation(s)
- Adam Maidman
- School of Statistics, University of Minnesota, Minneapolis, Minnesota
| | - Lan Wang
- Miami Herbert Business School, University of Miami, Coral Gables, Florida
| | - Xiao-Hua Zhou
- Department of Biostatistics and Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Ben Sherwood
- School of Business, University of Kansas, Lawrence, Kansas
| |
Collapse
|
37
|
Abstract
The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Seinäjoki, Finland.
| |
Collapse
|
38
|
Topiwala A, Mankia K, Bell S, Webb A, Ebmeier KP, Howard I, Wang C, Alfaro-Almagro F, Miller K, Burgess S, Smith S, Nichols TE. Association of gout with brain reserve and vulnerability to neurodegenerative disease. Nat Commun 2023; 14:2844. [PMID: 37202397 PMCID: PMC10195870 DOI: 10.1038/s41467-023-38602-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
Studies of neurodegenerative disease risk in gout are contradictory. Relationships with neuroimaging markers of brain structure, which may offer insights, are uncertain. Here we investigated associations between gout, brain structure, and neurodegenerative disease incidence. Gout patients had smaller global and regional brain volumes and markers of higher brain iron, using both observational and genetic approaches. Participants with gout also had higher incidence of all-cause dementia, Parkinson's disease, and probable essential tremor. Risks were strongly time dependent, whereby associations with incident dementia were highest in the first 3 years after gout diagnosis. These findings suggest gout is causally related to several measures of brain structure. Lower brain reserve amongst gout patients may explain their higher vulnerability to multiple neurodegenerative diseases. Motor and cognitive impairments may affect gout patients, particularly in early years after diagnosis.
Collapse
Affiliation(s)
- Anya Topiwala
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK.
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Steven Bell
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Alastair Webb
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Isobel Howard
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- SJTU-Ruijin-UIH Institute for Medical Imaging Technology, Shanghai, China
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla Miller
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas E Nichols
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Adams AR, Li X, Byanyima JI, Vesslee SA, Nguyen TD, Wang Y, Moon B, Pond T, Kranzler HR, Witschey WR, Shi Z, Wiers CE. Peripheral and Central Iron Measures in Alcohol Use Disorder and Aging: A Quantitative Susceptibility Mapping Pilot Study. Int J Mol Sci 2023; 24:4461. [PMID: 36901892 PMCID: PMC10002495 DOI: 10.3390/ijms24054461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Chronic excessive alcohol use has neurotoxic effects, which may contribute to cognitive decline and the risk of early-onset dementia. Elevated peripheral iron levels have been reported in individuals with alcohol use disorder (AUD), but its association with brain iron loading has not been explored. We evaluated whether (1) serum and brain iron loading are higher in individuals with AUD than non-dependent healthy controls and (2) serum and brain iron loading increase with age. A fasting serum iron panel was obtained and a magnetic resonance imaging scan with quantitative susceptibility mapping (QSM) was used to quantify brain iron concentrations. Although serum ferritin levels were higher in the AUD group than in controls, whole-brain iron susceptibility did not differ between groups. Voxel-wise QSM analyses revealed higher susceptibility in a cluster in the left globus pallidus in individuals with AUD than controls. Whole-brain iron increased with age and voxel-wise QSM indicated higher susceptibility with age in various brain areas including the basal ganglia. This is the first study to analyze both serum and brain iron loading in individuals with AUD. Larger studies are needed to examine the effects of alcohol use on iron loading and its associations with alcohol use severity, structural and functional brain changes, and alcohol-induced cognitive impairments.
Collapse
Affiliation(s)
- Aiden R. Adams
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Xinyi Li
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Juliana I. Byanyima
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Sianneh A. Vesslee
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, 525 E 68th St, New York, NY 10065, USA
| | - Brianna Moon
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, South Pavilion, Room 11-155, Philadelphia, PA 19104, USA
| | - Timothy Pond
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, South Pavilion, Room 11-155, Philadelphia, PA 19104, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market St Ste 500, Philadelphia, PA 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, South Pavilion, Room 11-155, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Tan H, Hubertus S, Thomas S, Lee AM, Gerhardt S, Gerchen MF, Sommer WH, Kiefer F, Schad L, Vollstädt-Klein S. Association between iron accumulation in the dorsal striatum and compulsive drinking in alcohol use disorder. Psychopharmacology (Berl) 2023; 240:249-257. [PMID: 36577866 PMCID: PMC9879829 DOI: 10.1007/s00213-022-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE Brain iron accumulation has been observed in neuropsychiatric disorders and shown to be related to neurodegeneration. OBJECTIVES In this study, we used quantitative susceptibility mapping (QSM), an emerging MRI technique developed for quantifying tissue magnetic susceptibility, to examine brain iron accumulation in individuals with alcohol use disorder (AUD) and its relation to compulsive drinking. METHODS Based on our previous projects, QSM was performed as a secondary analysis with gradient echo sequence images, in 186 individuals with AUD and 274 healthy participants. Whole-brain susceptibility values were calculated with morphology-enabled dipole inversion and referenced to the cerebrospinal fluid. Then, the susceptibility maps were compared between AUD individuals and healthy participants. The relationship between drinking patterns and susceptibility was explored. RESULTS Whole-brain analyses showed that the susceptibility in the dorsal striatum (putamen and caudate) among AUD individuals was higher than healthy participants and was positively related to the Obsessive Compulsive Drinking Scale (OCDS) scores and the amount of drinking in the past three months. CONCLUSIONS Increased susceptibility suggests higher iron accumulation in the dorsal striatum in AUD. This surrogate for the brain iron level was linearly associated with the compulsive drinking pattern and the recent amount of drinking, which provides us a new clinical perspective in relation to brain iron accumulation, and also might indicate an association of AUD with neuroinflammation as a consequence of brain iron accumulation. The iron accumulation in the striatum is further relevant for functional imaging studies in AUD by potentially producing signal dropout and artefacts in fMRI images.
Collapse
Affiliation(s)
- Haoye Tan
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Simon Hubertus
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sebastian Thomas
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Alycia M. Lee
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sarah Gerhardt
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Martin Fungisai Gerchen
- grid.7700.00000 0001 2190 4373Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.455092.fBernstein Center for Computational Neuroscience Heidelberg/Mannheim, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Department of Psychology, Heidelberg University, 69117 Heidelberg, Germany
| | - Wolfgang H. Sommer
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, 68159 Mannheim, Germany ,Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany
| | - Falk Kiefer
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Feuerlein Center on Translational Addiction Medicine, Heidelberg University, 69117 Heidelberg, Germany
| | - Lothar Schad
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
41
|
Cavaliere F, Gülöksüz S. Shedding light on the etiology of neurodegenerative diseases and dementia: the exposome paradigm. NPJ MENTAL HEALTH RESEARCH 2022; 1:20. [PMID: 38609523 PMCID: PMC10956007 DOI: 10.1038/s44184-022-00018-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/05/2022] [Indexed: 04/14/2024]
Affiliation(s)
- Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), Leioa, Spain.
| | - Sinan Gülöksüz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022; 16:1010164. [PMID: 36440263 PMCID: PMC9684644 DOI: 10.3389/fnins.2022.1010164] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the key moderators of cerebrovascular dynamics in response to the brain's oxygen and nutrient demands. Crucially, VSMCs may provide a sensitive biomarker for neurodegenerative pathologies where vasculature is compromised. An increasing body of research suggests that VSMCs have remarkable plasticity and their pathophysiology may play a key role in the complex process of neurodegeneration. Furthermore, extrinsic risk factors, including environmental conditions and traumatic events can impact vascular function through changes in VSMC morphology. VSMC dysfunction can be characterised at the molecular level both preclinically, and clinically ex vivo. However the identification of VSMC dysfunction in living individuals is important to understand changes in vascular function at the onset and progression of neurological disorders such as dementia, Alzheimer's disease, and Parkinson's disease. A promising technique to identify changes in the state of cerebral smooth muscle is cerebrovascular reactivity (CVR) which reflects the intrinsic dynamic response of blood vessels in the brain to vasoactive stimuli in order to modulate regional cerebral blood flow (CBF). In this work, we review the role of VSMCs in the most common neurodegenerative disorders and identify physiological systems that may contribute to VSMC dysfunction. The evidence collected here identifies VSMC dysfunction as a strong candidate for novel therapeutics to combat the development and progression of neurodegeneration, and highlights the need for more research on the role of VSMCs and cerebrovascular dynamics in healthy and diseased states.
Collapse
Affiliation(s)
- Genevieve Hayes
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sierra N. Sparks
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Congxiyu Wang
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Daniel P. Bulte
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Ferrao K, Ali N, Mehta KJ. Iron and iron-related proteins in alcohol consumers: cellular and clinical aspects. J Mol Med (Berl) 2022; 100:1673-1689. [PMID: 36214835 PMCID: PMC9691479 DOI: 10.1007/s00109-022-02254-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the most common chronic liver diseases. Its pathological spectrum includes the overlapping stages of hepatic steatosis/steatohepatitis that can progress to liver fibrosis and cirrhosis; both are risk factors for hepatocellular carcinoma. Moreover, ALD diagnosis and management pose several challenges. The early pathological stages are reversible by alcohol abstinence, but these early stages are often asymptomatic, and currently, there is no specific laboratory biomarker or diagnostic test that can confirm ALD etiology. Alcohol consumers frequently show dysregulation of iron and iron-related proteins. Examination of iron-related parameters in this group may aid in early disease diagnosis and better prognosis and management. For this, a coherent overview of the status of iron and iron-related proteins in alcohol consumers is essential. Therefore, here, we collated and reviewed the alcohol-induced alterations in iron and iron-related proteins. Reported observations include unaltered, increased, or decreased levels of hemoglobin and serum iron, increments in intestinal iron absorption (facilitated via upregulations of duodenal divalent metal transporter-1 and ferroportin), serum ferritin and carbohydrate-deficient transferrin, decrements in serum hepcidin, decreased or unaltered levels of transferrin, increased or unaltered levels of transferrin saturation, and unaltered levels of soluble transferrin receptor. Laboratory values of iron and iron-related proteins in alcohol consumers are provided for reference. The causes and mechanisms underlying these alcohol-induced alterations in iron parameters and anemia in ALD are explained. Notably, alcohol consumption by hemochromatosis (iron overload) patients worsens disease severity due to the synergistic effects of excess iron and alcohol.
Collapse
Affiliation(s)
- Kevin Ferrao
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Najma Ali
- GKT School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|