1
|
Jain A, Li T, Wainer J, Edwards J, Rodoni BC, Sawbridge TI. High-Throughput Sequencing Enables Rapid Analyses of Nematode Mitochondrial Genomes from an Environmental Sample. Pathogens 2025; 14:234. [PMID: 40137719 PMCID: PMC11944570 DOI: 10.3390/pathogens14030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial genomes serve as essential tools in evolutionary biology, phylogenetics, and population genetics due to their maternal inheritance, lack of recombination, and conserved structure. Traditional morphological methods for identifying nematodes are often insufficient for distinguishing cryptic species complexes. This study highlights recent advancements in nematode mitochondrial genome research, particularly the impact of long-read sequencing technologies such as Oxford Nanopore. These technologies have facilitated the assembly of mitochondrial genomes from mixed soil samples, overcoming challenges associated with designing specific primers for long PCR amplification across different groups of parasitic nematodes. In this study, we successfully recovered and assembled eleven nematode mitochondrial genomes using long-read sequencing, including those of two plant-parasitic nematode species. Notably, we detected Heterodera cruciferae in Victoria, expanding its known geographic range within Australia. Additionally, short-read sequencing data from a previous draft genome study revealed the presence of the mitochondrial genome of Heterodera filipjevi. Comparative analyses of Heterodera mitogenomes revealed conserved protein-coding genes essential for oxidative phosphorylation, as well as gene rearrangements and variations in transfer RNA placement, which may reflect adaptations to parasitic lifestyles. The consistently high A+T content and strand asymmetry observed across species align with trends reported in related genera. This study demonstrates the utility of long-read sequencing for identifying coexisting nematode species in agricultural fields, providing a rapid, accurate, and comprehensive alternative to traditional diagnostic methods. By incorporating non-target endemic species into public databases, this approach enhances biodiversity records and informs biosecurity strategies. These findings reinforce the potential of mitochondrial genomics to strengthen Australia's as well as the global biosecurity framework against plant-parasitic nematode threats.
Collapse
Affiliation(s)
- Akshita Jain
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Tongda Li
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - John Wainer
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Brendan C. Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| | - Timothy I. Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; (J.E.); (B.C.R.); (T.I.S.)
- AgriBio, Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC 3083, Australia; (T.L.); (J.W.)
| |
Collapse
|
2
|
Rivero J, Callejón R, García-Sánchez AM. Trichuris infection in captive non-human primates in zoological gardens in Spain. J Helminthol 2025; 99:e1. [PMID: 39803677 DOI: 10.1017/s0022149x24000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Currently, there is limited available information on the epidemiology of parasitic infections in captive non-human primates (NHPs) and their zoonotic potential. However, numerous cases of helminth infections in NHPs have been documented in several zoos around the world, with one of the most prevalent being those of the genus Trichuris. The main objective of this study is to investigate the occurrence of infection by Trichuris spp. in primates from zoological gardens in Spain and to ascertain, at the species level, the specific Trichuris species harbored by these hosts by using mitochondrial and ribosomal markers. A total of 315 stools collected from NPHs (n = 47) in the 13 zoological gardens analyzed yielded a prevalence rate of 19.05%. Nevertheless, not all the zoos exhibited parasitic infections; this was observed in only 53.85% of the zoos. Moreover, 15 host groups of 12 different species were found to be infected by Trichuris species, among which the identified species included Trichuris trichiura, Trichuris colobae, and Trichuris sp. Our findings suggest a substantial exposure of primates to zoonotic Trichuris species, suggesting that NHPs could potentially act as reservoirs capable of transmitting this parasite to humans. Hence, it is crucial to implement additional control and prevention measures and explore ways to eradicate parasitic infections in these areas. Further examination is warranted to minimize the risk of spreading drug-resistant parasite strains.
Collapse
Affiliation(s)
- J Rivero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - R Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - A M García-Sánchez
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Venkatesan A, Chen R, Bär M, Schneeberger PHH, Reimer B, Hürlimann E, Coulibaly JT, Ali SM, Sayasone S, Soghigian J, Keiser J, Gilleard JS. Trichuriasis in Human Patients from Côte d'Ivoire Caused by Novel Trichuris incognita Species with Low Sensitivity to Albendazole/Ivermectin Combination Treatment. Emerg Infect Dis 2025; 31:104-114. [PMID: 39714288 DOI: 10.3201/eid3101.240995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Albendazole/ivermectin combination therapy is a promising alternative to benzimidazole monotherapy alone for Trichuris trichiura control. We used fecal DNA metabarcoding to genetically characterize Trichuris spp. populations in patient samples from Côte d'Ivoire showing lower (egg reduction rate <70%) albendazole/ivermectin sensitivity than those from Laos and Tanzania (egg reduction rates >98%). Internal transcribed spacer (ITS) 1 and ITS2 metabarcoding revealed the entire detected Côte d'Ivoire Trichuris population was phylogenetically distinct from T. trichiura found in Laos and Tanzania and was more closely related to T. suis. Mitochondrial genome sequencing of 8 adult Trichuris worms from Côte d'Ivoire confirmed their species-level differentiation. Sequences from human patients in Cameroon and Uganda and 3 captive nonhuman primates suggest this novel species, T. incognita, is distributed beyond Côte d'Ivoire and has zoonotic potential. Continued surveillance by using fecal DNA metabarcoding will be needed to determine Trichuris spp. geographic distribution and control strategies.
Collapse
|
4
|
Nikolaeva OV, Rusin LY, Mikhailov KV, Aleoshin VV, De Ley P. Both-strand gene coding in a plastome-like mitogenome of an enoplid nematode. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:419-424. [PMID: 38318934 DOI: 10.1002/jez.b.23241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The phylum Nematoda remains very poorly sampled for mtDNA, with a strong bias toward parasitic, economically important or model species of the Chromadoria lineage. Most chromadorian mitogenomes share a specific order of genes encoded on one mtDNA strand. However, the few sequenced representatives of the Dorylaimia lineage exhibit a variable order of mtDNA genes encoded on both strands. While the ancestral arrangement of nematode mitogenome remains undefined, no evidence has been reported for Enoplia, the phylum's third early divergent major lineage. We describe the first mitogenome of an enoplian nematode, Campydora demonstrans, and contend that the complete 37-gene repertoire and both-strand gene encoding are ancestral states preserved in Enoplia and Dorylaimia versus the derived mitogenome arrangement in some Chromadoria. The C. demonstrans mitogenome is 17,018 bp in size and contains a noncoding perfect inverted repeat with 2013 bp-long arms, subdividing the mitogenome into two coding regions. This mtDNA arrangement is very rare among animals and instead resembles that of chloroplast genomes in land plants. Our report broadens mtDNA taxonomic sampling of the phylum Nematoda and adds support to the applicability of cox1 gene as a phylogenetic marker for establishing nematode relationships within higher taxa.
Collapse
Affiliation(s)
- Olga V Nikolaeva
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Yu Rusin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Mikhailov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V Aleoshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Paul De Ley
- Department of Entomology, Plant Pathology & Weed Science, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
5
|
Rivero J, Cutillas C, Callejón R. New Insights on Tools for Detecting β-Tubulin Polymorphisms in Trichuris trichiura Using rhAmp TM SNP Genotyping. Animals (Basel) 2024; 14:1545. [PMID: 38891592 PMCID: PMC11171370 DOI: 10.3390/ani14111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Soil-transmitted helminth (STH) infections, commonly treated with benzimidazoles, are linked to resistance through single nucleotide polymorphisms (SNPs) at position 167, 198, or 200 in the β-tubulin isotype 1 gene. The aim of this study was to establish a novel genotyping assay characterized by its rapidity and specificity. This assay was designed to detect the presence of SNPs within the partial β-tubulin gene of Trichuris trichiura. This was achieved through the biallelic discrimination at codons 167, 198, and 200 by employing the competitive binding of two allele-specific forward primers. The specificity and reliability of this assay were subsequently confirmed using Trichuris samples isolated from captive primates. Furthermore, a molecular study was conducted to substantiate the utility of the β-tubulin gene as a molecular marker. The assays showed high sensitivity and specificity when applied to field samples. Nevertheless, none of the SNPs within the β-tubulin gene were detected in any of the adult worms or eggs from the analyzed populations. All specimens consistently displayed an SS genotype. The examination of the β-tubulin gene further validated the established close relationships between the T. trichiura clade and Trichuris suis clade. This reaffirms its utility as a marker for phylogenetic analysis.
Collapse
Affiliation(s)
| | | | - Rocío Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (J.R.); (C.C.)
| |
Collapse
|
6
|
Henedi A, Chan AHE, Youssef W, Taha HA, Thaenkham U, Ashour AA. Phylogenetic evidence of a possible Trichuris globulosa species complex in Arabian camels from Kuwait. Parasitology 2024; 151:546-556. [PMID: 38523531 PMCID: PMC11427958 DOI: 10.1017/s0031182024000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
During a 1-year study, Trichuris adults were obtained after necropsy of Arabian camels (Camelus dromedarius) from a slaughterhouse in Kuwait. Morphological and molecular identification was performed to confirm the identity of the Trichuris specimens obtained from C. dromedarius. Fifteen male Trichuris specimens were selected, and molecular identification was performed using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA, 16S ribosomal RNA genes and the nuclear internal transcribed spacer 2 (ITS2) region. Through phylogenetic analysis, 2 distinct groups were obtained using the mitochondrial genes, where group 1 showed a close relationship to Trichuris globulosa while group 2 showed a close relationship to Trichuris ovis, providing molecular evidence of a possible T. globulosa species complex. Additionally, the nuclear ITS2 region did not provide enough resolution to distinguish between the 2 groups of Trichuris specimens. Observation of morphological characters revealed variations in the shape of the male spicule sheath, where specimens present either a globular posteriorly truncated swelling or the absence of posteriorly truncated swelling. Moreover, the variations in male spicule sheath does not corroborate with the results of molecular data, suggesting the limited use of this character for identification of T. globulosa. In conclusion, molecular analysis suggests a possible species complex in T. globulosa, with the mitochondrial genetic markers successfully differentiating between the 2 groups. The limited use of the male spicule sheath as a diagnostic character for identification of T. globulosa is suggested.
Collapse
Affiliation(s)
- Adawia Henedi
- Parasitology Lab, Veterinary Laboratories, Public Authority of Agriculture Affairs and Fish Resources, Rabia, Kuwait
| | - Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute, Dokki, Egypt
- Molecular Biology Lab, Veterinary Laboratories, PAAFR, Rabia, Kuwait
| | - Hoda A. Taha
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ameen A. Ashour
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Zeng JL, Chen HX, Ni XF, Kang JY, Li L. Molecular phylogeny of the family Rhabdiasidae (Nematoda: Rhabditida), with morphology, genetic characterization and mitochondrial genomes of Rhabdias kafunata and R. bufonis. Parasit Vectors 2024; 17:100. [PMID: 38429838 PMCID: PMC10908064 DOI: 10.1186/s13071-024-06201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The family Rhabdiasidae (Nematoda: Rhabditida) is a globally distributed group of nematode parasites, with over 110 species parasitic mainly in amphibians and reptiles. However, the systematic position of the family Rhabdiasidae in the order Rhabditida remains unsolved, and the evolutionary relationships among its genera are still unclear. Moreover, the present knowledge of the mitochondrial genomes of rhabdiasids remains limited. METHODS Two rhabdiasid species: Rhabdias kafunata Sata, Takeuchi & Nakano, 2020 and R. bufonis (Schrank, 1788) collected from the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) in China, were identified based on morphology (light and scanning electron microscopy) and molecular characterization (sequencing of the nuclear 28S and ITS regions and mitochondrial cox1 and 12S genes). The complete mitochondrial genomes of R. kafunata and R. bufonis were also sequenced and annotated for the first time. Moreover, phylogenetic analyses based on the amino acid sequences of 12 protein-coding genes (PCGs) of the mitochondrial genomes were performed to clarify the systematic position of the family Rhabdiasidae in the order Rhabditida using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses based on the 28S + ITS sequences, were also inferred to assess the evolutionary relationships among the genera within Rhabdiasidae. RESULTS The detailed morphology of the cephalic structures, vulva and eggs in R. kafunata and R. bufonis was revealed using scanning electron microscopy (SEM) for the first time. The characterization of 28S and ITS regions of R. kafunata was reported for the first time. The mitogenomes of R. kafunata and R. bufonis are 15,437 bp and 15,128 bp long, respectively, and both contain 36 genes, including 12 PCGs (missing atp8). Comparative mitogenomics revealed that the gene arrangement of R. kafunata and R. bufonis is different from all of the currently available mitogenomes of nematodes. Phylogenetic analyses based on the ITS + 28S data showed Neoentomelas and Kurilonema as sister lineages, and supported the monophyly of Entomelas, Pneumonema, Serpentirhabdias and Rhabdias. Mitochondrial phylogenomic results supported Rhabdiasidae as a member of the superfamily Rhabditoidea in the suborder Rhabditina, and its occurrance as sister to the family Rhabditidae. CONCLUSIONS The complete mitochondrial genome of R. kafunata and R. bufonis were reported for the first time, and two new gene arrangements of mitogenomes in Nematoda were revealed. Mitogenomic phylogenetic results indicated that the family Rhabdiasidae is a member of Rhabditoidea in Rhabditina, and is closely related to Rhabditidae. Molecular phylogenies based on the ITS + 28S sequence data supported the validity of Kurilonema, and showed that Kurilonema is sister to Neoentomelas. The present phylogenetic results also indicated that the ancestors of rhabdiasids seem to have initially infected reptiles, then spreading to amphibians.
Collapse
Affiliation(s)
- Jia-Lu Zeng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology; Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Hui-Xia Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Xue-Feng Ni
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Jia-Yi Kang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Liang Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
- Hebei Research Center of the Basic Discipline Cell Biology; Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Li YX, Huang XH, Li MR, Li SY, Huang ZJ, Wang DF, Yin GW, Wang L. Characterization and phylogenetic analysis of the complete mitochondrial genome of Rhabdias kafunata (Rhabditida: Rhabdiasidae). Exp Parasitol 2023; 255:108646. [PMID: 39491106 DOI: 10.1016/j.exppara.2023.108646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Rhabdias kafunata (Rhabditida: Rhabdiasidae) is a parasitic nematode that significantly affects bufonids. To better understand the genome-level characteristics of related species, Illumina sequencing was used to identify mitochondrial genes and analyze their basic characteristics and gene arrangements. The mitogenome of R. kafunata is 14,068 bp in length and contains 36 genes, including 12 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one noncoding region (NCR). The nucleotide composition is highly biased toward A + T, accounting for 75.5% of the entire mitochondrial genome. The cox1 sequence is relatively conserved in Ka/Ks analyses and can be used as a gene fragment for species identification. While 8 of the 12 PCGs use the typical ATN initiation codon, nad1-2, nad4, and cox3 utilize a TTG initiation codon. Most stop codons end with the standard TAA or TAG, except for cytb, which ends with an incomplete TA. Additionally, trnM, trnK, and trnI have the typical clover-leaf secondary structure, while the remaining tRNAs lack the DHU arm or TΨC arm. Phylogenetic analysis indicates that R. kafunata belongs to the Rhabditidae family and is closely related to Litoditis marina and Caenorhabditis angaria among sequenced lepidopteran mitochondrial genomes.
Collapse
Affiliation(s)
- Yong-Xia Li
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Xiao-Hang Huang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Meng-Rui Li
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Shi-Yi Li
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Zhi-Jian Huang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Deng-Feng Wang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Guang-Wen Yin
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China.
| | - Lei Wang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Gu XH, Guo N, Chen HX, Sitko J, Li LW, Guo BQ, Li L. Mitogenomic phylogenies suggest the resurrection of the subfamily Porrocaecinae and provide insights into the systematics of the superfamily Ascaridoidea (Nematoda: Ascaridomorpha), with the description of a new species of Porrocaecum. Parasit Vectors 2023; 16:275. [PMID: 37563590 PMCID: PMC10416420 DOI: 10.1186/s13071-023-05889-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The family Toxocaridae is a group of zooparasitic nematodes of veterinary, medical and economic significance. However, the evolutionary relationship of Porrocaecum and Toxocara, both genera currently classified in Toxocaridae, and the monophyly of the Toxocaridae remain under debate. Moreover, the validity of the subgenus Laymanicaecum in the genus Porrocaecum is open to question. Due to the scarcity of an available genetic database, molecular identification of Porrocaecum nematodes is still in its infancy. METHODS A number of Porrocaecum nematodes collected from the Eurasian marsh harrier Circus aeruginosus (Linnaeus) (Falconiformes: Accipitridae) in the Czech Republic were identified using integrated morphological methods (light and scanning electron microscopy) and molecular techniques (sequencing and analyzing the nuclear 18S, 28S and ITS regions). The complete mitochondrial genomes of the collected nematode specimens and of Porrocaecum (Laymanicaecum) reticulatum (Linstow, 1899) were sequenced and annotated for the first time. Phylogenetic analyses of ascaridoid nematodes based on the amino acid sequences of 12 protein-coding genes of mitochondrial genomes were performed using maximum likelihood and Bayesian inference. RESULTS A new species of Porrocaecum, named P. moraveci n. sp., is described based on the morphological and genetic evidence. The mitogenomes of P. moraveci n. sp. and P. reticulatum both contain 36 genes and are 14,517 and 14,210 bp in length, respectively. Comparative mitogenomics revealed that P. moraveci n. sp. represents the first known species with three non-coding regions and that P. reticulatum has the lowest overall A + T content in the mitogenomes of ascaridoid nematodes tested to date. Phylogenetic analyses showed the representatives of Toxocara clustered together with species of the family Ascarididae rather than with Porrocaecum and that P. moraveci n. sp. is a sister to P. reticulatum. CONCLUSIONS The characterization of the complete mitochondrial genomes of P. moraveci n. sp. and P. reticulatum is reported for the first time. Mitogenomic phylogeny analyses indicated that the family Toxocaridae is non-monophyletic and that the genera Porrocaecum and Toxocara do not have an affinity. The validity of the subgenus Laymanicaecum in Porrocaecum was also rejected. Our results suggest that: (i) Toxocaridae should be degraded to a subfamily of the Ascarididae that includes only the genus Toxocara; and (ii) the subfamily Porrocaecinae should be resurrected to include only the genus Porrocaecum. The present study enriches the database of ascaridoid mitogenomes and provides a new insight into the systematics of the superfamily Ascaridoidea.
Collapse
Affiliation(s)
- Xiao-Hong Gu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Ning Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Hui-Xia Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Jiljí Sitko
- Muzeum Komenského V Přerově, 750 02, Přerově, Czech Republic
| | - Lin-Wei Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Bing-Qian Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China
| | - Liang Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
- Hebei Research Center of the Basic Discipline Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, 050024, Hebei Province, People's Republic of China.
| |
Collapse
|
10
|
Delaluna JO, Kang H, Chang YY, Kim M, Choi MH, Kim J, Song HB. De novo assembled mitogenome analysis of Trichuris trichiura from Korean individuals using nanopore-based long-read sequencing technology. PLoS Negl Trop Dis 2023; 17:e0011586. [PMID: 37639474 PMCID: PMC10491297 DOI: 10.1371/journal.pntd.0011586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Knowledge about mitogenomes has been proven to be essential in human parasite diagnostics and understanding of their diversity. However, the lack of substantial data for comparative analysis is still a challenge in Trichuris trichiura research. To provide high quality mitogenomes, we utilized long-read sequencing technology of Oxford Nanopore Technologies (ONT) to better resolve repetitive regions and to construct de novo mitogenome assembly minimizing reference biases. In this study, we got three de novo assembled mitogenomes of T. trichiura isolated from Korean individuals. These circular complete mitogenomes of T. trichiura are 14,508 bp, 14,441 bp, and 14,440 bp in length. A total of 37 predicted genes were identified consisting of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNAs) genes, two ribosomal RNA (rRNA) genes (rrnS and rrnL), and two non-coding regions. Interestingly, the assembled mitogenome has up to six times longer AT-rich regions than previous reference sequences, thus proving the advantage of long-read sequencing in resolving unreported non-coding regions. Furthermore, variant detection and phylogenetic analysis using concatenated protein coding genes, cox1, rrnL, and nd1 genes confirmed the distinct molecular identity of this newly assembled mitogenome while at the same time showing high genetic relationship with sequences from China or Tanzania. Our study provided a new set of reference mitogenome with better contiguity and resolved repetitive regions that could be used for meaningful phylogenetic analysis to further understand disease transmission and parasite biology.
Collapse
Affiliation(s)
- James Owen Delaluna
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heekyoung Kang
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yuan Yi Chang
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - MinJi Kim
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Ho Choi
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Beom Song
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Rivero J, Cutillas C, Callejón R. New genetic lineage of whipworm present in Bactrian camel (Camelus bactrianus). Vet Parasitol 2023; 315:109886. [PMID: 36724679 DOI: 10.1016/j.vetpar.2023.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
With a global population of around 35 million in 47 countries, camels play a crucial role in the economy of many marginal and desert areas of the world where they survive in harsh conditions. Nonetheless, there is insufficient knowledge regarding camels' parasite fauna which can reduce their milk and meat production. A molecular study for the Trichuris population of Camelus bactrianus from Spain is presented based on sequences of mitochondrial (cox1, cob, rrnL) and ribosomal (ITS1 and ITS2) DNA regions. Bayesian Inference and Maximum Likelihood methods were used to infer phylogenies for (i) each gene separately, (ii) the combined mitochondrial data, and (iii) the combined mitochondrial and ribosomal dataset. Molecular analyses revealed the existence of two different genetic lineages in the Trichuris parasites populations of C. bactrianus. Future studies should focus on whether there is a coevolution process corresponding to the wild or domestic character of C. bactrianus and Camelus dromedarius. Furthermore, it is necessary to increase integrative taxonomic studies on Trichuris spp. based on morphological, biometric, and molecular data, which will inevitably contribute to our knowledge of the etiology of trichuriasis.
Collapse
Affiliation(s)
- Julia Rivero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Rocío Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
12
|
Assessing the impact of Ascariasis and Trichuriasis on weight gain using a porcine model. PLoS Negl Trop Dis 2022; 16:e0010709. [PMID: 35984809 PMCID: PMC9390923 DOI: 10.1371/journal.pntd.0010709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background Infections with Ascaris lumbricoides and Trichuris trichiura remain significant contributors to the global burden of neglected tropical diseases. Infection may in particular affect child development as they are more likely to be infected with T. trichiura and/or A. lumbricoides and to carry higher worm burdens than adults. Whilst the impact of heavy infections are clear, the effects of moderate infection intensities on the growth and development of children remain elusive. Field studies are confounded by a lack of knowledge of infection history, nutritional status, presence of co-infections and levels of exposure to infective eggs. Therefore, animal models are required. Given the physiological similarities between humans and pigs but also between the helminths that infect them; A. suum and T. suis, growing pigs provide an excellent model to investigate the direct effects of Ascaris spp. and Trichuris spp. on weight gain. Methods and results We employed a trickle infection protocol to mimic natural co-infection to assess the effect of infection intensity, determined by worm count (A. suum) or eggs per gram of faeces (A. suum and T. suis), on weight gain in a large pig population (n = 195) with variable genetic susceptibility. Pig body weights were assessed over 14 weeks. Using a post-hoc statistical approach, we found a negative association between weight gain and T. suis infection. For A. suum, this association was not significant after adjusting for other covariates in a multivariable analysis. Estimates from generalized linear mixed effects models indicated that a 1 kg increase in weight gain was associated with 4.4% (p = 0.00217) decrease in T. suis EPG and a 2.8% (p = 0.02297) or 2.2% (p = 0.0488) decrease in A. suum EPG or burden, respectively. Conclusions Overall this study has demonstrated a negative association between STH and weight gain in growing pigs but also that T. suis infection may be more detrimental that A. suum on growth. Infections with the roundworm, Ascaris lumbricoides and the whipworm Trichuris trichiura are estimated to affect over 800 and 400 million people, respectively. Infections are most common in children and whilst very heavy infections present clear pathology it is less clear what effect more moderate infection have on the growth and development of children. Attempts to quantify the detrimental effects in humans have been inconclusive to date due to multiple confounding variables. Therefore, animal models are required. Pigs are natural hosts to two very closely related helminths; A. suum and T. suis and therefore we have investigated the effects of infection on growing pigs. This study has identified an association of infection levels with both helminths with reduced weight gain but also that whipworm infection may be more detrimental to weight gain than giant roundworm infection. Given the overall high prevalence of A. lumbricoides and difficulties in successfully clearing whipworm infections (multiple doses of anthelminthic are required), this work highlights the importance of drug administration programs targeted to clear these infections in children.
Collapse
|
13
|
Sequence analyses of mitochondrial gene may support the existence of cryptic species within Ascaridia galli. J Helminthol 2022; 96:e39. [PMID: 35641879 DOI: 10.1017/s0022149x2200030x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ascaridia galli (Nematoda: Ascaridiidae) is the most common intestinal roundworm of chickens and other birds with a worldwide distribution. Although A. galli has been extensively studied, knowledge of the genetic variation of this parasite in detail is still insufficient. The present study examined genetic variation in the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene among A. galli isolates (n = 26) from domestic chickens in Hunan Province, China. A portion of the cox1 (pcox1) gene was amplified by polymerase chain reaction separately from adult A. galli individuals and the amplicons were subjected to sequencing from both directions. The length of the sequences of pcox1 is 441 bp. Although the intra-specific sequence variation within A. galli is 0-7.7%, the inter-specific sequence differences among other members of the infraorder Ascaridomorpha were 11.4-18.9%. Phylogenetic analyses based on the maximum likelihood method using the sequences of pcox1 confirmed that all of the Ascaridia isolates were A. galli, and also resolved three distinct clades. Taken together, the findings suggest that A. galli may represent a complex of cryptic species. Our results provide an additional genetic marker for the management of A. galli in chickens and other birds.
Collapse
|
14
|
Rivero J, Zurita A, Cutillas C, Callejón R. The Use of MALDI-TOF MS as a Diagnostic Tool for Adult Trichuris Species. Front Vet Sci 2022; 9:867919. [PMID: 35647091 PMCID: PMC9132177 DOI: 10.3389/fvets.2022.867919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023] Open
Abstract
Trichuriasis is considered a neglected tropical disease, being the second most common helminthiasis in humans. Detection of Trichuris in routine diagnosis is usually done by microscopic detection of eggs in fecal samples. Other molecular analyses are more reliable and could be used, but these analyses are not routinely available in clinical microbiology laboratories. The use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is increasing since the last decades due to its recent evidence as a potential role for reliable identification of microorganisms and a few nematodes. But, for parasites detection, normalized protocols and the acquisition and introduction of new species to the database are required. We carried out a preliminary study confirming the usefulness of MALDI-TOF MS for the rapid and reliable identification of Trichuris suis used as control and the creation of an internal database. To create main spectra profiles (MSPs), the different parts of five whipworms (esophagus and intestine) were used, developing different tests to verify the repeatability and reproducibility of the spectra. Thus, to validate the new internal database, 20 whipworms, separating the esophagus and intestine, were used, of which 100% were accurately identified as T. suis, but could not distinguish between both parts of the worm. Log score values ranged between 1.84 and 2.36, meaning a high-quality identification. The results confirmed that MALDI-TOF MS was able to identify Trichuris species. Additionally, a MALDI-TOF MS profile of T. suis proteome was carried out to develop the first internal database of spectra for the diagnosis of trichuriasis and other Trichuris spp.
Collapse
|
15
|
Comparative mitogenomics of Spirocerca lupi from South Africa and China: Variation and possible heteroplasmy. Vet Parasitol 2021; 300:109595. [PMID: 34678674 DOI: 10.1016/j.vetpar.2021.109595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
The complete mitochondrial genome of Spirocerca lupi isolated from a dog in South Africa was sequenced using next generation sequencing (NGS) technology and the 12 protein coding genes along with the two rRNA genes were compared to 18 other nematode species as well as S. lupi from China. The mitochondrial genome of S. lupi South Africa had a mean genetic diversity of 6.1 % compared to S. lupi China with some variation in nucleotide composition, gene positioning and size. Pairwise distance results indicated slightly higher variation when compared to the pairwise distances of other closely related species, however, this variation was not high enough for it to be considered a cryptic species. Phylogenetic analysis indicated that S. lupi from the two continents are very similar. In addition, single nucleotide polymorphisms were detected in the nad2 gene with ten sequence variants identified from 10 clones from a single nematode, suggesting possible heteroplasmy. The origin of the heteroplasmy is currently unknown but it is speculated to have arisen from accumulated mutations in the mitochondria during somatic replication.
Collapse
|
16
|
Mitogenomics and Evolutionary History of Rodent Whipworms ( Trichuris spp.) Originating from Three Biogeographic Regions. Life (Basel) 2021; 11:life11060540. [PMID: 34207698 PMCID: PMC8228637 DOI: 10.3390/life11060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022] Open
Abstract
Trichuris spp. is a widespread nematode which parasitizes a wide range of mammalian hosts including rodents, the most diverse mammalian order. However, genetic data on rodent whipworms are still scarce, with only one published whole genome (Trichuris muris) despite an increasing demand for whole genome data. We sequenced the whipworm mitogenomes from seven rodent hosts belonging to three biogeographic regions (Palearctic, Afrotropical, and Indomalayan), including three previously described species: Trichuris cossoni, Trichurisarvicolae, and Trichurismastomysi. We assembled and annotated two complete and five almost complete mitogenomes (lacking only the long non-coding region) and performed comparative genomic and phylogenetic analyses. All the mitogenomes are circular, have the same organisation, and consist of 13 protein-coding, 2 rRNA, and 22 tRNA genes. The phylogenetic analysis supports geographical clustering of whipworm species and indicates that T. mastomysi found in Eastern Africa is able to infect multiple closely related rodent hosts. Our results are informative for species delimitation based on mitochondrial markers and could be further used in studies on phylogeny, phylogeography, and population genetics of rodent whipworms
Collapse
|
17
|
Zapata-Valencia JI, Ortega-Valencia S, Silva-Cuero YK, Castillo-Castillo LS, Ortega-Ruíz LS, Cardona-Ortiz A, Peña-Stadlin J. Frequency of enteroparasites in Cebidae and Callitrichidae primates at the Zoológico de Cali, Colombia: zoonotic implications. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2021; 41:60-81. [PMID: 34111341 PMCID: PMC8320779 DOI: 10.7705/biomedica.5403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/30/2021] [Indexed: 11/21/2022]
Abstract
Introduction: Enteroparasites can cause problems in animals kept under human care in zoos and shelters. Wild animals have low parasitic loads but when sheltered in closed places they can be higher and lead to clinical manifestations, which increases the cost of medical treatments and care. On the other hand, some enteroparasites can represent a potential risk of zoonotic infection for their animal keepers, visitors, and other zoo animals. In addition, they could affect recovery programs for endangered species. Objectives: To establish the presence and prevalence of potentially zoonotic enteroparasites in primates of the Cebidae and Callitrichidae families at the Zoológico de Cali from September to November, 2017. Materials and methods: We conducted a prospective cross-sectional study. Serial samples from 50 individuals belonging to seven species and two primate families were analyzed by ova and parasite test, flotation, and Kinyoun stain between September and November, 2017. Results: In order of frequency, the parasite genera found in the seven primate species evaluated were Blastocystis spp., Trichomonas spp., Giardia spp., Entamoeba spp., Strongyloides spp., Cyclospora sp., and Trichuris sp. Conclusions: At least six of the parasite genera found have potential zoonotic implications. It is necessary to establish what are the infection sources at the Zoológico de Cali and implement management protocols to reduce the risk of transmission to both humans and other animals in the collection. Additionally, we offer relevant information on the zoonotic potential of each of the enteroparasites found.
Collapse
Affiliation(s)
- Jorge Iván Zapata-Valencia
- Escuela de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad del Valle, Cali, Colombia.
| | - Sebastián Ortega-Valencia
- Escuela de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad del Valle, Cali, Colombia.
| | | | | | - Laura Sofía Ortega-Ruíz
- Escuela de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad del Valle, Cali, Colombia.
| | - Adriana Cardona-Ortiz
- Escuela de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad del Valle, Cali, Colombia.
| | | |
Collapse
|
18
|
Mair I, Else KJ, Forman R. Trichuris muris as a tool for holistic discovery research: from translational research to environmental bio-tagging. Parasitology 2021; 148:1-13. [PMID: 33952360 PMCID: PMC8660646 DOI: 10.1017/s003118202100069x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Trichuris spp. (whipworms) are intestinal nematode parasites which cause chronic infections associated with significant morbidities. Trichuris muris in a mouse is the most well studied of the whipworms and research on this species has been approached from a number of different disciplines. Research on T. muris in a laboratory mouse has provided vital insights into the host–parasite interaction through analyses of the immune responses to infection, identifying factors underpinning host susceptibility and resistance. Laboratory studies have also informed strategies for disease control through anthelmintics and vaccine research. On the contrary, research on naturally occurring infections with Trichuris spp. allows the analysis of the host–parasite co-evolutionary relationships and parasite genetic diversity. Furthermore, ecological studies utilizing Trichuris have aided our knowledge of the intricate relationships amongst parasite, host and environment. More recently, studies in wild and semi-wild settings have combined the strengths of the model organism of the house mouse with the complexities of context-dependent physiological responses to infection. This review celebrates the extraordinarily broad range of beneficiaries of whipworm research, from immunologists and parasitologists, through epidemiologists, ecologists and evolutionary biologists to the veterinary and medical communities.
Collapse
Affiliation(s)
- Iris Mair
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Kathryn J. Else
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Ruth Forman
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| |
Collapse
|
19
|
Rivero J, Cutillas C, Callejón R. Trichuris trichiura (Linnaeus, 1771) From Human and Non-human Primates: Morphology, Biometry, Host Specificity, Molecular Characterization, and Phylogeny. Front Vet Sci 2021; 7:626120. [PMID: 33681315 PMCID: PMC7934208 DOI: 10.3389/fvets.2020.626120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Human trichuriasis is a Neglected Tropical Disease, which affects hundreds of millions of persons worldwide. Several studies have reported that non-human primates (NHP) represent important reservoirs for several known zoonotic infectious diseases. In this context, Trichuris infections have been found in a range of NHP species living in natural habitats, including colobus monkeys, macaques, baboons, and chimpanzees. To date, the systematics of the genus Trichuris parasitizing humans and NHP is unclear. During many years, Trichuris trichiura was considered as the whipworm present in humans and primates. Subsequently, molecular studies suggested that Trichuris spp. in humans and NHP represent several species that differ in host specificity. This work examines the current knowledge of T. trichiura and its relationship to whipworm parasites in other primate host species. A phylogenetic hypothesis, based on three mitochondrial genes (cytochrome c oxidase subunit 1, cytochrome b, and large subunit rRNA-encoding gene) and two fragments of ribosomal DNA (Internal Transcribed Spacer 1 and 2), allowed us to define a complex of populations of T. trichiura hosting in a large variety of NHP species, in addition to humans. These populations were divided into four phylogenetic groups with a different degree of host specificity. From these data, we carry out a new morphological and biometrical description of the populations of Trichuris based on data cited by other authors as well as those provided in this study. The presence of T. trichiura is analyzed in several NHP species in captivity from different garden zoos as possible reservoir of trichuriasis for humans. This study contributes to clarify questions that lead to identification of new taxa and will determine parasite transmission routes between these primates, allowing the implementation of appropriate control and prevention measures.
Collapse
Affiliation(s)
- Julia Rivero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rocío Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
20
|
Rivero J, Callejón R, Cutillas C. Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio. Life (Basel) 2021; 11:life11020126. [PMID: 33562044 PMCID: PMC7915941 DOI: 10.3390/life11020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Trichuriasis is among the most prevalent worldwide parasitism caused by helminths. For many years, Trichuris spp. have been described with a relatively narrow range of both morphological and biometrical features. The use of the complete mitochondrial genome (mitogenome) is an alternative and powerful molecular method for inferring phylogenies. Here, we present an overview of the contributions of mitogenome for Trichuris spp. from human and non-human primates. In addition, we carry out structural and phylogenetic comparative analyses with genomes of Trichuris species available in public datasets. The complete mt genomes of Trichuris trichiura and Trichuris sp. from Macaca sylvanus and T. trichiura from Papio papio are 14,091 bp, 14,047 bp and 14,089 bp in length, respectively. The three mt genomes are circular and consist of 37 genes—13 PCGs (cox1–3, nad1–6, nad4L, atp6, atp8 and cob), 22 transfer RNA genes (tRNAs), and two rRNAs (rrnL and rrnS). The molecular evidence presented here supports the hypothesis that T. trichiura de M. sylvanus (TMF31) and T. trichiura de P. papio (TPM1) were similar but genetically different with respect to Trichuris sp. from macaques (TMM5). The phylogenetic study also supported the evolution of the different Trichuris species. In conclusion, we suggest the existence of two cryptic species parasitizing M. sylvanus.
Collapse
|
21
|
Nuclear and Mitochondrial Data on Trichuris from Macaca fuscata Support Evidence of Host Specificity. Life (Basel) 2020; 11:life11010018. [PMID: 33396199 PMCID: PMC7823418 DOI: 10.3390/life11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/04/2022] Open
Abstract
Whipworms are parasitic intestinal nematodes infecting mammals, and traditionally humans and other primates that have so far been considered infected by Trichuris trichiura. Recent molecular studies report a more complex scenario suggesting the presence of a species complex with several Trichuris taxa specifically infecting only one primate species as well as taxa able to infect a range of primate species. The systematics of the group is important for taxonomic inference, to estimate the relative zoonotic potential, and for conservation purposes. In fact, captive animals living in zoological gardens are usually infected by persistent monoxenous intestinal parasites. Here, two Japanese macaques living in the Bioparco Zoological Garden of Rome were found infected by Trichuris sp. Nematodes were characterized at the molecular level using nuclear (btub and 18S) and mitochondrial (16S and cytb) markers and then compared to Trichuris collected previously in the same location, and to other Trichuris infecting primates. Evidences from mitochondrial and nuclear markers allowed for the identification of Trichuris sp. specific to Macaca fuscata. Results obtained here also described a uniform taxonomic unit of Trichuris, separated but closely related to Trichuris trichiura, thus, emphasizing its zoonotic potential for workers and visitors.
Collapse
|
22
|
Rivero J, García-Sánchez ÁM, Zurita A, Cutillas C, Callejón R. Trichuris trichiura isolated from Macaca sylvanus: morphological, biometrical, and molecular study. BMC Vet Res 2020; 16:445. [PMID: 33203430 PMCID: PMC7672873 DOI: 10.1186/s12917-020-02661-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023] Open
Abstract
Background Recent studies have reported the existence of a Trichuris species complex parasitizing primate. Nevertheless, the genetic and evolutionary relationship between Trichuris spp. parasitizing humans and Non-Human Primates (NHP) is poorly understood. The hypothesised existence of different species of Trichuris in primates opens the possibility to evaluate these primates as reservoir hosts of human trichuriasis and other putative new species of whipworms. Results In this paper, we carried out a morphological, biometrical and molecular study of Trichuris population parasitizing Macaca sylvanus from Spain based on traditional morpho-biometrical methods, PCA analysis and ribosomal (ITS2) and mitochondrial (cox1 and cob) DNA sequencing. Morphological results revealed that Trichuris sp. from M. sylvanus is Trichuris trichiura. Ribosomal datasets revealed that phylogenetic relationships of populations of Trichuris sp. from M. sylvanus were unresolved. The phylogeny inferred on mitochondrial datasets (partitioned and concatenated) revealed similar topologies; Thus, phylogenetic trees supported the existence of clear molecular differentiation between individuals of Trichuris sp. from M. sylvanus appearing in two different subclades. Conclusions Based on morphological parameters, biometrical measurements, and molecular sequence analysis, we conclude that the whipworms isolated from M. sylvanus were T. trichiura. Further, the evolutionary relationship showed that these worms belonged to two genotypes within the T. trichiura lineage. Since T. trichiura is of public health importance, it is important to carry out further studies to improve the understanding of its hosts range, evolution and phylogeography.
Collapse
Affiliation(s)
- Julia Rivero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| | - Ángela María García-Sánchez
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| | - Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain.
| | - Rocío Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Professor García González 2, 41012, Seville, Spain
| |
Collapse
|
23
|
|
24
|
Xie Y, Li Y, Gu X, Liu Y, Zhou X, Wang L, He R, Peng X, Yang G. Molecular characterization of ascaridoid parasites from captive wild carnivores in China using ribosomal and mitochondrial sequences. Parasit Vectors 2020; 13:382. [PMID: 32727607 PMCID: PMC7391581 DOI: 10.1186/s13071-020-04254-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the public health importance of toxocariasis/toxascariasis, only a few species of these ascaridoid parasites from wild canine and feline carnivores have been studied at the molecular level so far. Poor understanding of diversity, host distribution and the potential (zoonotic) transmission of the ascaridoid species among wild animals negatively affects their surveillance and control in natural settings. In this study, we updated previous knowledge by profiling the genetic diversity and phylogenetic relationships of ascaridoid species among eleven wild canine and feline animals on the basis of a combined analysis of the ribosomal internal transcribed spacer region (ITS) gene and the partial mitochondrial cytochrome c oxidase subunit 2 (cox2) and NADH dehydrogenase subunit 1 (nad1) genes. RESULTS In total, three genetically distinct ascaridoid lineages were determined to be present among these wild carnivores sampled, including Toxocara canis in Alopex lagopus and Vulpes vulpes, Toxocara cati in Felis chaus, Prionailurus bengalensis and Catopuma temmincki and Toxascaris leonina in Canis lupus, Panthera tigris altaica, Panthera tigris amoyensis, Panthera tigris tigris, Panthera leo and Lynx lynx. Furthermore, it was evident that T. leonina lineage split into three well-supported subclades depending on their host species, i.e. wild felids, dogs and wolves and foxes, based on integrated genetic and phylogenetic evidence, supporting that a complex of T. leonina other than one species infecting these hosts. CONCLUSIONS These results provide new molecular insights into classification, phylogenetic relationships and epidemiological importance of ascaridoids from wild canids and felids and also highlight the complex of the taxonomy and genetics of Toxascaris in their wild and domestic carnivorous hosts.
Collapse
Affiliation(s)
- Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yingxin Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunjian Liu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
25
|
Jones BP, Norman BF, Borrett HE, Attwood SW, Mondal MMH, Walker AJ, Webster JP, Rajapakse RPVJ, Lawton SP. Divergence across mitochondrial genomes of sympatric members of the Schistosoma indicum group and clues into the evolution of Schistosoma spindale. Sci Rep 2020; 10:2480. [PMID: 32051431 PMCID: PMC7015907 DOI: 10.1038/s41598-020-57736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Schistosoma spindale and Schistosoma indicum are ruminant-infecting trematodes of the Schistosoma indicum group that are widespread across Southeast Asia. Though neglected, these parasites can cause major pathology and mortality to livestock leading to significant welfare and socio-economic issues, predominantly amongst poor subsistence farmers and their families. Here we used mitogenomic analysis to determine the relationships between these two sympatric species of schistosome and to characterise S. spindale diversity in order to identify possible cryptic speciation. The mitochondrial genomes of S. spindale and S. indicum were assembled and genetic analyses revealed high levels of diversity within the S. indicum group. Evidence of functional changes in mitochondrial genes indicated adaptation to environmental change associated with speciation events in S. spindale around 2.5 million years ago. We discuss our results in terms of their theoretical and applied implications.
Collapse
Affiliation(s)
- Ben P Jones
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Billie F Norman
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Hannah E Borrett
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Stephen W Attwood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Mohammed M H Mondal
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - R P V Jayanthe Rajapakse
- Faculty of Veterinary Medicine and Animal Science, Department of Veterinary Pathobiology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry, Kingston University London, Kingston Upon Thames, Surrey, KT1 2EE, UK.
| |
Collapse
|
26
|
Cavallero S, Nejsum P, Cutillas C, Callejón R, Doležalová J, Modrý D, D’Amelio S. Insights into the molecular systematics of Trichuris infecting captive primates based on mitochondrial DNA analysis. Vet Parasitol 2019; 272:23-30. [DOI: 10.1016/j.vetpar.2019.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
|
27
|
Hong JH, Seo M, Oh CS, Shin DH. Genetic Analysis of Small-Subunit Ribosomal Rna, Internal Transcribed Spacer 2, and ATP Synthase Subunit 8 of Trichuris trichiura Ancient DNA Retrieved from the 15th to 18th Century Joseon Dynasty Mummies' Coprolites from Korea. J Parasitol 2019. [DOI: 10.1645/19-31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jong Ha Hong
- Laboratory of Bioanthropology, Paleopathology and History of Diseases, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Min Seo
- Department of Parasitology, Dankook University College of Medicine, Cheonan 31116, South Korea
| | - Chang Seok Oh
- Laboratory of Bioanthropology, Paleopathology and History of Diseases, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Dong Hoon Shin
- Laboratory of Bioanthropology, Paleopathology and History of Diseases, Seoul National University College of Medicine, Seoul 03080, South Korea
| |
Collapse
|
28
|
Obanda V, Maingi N, Muchemi G, Ng’ang’a CJ, Angelone S, Archie EA. Infection dynamics of gastrointestinal helminths in sympatric non-human primates, livestock and wild ruminants in Kenya. PLoS One 2019; 14:e0217929. [PMID: 31181093 PMCID: PMC6557494 DOI: 10.1371/journal.pone.0217929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastrointestinal parasites are neglected infections, yet they cause significant burden to animal and human health globally. To date, most studies of gastrointestinal parasites focus on host-parasite systems that involve either a single parasite or a host species. However, when hosts share habitat and resources, they may also cross-transmit generalist gastrointestinal parasites. Here we explore multi-host-parasite interactions in a single ecosystem to understand the infection patterns, especially those linked to livestock-wildlife interfaces and zoonotic risk. METHODS We used both coprological methods (flotation and sedimentation; N = 1,138 fecal samples) and molecular identification techniques (rDNA and mtDNA; N = 18 larvae) to identify gastrointestinal parasites in nine sympatric host species (cattle, sheep, goats, wildebeest, Grant's gazelles, Thomson's gazelles, impala, vervet monkeys and baboons) in the Amboseli ecosystem, Kenya. RESULTS We found that the host community harbored a diverse community of gastrointestinal helminths, including 22 species and/or morphotypes that were heterogeneously distributed across the hosts. Six zoonotic gastrointestinal helminths were identified: Trichuris spp., Trichostrongylus colubriformis, Enterobius spp. Oesophagostomum bifurcum, Strongyloides stercoralis and Strongyloides fuelleborni. The dominant parasite was Trichuris spp, whose ova occurred in two morphological types. Baboons were co-infected with Strongyloides fuelleborni and S. stercoralis. CONCLUSIONS We found that the interface zone shared by wild ungulates, livestock and non-human primates is rich in diversity of gastrointestinal helminths, of which some are extensively shared across the host species. Closely related host species were most likely to be infected by the same parasite species. Several parasites showed genetic sub-structuring according to either geography or host species. Of significance and contrary to expectation, we found that livestock had a higher parasite richness than wild bovids, which is a health risk for both conservation and livestock production. The zoonotic parasites are of public health risk, especially to pastoralist communities living in areas contiguous to wildlife areas. These results expand information on the epidemiology of these parasites and highlights potential zoonotic risk in East African savanna habitats.
Collapse
Affiliation(s)
- Vincent Obanda
- Department of Veterinary Services, Kenya Wildlife Service, Nairobi, Kenya
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Ndichu Maingi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Gerald Muchemi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Chege J. Ng’ang’a
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Samer Angelone
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda, Américo Vespucio s/n, Sevilla, Spain
- Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zürich Winterthurerstrasse, Zürich, Switzerland
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, United States of America
| |
Collapse
|
29
|
Xie Y, Zhao B, Hoberg EP, Li M, Zhou X, Gu X, Lai W, Peng X, Yang G. Genetic characterisation and phylogenetic status of whipworms (Trichuris spp.) from captive non-human primates in China, determined by nuclear and mitochondrial sequencing. Parasit Vectors 2018; 11:516. [PMID: 30236150 PMCID: PMC6149069 DOI: 10.1186/s13071-018-3100-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
Background Whipworms (Nematoda: Trichuridae), among the most common soil-transmitted helminths (STHs), can cause the socioeconomically important disease trichuriasis in various mammalian hosts including humans and non-human primates. For many years, Trichuris from non-human primates has been assigned to the same species as the one infecting humans Trichuris trichiura. More recently, several molecular reports challenged this assumption following recognition of a Trichuris species complex observed in humans and non-human primates. A refined concept for species limits within Trichuris contributes to an understanding of diversity and the potential (zoonotic) transmission among humans and non-human primates. In this study, we expanded previous investigations by exploring the diversity of Trichuris among eight primates including three Asian autochthonous species (i.e. Rhinopithecus roxellana, Rhinopithecus bieti and Nomascus leucogenys). Species-level identification, whether novel or assignable to known lineages of Trichuris, was based on analyses of nuclear internal transcribed spacers (ITS) and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes. Results In total, seven genetically distinct subgroups of whipworms were determined to be present among the primates sampled. Most Trichuris lineages, including Subgroups 1, 1’, 3, 5 and 6, showed a broad host range and were not restricted to particular primate species; in addition to T. trichiura, a complex of Trichuris species was shown infecting primates. Furthermore, it was assumed that Trichuris spp. from either N. leucogenys and P. hamadryas or R. roxellana and R. bieti, respectively, were conspecific. Each pair was indicated to be a discrete lineage of Trichuris, designated, respectively, as Subgroups 1 or 1’ and 2, based on integrated genetic and phylogenetic evidence. Conclusion These results emphasise that the taxonomy and genetic variations of Trichuris are more complicated than previously acknowledged. These cumulative molecular and phylogenetic data provide a better understanding of the taxonomy, genetics and evolutionary biology of the whipworms. Electronic supplementary material The online version of this article (10.1186/s13071-018-3100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zhao
- Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Eric P Hoberg
- Division of Parasitology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mei Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
30
|
Morphological and molecular confirmation of the validity of Trichuris rhinopiptheroxella in the endangered golden snub-nosed monkey (Rhinopithecus roxellana). J Helminthol 2018; 93:601-607. [PMID: 29986779 DOI: 10.1017/s0022149x18000500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered species endemic to China. Relatively little is known about the taxonomic status of soil-transmitted helminths (STH) in these monkeys. Trichuris spp. (syn. Trichocephalus) are among the most important STHs, causing significant socio-economic losses and public health concerns. To date, five Trichuris species have been reported in golden monkeys, including a novel species, T. rhinopiptheroxella, based on morphology. In the present study, molecular and morphological analysis was conducted on adult Trichuris worms obtained from a dead golden snub-nosed monkey, to better understand their taxonomic status. Morphology indicated that the adult Trichuris worms were similar to T. rhinopiptheroxella. To further ascertain their phylogenetic position, the complete mitochondrial (mt) genome of these worms was sequenced and characterized. The mt genome of T. rhinopiptheroxella is 14,186 bp, encoding 37 genes. Phylogenetic analysis based on the concatenated amino acids of 12 protein-coding genes (with the exception of atp8) indicated that T. rhinopiptheroxella was genetically distinct and exhibited 27.5-27.8% genetic distance between T. rhinopiptheroxella and other Trichuris spp. Our results support T. rhinopiptheroxella as a valid Trichuris species and suggest that mt DNA could serve as a marker for future studies on the classification, evolution and molecular epidemiology of Trichuris spp. from golden snub-nosed monkeys.
Collapse
|
31
|
Kim T, Kern E, Park C, Nadler SA, Bae YJ, Park JK. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda). Sci Rep 2018; 8:7482. [PMID: 29749383 PMCID: PMC5945635 DOI: 10.1038/s41598-018-25759-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.
Collapse
Affiliation(s)
- Taeho Kim
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Elizabeth Kern
- Division of EcoScience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Yeon Jae Bae
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joong-Ki Park
- Division of EcoScience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
32
|
Søe MJ, Nejsum P, Seersholm FV, Fredensborg BL, Habraken R, Haase K, Hald MM, Simonsen R, Højlund F, Blanke L, Merkyte I, Willerslev E, Kapel CMO. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC-1700 AD) reveals past parasites and diet. PLoS One 2018; 13:e0195481. [PMID: 29694397 PMCID: PMC5918799 DOI: 10.1371/journal.pone.0195481] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/24/2018] [Indexed: 02/07/2023] Open
Abstract
High-resolution insight into parasitic infections and diet of past populations in Northern Europe and the Middle East (500 BC- 1700 AD) was obtained by pre-concentration of parasite eggs from ancient latrines and deposits followed by shotgun sequencing of DNA. Complementary profiling of parasite, vertebrate and plant DNA proved highly informative in the study of ancient health, human-animal interactions as well as animal and plant dietary components. Most prominent were finding of soil-borne parasites transmitted directly between humans, but also meat-borne parasites that require consumption of raw or undercooked fish and pork. The detection of parasites for which sheep, horse, dog, pig, and rodents serves as definitive hosts are clear markers of domestic and synanthropic animals living in closer proximity of the respective sites. Finally, the reconstruction of full mitochondrial parasite genomes from whipworm (Ascaris lumbricoides) and roundworm species (Trichuris trichiura and Trichuris muris) and estimates of haplotype frequencies elucidates the genetic diversity and provides insights into epidemiology and parasite biology.
Collapse
Affiliation(s)
- Martin Jensen Søe
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
- * E-mail: (MJS); (CMOK)
| | - Peter Nejsum
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Valeur Seersholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Brian Lund Fredensborg
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ruben Habraken
- BioArchaeological Research Bureau, Den Haag, The Netherlands
| | - Kirstine Haase
- Odense Bys Museer, Odense, Denmark
- Centre for Urban Network Evolutions, School of Culture and Society, Aarhus University, Højbjerg, Denmark
| | - Mette Marie Hald
- Environmental Archaeology and Materials Science, National Museum of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Louise Blanke
- Department of Archaeology, School of Culture and Society, Aarhus University, Aarhus, Denmark
| | - Inga Merkyte
- The Saxo Institute, University of Copenhagen, Copenhagen S, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
- Department of Zoology, University of Cambridge, Downing St, Cambridge, United Kingdom
- Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Christian Moliin Outzen Kapel
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail: (MJS); (CMOK)
| |
Collapse
|
33
|
Yao C, Walkush J, Shim D, Cruz K, Ketzis J. Molecular species identification of Trichuris trichiura in African green monkey on St. Kitts, West Indies. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2017; 11:22-26. [PMID: 31014613 DOI: 10.1016/j.vprsr.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 09/28/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
The population of African green monkeys (AGM, Chlorocebus aethiops sabaeus) on St. Kitts, West Indies is believed to be as large as or greater than the human population. Interactions with humans are frequent and the pathogens carried by AGM, such as Trichuris spp., may pose a risk to humans. The objectives of this study were to assess the use of molecular methods for diagnosing Trichuris spp. in AGM and compare its DNA sequences to those of Trichuris spp. found in other non-human primates and humans. Fecal samples were collected from trapped and individually housed AGM between January and December 2015 and analysed using fecal flotation with Sheather's sugar flotation solution and PCR amplification and DNA sequencing of 18S rRNA and ITS2 fragments. Phylogenetic analysis was performed. 91% (81/89) and 55.4% (31/56) were Trichuris spp. positive by fecal flotation and PCR, respectively. Both AGM-NADH1 gene and T. trichiura-18S rRNA gene showed no variations in sequence and were 100% identical to corresponding sequences deposited in GenBank. Nevertheless Trichuris ITS2 showed some diversities among 12 sequences, which was <5%. Phylogenetic analysis of ITS2 put Trichuris spp. in Kittitian AGM into the same clades of T. trichiura found in human and other non-human primates in many other geographical regions. These data confirm that AGM are reservoirs for T. trichiura in humans. We suggest a one health approach to curtail enteric parasitic infections in human populations in the insular country.
Collapse
Affiliation(s)
- Chaoqun Yao
- Department of Biomedical Sciences & One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts, West Indies.
| | - Jamie Walkush
- Department of Biomedical Sciences & One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts, West Indies.
| | - Dallas Shim
- Department of Biomedical Sciences & One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts, West Indies.
| | - Katalina Cruz
- Department of Biomedical Sciences & One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts, West Indies.
| | - Jennifer Ketzis
- Department of Biomedical Sciences & One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts, West Indies.
| |
Collapse
|
34
|
Hansen TVA, Williams AR, Denwood M, Nejsum P, Thamsborg SM, Friis C. Pathway of oxfendazole from the host into the worm: Trichuris suis in pigs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:416-424. [PMID: 29156431 PMCID: PMC5695533 DOI: 10.1016/j.ijpddr.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/28/2022]
Abstract
It is well known that the efficacy of a single oral dose of benzimidazoles against Trichuris spp. infections in humans and animals is poor, but is currently still used in control programmes against human trichuriasis. However, the route of the benzimidazoles from the treated host to Trichuris remains unknown. As parts of adult Trichuris are situated intracellularly in the caecum, they might be exposed to anthelmintic drugs in the intestinal content as well as the mucosa. In this study, the pathway of oxfendazole and its metabolites was explored using a T. suis-pig infection model, by simultaneously measuring drug concentrations within the worms and the caecal mucosa, caecal tissue, caecal content and plasma of pigs over time after a single oral dose of 5 mg/kg oxfendazole. Additionally, for comparison to the in vivo study, drug uptake and metabolism of oxfendazole by T. suis was examined after in vitro incubation. Oxfendazole and metabolites were quantified by High Performance Liquid Chromatography. Multivariate linear regression analysis showed a strong and highly significant association between OFZ concentrations within T. suis and in plasma, along with a weaker association between OFZ concentrations in caecal tissue/mucosa and T. suis, suggesting that oxfendazole reaches T. suis after absorption from the gastrointestinal tract and enters the worms by the blood-enterocyte pathway. The fenbendazole sulfone level in T. suis was highly affected by the concentrations in plasma. In addition, correlations between drug concentrations in the host compartments, were generally highest for this metabolite. In comparison to oxfendazole, the correlation between plasma and content was particularly high for this metabolite, suggesting a high level of drug movement between these compartments and the possible involvement of the enterohepatic circulation. Trichuris suis accumulate OFZ, FBZSO2 and FBZ without significant metabolism in vitro. OFZ concentrations in plasma, tissue and mucosa are major determinants of OFZ levels in worms. FBZSO2 concentration in plasma is the main determinant of FBZSO2 levels in T. suis. The blood-enterocyte pathway is proposed as the major route for OFZ to reach T. suis.
Collapse
Affiliation(s)
- Tina V A Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Matthew Denwood
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Friis
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
35
|
Characterization of the complete mitochondrial genome of Marshallagia marshalli and phylogenetic implications for the superfamily Trichostrongyloidea. Parasitol Res 2017; 117:307-313. [PMID: 29116454 DOI: 10.1007/s00436-017-5669-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Marshallagia marshalli (Nematoda: Trichostrongylidae) infection can lead to serious parasitic gastroenteritis in sheep, goat, and wild ruminant, causing significant socioeconomic losses worldwide. Up to now, the study concerning the molecular biology of M. marshalli is limited. Herein, we sequenced the complete mitochondrial (mt) genome of M. marshalli and examined its phylogenetic relationship with selected members of the superfamily Trichostrongyloidea using Bayesian inference (BI) based on concatenated mt amino acid sequence datasets. The complete mt genome sequence of M. marshalli is 13,891 bp, including 12 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. All protein-coding genes are transcribed in the same direction. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes supported the monophylies of the families Haemonchidae, Molineidae, and Dictyocaulidae with strong statistical support, but rejected the monophyly of the family Trichostrongylidae. The determination of the complete mt genome sequence of M. marshalli provides novel genetic markers for studying the systematics, population genetics, and molecular epidemiology of M. marshalli and its congeners.
Collapse
|
36
|
Gordon CA, Kurscheid J, Jones MK, Gray DJ, McManus DP. Soil-Transmitted Helminths in Tropical Australia and Asia. Trop Med Infect Dis 2017; 2:E56. [PMID: 30270913 PMCID: PMC6082059 DOI: 10.3390/tropicalmed2040056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Soil-transmitted helminths (STH) infect 2 billion people worldwide including significant numbers in South-East Asia (SEA). In Australia, STH are of less concern; however, indigenous communities are endemic for STH, including Strongyloides stercoralis, as well as for serious clinical infections due to other helminths such as Toxocara spp. The zoonotic hookworm Ancylostoma ceylanicum is also present in Australia and SEA, and may contribute to human infections particularly among pet owners. High human immigration rates to Australia from SEA, which is highly endemic for STH Strongyloides and Toxocara, has resulted in a high prevalence of these helminthic infections in immigrant communities, particularly since such individuals are not screened for worm infections upon entry. In this review, we consider the current state of STH infections in Australia and SEA.
Collapse
Affiliation(s)
- Catherine A Gordon
- QIMR Berghofer Medical Research Institute, Molecular Parasitology Laboratory, Queensland 4006, Australia.
| | - Johanna Kurscheid
- Australian National University, Department of Global Health, Research School of Population Health, Australian Capital Territory 2601, Australia.
| | - Malcolm K Jones
- School of Veterinary Science, University of Queensland, Brisbane, QLD 4067, Australia.
| | - Darren J Gray
- Australian National University, Department of Global Health, Research School of Population Health, Australian Capital Territory 2601, Australia.
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Molecular Parasitology Laboratory, Queensland 4006, Australia.
| |
Collapse
|
37
|
Description of a new species, Trichuris ursinus n. sp. (Nematoda: Trichuridae) from Papio ursinus Keer, 1792 from South Africa. INFECTION GENETICS AND EVOLUTION 2017; 51:182-193. [PMID: 28392468 DOI: 10.1016/j.meegid.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
In the present work, we carried out a morphological, biometrical and molecular study of whipworms Trichuris Roederer, 1761 (Nematoda: Trichuridae) parasitizing Papio ursinus Keer 1792 (Chacma baboon). Biometrical and molecular data suggest a new species of Trichuris parasitizing baboons. In addition of main morphological features (spicule, spicule sheath, spicule tube, proximal cloacal tube, distal cloacal tube, vulva, vagina), the mean values of individual variables between Trichuris colobae, Trichuris suis, Trichuris trichiura examined by Student's t tests suggest that T. ursinus n. sp. constitutes a new species. The combined analysis of three markers (cox1, cob and ITS2) revealed a sister relationships between T. colobae and T. ursinus n. sp. Mitochondrial sequences revealed a higher inter-specific similarity between T. ursinus n. sp., T. suis and T. colobae. Phylogenetic hypotheses for both mitochondrial genes strongly supported distinct genetic lineages corresponding to different species of the genus Trichuris associated with certain hosts. Thus, T. suis, T. colobae and T. ursinus n. sp. appeared as a sister group and separated from Trichuris spp. from humans and other species of primates.
Collapse
|
38
|
Sun MM, Liu GH, Ando K, Woo HC, Ma J, Sohn WM, Sugiyama H, Zhu XQ. Complete mitochondrial genomes of Gnathostoma nipponicum and Gnathostoma sp., and their comparison with other Gnathostoma species. INFECTION GENETICS AND EVOLUTION 2016; 48:109-115. [PMID: 28025097 DOI: 10.1016/j.meegid.2016.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 11/17/2022]
Abstract
Gnathostomiasis is a foodborne zoonotic parasitosis caused by Gnathostoma nematodes. It has caused significant public problems worldwide, but its molecular biology is limited. The purpose of this study was to decode the complete mitochondrial (mt) genomes of Gnathostoma nipponicum and Gnathostoma sp., and compare their mt sequences with other Gnathostoma species. The complete mt genome sequences were amplified by long-range PCR and determined by subsequent primer walking. The complete mt genomes of G. nipponicum and Gnathostoma sp. were 14,093bp and 14,391bp, respectively. Both of the two mt genomes contain 12 protein-coding genes (PCGs), 2 ribosomal RNA genes and 22 transfer RNA genes. The gene order and transcription direction are the same as G. spinigerum and G. doloresi. The sequence difference across the entire mt genomes varied from 14.4% to 18.2% between G. nipponicum, Gnathostoma sp., G. spinigerum and G. doloresi of Japan and China isolates. Phylogenetic analyses by Bayesian inference (BI) using concatenated amino acid sequences of 12 PCGs showed that G. nipponicum and Gnathostoma sp. are two distinctive species of Gnathostoma, and G. nipponicum are more closely related to Gnathostoma sp. than to G. spinigerum. The mtDNA datasets provide abundant resources of novel markers, which can be used for the studies of molecular epidemiology and diagnosis of Gnathostoma spp.
Collapse
Affiliation(s)
- Miao-Miao Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| | - Katsuhiko Ando
- Department of Medical Zoology, Mie University School of Medicine, Mie 514-8507, Japan
| | - Ho-Choon Woo
- Department of Veterinary Parasitology, Jeju National University College of Veterinary Medicine, Jeju 690-756, Republic of Korea
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Woon-Mok Sohn
- Department Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| |
Collapse
|
39
|
Nejsum P, Hawash MBF, Betson M, Stothard JR, Gasser RB, Andersen LO. Ascaris phylogeny based on multiple whole mtDNA genomes. INFECTION GENETICS AND EVOLUTION 2016; 48:4-9. [PMID: 27939588 DOI: 10.1016/j.meegid.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Ascaris lumbricoides and A. suum are two parasitic nematodes infecting humans and pigs, respectively. There has been considerable debate as to whether Ascaris in the two hosts should be considered a single or two separate species. Previous studies identified at least three major clusters (A, B and C) of human and pig Ascaris based on partial cox1 sequences. In the present study, we selected major haplotypes from these different clusters to characterize their whole mitochondrial genomes for phylogenetic analysis. We also undertook coalescent simulations to investigate the evolutionary history of the different Ascaris haplotypes. The topology of the phylogenetic tree based on complete mitochondrial genomic sequences was found to be similar to partial cox1 sequencing, but the support at internal nodes was higher in the former. Coalescent simulations suggested the presence of at least two divergence events: the first one occurring early in the Neolithic period which resulted in a differentiated population of Ascaris in pigs (cluster C), the second occurring more recently (~900 generations ago), resulting in clusters A and B which might have been spread worldwide by human activities.
Collapse
Affiliation(s)
- Peter Nejsum
- Department of Clinical Medicine, Health, Aarhus University, Denmark; Department of Veterinary Disease Biology, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Mohamed B F Hawash
- Department of Genetics, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada; Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Martha Betson
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - J Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robin B Gasser
- Department of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Lee O Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
40
|
Sun MM, Ma J, Sugiyama H, Ando K, Li WW, Xu QM, Liu GH, Zhu XQ. The complete mitochondrial genomes of Gnathostoma doloresi from China and Japan. Parasitol Res 2016; 115:4013-20. [PMID: 27301404 DOI: 10.1007/s00436-016-5171-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Abstract
Gnathostoma doloresi is one of the neglected pathogens causing gnathostomiasis. Although this zoonotic parasite leads to significant socioeconomic concerns globally, little is known of its genetics and systematics. In the present study, we sequenced and characterized the complete mitochondrial (mt) genomes of G. doloresi isolates from China and Japan. The lengths of the mt genomes of the G. doloresi China and Japan isolates are 13,809 and 13,812 bp, respectively. Both mt genomes encode 36 genes, including 12 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. The gene order, transcription direction, and genome content are identical with its congener G. spinigerum. Phylogenetic analyses based on concatenated amino acid sequences of 12 PCGs by Bayesian inference (BI) indicated that G. doloresi are closely related to G. spinigerum. Our data provide an invaluable resource for studying the molecular epidemiology, phylogenetics, and population genetics of Gnathostoma spp. and should have implications for further studies of the diagnosis, prevention, and control of gnathostomiasis in humans and animals.
Collapse
Affiliation(s)
- Miao-Miao Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Katsuhiko Ando
- Department of Medical Zoology, Mie University School of Medicine, Mie, 514-8507, Japan
| | - Wen-Wen Li
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Qian-Ming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China.
| | - Xing-Quan Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, China. .,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China.
| |
Collapse
|
41
|
Callejón R, Robles MDR, Panei CJ, Cutillas C. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences. Parasitol Res 2016; 115:2933-45. [PMID: 27083190 DOI: 10.1007/s00436-016-5045-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/07/2016] [Indexed: 11/26/2022]
Abstract
A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.
Collapse
Affiliation(s)
- Rocío Callejón
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Prof. García González 2, Sevilla, 41012, Spain
| | - María Del Rosario Robles
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT-CONICET-La Plata/Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Carlos Javier Panei
- Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Prof. García González 2, Sevilla, 41012, Spain.
| |
Collapse
|
42
|
Hawash MBF, Betson M, Al-Jubury A, Ketzis J, LeeWillingham A, Bertelsen MF, Cooper PJ, Littlewood DTJ, Zhu XQ, Nejsum P. Whipworms in humans and pigs: origins and demography. Parasit Vectors 2016; 9:37. [PMID: 26800683 PMCID: PMC4724142 DOI: 10.1186/s13071-016-1325-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Background Trichuris suis and T. trichiura are two different whipworm species that infect pigs and humans, respectively. T. suis is found in pigs worldwide while T. trichiura is responsible for nearly 460 million infections in people, mainly in areas of poor sanitation in tropical and subtropical areas. The evolutionary relationship and the historical factors responsible for this worldwide distribution are poorly understood. In this study, we aimed to reconstruct the demographic history of Trichuris in humans and pigs, the evolutionary origin of Trichuris in these hosts and factors responsible for parasite dispersal globally. Methods Parts of the mitochondrial nad1 and rrnL genes were sequenced followed by population genetic and phylogenetic analyses. Populations of Trichuris examined were recovered from humans (n = 31), pigs (n = 58) and non-human primates (n = 49) in different countries on different continents, namely Denmark, USA, Uganda, Ecuador, China and St. Kitts (Caribbean). Additional sequences available from GenBank were incorporated into the analyses. Results We found no differentiation between human-derived Trichuris in Uganda and the majority of the Trichuris samples from non-human primates suggesting a common African origin of the parasite, which then was transmitted to Asia and further to South America. On the other hand, there was no differentiation between pig-derived Trichuris from Europe and the New World suggesting dispersal relates to human activities by transporting pigs and their parasites through colonisation and trade. Evidence for recent pig transport from China to Ecuador and from Europe to Uganda was also observed from their parasites. In contrast, there was high genetic differentiation between the pig Trichuris in Denmark and China in concordance with the host genetics. Conclusions We found evidence for an African origin of T. trichiura which were then transmitted with human ancestors to Asia and further to South America. A host shift to pigs may have occurred in Asia from where T. suis seems to have been transmitted globally by a combination of natural host dispersal and anthropogenic factors. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1325-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Department of Veterinary Disease Biology, Faculty of Health Sciences, Copenhagen University, Dyrlaegevej 100, DK-1870, Frederiksberg C, Copenhagen, Denmark. .,Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Martha Betson
- Department of Production and Population Health, Royal Veterinary College, Hatfield, Hertfordshire, UK. .,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK.
| | - Azmi Al-Jubury
- Department of Veterinary Disease Biology, Faculty of Health Sciences, Copenhagen University, Dyrlaegevej 100, DK-1870, Frederiksberg C, Copenhagen, Denmark.
| | - Jennifer Ketzis
- Ross University School of Veterinary Medicine, West Indies, Basseterre, St Kitts and Nevis.
| | - Arve LeeWillingham
- Ross University School of Veterinary Medicine, West Indies, Basseterre, St Kitts and Nevis.
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Copenhagen, Denmark.
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.
| | | | - Xing-Quan Zhu
- Lanzhou Veterinary Research Institute, State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, P R China.
| | - Peter Nejsum
- Department of Veterinary Disease Biology, Faculty of Health Sciences, Copenhagen University, Dyrlaegevej 100, DK-1870, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
43
|
Human Trichuriasis: Whipworm Genetics, Phylogeny, Transmission and Future Research Directions. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0062-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|