1
|
Bani Hani H, Ibrahim S, Esmail M, Waleed S, Gouher S. Dengue Fever Complicated by Pneumonia in Pregnancy: A Case Report. Cureus 2024; 16:e73608. [PMID: 39677171 PMCID: PMC11646315 DOI: 10.7759/cureus.73608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Dengue fever, a mosquito-borne viral disease, was the most prevalent arthropod-borne illness globally and posed a significant public health challenge due to its increasing incidence and potential complications. While most patients recovered within one to two weeks, some cases progressed to severe dengue, requiring hospitalization. This case report described a 39-year-old pregnant woman at 27 weeks gestation who developed severe dengue fever complicated by bacterial pneumonia, leading to ICU admission. She initially presented with fever, tachycardia, and vomiting, and her diagnosis was confirmed by polymerase chain reaction (PCR). Due to worsening respiratory symptoms, she was treated with oxygen and antibiotics, which stabilized her condition for discharge. This case underscored the need for vigilance in managing dengue during pregnancy, as secondary bacterial infections, though uncommon, could complicate treatment. Prompt recognition and early antibiotic intervention in high-risk patients were crucial for improving outcomes.
Collapse
Affiliation(s)
| | - Sara Ibrahim
- Internal Medicine, University Of Sharjah, Sharjah, ARE
| | - Mayar Esmail
- Internal Medicine, University Of Sharjah, Sharjah, ARE
| | - Shamsa Waleed
- Pediatrics, American Hospital Dubai, Dubai, ARE
- Pediatrics, Dubai Health Authority, Dubai, ARE
| | - Saria Gouher
- Internal Medicine, American Hospital Dubai, Dubai, ARE
| |
Collapse
|
2
|
Nejati J, Okati-Aliabad H, Mohammadi M, Akbari M, Moghaddam AA. Knowledge, attitudes, and practices of healthcare professionals regarding dengue fever in high-risk regions of southeastern Iran. BMC MEDICAL EDUCATION 2024; 24:915. [PMID: 39180056 PMCID: PMC11344303 DOI: 10.1186/s12909-024-05923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Dengue fever (DF) is one of the most prevalent arboviral infections worldwide. In Iran, the dengue-positive serological cases as well as the presence of the dengue vector Aedes aegypti have raised health concerns, highlighting the need to enhance the dengue surveillance system. This study aims to assess the knowledge, attitudes, and practices (KAP) of healthcare professionals (HCPs) regarding dengue fever in a large and high-risk region of southeastern Iran. METHODS A total of 492 HCPs were recruited using a multi-stage sampling method from May 2022 to July 2023. Data were collected using a self-administered questionnaire. Data analysis was done using independent t-tests, one-way analysis of variance (ANOVA), one-factor and multi-factor general linear models, and simple and multiple regression models. RESULTS About two-thirds (71%) of the participants did not receive any training on DF. A small percentage of participants were familiar with ovitrap (32.6%) and only 21.7% knew that destroying larval breeding sites could not eliminate the dengue vector. The knowledge of disease symptoms among HCPs was found to be lower in border areas compared to non-border areas (P = 0.018). However, the practice situation in HCPs working in border areas was better than in non-borders (P = 0.003). According to the multiple regression model, the most influential factors associated with knowledge, attitude, and practice were the type of healthcare facility and passing the DF training course. Additionally, education level, work experience, and gender were identified as other factors associated with it, respectively. Significant correlations were found between knowledge and practice (P < 0.001), indicating that higher knowledge led to better practice. Similarly, a positive attitude was significantly linked to better practice (P < 0.001). CONCLUSION Regular, targeted, and continuous training courses are necessary to improve the knowledge level of HCPs, particularly those with lower education levels working in low-level health centers. Utilizing comprehensive dengue KAP studies to evaluate the status and impact of health education programs and identify gaps between knowledge and practice should be a research priority.
Collapse
Affiliation(s)
- Jalil Nejati
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hassan Okati-Aliabad
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Mohammadi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Morteza Akbari
- Department of Biology and Vector Control, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
3
|
Liang Y, Dai X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front Microbiol 2024; 15:1458166. [PMID: 39206366 PMCID: PMC11349664 DOI: 10.3389/fmicb.2024.1458166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Flavivirus pose a continued threat to global health, yet their worldwide burden and trends remain poorly quantified. We aimed to evaluate the global, regional, and national incidence of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Methods Data on the number and rate of incidence for the three common flavivirus infection in 204 countries and territories were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021. The estimated annual percent change (EAPC) was calculated to quantify the temporal trend during 2011-2016, 2016-2019, and 2019-2021, respectively. Results In 2021, an estimated 59,220,428 individuals were infected globally, comprising 58,964,185 cases of dengue, 86,509 cases of yellow fever, and 169,734 cases of Zika virus infection. The age-standardized incidence rate (ASIR) of the three common flavivirus infections increased by an annual average of 5.08% (95% CI 4.12 to 6.05) globally from 2011 to 2016, whereas decreased by an annual average of -8.37% (95% CI -12.46 to -4.08) per year between 2016 to 2019. The ASIR remained stable during 2019-2021, with an average change of 0.69% (95% CI -0.96 to 2.37) per year globally for the three common flavivirus infections. Regionally, the burden of the three common flavivirus infections was primarily concentrated in those regions with middle income, such as South Asia, Southeast Asia, and Tropical Latin America. Additionally, at the country level, there was an inverted "U" relationship between the SDI level and the ASI. Notably, an increase in the average age of infected cases has been observed worldwide, particularly in higher-income regions. Conclusion Flavivirus infections are an expanding public health concern worldwide, with considerable regional and demographic variation in the incidence. Policymakers and healthcare providers must stay vigilant regarding the impact of COVID-19 and other environmental factors on the risk of flavivirus infection and be prepared for potential future outbreaks.
Collapse
Affiliation(s)
- Yuanhao Liang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep 2024; 14:17645. [PMID: 39085250 PMCID: PMC11291903 DOI: 10.1038/s41598-024-67553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Abbasi M, Zaim M, Moosazadeh M, Alizadeh M, Dorosti A, Khayatzadeh S, Nikookar SH, Raeisi A, Nikpoor F, Mirolyaie A, Hokmabad BN, Bazmani A, Kaveh F, Azimi S, Enayati A. Uncovering the knowledge gap: A web-based survey of healthcare providers' understanding and management of dengue fever in East Azerbaijan, Iran. PLoS One 2024; 19:e0305528. [PMID: 38905180 PMCID: PMC11192336 DOI: 10.1371/journal.pone.0305528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/02/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Dengue fever (DF) is increasingly recognized as one of the world's major mosquito-borne diseases and causes significant morbidity and mortality in tropical and subtropical countries. Appropriate and timely diagnosis and risk stratification for severe disease are crucial in the appropriate management of this illness. Healthcare providers (HCPs) play a key role in dengue fever diagnosis, management and prevention. The present study was conducted to determine the knowledge, attitudes and practices (KAP) among HCPs in East Azerbaijan Province, Iran. METHODS A cross-sectional survey among 948 HCPs, using a structured questionnaire, was conducted in East Azerbaijan Province from May to July 2022. Data analysis was undertaken using descriptive methods, the Chi-square test or Fisher's exact test, and logistic regression. A P-value <0.05 was considered for statistical significance. RESULTS Out of the 948 (68.5% female) respondents, 227 were physicians and 721 were health professionals. The knowledge level of DF was found to be largely inadequate in the present study population (80.4%). The physician vs. health professional were a significant factor in differentiating attitude scores. The mean practice score regarding DF prevention and control measures among respondents was 8.40±1.97. CONCLUSION The findings call for urgent continuous education and training courses to increase KAP levels and increased capacity and capability for DF prevention and control. This is of outmost importance for the first point of care of DF patients.
Collapse
Affiliation(s)
- Madineh Abbasi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Zaim
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Moosazadeh
- Faculty of Health, Department of Medical Entomology and Vector Control, Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
- Non-Communicable Disease Institute, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahasti Alizadeh
- Health Management and Safety Promotion Research Institute, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbasali Dorosti
- Department of Anesthesiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Khayatzadeh
- Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hassan Nikookar
- Faculty of Health, Department of Medical Entomology and Vector Control, Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Ahmad Raeisi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Vector Borne Diseases, Communicable Diseases Control, Ministry of Health, Tehran, Iran
| | - Fatemeh Nikpoor
- Department of Vector Borne Diseases, Communicable Diseases Control, Ministry of Health, Tehran, Iran
- Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Mirolyaie
- Department of Vector Borne Diseases, Communicable Diseases Control, Ministry of Health, Tehran, Iran
| | - Behrooz Naghili Hokmabad
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Kaveh
- Department of Vector Borne Diseases, Communicable Diseases Control, Ministry of Health, Tehran, Iran
| | - Somayeh Azimi
- Department of Health Education and Promotion, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Nigussie E, Atlaw D, Negash G, Gezahegn H, Baressa G, Tasew A, Zembaba D. A dengue virus infection in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:297. [PMID: 38448847 PMCID: PMC10918862 DOI: 10.1186/s12879-024-09142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Dengue is caused by a positive-stranded RNA virus called dengue virus, which is spread by Aedes mosquito species. It is a fast-growing acute febrile disease with potentially lethal consequences that is a global public health problem, mostly in tropical and subtropical countries. In Ethiopia, dengue fever is understudied, although the virus is still being transmitted and viral infection rates are rising. This systematic review and meta-analysis was aimed at estimating the pooled prevalence of DENV infection in Ethiopia. METHODS A literature search was done on the PubMed, Hinari and Google Scholar databases to identify studies published before July, 2023. Random effects and fixed effects models were used to estimate the pooled prevalence of all three markers. The Inconsistency Index was used to assess the level of heterogeneity. RESULTS A total of 11 studies conducted on suspected individuals with dengue fever and acutely febrile participants were included in this review. The majority of the studies had a moderate risk of bias and no study had a high risk of bias. A meta-analysis estimated a pooled IgG prevalence of 21% (95% CI: 19-23), a pooled IgM prevalence of 9% (95%CI: 4-13) and a pooled DENV-RNA prevalence of 48% (95% CI: 33-62). There is evidence of possible publication bias in IgG but not in the rest of the markers. CONCLUSION Dengue is prevalent among the dengue fever suspected and febrile population in Ethiopia. Healthcare providers, researchers and policymakers should give more attention to dengue fever.
Collapse
Affiliation(s)
- Eshetu Nigussie
- Department of Medical Laboratory Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia.
| | - Daniel Atlaw
- Department of Biomedical Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia
| | - Getahun Negash
- Department of Medical Laboratory Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia
| | - Habtamu Gezahegn
- Department of Biomedical Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia
| | - Girma Baressa
- Department of Public Health, School of Health Science, Madda Walabu University, Addis Ababa, Ethiopia
| | - Alelign Tasew
- Department of Public Health, School of Health Science, Madda Walabu University, Addis Ababa, Ethiopia
| | - Demisu Zembaba
- Department of Public Health, School of Health Science, Madda Walabu University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Altassan KK, Morin CW, Hess JJ. Modeling the Role of Weather and Pilgrimage Variables on Dengue Fever Incidence in Saudi Arabia. Pathogens 2024; 13:214. [PMID: 38535557 PMCID: PMC10975860 DOI: 10.3390/pathogens13030214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/11/2025] Open
Abstract
The first case of dengue fever (DF) in Saudi Arabia appeared in 1993 but by 2022, DF incidence was 11 per 100,000 people. Climatologic and population factors, such as the annual Hajj, likely contribute to DF's epidemiology in Saudi Arabia. In this study, we assess the impact of these variables on the DF burden of disease in Saudi Arabia and we attempt to create robust DF predictive models. Using 10 years of DF, weather, and pilgrimage data, we conducted a bivariate analysis investigating the role of weather and pilgrimage variables on DF incidence. We also compared the abilities of three different predictive models. Amongst weather variables, temperature and humidity had the strongest associations with DF incidence, while rainfall showed little to no significant relationship. Pilgrimage variables did not have strong associations with DF incidence. The random forest model had the highest predictive ability (R2 = 0.62) when previous DF data were withheld, and the ARIMA model was the best (R2 = 0.78) when previous DF data were incorporated. We found that a nonlinear machine-learning model incorporating temperature and humidity variables had the best prediction accuracy for DF, regardless of the availability of previous DF data. This finding can inform DF early warning systems and preparedness in Saudi Arabia.
Collapse
Affiliation(s)
- Kholood K. Altassan
- Department of Family and Community Medicine, King Saud University, Riyadh 11421, Saudi Arabia
| | - Cory W. Morin
- Department of Environmental and Occupational Health, University of Washington, Seattle, WA 98195, USA;
| | - Jeremy J. Hess
- Department of Emergency Medicine, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
8
|
Dengue and zika seropositivity, burden, endemicity, and cocirculation antibodies in Nigeria. Ann Med 2023; 55:652-662. [PMID: 37074313 PMCID: PMC9970210 DOI: 10.1080/07853890.2023.2175903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Mosquito-borne infections are of global health concern because of their rapid spread and upsurge, which creates a risk for coinfections. DENV and ZIKV are transmitted by Aedes aegypti and A. albopictus and are prevalent in Nigeria and neighbouring countries. However, their seroprevalence, burden, hidden endemicity and possible cocirculation are poorly understood in Nigeria. METHODS We conducted a cross-sectional study of 871 participants from three regions of Nigeria. All serum samples were analysed using malaria RDT and the immunoblot molecular diagnostic assay recomLine Tropical Fever for the presence of arboviral antibody serological marker IgG (Mikrogen Diagnostik, Neuried, Germany) with DENV and ZIKV Nonstructural protein 1 (NS 1), DENV and ZIKV Equad (variant of the envelope protein with designated mutations to increase specificity), according to the manufacturer's instructions. RESULTS The overall IgG antibody seropositivity against DENV-flavivirus was 44.7% (389/871); 95% CI (41.41-47.99), while ZIKV-flavivirus was 19.2% (167/871); 95% CI (0.16-0.21), and DENV-ZIKV-flavivirus cocirculation antibody seropositivity was 6.2%5 (54/871); 95% CI (0.6-0.7) in the three study regions of Nigeria. The study cohort presented similar clinical signs and symptoms of flaviviruses (DENV and ZIKV) in all three study regions. CONCLUSION This study highlighted an unexpectedly high antibody seropositivity, burden, hidden endemicity, and regional spread of mono- and co-circulating flaviviruses (DENV and ZIKV) in Nigeria.Key messagesDengue flavivirus sero-cross-reactivity drives antibody-dependent enhancement of ZIKV infection.Both viruses share common hosts (humans) and vectors (primarily Aedes aegypti), and are thus influenced by similar biological, ecological, and economic factors, resulting in epidemiological synergy.Additionally, the actual burden in epidemic and interepidemic periods is grossly or chronically unknown and underreported. Despite this trend and the potential public health threat, there are no reliable data, and little is known about these arboviral co-circulation infections.
Collapse
|
9
|
Malavige GN, Sjö P, Singh K, Piedagnel JM, Mowbray C, Estani S, Lim SCL, Siquierra AM, Ogg GS, Fraisse L, Ribeiro I. Facing the escalating burden of dengue: Challenges and perspectives. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002598. [PMID: 38100392 PMCID: PMC10723676 DOI: 10.1371/journal.pgph.0002598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Dengue is the most rapidly emerging mosquito-borne infection and, due to climate change and unplanned urbanization, it is predicted that the global burden of dengue will rise further as the infection spreads to new geographical locations. Dengue-endemic countries are often unable to cope with such increases, with health care facilities becoming overwhelmed during each dengue season. Furthermore, although dengue has been predominantly a childhood illness in the past, it currently mostly affects adults in many countries, with higher incidence of severe disease and mortality rates in pregnant women and in those with comorbidities. As there is currently no specific treatment for dengue and no early biomarker to identify those who will progress to develop vascular leakage, all individuals with dengue are closely monitored in case they need fluid management. Furthermore, diagnosing patients with acute dengue is challenging due to the similarity of clinical symptoms during early illness and poor sensitivity and specificity of point-of-care diagnostic tests. Novel vector control methods, such as the release of Wolbachia-infected mosquitoes, have shown promising results by reducing vector density and dengue incidence in clinical trial settings. A new dengue vaccine, TAK-003, had an efficacy of 61.2% against virologically confirmed dengue, 84.1% efficacy against hospitalizations and a 70% efficacy against development of dengue haemorrhagic fever (DHF) at 54 months. While vaccines and mosquito control methods are welcome, they alone are unlikely to fully reduce the burden of dengue, and a treatment for dengue is therefore essential. Several novel antiviral drugs are currently being evaluated along with drugs that inhibit host mediators, such as mast cell products. Although viral proteins such as NS1 contribute to the vascular leak observed in severe dengue, the host immune response to the viral infection also plays a significant role in progression to severe disease. There is an urgent need to discover safe and effective treatments for dengue to prevent disease progression.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Kavita Singh
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Sergio Estani
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | | | | | - Graham S. Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
10
|
Kayange N, Hau DK, Pain K, Mshana SE, Peck R, Gehring S, Groendahl B, Koliopoulos P, Revocatus B, Msaki EB, Malande O. Seroprevalence of Dengue and Chikungunya Virus Infections in Children Living in Sub-Saharan Africa: Systematic Review and Meta-Analysis. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1662. [PMID: 37892325 PMCID: PMC10605353 DOI: 10.3390/children10101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Dengue and chikungunya viruses are frequent causes of malarial-like febrile illness in children. The rapid increase in virus transmission by mosquitoes is a global health concern. This is the first systematic review and meta-analysis of the childhood prevalence of dengue and chikungunya in Sub-Saharan Africa (SSA). A comprehensive search of the MEDLINE (Ovid), Embase (Ovid), and Cochrane Library (Wiley) databases was conducted on 28 June 2019, and updated on 12 February 2022. The search strategy was designed to retrieve all articles pertaining to arboviruses in SSA children using both controlled vocabulary and keywords. The pooled (weighted) proportion of dengue and chikungunya was estimated using a random effect model. The overall pooled prevalence of dengue and chikungunya in SSA children was estimated to be 16% and 7%, respectively. Prevalence was slightly lower during the period 2010-2020 compared to 2000-2009. The study design varied depending on the healthcare facility reporting the disease outbreak. Importantly, laboratory methods used to detect arbovirus infections differed. The present review documents the prevalence of dengue and chikungunya in pediatric patients throughout SSA. The results provide unprecedented insight into the transmission of dengue and chikungunya viruses among these children and highlight the need for enhanced surveillance and controlled methodology.
Collapse
Affiliation(s)
- Neema Kayange
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Duncan K Hau
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Kevin Pain
- Samuel J. Wood Library and C.V. Starr Biomedical Information Center, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA;
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Robert Peck
- Department of Pediatrics, Bugando Medical Centre, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA;
- Center for Global Health, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stephan Gehring
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Britta Groendahl
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Philip Koliopoulos
- Department of Pediatrics, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.G.); (B.G.); (P.K.)
| | - Baraka Revocatus
- Department of Data and Statistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Evarist B Msaki
- Department of Epidemiology and Biostatistics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania;
| | - Ombeva Malande
- East Africa Centre for Vaccines and Immunization (ECAVI), Kampala P.O. Box 3040, Uganda;
- Department of Public Health Phamarmacy, Sefako Makgatho Health Sciences University, Pretoria P.O. Box 60, South Africa
- Department of Paediatrics & Child Health, Makerere University, Kampala P.O. Box 7072, Uganda
- Department of Public Health, UNICAF University, Lusaka P.O. Box 20842, Zambia
| |
Collapse
|
11
|
Gyasi P, Bright Yakass M, Quaye O. Analysis of dengue fever disease in West Africa. Exp Biol Med (Maywood) 2023; 248:1850-1863. [PMID: 37452719 PMCID: PMC10792414 DOI: 10.1177/15353702231181356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Dengue fever disease (DFD) which is caused by four antigenically distinct dengue viruses (DENV) presents a global health threat, with tropical and subtropical regions at a greater risk. The paucity of epidemiological data on dengue in West African subregion endangers efforts geared toward disease control and prevention. A systematic search of DFD prevalence, incidence, and DENV-infected Aedes in West Africa was conducted in PubMed, Scopus, African Index Medicus, and Google Scholar in line with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines. A total of 58 human prevalence studies involving 35,748 people from 8 countries were identified. Two incidence and six DENV-infected studies were also reviewed. Nigeria and Burkina Faso contributed the majority of the prevalence studies which spanned between 1968 and 2018, with a considerable variation in coverage among the countries reviewed in this study. An average prevalence of 20.97% was observed across both general prevalence and acute DENV infection study categories, ranging between 0.02% and 93%. The majority of these studies were conducted in acute febrile patients with a prevalence range of 0.02-93% while 19% (n = 11) of all studies were general population-based studies and reported a prevalence range of 17.2-75.8%. DENV-infected Aedes aegypti were reported in four out of the five countries with published reports; with DENV-2 found circulating in Cape Verde, Senegal, and Burkina Faso while DENV-3 and DENV-4 were also reported in Senegal and Cape Verde, respectively. High prevalence of DFD in human populations and the occurrence of DENV-infected A. aegypti have been reported in West Africa, even though weaknesses in study design were identified. Epidemiological data from most countries and population in the subregion were scarce or non-existent. This study highlights the epidemic risk of DFD in West Africa, and the need for research and surveillance to be prioritized to fill the data gap required to enact effective control measures.
Collapse
Affiliation(s)
- Prince Gyasi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| | - Michael Bright Yakass
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| |
Collapse
|
12
|
Padonou GG, Konkon AK, Salako AS, Zoungbédji DM, Ossè R, Sovi A, Azondekon R, Sidick A, Ahouandjinou JM, Adoha CJ, Sominahouin AA, Tokponnon FT, Akinro B, Sina H, Baba-Moussa L, Akogbéto MC. Distribution and Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Benin, West Africa. Trop Med Infect Dis 2023; 8:439. [PMID: 37755900 PMCID: PMC10535150 DOI: 10.3390/tropicalmed8090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Updated information on the distribution and abundance of Aedes aegypti and Aedes albopictus is crucial to prepare African countries, such as Benin, for possible arboviral disease outbreaks. This study aims to evaluate the geographical distribution, abundance and biting behaviour of these two vectors in Benin. Three sampling techniques were used in this study. The collection of Aedes spp. adults were made through human landing catch (HLC), immatures were captured with the use of ovitraps, and a dipping technique was used for the collection of Aedes spp. in 23 communes located along the North-South and East-West transect of Benin. Adult Aedes mosquitoes were collected indoors and outdoors using HLC. Mosquito eggs, larvae and pupae were collected from containers and ovitraps. The adult mosquitoes were morphologically identified, then confirmed using a polymerase chain reaction (PCR). Overall, 12,424 adult specimens of Aedes spp. were collected, out of which 76.53% (n = 9508) and 19.32% (n = 2400) were morphologically identified as Ae. aegypti and Ae. albopictus, respectively. Geographically, Ae. aegypti was found across the North-South transect unlike Ae. albopictus, which was only encountered in the southern part of the country, with a great preponderance in Avrankou. Furthermore, an exophagic behaviour was observed in both vectors. This updated distribution of Aedes mosquito species in Benin will help to accurately identify areas that are at risk of arboviral diseases and better plan for future vector control interventions.
Collapse
Affiliation(s)
- Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Albert Sourou Salako
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- École de Gestion et d’Exploitation des Systèmes d’Élevage, Université Nationale d’Agriculture de Porto-Novo, Porto-Novo 01 BP 55, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Faculty of Agronomy, University of Parakou, Parakou BP 123, Benin
- Faculty of Infectious and Tropical Diseases, Disease Control Department, The London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Roseric Azondekon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Juvénal Minassou Ahouandjinou
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Constantin Jesukèdè Adoha
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - André Aimé Sominahouin
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Filémon Tatchémè Tokponnon
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05 BP 1604, Benin; (H.S.); (L.B.-M.)
| | - Martin Codjo Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou 06 BP 2604, Benin; (A.K.K.); (A.S.S.); (D.M.Z.); (R.O.); (R.A.); (A.S.); (J.M.A.); (C.J.A.); (A.A.S.); (F.T.T.); (B.A.); (M.C.A.)
| |
Collapse
|
13
|
Montenegro-Quiñonez CA, Louis VR, Horstick O, Velayudhan R, Dambach P, Runge-Ranzinger S. Interventions against Aedes/dengue at the household level: a systematic review and meta-analysis. EBioMedicine 2023; 93:104660. [PMID: 37352828 PMCID: PMC10333437 DOI: 10.1016/j.ebiom.2023.104660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Because the evidence for the role of structural housing and combinations of interventions (domestic or peri-domestic) against Aedes mosquitoes or dengue is still lacking, this systematic review and meta-analysis aimed to analyse and synthesize research focusing on the household as the unit of allocation. METHODS We searched MEDLINE, LILACS, and Web of Science databases until February 2023 using three general keyword categories: (1) "Aedes" or "dengue"; (2) structural housing interventions including "house", "water", or "drainage"; and (3) vector control interventions of potential relevance and their combinations. We performed a qualitative content analysis and a meta-analysis for 13 entries on dengue seroconversion data. FINDINGS 14,272 articles were screened by titles, 615 by abstracts, 79 by full-text. 61 were selected. Satisfactory data quality allowed for detailed content analysis. Interventions at the household level against the immature mosquito stages (21 studies, 34%) showed positive or mixed results in entomological and epidemiological outcomes (86% and 75% respectively). Combined interventions against immature and adult stages (11 studies, 18%) performed similarly (91% and 67%) while those against the adult mosquitoes (29 studies, 48%) performed less well (79%, 22%). A meta-analysis on seroconversion outcomes showed a not-statistically significant reduction for interventions (log odds-ratio: -0.18 [-0.51, 0.14 95% CI]). INTERPRETATION No basic research on housing structure or modification was eligible for this systematic review but many interventions with clear impact on vector indices and, to a lesser extent, on dengue were described. The small and not-statistically significant effect size of the meta-analysis highlights the difficulty of proving effectiveness against this highly-clustered disease and of overcoming practical implementation obstacles (e.g. efficacy loss, compliance). The long-term success of interventions depends on suitability, community commitment and official support and promotion. The choice of a specific vector control package needs to take all these context-specific aspects into consideration. FUNDING This work was funded by a grant from the World Health Organization (2021/1121668-0, PO 202678425, NTD/VVE).
Collapse
Affiliation(s)
- Carlos Alberto Montenegro-Quiñonez
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany; Instituto de Investigaciones, Centro Universitario de Zacapa, Universidad de San Carlos de Guatemala, Guatemala.
| | - Valérie R Louis
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany.
| | - Olaf Horstick
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany.
| | - Raman Velayudhan
- Department of Control of Neglected Tropical Diseases (NTD), World Health Organization, Switzerland.
| | - Peter Dambach
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany.
| | - Silvia Runge-Ranzinger
- Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
14
|
Singh S, Alallah J, Amrit A, Maheshwari A, Boppana S. Neurological Manifestations of Perinatal Dengue. NEWBORN (CLARKSVILLE, MD.) 2023; 2:158-172. [PMID: 37559696 PMCID: PMC10411360 DOI: 10.5005/jp-journals-11002-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Dengue viruses (DENVs) are single-stranded RNA viruses belonging to the family Flaviviridae. There are four distinct antigenically related serotypes, DENVs types 1, 2, 3, and 4. These are all mosquito-borne human pathogens. Congenital dengue disease occurs when there is mother-to-fetus transmission of the virus and should be suspected in endemic regions in neonates presenting with fever, maculopapular rash, and thrombocytopenia. Although most of the infected infants remain asymptomatic, some can develop clinical manifestations such as sepsis-like illness, gastric bleeding, circulatory failure, and death. Neurological manifestations include intracerebral hemorrhages, neurological malformations, and acute focal/disseminated encephalitis/encephalomyelitis. Dengue NS1Ag, a highly conserved glycoprotein, can help the detection of cases in the viremic stage. We do not have proven specific therapies yet; management is largely supportive and is focused on close monitoring and maintaining adequate intravascular volume.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Jubara Alallah
- Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Astha Amrit
- Department of Neonatology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Akhil Maheshwari
- Department of Pediatrics, Division of Neonatal Medicine, Louisiana State University – Shreveport, Shreveport, Louisiana; Global Newborn Society, Baltimore, Maryland, United States of America
| | - Suresh Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
15
|
Takian A, Mousavi A, McKee M, Yazdi-Feyzabadi V, Labonté R, Tangcharoensathien V, Brugha R, Bradley E, Gostin L, Engebretsen E, Eyal N, Friel S, Rodwin VG, Norheim OF, Hajizadeh M, Ikegami N, Binagwaho A, Kickbusch I, Aryankhesal A, Haghdoost AA. COP27: The Prospects and Challenges for the Middle East and North Africa (MENA). Int J Health Policy Manag 2022; 11:2776-2779. [PMID: 37579348 PMCID: PMC10105166 DOI: 10.34172/ijhpm.2022.7800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 08/16/2023] Open
Abstract
In line with the global trend, the Middle East and North Africa (MENA) region has been growing vulnerable to the direct and indirect health effects of climate change including death tolls due to climatological disasters and diseases sensitive to climate change since the industrial revolution. Regarding the limited capacity of MENA countries to adapt and respond to these effects, and also after relative failures of the previous negotiation in Glasgow, in the upcoming COP27 in Egypt, the heads of the region's parties are determined to take advantage of the opportunity to host MENA to mitigate and prevent the worst effects of climate change. This would be achieved through mobilizing international partners to support climate resilience, a major economic transformation, and put health policy and management in a strategic position to contribute to thinking and action on these pressing matters, at least to avoid or minimize the future adverse consequences.
Collapse
Affiliation(s)
- Amirhossein Takian
- Department of Global Health & Public Policy, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department Health Management, Policy & Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Health Equity Research Center (HERC), Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Mousavi
- Health Management and Economics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Martin McKee
- Centre for Global Chronic Conditions, London School of Hygiene and Tropical Medicine, London, UK
| | - Vahid Yazdi-Feyzabadi
- Health Services Management Research Center, Institute for Futures Studies in Health Kerman University of Medical Sciences, Kerman, Iran
| | - Ronald Labonté
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Ruairí Brugha
- Department of Public Health and Epidemiology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Lawrence Gostin
- O’Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC, USA
| | | | - Nir Eyal
- School of Public Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Center for Population-Level Bioethics, Rutgers University, New Brunswick, NJ, USA
| | - Sharon Friel
- Menzies Centre for Health Governance, The Australian National University, Canberra, ACT, Australia
| | - Victor G. Rodwin
- Wagner School of Public Service, New York University, New York City, NY, USA
| | - Ole F. Norheim
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Mohammad Hajizadeh
- School of Health Administration, Dalhousie University, Halifax, NS, Canada
| | | | | | - Ilona Kickbusch
- Graduate Institute for International and Development Studies, Geneva, Switzerland
| | | | - Ali-Akbar Haghdoost
- Research Centre for Modelling in Health, Institute for Future Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Shrestha DB, Budhathoki P, Gurung B, Subedi S, Aryal S, Basukala A, Aryal B, Adhikari A, Poudel A, Yadav GK, Khoury M, Rayamajhee B, Shrestha LB. Epidemiology of dengue in SAARC territory: a systematic review and meta-analysis. Parasit Vectors 2022; 15:389. [PMID: 36280877 PMCID: PMC9594905 DOI: 10.1186/s13071-022-05409-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Dengue is one of the common arboviral infections and is a public health problem in South East Asia. The aim of this systematic review and meta-analysis was to evaluate the prevalence and distribution of dengue in SAARC (South Asian Association for Regional Cooperation) countries. METHODS The PubMed, PubMed Central, Embase and Scopus databases were searched for relevant studies. Statistical analysis on data extracted from the selected studied was conducted using the Comprehensive Meta-Analysis Software (CMA) version 3 software package. Proportions were used to estimate the outcome with a 95% confidence interval (CI). RESULTS Across all studies, among cases of suspected dengue, 30.7% were confirmed dengue cases (proportion: 0.307, 95% CI: 0.277-0.339). The seroprevalence of dengue immunoglobulin (Ig)G, IgM or both (IgM and IgG) antibodies and dengue NS1 antigen was 34.6, 34.2, 29.0 and 24.1%, respectively. Among the different strains of dengue, dengue virus (DENV) strains DENV-1, DENV-2, DENV-3 and DENV-4 accounted for 21.8, 41.2, 14.7 and 6.3% of cases, respectively. The prevalence of dengue fever, dengue hemorrhagic fever and dengue shock syndrome was 80.5, 18.2 and 1.5%, respectively. Fever was a commonly reported symptom, and thrombocytopenia was present in 44.7% of cases. Mortality was reported in 1.9% of dengue cases. CONCLUSIONS Dengue is a common health problem in South East Asia with high seroprevalence. DENV-2 was found to be the most common strain causing infection, and most dengue cases were dengue fever. In addition, thrombocytopenia was reported in almost half of the dengue cases.
Collapse
Affiliation(s)
| | | | | | | | | | - Anisha Basukala
- Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Barun Aryal
- Department of Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Anurag Adhikari
- Department of Emergency Medicine, Nepal National Hospital, Kathmandu, Nepal
| | - Ayusha Poudel
- Department of Emergency Medicine, Alka Hospital, Kathmandu, Nepal
| | | | - Mtanis Khoury
- Department of Internal Medicine, Mount Sinai Hospital, Chicago, IL USA
| | - Binod Rayamajhee
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur, Nepal
| | - Lok Bahadur Shrestha
- Department of Microbiology & Infectious Diseases, B. P. Koirala Institute of Health Sciences, Dharan, 56700 Nepal
- School of Medical Sciences and the Kirby Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
18
|
Mashlawi AM, Al-Nazawi AM, Noureldin EM, Alqahtani H, Mahyoub JA, Saingamsook J, Debboun M, Kaddumukasa M, Al-Mekhlafi HM, Walton C. Molecular analysis of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti populations from Saudi Arabia. PARASITES & VECTORS 2022; 15:375. [PMID: 36261845 PMCID: PMC9583590 DOI: 10.1186/s13071-022-05525-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022]
Abstract
Background The Aedes aegypti mosquito is the primary vector for dengue, chikungunya, yellow fever and Zika viruses worldwide. The first record of Ae. aegypti in southwestern Saudi Arabia was in 1956. However, the first outbreak and cases of dengue fever were reported in 1994, and cases have increased in recent years. Vector control for Ae. aegypti mainly uses pyrethroid insecticides in outdoor and indoor space spraying. The constant use of pyrethroids has exerted intense selection pressure for developing target-site mutations in the voltage-gated sodium channel (vgsc) gene in Ae. Aegypti against pyrethroids—mutations that have led to knockdown resistance (kdr). Methods Aedes aegypti field populations from five regions (Jazan, Sahil, Makkah, Jeddah and Madinah) of southwestern Saudi Arabia were genotyped for known kdr mutations in domains IIS6 and IIIS6 of the vgsc gene using polymerase chain reaction (PCR) amplification and sequencing. We estimated the frequency of kdr mutations and genotypes from Saudi Arabia as well as from other countries, Thailand, Myanmar (Southeast Asia) and Uganda (East Africa). We constructed haplotype networks to infer the evolutionary relationships of these gene regions. Results The three known kdr mutations, S989P, V1016G (IIS6) and F1534C (IIIS6), were detected in all five regions of Saudi Arabia. Interestingly, the triple homozygous wild genotype was reported for the first time in two individuals from the highlands of the Jazan region and one from the Al-Quoz, Sahil region. Overall, nine genotypes comprising four haplotypes were observed in southwestern Saudi Arabia. The median-joining haplotype networks of eight populations from Saudi Arabia, Southeast Asia and East Africa for both the IIS6 and IIIS6 domains revealed that haplotype diversity was highest in Uganda and in the Jazan and Sahil regions of Saudi Arabia, whereas haplotype diversity was low in the Jeddah, Makkah and Madinah regions. Median-joining haplotype networks of both domains indicated selection acting on the kdr-mutation containing haplotypes in Saudi Arabia. Conclusions The presence of wild type haplotypes without any of the three kdr mutations, i.e. that are fully susceptible, in Saudi Arabia indicates that further consideration should be given to insecticide resistance management strategies that could restore pyrethroid sensitivity to the populations of Ae. aegypti in Saudi Arabia as part of an integrative vector control strategy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05525-y.
Collapse
|
19
|
Mostafavi E, Ghasemian A, Abdinasir A, Nematollahi Mahani SA, Rawaf S, Salehi Vaziri M, Gouya MM, Minh Nhu Nguyen T, Al Awaidy S, Al Ariqi L, Islam MM, Abu Baker Abd Farag E, Obtel M, Omondi Mala P, Matar GM, Asghar RJ, Barakat A, Sahak MN, Abdulmonem Mansouri M, Swaka A. Emerging and Re-emerging Infectious Diseases in the WHO Eastern Mediterranean Region, 2001-2018. Int J Health Policy Manag 2022; 11:1286-1300. [PMID: 33904695 PMCID: PMC9808364 DOI: 10.34172/ijhpm.2021.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Countries in the World Health Organization (WHO) Eastern Mediterranean Region (EMR) are predisposed to highly contagious, severe and fatal, emerging infectious diseases (EIDs), and re-emerging infectious diseases (RIDs). This paper reviews the epidemiological situation of EIDs and RIDs of global concern in the EMR between 2001 and 2018. METHODS To do a narrative review, a complete list of studies in the field was we prepared following a systematic search approach. Studies that were purposively reviewed were identified to summarize the epidemiological situation of each targeted disease. A comprehensive search of all published studies on EIDs and RIDs between 2001 and 2018 was carried out through search engines including Medline, Web of Science, Scopus, Google Scholar, and ScienceDirect. RESULTS Leishmaniasis, hepatitis A virus (HAV) and hepatitis E virus (HEV) are reported from all countries in the region. Chikungunya, Crimean Congo hemorrhagic fever (CCHF), dengue fever, and H5N1 have been increasing in number, frequency, and expanding in their geographic distribution. Middle East respiratory syndrome (MERS), which was reported in this region in 2012 is still a public health concern. There are challenges to control cholera, diphtheria, leishmaniasis, measles, and poliomyelitis in some of the countries. Moreover, Alkhurma hemorrhagic fever (AHF), and Rift Valley fever (RVF) are limited to some countries in the region. Also, there is little information about the real situation of the plague, Q fever, and tularemia. CONCLUSION EIDs and RIDs are prevalent in most countries in the region and could further spread within the region. It is crucial to improve regional capacities and capabilities in preventing and responding to disease outbreaks with adequate resources and expertise.
Collapse
Affiliation(s)
- Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolmajid Ghasemian
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abubakar Abdinasir
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Seyed Alireza Nematollahi Mahani
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Salman Rawaf
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Mostafa Salehi Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Research Centre for Emerging and Re-emerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdi Gouya
- Centre for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Tran Minh Nhu Nguyen
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | | | - Lubna Al Ariqi
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Md. Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | | | - Majdouline Obtel
- Laboratory of Community Medicine, Preventive Medicine and Hygiene, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Laboratory of Epidemiology, Biostatistics and Clinical Research, Public Health Department, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Peter Omondi Mala
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology and Microbiology Center for Infectious Diseases Research, American University of Beirut & Medical Center, Beirut, Lebanon
| | - Rana Jawad Asghar
- University of Nebraska Medical Center, Omaha, NE, USA
- Global Health Strategists & Implementers (GHSI), Islamabad, Pakistan
| | - Amal Barakat
- Infectious Hazards Management, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt
| | - Mohammad Nadir Sahak
- Infectious Hazard Management Department, World Health Organization, Kabul, Afghanistan
| | - Mariam Abdulmonem Mansouri
- Communicable Diseases Control Department, Public Health Directorate Unit, Ministry of Health, Kuwait City, Kuwait
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Alexandra Swaka
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
20
|
Fang Y, Khater EIM, Xue JB, Ghallab EHS, Li YY, Jiang TG, Li SZ. Epidemiology of Mosquito-Borne Viruses in Egypt: A Systematic Review. Viruses 2022; 14:v14071577. [PMID: 35891557 PMCID: PMC9322113 DOI: 10.3390/v14071577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
There are at least five common mosquito-borne viruses (MBVs) recorded in Egypt, including dengue virus (DENV), Rift Valley fever virus (RVFV), West Nile virus (WNV), Chikungunya virus, and Sindbis virus. Unexpected outbreaks caused by MBVs reflect the deficiencies of the MBV surveillance system in Egypt. This systematic review characterized the epidemiology of MBV prevalence in Egypt. Human, animal, and vector prevalence studies on MBVs in Egypt were retrieved from Web of Science, PubMed, and Bing Scholar, and 33 eligible studies were included for further analyses. The monophyletic characterization of the RVFV and WNV strains found in Egypt, which spans about half a century, suggests that both RVFV and WNV are widely transmitted in this nation. Moreover, the seropositive rates of DENV and WNV in hosts were on the rise in recent years, and spillover events of DENV and WNV to other countries from Egypt have been recorded. The common drawback for surveillance of MBVs in Egypt is the lack of seroprevalence studies on MBVs, especially in this century. It is necessary to evaluate endemic transmission risk, establish an early warning system for MBVs, and develop a sound joint system for medical care and public health for managing MBVs in Egypt.
Collapse
Affiliation(s)
- Yuan Fang
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Emad I. M. Khater
- Department of Entomology, Faculty of Science, Ain Shams University, Abbasiah, Cairo 11566, Egypt; (E.I.M.K.); (E.H.S.G.)
| | - Jing-Bo Xue
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Enas H. S. Ghallab
- Department of Entomology, Faculty of Science, Ain Shams University, Abbasiah, Cairo 11566, Egypt; (E.I.M.K.); (E.H.S.G.)
| | - Yuan-Yuan Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
| | - Tian-Ge Jiang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Shi-Zhu Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Correspondence:
| |
Collapse
|
21
|
Abd El-Wahab EW, Elfiky KS, Ghanem MA, Shatat HZ. Assessment of dengue virus threat to blood safety and community health: A single center study in northern Egypt. J Virus Erad 2022; 8:100077. [PMID: 35795869 PMCID: PMC9251716 DOI: 10.1016/j.jve.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The risk of transfusion transmitted dengue (DENV) is increasingly recognized and poses a risk to blood safety as well as spreading into non-immune communities. OBJECTIVES To determine dengue serological profile, environmental risk, knowledge, and preventive measures among blood donors in a national blood bank in northern Egypt. METHODS A total of 500 blood donors were enrolled into this study between June and September 2018. Socio-demographic and medical data were collected using a predesigned questionnaire. Blood samples were screened for anti-DENV IgM, anti-DENV IgG and non-structural protein 1 antigen (DENV-NS1 antigen). RESULTS History of past dengue exposure was identified in 10.2% of blood donors. No samples (0.0%) tested positive for anti-DENV IgG, IgM or NS1 antigen. At the time of blood donation, no individuals had any symptoms suggestive of a dengue-related illness. Dengue exposure strongly correlated with travel to the Kingdom of Saudi Arabia (KSA), Sudan and the El-Quseir outbreak area in Egypt. Knowledge of dengue and prevention methods was found to be substantially deficient, and the relatively higher level of knowledge among exposed donors did not translate into appropriate preventative measures. CONCLUSIONS Our risk assessment shows the impact of travel on DENV exposure and highlights its potential threat to disease spread in Egypt. Dengue awareness programs are urgently needed for effective prevention of transmission.
Collapse
Affiliation(s)
- Ekram W. Abd El-Wahab
- Tropical Health Department, High Institute of Public Health, Alexandria University, 21561, Alexandria, Egypt
| | - Karima S.R. Elfiky
- Fellow of Tropical Health Department, High Institute of Public Health, Alexandria University, 21561, Alexandria, Egypt
- Specialist at Kafr El-Dawar Public Hospital Blood Bank, Behira, Egypt
| | | | - Hanan Z. Shatat
- Tropical Health Department, High Institute of Public Health, Alexandria University, 21561, Alexandria, Egypt
| |
Collapse
|
22
|
Diallo D, Diouf B, Gaye A, NDiaye EH, Sene NM, Dia I, Diallo M. Dengue vectors in Africa: A review. Heliyon 2022; 8:e09459. [PMID: 35620619 PMCID: PMC9126922 DOI: 10.1016/j.heliyon.2022.e09459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Dengue fever is a mosquito-borne-disease of growing public health importance in Africa. The continuous increase of number and frequency of outbreaks of dengue fever, especially in urban area in Africa underline the need to review the current data available on vectors involved in dengue virus transmission in Africa. Here, we summarized the available data on vectors involved in the transmission of dengue virus in the sylvatic and urban environments, vertical transmission, vector competence studies, and vector control strategies used in Africa. The virus was isolated mainly from Aedes furcifer, Ae. luteocephalus, and Ae. taylori in the sylvatic environment and from Ae. aegypti and Ae. albopictus in the urban areas. Prospective and urgently needed studies on vectors biology, behavior, and alternative control strategies are suggested.
Collapse
Affiliation(s)
- Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Babacar Diouf
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - El Hadji NDiaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ndeye Marie Sene
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| |
Collapse
|
23
|
Uncovering the Burden of Dengue in Africa: Considerations on Magnitude, Misdiagnosis, and Ancestry. Viruses 2022; 14:v14020233. [PMID: 35215827 PMCID: PMC8877195 DOI: 10.3390/v14020233] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Dengue is a re-emerging neglected disease of major public health importance. This review highlights important considerations for dengue disease in Africa, including epidemiology and underestimation of disease burden in African countries, issues with malaria misdiagnosis and co-infections, and potential evidence of genetic protection from severe dengue disease in populations of African descent. The findings indicate that dengue virus prevalence in African countries and populations may be more widespread than reported data suggests, and that the Aedes mosquito vectors appear to be increasing in dissemination and number. Changes in climate, population, and plastic pollution are expected to worsen the dengue situation in Africa. Dengue misdiagnosis is also a problem in Africa, especially due to the typical non-specific clinical presentation of dengue leading to misdiagnosis as malaria. Finally, research suggests that a protective genetic component against severe dengue exists in African descent populations, but further studies should be conducted to strengthen this association in various populations, taking into consideration socioeconomic factors that may contribute to these findings. The main takeaway is that Africa should not be overlooked when it comes to dengue, and more attention and resources should be devoted to this disease in Africa.
Collapse
|
24
|
Vasmehjani AA, Rezaei F, Farahmand M, Mokhtari-Azad T, Yaghoobi-Ershadi MR, Keshavarz M, Baseri HR, Zaim M, Iranpour M, Turki H, Esmaeilpour-Bandboni M. Epidemiological Evidence of Mosquito-Borne Viruses among Persons and Vectors in Iran: A Study from North to South. Virol Sin 2022; 37:149-152. [PMID: 35234614 PMCID: PMC8922425 DOI: 10.1016/j.virs.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/09/2021] [Indexed: 11/07/2022] Open
Abstract
The overall seroprevalence of DENV, WNV and CHIKV in Iran were 5.9%, 18.8% and 1.8% between 2017 and 2018. No proof of viral RNAs was presence in vectors. Gilan and Hormozgan were high risk regions and the elderlies were at higher risk of infection by WNV and CHIKV.
Collapse
|
25
|
Alshehri MH, Alsabaani AA, Alghamdi AH, Alshehri RA. Evaluation of Communicable Disease Surveillance System at Primary Health Care Centers in Jeddah, Saudi Arabia. Cureus 2021; 13:e19798. [PMID: 34820251 PMCID: PMC8607316 DOI: 10.7759/cureus.19798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Jeddah is one of the busiest and multicultural cities in Saudi Arabia. It poses a higher risk of importing and spreading emerging communicable diseases because of the increased international traffic during the seasons of Hajj and Umrah. The Saudi Ministry of Health (MOH) emphasizes the role of primary health care centers (PHCCs) as the first gate of the health care system. Therefore, having an efficient and effective communicable disease surveillance system (CDSS) at the level of PHCCs is crucial to provide early warning and sustain health security. Methods This study took place at all PHCCs in Jeddah city between September 2017 and January 2018 as a descriptive cross-sectional study. Data were collected from CDSS key informants using an interview-based questionnaire to evaluate the performance of CDSS by assessing its core and support functions at PHCCs. Results The majority (93%) of PHCCs had reporting forms, and all of them had working laboratories. However, about 41% of PHCCs had the standard manual and only in the Arabic language, 12% were performing basic data analysis, and none of them had a written plan for epidemic response. Although Internet access was available at only 33% of PHCCs, other resources such as computers, printers, and personal protective equipment (PPE) were available at all PHCCs. Conclusion CDSS at PHCCs had an acceptable performance especially in functions such as reporting, confirmation, and supervision. However, other functions such as detection, registration, data analysis, epidemic preparedness, and feedback need to be strengthened. More comprehensive evaluations are required to further enhance the CDSS in Jeddah and Saudi Arabia.
Collapse
Affiliation(s)
- Mohammed H Alshehri
- Saudi Board of Preventive Medicine Program, Public Health Administration, Ministry of Health, Jeddah, SAU
| | - Abdullah A Alsabaani
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, SAU
| | - Amal H Alghamdi
- Saudi Board of Preventive Medicine Program, Public Health Administration, Ministry of Health, Jeddah, SAU
| | - Ruba A Alshehri
- Primary Health Care Centers, King Abdulaziz Hospital, Jeddah, SAU
| |
Collapse
|
26
|
Alfsnes K, Eldholm V, Gaunt MW, de Lamballerie X, Gould EA, Pettersson JHO. Tracing and tracking the emergence, epidemiology and dispersal of dengue virus to Africa during the 20th century. One Health 2021; 13:100337. [PMID: 34746356 PMCID: PMC8551533 DOI: 10.1016/j.onehlt.2021.100337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
The four mosquito-borne dengue virus serotypes (DENV1–DENV4) cause a high burden of disease throughout the tropical and sub-tropical regions of the world. Nevertheless, their precise epidemiological history in Africa, including when and where they originated and were distributed during the 20th century, remains unclear stressing the need for One Health focused research. Accordingly, we conducted a time-scaled molecular epidemiological reconstruction using publicly available and newly sequenced dengue virus genomes of African origin representing all four serotypes to deduce the most likely temporal and spatial transmission routes of each DENV serotype from their ancestral regions to, within and from Africa. Our analyses suggest that during the 20th century, serotypes DENV1–DENV3 were introduced to Africa from South East Asia on multiple occasions. The earliest evidence recorded indicates introduction of DENV2 during the early-1940s and of DENV1 during the mid-1940s to Western Africa from South East Asia. The analysis also implies an early introduction of DENV4 during the mid-1940s to Western Africa, alongside DENV1, probably originating in South East Asia. Establishment of DENV3 in Africa appears to have occurred later in the 1960s, apparently originating from South East Asia. However, with the re-establishment of DENV in the Americas, following the cessation of the PAHO mosquito control programme during the mid-20th century, evidence of introductions of DENV1 and DENV2 from the Americas to Western Africa was also observed. The data also identify intra-regional circulation of DENV, but also inter-regional dispersal of all four serotypes within Africa, which has led to a high degree of geographical overlap among serotypes. It is also noteworthy that DENV from both Eastern and Western Africa, have been introduced into Central Africa but there is no support for the converse relationship. For serotypes DENV1–DENV3, we observed probable exports from within established African DENV clusters (≥2 sequences) primarily to Eastern and Southern Asia. Collectively, our findings support the view that all DENV serotypes, apart from DENV4, have been introduced on multiple occasions to Africa, primarily originating from South East Asia, and subsequently to neighbouring regions within Africa.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Xavier de Lamballerie
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France.,APHM Public Hospitals of Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | - John H-O Pettersson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.,Public Health Agency of Sweden, Solna, Sweden.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Giang HTN, Sayed AM, Dang T, Iqtadar S, Tuan NM, Khiem NT, Viet DC, Van TTK, Phuoc NT, Dung TTK, Elhalwagy EA, Vien LHL, Triet NM, Tong NT, Son DH, Hung LC, Tam DTH, Hirayama K, Huy NT. Survey of knowledge, attitude and practice of healthcare professionals on dengue transmission, diagnosis and clinical classification. BMC Infect Dis 2021; 21:1130. [PMID: 34727869 PMCID: PMC8564985 DOI: 10.1186/s12879-021-06816-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the knowledge, attitudes, and practices of the healthcare professionals (HCPs) including physicians and nurses regarding dengue transmission, diagnosis and clinical classification using the warning signs of World Health Organization (WHO) 2009 classification. RESULTS Out of 471 respondents from three countries, 80.9% of physicians and 74% of nurses did not receive previous training regarding the dengue infection. The majority of respondents could identify the primary dengue vector (86%), while only a third of HCPs knew the biting time of dengue mosquitoes. Only half of our respondents knew about immunity induced by serotypes; Moreover, half of our participants could determine the diagnostic tests. On the other hand, about 90% of the respondents took responsibility for talking to the patients about preventive measures. Our respondents also showed wide variations in definition of warning signs listed in the WHO 2009 classification. Multivariate analysis linked the impact of different cofactors including prior training on dengue infection, type of profession, frequency of taking care of dengue patients and country on how HCPs defined these warning signs. CONCLUSIONS This study could declare the variation in employing the warning signs listed in the WHO 2009 classification. We have figured that most of the HCPs did not take prior training on the dengue viral infection; Also, we found gaps in the knowledge regarding various topics in dengue fever. This paper recommends the gathering of efforts to establish the proper knowledge of dengue infection and the warning signs listed by the WHO.
Collapse
Affiliation(s)
- Hoang Thi Nam Giang
- School of Medicine and Pharmacy, The University of Danang, Danang, 550000, Vietnam.
| | - Ahmed M Sayed
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Thao Dang
- Department of Internal Medicine, Texas Tech University Health Science Center at the Permian Basin, Odessa, TX, USA
| | - Somia Iqtadar
- Dengue Expert Advisory Group Punjab, King Edward Medical University, Lahore, Pakistan
| | | | | | | | | | | | | | | | - Le Huu Linh Vien
- School of Medicine and Pharmacy, The University of Danang, Danang, 550000, Vietnam
| | | | | | - Do Hong Son
- The Tay Ninh General Hospital, Tay Ninh, Vietnam
| | | | - Dong Thi Hoai Tam
- Department of Infectious Diseases, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
28
|
Adam A, Jassoy C. Epidemiology and Laboratory Diagnostics of Dengue, Yellow Fever, Zika, and Chikungunya Virus Infections in Africa. Pathogens 2021; 10:1324. [PMID: 34684274 PMCID: PMC8541377 DOI: 10.3390/pathogens10101324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Arbovirus infections are widespread, and their disease burden has increased in the past decade. In Africa, arbovirus infections and fever with unknown etiology are common. Due to the lack of well-established epidemiologic surveillance systems and accurate differential diagnosis in most African countries, little is known about the prevalence of human arbovirus infections in Africa. The aim of this review is to summarize the available epidemiological data and diagnostic laboratory tools of infections with dengue, yellow fever, Zika, and chikungunya viruses, all transmitted by Aedes mosquitoes. Studies indicate that these arboviral infections are endemic in most of Africa. Surveillance of the incidence and prevalence of the infections would enable medical doctors to improve the diagnostic accuracy in patients with typical symptoms. If possible, arboviral diagnostic tests should be added to the routine healthcare systems. Healthcare providers should be informed about the prevalent arboviral diseases to identify possible cases.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Correspondence: (A.A.); (C.J.); Tel.: +49-341-9714314 (C.J.); Fax: +49-341-9714309 (C.J.)
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Hoyos W, Aguilar J, Toro M. Dengue models based on machine learning techniques: A systematic literature review. Artif Intell Med 2021; 119:102157. [PMID: 34531010 DOI: 10.1016/j.artmed.2021.102157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/08/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Dengue modeling is a research topic that has increased in recent years. Early prediction and decision-making are key factors to control dengue. This Systematic Literature Review (SLR) analyzes three modeling approaches of dengue: diagnostic, epidemic, intervention. These approaches require models of prediction, prescription and optimization. This SLR establishes the state-of-the-art in dengue modeling, using machine learning, in the last years. METHODS Several databases were selected to search the articles. The selection was made based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Sixty-four articles were obtained and analyzed to describe their strengths and limitations. Finally, challenges and opportunities for research on machine-learning for dengue modeling were identified. RESULTS Logistic regression was the most used modeling approach for the diagnosis of dengue (59.1%). The analysis of the epidemic approach showed that linear regression (17.4%) is the most used technique within the spatial analysis. Finally, the most used intervention modeling is General Linear Model with 70%. CONCLUSIONS We conclude that cause-effect models may improve diagnosis and understanding of dengue. Models that manage uncertainty can also be helpful, because of low data-quality in healthcare. Finally, decentralization of data, using federated learning, may decrease computational costs and allow model building without compromising data security.
Collapse
Affiliation(s)
- William Hoyos
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, Montería, Colombia; Grupo de Investigación en I+D+i en TIC, Universidad EAFIT, Medellín, Colombia.
| | - Jose Aguilar
- Grupo de Investigación en I+D+i en TIC, Universidad EAFIT, Medellín, Colombia; Centro de Estudios en Microelectrónica y Sistemas Distribuidos, Universidad de Los Andes, Mérida, Venezuela; Universidad de Alcalá, Depto. de Automática, Alcalá de Henares, Spain
| | - Mauricio Toro
- Grupo de Investigación en I+D+i en TIC, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
30
|
Long H, Zhang C, Chen C, Tang J, Zhang B, Wang Y, Pang J, Su W, Li K, Di B, Chen YQ, Shu Y, Du X. Assessment of the global circulation and endemicity of dengue. Transbound Emerg Dis 2021; 69:2148-2155. [PMID: 34197697 DOI: 10.1111/tbed.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
Dengue is a significant public health issue, affecting hundreds of millions of people worldwide. As it is spreading from tropical and subtropical zones, some regions previously recognised as non-endemic are at risk of becoming endemic. However, the global circulation of dengue is not fully understood and quantitative measurements of endemicity levels are lacking, posing an obstacle in the precise control of dengue spread. In this study, a sequence-based pipeline was designed based on random sampling to study the transmission of dengue. The limited intercontinental transmission was identified, while regional circulation of dengue was quantified in terms of importation, local circulation and exportation. Additionally, hypo- and hyper-endemic regions were identified using a new metric, with the former characterised by low local circulation and increased importation, whereas the latter by high local circulation and reduced importation. In this study, the global circulation pattern of dengue was examined and a sequence-based endemicity measurement was proposed, which will be helpful for future surveillance and targeted control of dengue.
Collapse
Affiliation(s)
- Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Cai Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Bing Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Yinghan Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jiali Pang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenzhe Su
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Kuibiao Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Biao Di
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
31
|
Cracknell Daniels B, Gaythorpe K, Imai N, Dorigatti I. Yellow fever in Asia-a risk analysis. J Travel Med 2021; 28:taab015. [PMID: 33506250 PMCID: PMC8045179 DOI: 10.1093/jtm/taab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND There is concern about the risk of yellow fever (YF) establishment in Asia, owing to rising numbers of urban outbreaks in endemic countries and globalisation. Following an outbreak in Angola in 2016, YF cases were introduced into China. Prior to this, YF had never been recorded in Asia, despite climatic suitability and the presence of mosquitoes. An outbreak in Asia could result in widespread fatalities and huge economic impact. Therefore, quantifying the potential risk of YF outbreaks in Asia is a public health priority. METHODS Using international flight data and YF incidence estimates from 2016, we quantified the risk of YF introduction via air travel into Asia. In locations with evidence of a competent mosquito population, the potential for autochthonous YF transmission was estimated using a temperature-dependent model of the reproduction number and a branching process model assuming a negative binomial distribution. RESULTS In total, 25 cities across Asia were estimated to be at risk of receiving at least one YF viraemic traveller during 2016. At their average temperatures, we estimated the probability of autochthonous transmission to be <50% in all cities, which was primarily due to the limited number of estimated introductions that year. CONCLUSION Despite the rise in air travel, we found low support for travel patterns between YF endemic countries and Asia resulting in autochthonous transmission during 2016. This supports the historic absence of YF in Asia and suggests it could be due to a limited number of introductions in previous years. Future increases in travel volumes or YF incidence can increase the number of introductions and the risk of autochthonous transmission. Given the high proportion of asymptomatic or mild infections and the challenges of YF surveillance, our model can be used to estimate the introduction and outbreak risk and can provide useful information to surveillance systems.
Collapse
Affiliation(s)
- Bethan Cracknell Daniels
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| | - Katy Gaythorpe
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| | - Natsuko Imai
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis; and the Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London
| |
Collapse
|
32
|
Emeribe AU, Abdullahi IN, Isong IK, Emeribe AO, Nwofe JO, Shuaib BI, Gwarzo AM, Usman Y, Sadi M, Umeozuru CM, Dangana A, Egenti BN, Mallam MAB, Emelonye AU, Aminu MS, Yahaya H, Oyewusi S. Dengue Virus is Hyperendemic in Nigeria from 2009 to 2020: A Contemporary Systematic Review. Infect Chemother 2021; 53:284-299. [PMID: 34216122 PMCID: PMC8258289 DOI: 10.3947/ic.2020.0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022] Open
Abstract
Backround Data on Dengue virus (DENV) infection prevalence, geographic distribution and risk factors are necessary to direct appropriate utilization of existing and emerging control strategies. This study aimed to determine the pooled prevalence, risk factors of DENV infection and the circulating serotypes within Nigeria from January 1, 2009 to December 31, 2020. Materials and methods Twenty-one studies out of 2,215 available articles were eligible and included for this systematic review. Relevant articles were searched, screened and included in this study according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria. The risk of bias in primary studies was assessed by Cochrane's method. Heterogeneity of pooled prevalence was calculated using the chi-square test on Cochrane's Q statistic, which was quantified by I-square values. The random-effects analyses of proportions were used to determine the pooled prevalence of DENV antibodies, antigen and RNA from eligible studies. Results Of these, 3 studies reported co-circulation of all the 4 serotypes, while 2 separately reported co-circulation of DENV-1 &2 and DENV-1 to -3. All the antibody-based studies had significantly high heterogeneity (I2 >90%, P <0.05), while the NS1 and PCR-based studies had low heterogeneity (I2 <25%, P >0.05). The pooled prevalence of DENV IgM, IgG, RNA, NS1 and neutralizing antibodies were 16.8%, 34.7%, 7.7%, 7.7% and 0.7%, respectively. South-east Nigeria had the highest pooled DENV-IgG seropositivity, 77.1%. Marital status, gender, educational level and occupation status, the proximity of residence to refuse dumpsite, frequent use of trousers and long sleeve shirts were significantly associated with DENV IgG seropositivity (P <0.05). Conclusion Based on these findings, it can be inferred that Nigeria is hyperendemic for Dengue fever and needs concerted efforts to control its spread within and outside the country.
Collapse
Affiliation(s)
- Anthony Uchenna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria.
| | - Idongesit Kokoabasi Isong
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Anthony Ogbonna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, Calabar, Nigeria
| | | | - Buhari Isa Shuaib
- Antiretroviral Therapy Laboratory, Ahmadu Bello University Teaching hospital, Zaria, Nigeria
| | | | - Yahaya Usman
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Madjid Sadi
- Institute of Veterinary Sciences, University of Saad Dahlab Blida1, Blida, Algeria.,Laboratory of Biotechnology Related to Animals Reproduction, Blida, Algeria
| | - Chikodi Modesta Umeozuru
- Nigeria Field Epidemiology and Laboratory Training Programme, African Field Epidemiology Network, Abuja, Nigeria
| | - Amos Dangana
- Department of Medical Laboratory Services, University of Abuja Teaching hospital, Gwagwalada, Abuja, Nigeria
| | - Bibiana Nonye Egenti
- Department of Community Medicine, University of Abuja, Gwagalada, Abuja, Nigeria
| | - Mala Alhaji Baba Mallam
- Department of Nursing Science, Maryam Abacha American university of Niger, Maradi, Niger Republic
| | - Abigail Uchenna Emelonye
- Department of Nursing Science, Maryam Abacha American university of Niger, Maradi, Niger Republic
| | - Maijiddah Saidu Aminu
- Department of Nursing Science, Maryam Abacha American university of Niger, Maradi, Niger Republic
| | - Hadiza Yahaya
- Department of Nursing Science, Maryam Abacha American university of Niger, Maradi, Niger Republic
| | - Silifat Oyewusi
- Department of Nursing Science, Maryam Abacha American university of Niger, Maradi, Niger Republic
| |
Collapse
|
33
|
Elaagip A, Alsedig K, Altahir O, Ageep T, Ahmed A, Siam HA, Samy AM, Mohamed W, Khalid F, Gumaa S, Mboera L, Sindato C, Elton L, Zumla A, Haider N, Kock R, Abdel Hamid MM. Seroprevalence and associated risk factors of Dengue fever in Kassala state, eastern Sudan. PLoS Negl Trop Dis 2020; 14:e0008918. [PMID: 33296362 PMCID: PMC7752093 DOI: 10.1371/journal.pntd.0008918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/21/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue is a rapidly growing public health threat in Kassala state, eastern Sudan. The objective of this study was to determine the seroprevalence, entomological transmission indices, and socioeconomic risk factors associated with dengue in this region. A cross-sectional community-based study was conducted in four dengue-endemic sites; Khatmia, West Gash, Thoriba, and Shokriya between March 2016 to March 2017. Enzyme-linked immunosorbent assay (ELISA) of immunoglobulin G (IgG) was used to determine the prevalence of dengue virus among the study participants. An entomological survey was conducted using pyrethrum spray catch and dipping for the collection of adults and aquatic stages of Aedes aegypti, respectively. Ribonucleic acid was extracted from the buffy coat of participants as well as from adult female Ae. aegypti to assess the possible circulation of dengue virus using Reverse Transcription Polymerase Chain Reaction (RT-PCR). Multiple logistic regression model was used to estimate the association between potential risk factors and dengue seropositivity. A total of 409 persons were recruited to the study: 45.5% were in the 20–39 years’ age category; 57.9% were living in houses with 6–10 persons; and 29.1% had at most secondary school education. In the majority (65.8%) of the households, the socioeconomic status was low (P<0.001). Long-lasting insecticide-treated bed nets were used in 56.5% of the households. Over three-quarters (77.8%) claimed not to have experienced febrile illness in the last three months. Routine entomological survey across Kassala state identified a total of 3,304 larvae and 390 pupae Ae. aegypti, respectively. The overall house index was 32.8% and Breteau Index was 35.96% (146/406). The overall pupal demographic index was 13.31%, and the pupal children index was 97.26%. Antibodies against IgG were detected from 66 (42.04%) out of a total of 157 sera. Twenty-two positive sera (75.9%) were collected from Khatmia. A total of 329 adults Ae. aegypti were identified but only one (0.3%) was positive for DENV in Khatmia. Finally, four independent risk factors were identified to derive dengue circulation in Kassala: elder age (> 60 years) (OR 6.31, CI 1.09–36.36); type of bathroom (OR 3.52, CI 1.35–9.20); using water-based air conditioner (OR 6.90, CI 1.78–26.85) and previous infection of any household member with dengue (OR 28.73, CI 3.31–249.63). Our findings suggest that Kassala state is facing an increasing occurrence of dengue and emphasizes the need for developing appropriate interventions to address the identified risk factors, and place control programs into actions. Establishment of routine dengue epidemiological and entomological surveillance, and climate warning systems will contribute to early warning and timely detection and response to emerging outbreaks. Dengue is a rapidly growing public health threat in Sudan. Kassala state is facing a major outbreak of the mosquito-borne dengue virus. This recent outbreak alarmed the local health authorities to establish a successful control program. However, lack of data obstructs their roles to achieve this goal. Here, we provided a detailed picture on the seroprevalence of dengue virus, entomological indices, and natural mosquito infection across Kassala state, Sudan. The study also identified key factors associated with the recent dengue outbreaks in Sudan. All these findings marked the importance to establish successful routine vector and dengue surveillance. These active surveillances should consider sensitive early warning systems providing early anticipation and timely detection and response to the future outbreaks in Sudan.
Collapse
Affiliation(s)
- Arwa Elaagip
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- * E-mail: (AE); (MMAH)
| | - Khider Alsedig
- Department of Medical Entomology, National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan
| | - Omnia Altahir
- Department of Epidemiology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Tellal Ageep
- Department of Epidemiology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ayman Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Hanaa Adli Siam
- Department of Medical Entomology, National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Waleed Mohamed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Fatima Khalid
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Kassala, Kassala, Sudan
| | - Suhaib Gumaa
- Department of Immunology and Biotechnology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Leonard Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- National Institute for Medical Research, Tabora, Tanzania
| | - Linzy Elton
- Centre for Clinical Microbiology, Department of Infection, Division of Infection and Immunity, Royal Free Campus, University College London, London, United Kingdom
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Department of Infection, Division of Infection and Immunity, Royal Free Campus, University College London, London, United Kingdom
| | - Najmul Haider
- Royal Veterinary College (RVC), London, United Kingdom
| | - Richard Kock
- Royal Veterinary College (RVC), London, United Kingdom
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- * E-mail: (AE); (MMAH)
| |
Collapse
|
34
|
Abdullahi IN, Emeribe AU, Ghamba PE, Omosigho PO, Bello ZM, Oderinde BS, Fasogbon SA, Olayemi L, Daneji IM, Musa MH, Nwofe JO, Onukegbe NB, Okume CC, Musa S, Gwarzo AM, Ajagbe OOR. Distribution pattern and prevalence of West Nile virus infection in Nigeria from 1950 to 2020: a systematic review. Epidemiol Health 2020; 42:e2020071. [PMID: 33254358 PMCID: PMC8137371 DOI: 10.4178/epih.e2020071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES West Nile virus (WNV) is a re-emerging mosquito-borne viral infection. This study investigated the pooled prevalence pattern and risk factors of WNV infection among humans and animals in Nigeria. METHODS A systematic review was conducted of eligible studies published in PubMed, Scopus, Google Scholar, and Web of Science from January 1, 1950 to August 30, 2020. Peer-reviewed cross-sectional studies describing WNV infections in humans and animals were systematically reviewed. Heterogeneity was assessed using the Cochrane Q statistic. RESULTS Eighteen out of 432 available search output were eligible and included for this study. Of which 13 and 5 were WNV studies on humans and animals, respectively. Although 61.5% of the human studies had a low risk of bias, they all had high heterogeneity. The South West geopolitical zone of Nigeria had the highest pooled prevalence of anti-WNV immunoglobulin M (IgM; 7.8% in humans). The pooled seroprevalence of anti-WNV IgM and immunoglobulin G (IgG) was 7.1% (95% confidence interval [CI], 5.9 to 8.3) and 76.5% (95% CI, 74.0 to 78.8), respectively. The WNV RNA prevalence was 1.9% (95% CI, 1.4 to 2.9), while 14.3% (95% CI, 12.9 to 15.8) had WNV-neutralizing antibodies. In animals, the pooled seroprevalence of anti-WNV IgM and IgG was 90.3% (95% CI, 84.3 to 94.6) and 3.5% (95% CI, 1.9 to 5.8), respectively, while 20.0% (95% CI, 12.9 to 21.4) had WNV-neutralizing antibodies. Age (odds ratio [OR], 3.73; 95% CI, 1.87 to 7.45; p<0.001) and level of education (no formal education: OR, 4.31; 95% CI, 1.08 to 17.2; p<0.05; primary: OR, 7.29; 95% CI, 1.80 to 29.6; p<0.01) were significant risk factors for WNV IgM seropositivity in humans. CONCLUSIONS The findings of this study highlight the endemicity of WNV in animals and humans in Nigeria and underscore the need for the One Health prevention and control approach.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Anthony Uchenna Emeribe
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Peter Elisha Ghamba
- WHO National Polio Laboratory, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
| | | | - Zakariyya Muhammad Bello
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bamidele Soji Oderinde
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Samuel Ayobami Fasogbon
- Public Health In-vitro Diagnostic Control Laboratory, Medical Laboratory Science Council of Nigeria, Lagos, Nigeria
| | - Lawal Olayemi
- Department of Medicine, National University of Samoa, Samoa
| | - Isa Muhammad Daneji
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | - Muhammad Hamis Musa
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, Kano, Nigeria
| | | | | | - Chukwudi Crescent Okume
- Department of Medical Laboratory Service, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Sanusi Musa
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | | |
Collapse
|
35
|
Sahak MN. Dengue fever as an emerging disease in Afghanistan: Epidemiology of the first reported cases. Int J Infect Dis 2020; 99:23-27. [PMID: 32738489 DOI: 10.1016/j.ijid.2020.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE This paper aims to describe the epidemiological characteristics and clinical manifestations of the first 15 dengue fever cases reported in Afghanistan. METHODS A retrospective descriptive analysis of the data on confirmed dengue cases detected by the national disease surveillance system was conducted. Epidemiological, socio-demographic, clinical, laboratory and outcome data from the cases were analyzed. RESULTS Between May and December 2019, 62 samples were tested for DENV, among which 15 (24.2%) were positive. Seven of the cases were probable autochthonous with no travel history, the other seven cases had a travel history to dengue-endemic countries (five Pakistan, two India) and the travel history for one of the cases was not known. The 15 confirmed cases were reported from six provinces, seven cases (46.7%) were reported from Nangarhar Province, two (13%) from Paktya, and one (6.7%) from Paktika province, bordering with Pakistan, three (20%) were reported from Kabul, and one each (each 6.7%) from Faryab and Laghman provinces. All of the cases manifested fever, headache, myalgia, and arthralgia. Other clinical features were low platelet count (50%), pain behind eyes (36%), rash, and nausea/vomiting (each 21%). CONCLUSION For the first time, the surveillance system detected and reported locally acquired DENV cases in Afghanistan, mostly in provinces bordering with Pakistan. Population movements between Afghanistan and Pakistan facilitate the cross-border spread of DENV between two countries.
Collapse
|
36
|
Bakhshi H, Mousson L, Moutailler S, Vazeille M, Piorkowski G, Zakeri S, Raz A, de Lamballerie X, Dinparast-Djadid N, Failloux AB. Detection of arboviruses in mosquitoes: Evidence of circulation of chikungunya virus in Iran. PLoS Negl Trop Dis 2020; 14:e0008135. [PMID: 32603322 PMCID: PMC7357783 DOI: 10.1371/journal.pntd.0008135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 07/13/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Mosquitoes are vectors of viruses affecting animal and human health. In Iran, the prevalence of mosquito-borne viruses remains poorly investigated. Once infected, mosquito females remain infected for all their life making virus detections possible at early steps before infections are reported in vertebrate hosts. In this study, we used a recently developed high-throughput chip based on the BioMark Dynamic arrays system capable of detecting 37 arboviruses in a single experiment. A total of 1,212 mosquitoes collected in Mazandaran, North-Khorasan, and Fars provinces of Iran were analyzed. Eighteen species were identified, belonging to five genera; the most prevalent species were Anopheles maculipennis s.l. (42.41%), Culex pipiens (19.39%), An. superpictus (11.72%), and Cx. tritaeniorhynchus (10.64%). We detected chikungunya virus (CHIKV) of the Asian genotype in six mosquito pools collected in North Khorasan and Mazandaran provinces. To our knowledge, this is the first report of mosquitoes infected with CHIKV in Iran. Our high-throughput screening method can be proposed as a novel epidemiological surveillance tool to identify circulating arboviruses and to support preparedness to an epidemic in animals and humans.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marie Vazeille
- Institut Pasteur, Arboviruses and Insect Vectors, Paris, France
| | - Géraldine Piorkowski
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Navid Dinparast-Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
37
|
Abstract
After the mass campaign of Measles and Rubella vaccination in 2003 in Iran, the cases of measles and rubella infection decreased but still, the cases of rash and fever were reported. It is worth noting that some other viral infections show signs similar to measles and rubella such as some arboviruses. Considering the epidemic outbreak of arbovirus infections in countries neighbouring Iran, we performed this study to estimate the possibility of chikungunya and dengue fever among measles and rubella IgM negative patients presenting with rash and fever from December 2016 to November 2017 in the National Measles Laboratory at Tehran University of Medical Sciences. Serum samples were selected at random from patients from eight provinces. The presence of DENV IgM and CHIKV IgM was examined by enzyme-linked immunosorbent assay. Of the 1306 sera tested, 210 were CHIKV seropositive and 82 were dengue seropositive. Statistical analysis demonstrated a significant increase in the CHIKV IgM antibody seropositivity rate in Kerman (OR = 2.07, 95% CI: 1.10–3.92; P = 0.024) and Fars (OR = 1.77, 95% CI: 1.06–2.93; P = 0.027). The DENV and CHIKV seropositivity rate in summer is higher than in other seasons (P < 0.01). Our seropositive samples suggest possible CHIKV and DENV infection in Iran. It is likely that these viruses are circulating in Iran and there is a need to study vector carriage of these two viruses.
Collapse
|
38
|
Zhu H, Podesva P, Liu X, Zhang H, Teply T, Xu Y, Chang H, Qian A, Lei Y, Li Y, Niculescu A, Iliescu C, Neuzil P. IoT PCR for pandemic disease detection and its spread monitoring. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 303:127098. [PMID: 32288256 PMCID: PMC7125887 DOI: 10.1016/j.snb.2019.127098] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 05/05/2023]
Abstract
During infectious disease outbreaks, the centers for disease control need to monitor particular areas. Considerable effort has been invested in the development of portable, user-friendly, and cost-effective systems for point-of-care (POC) diagnostics, which could also create an Internet of Things (IoT) for healthcare via a global network. However, at present IoT based on a functional POC instrument is not available. Here we show a fast, user-friendly, and affordable IoT system based on a miniaturized polymerase chain reaction device. We demonstrated the system's capability by amplification of complementary deoxyribonucleic acid (cDNA) of the dengue fever virus. The resulting data were then automatically uploaded via a Bluetooth interface to an Android-based smartphone and then wirelessly sent to a global network, instantly making the test results available anywhere in the world. The IoT system presented here could become an essential tool for healthcare centers to tackle infectious disease outbreaks identified either by DNA or ribonucleic acid.
Collapse
Affiliation(s)
- Hanliang Zhu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Pavel Podesva
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaocheng Liu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Haoqing Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tomas Teply
- Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic
| | - Ying Xu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Airong Qian
- School of Life Science, Northwesstern Polytechnical University, Xi'an 710072, PR China
| | - Yingfeng Lei
- Air Force Military Medical University, 169 Changle West Road, Xi'an, Shaanxi, 710032, PR China
| | - Yu Li
- School of Life Science, Northwesstern Polytechnical University, Xi'an 710072, PR China
| | - Andreea Niculescu
- Institute for Infocomm Research, ASTAR, 1 Fusionopolis Way, #21-01 Connexis (South Tower), 138632, Singapore
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, Bucharest 077190, Romania
| | - Pavel Neuzil
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
- Brno University of Technology, Central European Institute of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
39
|
Ahmed A, Dietrich I, LaBeaud AD, Lindsay SW, Musa A, Weaver SC. Risks and Challenges of Arboviral Diseases in Sudan: The Urgent Need for Actions. Viruses 2020; 12:E81. [PMID: 31936607 PMCID: PMC7019415 DOI: 10.3390/v12010081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
The risk of emergence and/or re-emergence of arthropod-borne viral (arboviral) infections is rapidly growing worldwide, particularly in Africa. The burden of arboviral infections and diseases is not well scrutinized because of the inefficient surveillance systems in endemic countries. Furthermore, the health systems are fully occupied by the burden of other co-existing febrile illnesses, especially malaria. In this review we summarize the epidemiology and risk factors associated with the major human arboviral diseases and highlight the gap in knowledge, research, and control in Sudan. Published data in English up to March 2019 were reviewed and are discussed to identify the risks and challenges for the control of arboviruses in the country. In addition, the lack of suitable diagnostic tools such as viral genome sequencing, and the urgent need for establishing a genomic database of the circulating viruses and potential sources of entry are discussed. Moreover, the research and healthcare gaps and global health threats are analyzed, and suggestions for developing strategic health policy for the prevention and control of arboviruses with focus on building the local diagnostic and research capacity and establishing an early warning surveillance system for the early detection and containment of arboviral epidemics are offered.
Collapse
Affiliation(s)
- Ayman Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77755, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77755, USA
| | | | | | - Steve W. Lindsay
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Ahmed Musa
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77755, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77755, USA
| |
Collapse
|
40
|
Zheng X, Zhong D, He Y, Zhou G. Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability. Infect Dis Poverty 2019; 8:98. [PMID: 31791409 PMCID: PMC6889612 DOI: 10.1186/s40249-019-0612-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Aedes albopictus is a highly invasive mosquito species and a major vector of numerous viral pathogens. Many recent dengue fever outbreaks in China have been caused solely by the vector. Mapping of the potential distribution ranges of Ae. albopictus is crucial for epidemic preparedness and the monitoring of vector populations for disease control. Climate is a key factor influencing the distribution of the species. Despite field studies indicating seasonal population variations, very little modeling work has been done to analyze how environmental conditions influence the seasonality of Ae. albopictus. The aim of the present study was to develop a model based on available observations, climatic and environmental data, and machine learning methods for the prediction of the potential seasonal ranges of Ae. albopictus in China. Methods We collected comprehensive up-to-date surveillance data in China, particularly records from the northern distribution margin of Ae. albopictus. All records were assigned long-term (1970–2000) climatic data averages based on the WorldClim 2.0 data set. Machine learning regression tree models were developed using a 10-fold cross-validation method to predict the potential seasonal (or monthly) distribution ranges of Ae. albopictus in China at high resolution based on environmental conditions. The models were assessed based on sensitivity, specificity, and accuracy, using area under curve (AUC). WorldClim 2.0 and climatic and environmental data were used to produce environmental conduciveness (probability) prediction surfaces. Predicted probabilities were generated based on the averages of the 10 models. Results During 1998–2017, Ae. albopictus was observed at 200 out of the 242 localities surveyed. In addition, at least 15 new Ae. albopictus occurrence sites lay outside the potential ranges that have been predicted using models previously. The average accuracy was 98.4% (97.1–99.5%), and the average AUC was 99.1% (95.6–99.9%). The predicted Ae. albopictus distribution in winter (December–February) was limited to a small subtropical-tropical area of China, and Ae. albopictus was predicted to occur in northern China only during the short summer season (usually June–September). The predicted distribution areas in summer could reach northeastern China bordering Russia and the eastern part of the Qinghai-Tibet Plateau in southwestern China. Ae. albopictus could remain active in expansive areas from central to southern China in October and November. Conclusions Climate and environmental conditions are key factors influencing the seasonal distribution of Ae. albopictus in China. The areas predicted to potentially host Ae. albopictus seasonally in the present study could reach northeastern China and the eastern slope of the Qinghai-Tibet Plateau. Our results present new evidence and suggest the expansion of systematic vector population monitoring activities and regular re-assessment of epidemic risk potential.
Collapse
Affiliation(s)
- Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China.
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, USA
| | - Yulan He
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
41
|
Araj R, Alqasrawi S, Samy S, Alwahdanee G, Wadi J, Mofleh J, Alsanouri T. Preventing Emerging and Re-emerging Infections in the Eastern Mediterranean Region: Gaps, Challenges, and Priorities. JMIR Public Health Surveill 2019; 5:e14348. [PMID: 31599734 PMCID: PMC6811772 DOI: 10.2196/14348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/27/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Eastern Mediterranean Public Health Network, supported by the Biosecurity Engagement Program, contributed significantly to strengthening the preparedness and response to the emerging and re-emerging infections in the region. OBJECTIVE This study aimed to determine the gaps, challenges, and priorities for preventing the emerging and re-emerging infections, with a focus on biosafety and biosecurity in four countries of the region, namely, Egypt, Iraq, Jordan, and Morocco. METHODS A total of two different methods were used to determine the gaps and priorities for preventing the emerging and re-emerging infections. The first method was a rapid assessment for the preparedness and response to the emerging and re-emerging infections in four countries of the region, with a focus on biosafety and biosecurity. The second method was a face-to-face round table meeting of the participating teams for two days, where the teams from all countries presented their countries' profiles, findings, priorities, and gaps based on the countries' assessments. RESULTS The assessment and meeting resulted in several priorities and recommendations for each of the countries in the areas of legislation and coordination, biosafety and biosecurity, surveillance and human resources, case management and response, infection control and prevention, and risk communication and laboratory capacity. CONCLUSIONS Many recommendations were relatively consistent throughout, including improving communication or building collaborations to improve the overall health of the country.
Collapse
Affiliation(s)
- Rawan Araj
- Global Health Development/Eastern Mediterranean Public Health Network, Amman, Jordan
| | | | | | | | - Jamal Wadi
- The Medical School, University of Jordan, Amman, Jordan
| | - Jawad Mofleh
- Global Health Development/Eastern Mediterranean Public Health Network, Amman, Jordan
| | - Tarek Alsanouri
- Global Health Development/Eastern Mediterranean Public Health Network, Amman, Jordan
| |
Collapse
|
42
|
Simo FBN, Bigna JJ, Kenmoe S, Ndangang MS, Temfack E, Moundipa PF, Demanou M. Dengue virus infection in people residing in Africa: a systematic review and meta-analysis of prevalence studies. Sci Rep 2019; 9:13626. [PMID: 31541167 PMCID: PMC6754462 DOI: 10.1038/s41598-019-50135-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 08/19/2019] [Indexed: 01/05/2023] Open
Abstract
Better knowledge of the face of the current dengue virus (DENV) epidemiology in Africa can help to implement efficient strategies to curb the burden of dengue fever. We conducted this systematic review and meta-analysis to determine the prevalence of DENV infection in Africa. We searched PubMed, EMBASE, African Journals Online, and Africa Index Medicus from January 1st, 2000 to June 10th, 2019 without any language restriction. We used a random-effects model to pool studies. A total of 76 studies (80,977 participants; 24 countries) were included. No study had high risk of bias. Twenty-two (29%) had moderate and 54 (71%) had low risk of bias. In apparently healthy individuals, the pooled prevalence of DENV was 15.6% (95% confidence interval 9.9-22.2), 3.5% (0.8-7.8), and 0.0% (0.0-0.5) respectively for immunoglobulins (Ig) G, IgM, and for ribonucleic acid (RNA) in apparently healthy populations. In populations presenting with fever, the prevalence was 24.8% (13.8-37.8), 10.8% (3.8-20.6k) and 8.4% (3.7-14.4) for IgG, IgM, and for RNA respectively. There was heterogeneity in the distribution between different regions of Africa. The prevalence of DENV infection is high in the African continent. Dengue fever therefore deserves more attention from healthcare workers, researchers, and health policy makers.
Collapse
Affiliation(s)
- Fredy Brice N Simo
- Reference Laboratory for Chikungunya and Dengue Viruses, Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Joel Bigna
- Department of Epidemiology and Public Health, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Sebastien Kenmoe
- Reference Laboratory for Chikungunya and Dengue Viruses, Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Marie S Ndangang
- Department of Medical Information and Informatics, Rouen University Hospital, Rouen, France
| | - Elvis Temfack
- Department of Internal Medicine, Douala General Hospital, Douala, Cameroon
| | - Paul F Moundipa
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Maurice Demanou
- Reference Laboratory for Chikungunya and Dengue Viruses, Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon.
| |
Collapse
|
43
|
Obaidat MM, Roess AA. First report on seroprevalence and risk factors of dengue virus in Jordan. Trans R Soc Trop Med Hyg 2019; 112:279-284. [PMID: 29992312 DOI: 10.1093/trstmh/try055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 12/27/2022] Open
Abstract
Background There are no data available on dengue epidemiology in Jordan. This is the first study of the seroprevalence and risk factors of dengue virus (DENV) infection in Jordan. Methods Sera samples from 892 apparently healthy individuals from all over Jordan were tested for DENV by enzyme-linked immunosorbent assay and a validated questionnaire was completed by all participants to identify and rank possible risk factors. Results The seroprevalence was 24.6% (95% confidence interval 21.8 to 27.5). In univariate regression analysis, age, education, history of travel, living in rainy areas and practicing agriculture were significantly (p<0.05) associated with seropositivity. The multivariate logistic regression model showed that those who live in a rainy climate (odd ratio [OR] 1.7), are older (OR 2.3), have a history of international travel (OR 1.5) and are male with a history of international travel had a significantly greater odds of DENV seropositivity (OR 3.4). Conclusions These data suggest that DENV circulates in Jordan and that cases may be imported or locally transmitted. Further research is needed to determine the circulating DENV serotypes and vectors in Jordan. Given the high rate of DENV seropositivity, dengue should be considered as a differential diagnosis in febrile diseases in Jordan, especially among populations living in rainy climates.
Collapse
Affiliation(s)
- Mohammad M Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid 22110, Jordan
| | - Amira A Roess
- Department of Global Health, Milken Institute School of Public Health, George Washington University, 950 New Hampshire Ave NW, Washington, DC 20052, USA
| |
Collapse
|
44
|
Matsui T, Kinoshita N, Maeki T, Kutsuna S, Nakamura K, Nakamoto T, Ishikane M, Tajima S, Kato F, Taniguchi S, Lim CK, Saijo M, Ohmagari N. Dengue Virus Type 2 Infection in a Traveler Returning from Saudi Arabia to Japan. Jpn J Infect Dis 2019; 72:340-342. [PMID: 31061359 DOI: 10.7883/yoken.jjid.2018.537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In July 2018, a Japanese traveler returning from Saudi Arabia was diagnosed with dengue. The dengue virus type 2 gene was detected from a whole blood sample. Phylogenetic analysis revealed that the strain was clustered with isolates from Singapore and India. Travelers to Saudi Arabia should be cautious about mosquito bites.
Collapse
Affiliation(s)
- Toshihiro Matsui
- Department of Infectious Disease, National Center for Global Health and Medicine.,Division of Infectious Diseases, Department of Medical Specialties, National Center for Child Health and Development
| | - Noriko Kinoshita
- Department of Infectious Disease, National Center for Global Health and Medicine
| | - Takahiro Maeki
- Department of Virology 1, National Institute of Infectious Disease
| | - Satoshi Kutsuna
- Department of Infectious Disease, National Center for Global Health and Medicine
| | - Keiji Nakamura
- Department of Infectious Disease, National Center for Global Health and Medicine
| | - Takahito Nakamoto
- Department of Infectious Disease, National Center for Global Health and Medicine
| | - Masahiro Ishikane
- Department of Infectious Disease, National Center for Global Health and Medicine
| | - Shigeru Tajima
- Department of Virology 1, National Institute of Infectious Disease
| | - Fumihiro Kato
- Department of Virology 1, National Institute of Infectious Disease
| | | | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Disease
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Disease
| | - Norio Ohmagari
- Department of Infectious Disease, National Center for Global Health and Medicine
| |
Collapse
|
45
|
Altassan KK, Morin C, Shocket MS, Ebi K, Hess J. Dengue fever in Saudi Arabia: A review of environmental and population factors impacting emergence and spread. Travel Med Infect Dis 2019; 30:46-53. [PMID: 30978417 DOI: 10.1016/j.tmaid.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/09/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022]
Abstract
Dengue fever (DF) is the most important mosquito-transmitted viral disease causing a large economic and disease burden in many parts of the world. Most DF research focuses on Latin America and Asia, where burdens are highest. There is a critical need for studies in other regions where DF is an important public health problem but less well-characterized and can differ, such as the Middle East. The first documented case of DF in Saudi Arabia occurred in 1993. After a decade of sporadic outbreaks, the disease was declared endemic in 2004 and this designation persists. Climate, sociodemographic factors, and increasing urbanization impact the spread of DF in Saudi Arabia, as in other areas. However, DF transmission in Saudi Arabia is also affected by several unique factors, including large numbers of migrant workers and religious pilgrims from other dengue endemic areas across the Middle East, North Africa, and Asia. Important knowledge gaps relate to the role of climatic factors as drivers of DF in Saudi Arabia and the role of foreign workers and pilgrims in the original and continuous importation of dengue virus. Filling these gaps would improve health system preparedness.
Collapse
Affiliation(s)
- Kholood K Altassan
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| | - Cory Morin
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, 98105, USA.
| | - Marta S Shocket
- Department of Biology, Stanford University, 371 Serra Mall Stanford, CA, 94305, USA.
| | - Kris Ebi
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195, USA; Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, 98105, USA.
| | - Jeremy Hess
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195, USA; Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, 98105, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234 1959 NE Pacific Street, Seattle, WA, 98195, USA; Department of Emergency Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
46
|
Al Awaidy ST, Khamis F. Dengue Fever: An Emerging Disease in Oman Requiring Urgent Public
Health Interventions. Oman Med J 2019; 34:91-93. [PMID: 30918600 PMCID: PMC6425053 DOI: 10.5001/omj.2019.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Faryal Khamis
- Department of Infectious Diseases, Royal Hospital, Muscat, Oman
| |
Collapse
|
47
|
Humphrey JM, Al-Absi ES, Hamdan MM, Okasha SS, Al-Trmanini DM, El-Dous HG, Dargham SR, Schieffelin J, Abu-Raddad LJ, Nasrallah GK. Dengue and chikungunya seroprevalence among Qatari nationals and immigrants residing in Qatar. PLoS One 2019; 14:e0211574. [PMID: 30703150 PMCID: PMC6355019 DOI: 10.1371/journal.pone.0211574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to characterize the seroprevalence of anti-dengue (DENV) and anti-chikungunya (CHIKV) antibodies among blood donors residing in Qatar who are Middle East and North Africa (MENA) nationals and non-nationals. Sera were collected from adult blood donors in Qatar from 2013 to 2016 and tested for anti-DENV and anti-CHIKV IgG using commercial microplate enzyme-linked immunosorbent assays. Age-specific seroprevalence was summarized by region/nationality: Asia (India, Philippines), Middle East (Iran, Jordan, Lebanon, Pakistan, Palestine, Syria, Yemen), North Africa (Egypt, Sudan), Qatar. The adjusted odds of anti-DENV and anti-CHIKV IgG seropositivity was estimated by logistic regression. Among 1,992 serum samples tested, Asian nationals had higher adjusted odds of being seropositive for anti-DENV antibodies compared to nationals of the Middle East (aOR 0.05, 95% CI 0.04-0.07), North Africa (aOR 0.14, 95% CI 0.10-0.20), and Qatar (aOR 0.01, 95% CI 0.01-0.03). Asian nationals also had higher adjusted odds of being seropositive for anti-CHIKV antibodies compared to those from the Middle East (aOR 0.14, 95% CI 0.07-0.27), North Africa (aOR 0.50, 95% CI 0.26-0.96), and Qatar (aOR 0.38, 95% CI 0.15-0.96). The adjusted odds of being anti-DENV seropositive was higher among anti-CHIKV seropositive adults, and vice versa (aOR 1.94, 95% CI 1.09-3.44), suggesting co-circulation of these viruses. DENV and CHIKV exposure is lower in Qatar and MENA nationals compared to Asian nationals suggesting a lower burden of DENV and CHIKV disease in the MENA. Antibodies to both viruses were detected in nationals from most MENA countries, supporting the need to better understand the regional epidemiology of these viruses.
Collapse
Affiliation(s)
- John M. Humphrey
- Division of Infectious Diseases, Department of Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Enas S. Al-Absi
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- BioMedical Research Center, Qatar University, Doha, Qatar
| | - Munia M. Hamdan
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- BioMedical Research Center, Qatar University, Doha, Qatar
| | - Sara S. Okasha
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- BioMedical Research Center, Qatar University, Doha, Qatar
| | - Diyna M. Al-Trmanini
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- BioMedical Research Center, Qatar University, Doha, Qatar
| | - Hend G. El-Dous
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- BioMedical Research Center, Qatar University, Doha, Qatar
| | - Soha R. Dargham
- Infectious Disease Epidemiology Group, Weill Cornell Medicine‐Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - John Schieffelin
- Section of Infectious Diseases, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Laith J. Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine‐Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- BioMedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
48
|
Epidemiology of West Nile Virus in the Eastern Mediterranean region: A systematic review. PLoS Negl Trop Dis 2019; 13:e0007081. [PMID: 30695031 PMCID: PMC6368338 DOI: 10.1371/journal.pntd.0007081] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/08/2019] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Background West Nile Virus (WNV), a member of the genus Flavivirus, is one of the most widely distributed arboviruses in the world. Despite some evidence for circulation of WNV in countries summarized by the World Health Organization as the Eastern Mediterrian Regional Office (EMRO), comprehensive knowledge about its epidemiology remains largely unknown. This study aims to provide a concise review of the published literature on WNV infections in the Eastern Mediterranean Regional Office of WHO (EMRO). Methodology/principal findings A systematic review of WNV prevalence studies on humans, animals and vectors in the EMRO region was performed by searching: Web of Science, Science Direct, Scopus, PubMed, Embase and Google Scholar. Finally, 77 citations were included, comprising 35 seroprevalence studies on general population (24460 individuals), 15 prevalence studies among patients (3439 individuals), 22 seroprevalence studies among animals (10309 animals), and 9 studies on vectors (184242 vector species). Of the 22 countries in this region, five had no data on WNV infection among different populations. These countries include Kuwait, Bahrain, Oman, Syria and Somalia. On the other hand, among countries with available data, WNV-specific antibodies were detected in the general population of all investigated countries including Djibouti (0.3–60%), Egypt (1–61%), Iran (0–30%), Iraq (11.6–15.1%), Jordan (8%), Lebanon (0.5–1%), Libya (2.3%), Morocco (0–18.8%), Pakistan (0.6–65.0%), Sudan (2.2–47%), and Tunisia (4.3–31.1%). WNV RNA were also detected in patient populations of Iran (1.2%), Pakistan (33.3%), and Tunisia (5.3% –15.9%). WNV-specific antibodies were also detected in a wide range of animal species. The highest seropositivity rate was observed among equids (100% in Morocco) and dogs (96% in Morocco). The highest seroprevalence among birds was seen in Tunisia (23%). In addition, WNV infection was detected in mosquitoes (Culex, and Aedes) and ticks (Argas reflexus hermanni). The primary vector of WNV (Culex pipiens s.l.) was detected in Djibouti, Egypt, Iran and Tunisia, and in mosquitoes of all these countries, WNV was demonstrated. Conclusions This first systematic regional assessment of WNV prevalence provides evidence to support the circulation of WNV in the EMRO region as nearly all studies showed evidence of WNV infection in human as well as animal/vector populations. These findings highlight the need for continued prevention and control strategies and the collection of epidemiologic data for WNV epidemic status, especially in countries that lack reliable surveillance systems. West Nile Virus (WNV) is a mosquito-borne Flavivirus belonging to the Flaviviridae family, which is endemic in a vast geographical area, including the EMRO region. However, the epidemiology of WNV in the EMRO region remains poorly understood. To address this gap, we performed a systematic review on WNV prevalence studies conducted on human populations, animals and vectors across Eastern Mediterranean countries. Our review indicated the infection of most investigated human, animal and vector populations with WNV; however, the paucity of epidemiological data underline the need for integrated surveillance programs as well as continued deployment of prevention and control strategies.
Collapse
|
49
|
Beiter KJ, Wentlent ZJ, Hamouda AR, Thomas BN. Nonconventional opponents: a review of malaria and leishmaniasis among United States Armed Forces. PeerJ 2019; 7:e6313. [PMID: 30701136 PMCID: PMC6348955 DOI: 10.7717/peerj.6313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
As the United States military engage with different countries and cultures throughout the world, personnel become exposed to new biospheres as well. There are many infectious pathogens that are not endemic to the US, but two of particular importance are Plasmodium and Leishmania, which respectively cause malaria and leishmaniasis. These parasites are both known to cause significant disease burden in their endemic locales, and thus pose a threat to military travelers. This review introduces readers to basic life cycle and disease mechanisms for each. Local and military epidemiology are described, as are the specific actions taken by the US military for prevention and treatment purposes. Complications of such measures with regard to human health are also discussed, including possible chemical toxicities. Additionally, poor recognition of these diseases upon an individual's return leading to complications and treatment delays in the United States are examined. Information about canine leishmaniasis, poorly studied relative to its human manifestation, but of importance due to the utilization of dogs in military endeavors is presented. Future implications for the American healthcare system regarding malaria and leishmaniasis are also presented.
Collapse
Affiliation(s)
- Kaylin J Beiter
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Zachariah J Wentlent
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Adrian R Hamouda
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| |
Collapse
|
50
|
Al-Raddadi R, Alwafi O, Shabouni O, Akbar N, Alkhalawi M, Ibrahim A, Hussain R, Alzahrani M, Al Helal M, Assiri A. Seroprevalence of dengue fever and the associated sociodemographic, clinical, and environmental factors in Makkah, Madinah, Jeddah, and Jizan, Kingdom of Saudi Arabia. Acta Trop 2019; 189:54-64. [PMID: 30244133 DOI: 10.1016/j.actatropica.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 01/23/2023]
Abstract
This study aimed to estimate the seroprevalence of anti-dengue IgG antibodies in Makkah, Al Madinah, Jeddah, and Jizan; and to identify the associated demographic, clinical, and environmental independent risk factors. A community-based household serosurvey conducted between September 20, 2016 and January 31, 2017. A multi-stage stratified cluster sampling was used to select 6596 participants from Makkah, Madinah, Jeddah, and Jizan. Blood samples were drawn from all participants to detect anti-dengue IgG antibodies. A semi-structured questionnaire was used to collect information on demographic, clinical, and environmental data. Multivariate logistic regression was carried out to identify independent risk factors of dengue seropositivity. The dengue seroprevalence (95% confidence intervalI) was 26.7% (25.6%, 27.8%), with the highest (33.6%) and lowest (14.8%) rates in Jizan and Madinah, respectively, and reaching 50% or more in several districts of the four cities. Demographic predictors of seroprevalence included: dwelling in Makkah (odds ratio [OR] = 2.19, p < 0.001) or Jizan (OR = 2.17, p < 0.001); older age (OR = 3.91, p < 0.001 for age>30 years); housing type (OR = 1.84 and 1.82, p < 0.001 for popular and social houses, respectively); and number of household occupants (OR = 0.86 and 0.71 for 6-10 [p = 0.042] and 11-20 [p = 0.002] occupants, respectively). Environmental predictors included the absence of pest control works in residency area (OR = 1.39, p = 0.002), presence of mosquitoes in the home (OR = 1.39, p = 0.001), and absence of awareness campaigns (OR = 1.97, p < 0.001). One in four inhabitants of the Western region of Saudi Arabia was seropositive for the dengue virus. Implementation of behavior-based educational programs is recommended, involving the population in the identification and eradication of vector sources and promoting appropriate behaviors that prevent the spread.
Collapse
|