1
|
Kuaprasert B, Leartsakulpanich U, Riangrungroj P, Pornthanakasem W, Suginta W, Mungthin M, Leelayoova S, Kiriwan D, Choowongkomon K. Crystal structure of Leishmania orientalis triosephosphate isomerase at 1.88 Å resolution and its specific inhibitors. Biochimie 2025; 233:27-35. [PMID: 39984112 DOI: 10.1016/j.biochi.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Leishmania orientalis, previously called L. siamensis, is a new species characterized as causing cutaneous leishmaniasis in Thailand. This study solves the crystal structure of the L. orientalis triosephosphate isomerase (LoTIM) in apo form at 1.88 Å resolution by using molecular replacement method. Tyrosine118 presents in the LoTIM protein sequence, whereas L. mexicana and Trypanosoma cruzi TIMs have a relative Cys118, which plays a major role in their specific ligand binding. Sulfur atom of the Cys57 thiol group is covalently bound to an arsenic (As) atom present in the precipitating solution. Although the electron density of loop-6 (Gly174-Tyr175-Gly176-Lys177-Val178) is missing in the structure due to this region lacking rigidity, the biological assembly of the two monomers of the LoTIM crystal structures are like that of L. mexicana and T. cruzi. 3D molecular protein-ligand docking was performed using the dimeric interfacial pocket of the enzyme as a ligand-binding receptor to identify its specific inhibitors. Five potential inhibiting compounds, including NSC639174, NSC606498, NSC110039, NSC58446, and NSC345647, were obtained with their IC50 2.79 ± 0.10, 3.28 ± 0.80, 3.67 ± 0.11, 4.59 ± 0.87 and 15.44 ± 0.14 μM, respectively. However, specific inhibition assays against TIMs from L. orientalis and rabbit muscle indicate that NSC639174 and NSC110039 are the most potent inhibitors for LoTIM, whereas NSC58446 inhibits well both the parasitic and rabbit enzymes.
Collapse
Affiliation(s)
- Buabarn Kuaprasert
- Synchrotron Research and Applications Division, Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pinpunya Riangrungroj
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Wichai Pornthanakasem
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Rachatewi, Bangkok, 10400, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Rachatewi, Bangkok, 10400, Thailand
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Avishek K, Beg MA, Vats K, Singh AK, Dey R, Singh KP, Singh RK, Gannavaram S, Ramesh V, Mulla MSA, Bhatnagar U, Singh S, Nakhasi HL, Salotra P, Selvapandiyan A. Manufacturing and preclinical toxicity of GLP grade gene deleted attenuated Leishmania donovani parasite vaccine. Sci Rep 2024; 14:14636. [PMID: 38918456 PMCID: PMC11199483 DOI: 10.1038/s41598-024-64592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Centrin1 gene deleted Leishmania donovani parasite (LdCen1-/-) was developed and extensively tested experimentally as an intracellular stage-specific attenuated and immunoprotective live parasite vaccine candidate ex vivo using human PBMCs and in vivo in animals. Here we report manufacturing and pre-clinical evaluation of current Good-Laboratory Practice (cGLP) grade LdCen1-/- parasites, as a prerequisite before proceeding with clinical trials. We screened three batches of LdCen1-/- parasites manufactured in bioreactors under cGLP conditions, for their consistency in genetic stability, attenuation, and safety. One such batch was preclinically tested using human PBMCs and animals (hamsters and dogs) for its safety and protective immunogenicity. The immunogenicity of the CGLP grade LdCen1-/- parasites was similar to one grown under laboratory conditions. The cGLP grade LdCen1-/- parasites were found to be safe and non-toxic in hamsters and dogs even at 3 times the anticipated vaccine dose. When PBMCs from healed visceral leishmaniasis (VL) cases were infected with cGLP LdCen1-/-, there was a significant increase in the stimulation of cytokines that contribute to protective responses against VL. This effect, measured by multiplex ELISA, was greater than that observed in PBMCs from healthy individuals. These results suggest that cGLP grade LdCen1-/- manufactured under cGMP complaint conditions can be suitable for future clinical trials.
Collapse
Affiliation(s)
- Kumar Avishek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Mirza A Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Kavita Vats
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Avinash Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kamaleshwar P Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Rajesh Kumar Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - V Ramesh
- Department of Dermatology and STD, ESIC Medical College, Faridabad, Haryana, 121001, India
| | | | - Upendra Bhatnagar
- Vimta Laboratories, Cherlapally, Hyderabad, Telangana, 500051, India
| | - Sanjay Singh
- Gennova Biopharmaceuticals, Hinjewadi Phase II, Pune, Maharashtra, 411057, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | |
Collapse
|
3
|
Al Khoury C, Thoumi S, Tokajian S, Sinno A, Nemer G, El Beyrouthy M, Rahy K. ABC transporter inhibition by beauvericin partially overcomes drug resistance in Leishmania tropica. Antimicrob Agents Chemother 2024; 68:e0136823. [PMID: 38572959 PMCID: PMC11064568 DOI: 10.1128/aac.01368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sergio Thoumi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Aia Sinno
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Mark El Beyrouthy
- Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Kelven Rahy
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
4
|
Niroumand U, Motazedian MH, Ahmadi F, Asgari Q, Bahreini MS, Ghasemiyeh P, Mohammadi-Samani S. Preparation and characterization of artemether-loaded niosomes in Leishmania major-induced cutaneous leishmaniasis. Sci Rep 2024; 14:10073. [PMID: 38698123 PMCID: PMC11065877 DOI: 10.1038/s41598-024-60883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Qasem Asgari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz-Marvdasht Hwy, Karafarin St, Shiraz, 71468 64685, Fars, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Paul A, Roy PK, Babu NK, Singh S. Clotrimazole causes membrane depolarization and induces sub G 0 cell cycle arrest in Leishmania donovani. Acta Trop 2024; 252:107139. [PMID: 38307362 DOI: 10.1016/j.actatropica.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 μM, 12.75 ± 0.35 μM and 73 ± 1.41 μM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
6
|
Melcón-Fernández E, Galli G, Balaña-Fouce R, García-Fernández N, Martínez-Valladares M, Reguera RM, García-Estrada C, Pérez-Pertejo Y. In Vitro and Ex Vivo Synergistic Effect of Pyrvinium Pamoate Combined with Miltefosine and Paromomycin against Leishmania. Trop Med Infect Dis 2024; 9:30. [PMID: 38393119 PMCID: PMC10891607 DOI: 10.3390/tropicalmed9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
One of the major drawbacks of current treatments for neglected tropical diseases is the low safety of the drugs used and the emergence of resistance. Leishmaniasis is a group of neglected diseases caused by protozoa of the trypanosomatidae family that lacks preventive vaccines and whose pharmacological treatments are scarce and unsafe. Combination therapy is a strategy that could solve the above-mentioned problems, due to the participation of several mechanisms of action and the reduction in the amount of drug necessary to obtain the therapeutic effect. In addition, this approach also increases the odds of finding an effective drug following the repurposing strategy. From the previous screening of two collections of repositioning drugs, we found that pyrvinium pamoate had a potent leishmanicidal effect. For this reason, we decided to combine it separately with two clinically used leishmanicidal drugs, miltefosine and paromomycin. These combinations were tested in axenic amastigotes of Leishmania infantum obtained from bone marrow cells and in intramacrophagic amastigotes obtained from primary cultures of splenic cells, both cell types coming from experimentally infected mice. Some of the combinations showed synergistic behavior, especially in the case of the combination of pyrvinium pamoate with paromomycin, and exhibited low cytotoxicity and good tolerability on intestinal murine organoids, which reveal the potential of these combinations for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Estela Melcón-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | - Giulio Galli
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | | | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| |
Collapse
|
7
|
Santos GDA, Sousa JM, de Aguiar AHBM, Torres KCS, Coelho AJS, Ferreira AL, Lima MIS. Systematic Review of Treatment Failure and Clinical Relapses in Leishmaniasis from a Multifactorial Perspective: Clinical Aspects, Factors Associated with the Parasite and Host. Trop Med Infect Dis 2023; 8:430. [PMID: 37755891 PMCID: PMC10534360 DOI: 10.3390/tropicalmed8090430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Leishmaniasis is a disease caused by protozoa of the genus Leishmania. Treatment options are limited, and there are frequent cases of treatment failure and clinical relapse. To understand these phenomena better, a systematic review was conducted, considering studies published between 1990 and 2021 in Portuguese, English, and Spanish. The review included 64 articles divided into three categories. Case reports (26 articles) focused on treatment failure and clinical relapse in cutaneous leishmaniasis patients (47.6%), primarily affecting males (74%) and children (67%), regardless of the clinical manifestation. Experimental studies on the parasite (19 articles), particularly with L. major (25%), indicated that alterations in DNA and genic expression (44.82%) played a significant role in treatment failure and clinical relapse. Population data on the human host (19 articles) identified immunological characteristics as the most associated factor (36%) with treatment failure and clinical relapse. Each clinical manifestation of the disease presented specificities in these phenomena, suggesting a multifactorial nature. Additionally, the parasites were found to adapt to the drugs used in treatment. In summary, the systematic review revealed that treatment failure and clinical relapse in leishmaniasis are complex processes influenced by various factors, including host immunology and parasite adaptation.
Collapse
Affiliation(s)
- Gustavo de Almeida Santos
- Postgraduate Program in Health and Environment, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil;
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Juliana Mendes Sousa
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Antônio Henrique Braga Martins de Aguiar
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Karina Cristina Silva Torres
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
- Postgraduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Ana Jessica Sousa Coelho
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
- Postgraduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - André Leite Ferreira
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
| | - Mayara Ingrid Sousa Lima
- Postgraduate Program in Health and Environment, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil;
- Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.M.S.); (A.H.B.M.d.A.); (K.C.S.T.); (A.J.S.C.); (A.L.F.)
- Postgraduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| |
Collapse
|
8
|
Gizzarelli M, Foglia Manzillo V, Inglese A, Montagnaro S, Oliva G. Retrospective Long-Term Evaluation of Miltefosine-Allopurinol Treatment in Canine Leishmaniosis. Pathogens 2023; 12:864. [PMID: 37513711 PMCID: PMC10384837 DOI: 10.3390/pathogens12070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Miltefosine-Allopurinol (MIL-AL) combination is reported to be one of the most effective treatments for canine leishmaniosis, thanks to its oral administration and MIL-documented low impact on renal function. However, MIL-AL is considered a second-choice treatment when compared to meglumine-antimoniate-allopurinol combination, mainly due to the risk of earlier relapses. The aim of this study was to evaluate the efficacy of the MIL-AL protocol during a long-term follow-up with an average duration of nine years. Dogs were living in Southern Italy (Puglia, Italy) in an area considered endemic for Canine leishmaniosis (CanL). Inclusion criteria were clinical and/or clinicopathological signs consistent with CanL; positive result to Leishmania quantitative ELISA; and negativity to the most frequent canine vector-borne infections. All dogs received 2 mg/kg MIL for 28 days, and 10 mg/kg AL, BID, for a period varying between 2 and 12 months. Ancillary treatments were allowed according to the clinical condition of the dog. A total clinical score and a total clinicopathological score were calculated at each time point by attributing one point to each sign or alteration present and then by adding all points. Improvement after each treatment was defined by the reduction of at least 50% of the total score. A survival analysis (Kaplan-Meier curve) was performed for quantifying the probability of the events occurring during the study follow-up. The following events were considered: decreased and negative ELISA results; improvement/recovery of the clinical and clinicopathological alterations; and relapse of leishmaniasis. One hundred seventy-three dogs (75f and 98m) were retrospectively included in the study by examining their clinical records since the first diagnosis of CanL. One hundred forty-three (83%) dogs were under five years of age. The mean duration of the follow-up period was 5.4 (±1.1) years with a minimum of 3.2 years and a maximum of 9 years. All dogs received a first treatment of MIL-AL at inclusion; then, during the follow-up course, 30 dogs required a second treatment, 2 dogs required a third treatment and 1 dog required a fourth and a fifth treatment. The mean time interval between the first and the second treatment was 27.2 (±18.3) months. After the first treatment, all dogs had decreased ELISA levels, in an average interval of 2.6 (±1.6) months. One hundred seventy dogs (98%) experienced a clinical improvement (mean time 3.0 ± 4.9 months); 152 (88%) dogs were considered clinically recovered after a mean time of 16.7 ± 13.5 months. A similar trend was observed for clinicopathological alterations; interestingly, proteinuria decreased in most dogs (p < 0.0001-Chi-square for trends). Thirty dogs experienced relapses, the earliest after 4.8 months. The mean time without relapse was 90.4 (±2.5) months. In relapsed dogs, the mean time for clinical improvement after the second treatment was 8.6 (±12.6) months, whereas it was 11.0 (±15.4) months for clinicopathological alterations. Five dogs had limited gastrointestinal side effects associated with MIL treatment. The present study confirms that the MIL-AL protocol can be considered one of the most effective treatments for CanL therapy, mainly for its capacity to provide a long-time clinical improvement in a large majority of treated dogs. As reported in the literature, the clinical stabilization of dogs does not occur immediately after treatment, probably due to the particular pharmacokinetic properties of MIL. The efficacy of MIL-AL decreases in dogs that need more than one treatment, suggesting the necessity to alternate anti-Leishmania drugs for the treatment of relapses. Side effects were transient and slight, even in dogs that required several treatments.
Collapse
Affiliation(s)
- Manuela Gizzarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Valentina Foglia Manzillo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Antonio Inglese
- Ambulatorio Veterinario Dr. Antonio Inglese, 74023 Grottaglie, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Gaetano Oliva
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
9
|
Singh R, Kashif M, Srivastava P, Manna PP. Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens 2023; 12:pathogens12050706. [PMID: 37242374 DOI: 10.3390/pathogens12050706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen called Leishmania, is transmitted through dipteran insect vectors (phlebotomine, sand flies) in three main clinical forms: fatal visceral leishmaniasis, self-healing cutaneous leishmaniasis, and mucocutaneous leishmaniasis. Generic pentavalent antimonials have long been the drug of choice against leishmaniasis; however, their success is plagued with limitations such as drug resistance and severe side effects, which makes them redundant as frontline therapy for endemic visceral leishmaniasis. Alternative therapeutic regimens based on amphotericin B, miltefosine, and paromomycin have also been approved. Due to the unavailability of human vaccines, first-line chemotherapies such as pentavalent antimonials, pentamidine, and amphotericin B are the only options to treat infected individuals. The higher toxicity, adverse effects, and perceived cost of these pharmaceutics, coupled with the emergence of parasite resistance and disease relapse, makes it urgent to identify new, rationalized drug targets for the improvement in disease management and palliative care for patients. This has become an emergent need and more relevant due to the lack of information on validated molecular resistance markers for the monitoring and surveillance of changes in drug sensitivity and resistance. The present study reviewed the recent advances in chemotherapeutic regimens by targeting novel drugs using several strategies including bioinformatics to gain new insight into leishmaniasis. Leishmania has unique enzymes and biochemical pathways that are distinct from those of its mammalian hosts. In light of the limited number of available antileishmanial drugs, the identification of novel drug targets and studying the molecular and cellular aspects of these drugs in the parasite and its host is critical to design specific inhibitors targeting and controlling the parasite. The biochemical characterization of unique Leishmania-specific enzymes can be used as tools to read through possible drug targets. In this review, we discuss relevant metabolic pathways and novel drugs that are unique, essential, and linked to the survival of the parasite based on bioinformatics and cellular and biochemical analyses.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mohammad Kashif
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
10
|
Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms 2023; 11:microorganisms11010228. [PMID: 36677520 PMCID: PMC9860978 DOI: 10.3390/microorganisms11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite's basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies.
Collapse
|
11
|
Carnielli JB, Dave A, Romano A, Forrester S, de Faria PR, Monti-Rocha R, Costa CH, Dietze R, Graham IA, Mottram JC. 3'Nucleotidase/nuclease is required for Leishmania infantum clinical isolate susceptibility to miltefosine. EBioMedicine 2022; 86:104378. [PMID: 36462405 PMCID: PMC9713291 DOI: 10.1016/j.ebiom.2022.104378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Miltefosine treatment failure in visceral leishmaniasis in Brazil has been associated with deletion of the miltefosine susceptibility locus (MSL) in Leishmania infantum. The MSL comprises four genes, 3'-nucleotidase/nucleases (NUC1 and NUC2); helicase-like protein (HLP); and 3,2-trans-enoyl-CoA isomerase (TEI). METHODS In this study CRISPR-Cas9 was used to either epitope tag or delete NUC1, NUC2, HLP and TEI, to investigate their role in miltefosine resistance mechanisms. Additionally, miltefosine transporter genes and miltefosine-mediated reactive oxygen species homeostasis were assessed in 26 L. infantum clinical isolates. A comparative lipidomic analysis was also performed to investigate the molecular basis of miltefosine resistance. FINDINGS Deletion of both NUC1, NUC2 from the MSL was associated with a significant decrease in miltefosine susceptibility, which was restored after re-expression. Metabolomic analysis of parasites lacking the MSL or NUC1 and NUC2 identified an increase in the parasite lipid content, including ergosterol; these lipids may contribute to miltefosine resistance by binding the drug in the membrane. Parasites lacking the MSL are more resistant to lipid metabolism perturbation caused by miltefosine and NUC1 and NUC2 are involved in this pathway. Additionally, L. infantum parasites lacking the MSL isolated from patients who relapsed after miltefosine treatment were found to modulate nitric oxide accumulation in host macrophages. INTERPRETATION Altogether, these data indicate that multifactorial mechanisms are involved in natural resistance to miltefosine in L. infantum and that the absence of the 3'nucleotidase/nuclease genes NUC1 and NUC2 contributes to the phenotype. FUNDING MRC GCRF and FAPES.
Collapse
Affiliation(s)
- Juliana B.T. Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom,Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil,Corresponding author. York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way Heslington, York, YO10 5DD, United Kingdom.
| | - Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, United Kingdom
| | - Audrey Romano
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Sarah Forrester
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro R. de Faria
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil
| | - Renata Monti-Rocha
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil
| | - Carlos H.N. Costa
- Laboratório de Pesquisas em Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Reynaldo Dietze
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil,Global Health & Tropical Medicine—Instituto de Higiene e Medicina Tropical—Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, United Kingdom
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom,Corresponding author. York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way Heslington, York, YO10 5DD, United Kingdom.
| |
Collapse
|
12
|
Jayaraman A, Srinivasan S, Kar A, Harish B, Charan Raja MR, Uppuluri KB, Kar Mahapatra S. Oceanimonas sp. BPMS22-derived protein protease inhibitor induces anti-leishmanial immune responses through macrophage M2 to M1 repolarization. Int Immunopharmacol 2022; 112:109281. [DOI: 10.1016/j.intimp.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
|
13
|
Ghosh S, Kumar V, Verma A, Sharma T, Pradhan D, Selvapandiyan A, Salotra P, Singh R. Genome-wide analysis reveals allelic variation and chromosome copy number variation in paromomycin-resistant Leishmania donovani. Parasitol Res 2022; 121:3121-3132. [PMID: 36056959 DOI: 10.1007/s00436-022-07645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
In the absence of adequate diagnosis and treatment, leishmaniasis remains a major public health concern on a global scale. Drug resistance remains a key obstacle in controlling and eliminating visceral leishmaniasis. The therapeutic gap due to lack of target-specific medicine and vaccine can be minimized by obtaining parasite's genomic information. This study compared whole-genome sequence of paromomycin-resistant parasite (K133PMM) developed through in vitro adaptation and selection with sensitive Leishmania clinical isolate (K133WT). We found a large number of upstream and intergenic gene variations in K133PMM. There were 259 single nucleotide polymorphisms (SNPs), 187 insertion-deletion (InDels), and 546 copy number variations (CNVs) identified. Most of the genomic variations were found in the gene's upstream and non-coding regions. Ploidy estimation revealed chromosome 5 in tetrasomy and 6, 9, and 12 in trisomy, uniquely in K133PMM. These contain the genes for protein degradation, parasite motility, autophagy, cell cycle maintenance, and drug efflux membrane transporters. Furthermore, we also observed reduction in ploidy of chromosomes 15, 20, and 23, in the resistant parasite containing mostly the genes for hypothetical proteins and membrane transporters. We chronicled correlated genomic conversion and aneuploidy in parasites and hypothesize that this led to rapid evolutionary changes in response to drug induced pressure, which causes them to become resistant.
Collapse
Affiliation(s)
- Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Vinay Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Tanya Sharma
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | | | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
14
|
Mukherjee N, Banerjee S, Amin SA, Jha T, Datta S, Das Saha K. Host P2X 7R-p 38MAPK axis mediated intra-macrophage leishmanicidal activity of Spergulin-A. Exp Parasitol 2022; 241:108365. [PMID: 36007587 DOI: 10.1016/j.exppara.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
Current drugs are inefficient for the treatment of visceral leishmaniasis an immunosuppressive ailment caused by Leishmania donovani. Regrettably, there is no plant-origin antileishmanial drug present. P2X7R is constitutively present on macrophage surfaces and can be a putative therapeutic target in intra-macrophage pathogens with function attributes towards inflammation, host cell apoptosis, altered redox, and phagolysosomal maturation by activating p38MAPK. Here we demonstrated that the initial interaction of Spergulin-A (Sp A), a triterpenoid saponin with RAW 264.7 macrophages was mediated through P2X7R involving the signaling cascade intermediates Ca++, p38MAPK, and NF-κβ. Phospho (P)-p38MAPK involvement is shown to have specific and firm importance in leishmanial killing with increased NF-κβp65. Phago-lysosomal maturation by Sp A also campaigns for another contribution of P2X7R. In vivo evaluation of the anti-leishmanial activity of Sp A was monitored through expression analyses of P2X7R, P-p38MAPK, and NF-κβp65 in murine spleen and bone-marrow macrophages and supported Sp A being a natural compound of leishmanicidal functions which acted through the P2X7R-p38MAPK axis.
Collapse
Affiliation(s)
- Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India; Techno India University, EM-4, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
15
|
Kannigadu C, Aucamp J, N'Da DD. Exploring novel nitrofuranyl sulfonohydrazides as anti-Leishmania and anti-cancer agents: Synthesis, in vitro efficacy and hit identification. Chem Biol Drug Des 2022; 100:267-279. [PMID: 35648075 PMCID: PMC9546217 DOI: 10.1111/cbdd.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/06/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Leishmaniasis and cancer are two deadly diseases that plague the human population. There are a limited number of drugs available for the treatment of these diseases; however, their overuse has resulted in pathogenic resistance. Recent studies have indicated the repurposing of nitro‐containing compounds to be a new avenue into finding new treatments. In this study, new nitrofuranyl sulfonohydrazide derivatives were synthesized and evaluated for their in vitro antileishmanial and anticancer activities. The analogue 2h, featuring biphenyl moiety exhibited selective (SI > 10) submicromolar activity (IC50 0.97 μM) against acute promyelocytic leukemia cells hence was identified anticancer hit. This study revealed no antileishmanial hit. However, several promising analogues were uncovered and are worthy of further structural modifications to improve their toxicity and bioactivity profiles.
Collapse
Affiliation(s)
- Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
16
|
Zuma NH, Aucamp J, Viljoen M, N'Da DD. Synthesis, in vitro Antileishmanial Efficacy and Hit/Lead Identification of Nitrofurantoin-Triazole Hybrids. ChemMedChem 2022; 17:e202200023. [PMID: 35388649 PMCID: PMC9322565 DOI: 10.1002/cmdc.202200023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/04/2022] [Indexed: 11/09/2022]
Abstract
Leishmaniasis is a vector-borne neglected parasitic infection affecting thousands of individuals, mostly among populations in low- to moderate-income developing countries. In the absence of protective vaccines, the management of the disease banks solely on chemotherapy. However, the clinical usefulness of current antileishmanial drugs is threatened by their toxicity and the emergence of multidrug-resistant strains of the causative pathogens. This emphasizes the imperative for the development of new and effective antileishmanial agents. In this regard, we synthesized and evaluated in vitro the antileishmanial activity and cytotoxicity profile of a series of nitrofurantoin-triazole hybrids. The nitrofurantoin derivative 1 featuring propargyl moiety was distinctively the most active of all, was nontoxic to human cells and possessed submicromolar cellular activity selectively directed towards the pathogens of the life threatening visceral leishmaniasis. Hence it was identified as potential antileishmanial lead for further investigation into its prospective to act as alternative to therapies.
Collapse
Affiliation(s)
- Nonkululeko H. Zuma
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen)Faculty of Health SciencesNorth-West University11 Hoffmann StreetPotchefstroom2520South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen)Faculty of Health SciencesNorth-West University11 Hoffmann StreetPotchefstroom2520South Africa
| | - Maryna Viljoen
- School of Pharmacy, Faculty of Health SciencesNorth-West University11 Hoffmann StreetPotchefstroom2520South Africa
| | - David D. N'Da
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen)Faculty of Health SciencesNorth-West University11 Hoffmann StreetPotchefstroom2520South Africa
| |
Collapse
|
17
|
Wijnant GJ, Dumetz F, Dirkx L, Bulté D, Cuypers B, Van Bocxlaer K, Hendrickx S. Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.837460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a tropical infectious disease caused by the protozoan Leishmania parasite. The disease is transmitted by female sand flies and, depending on the infecting parasite species, causes either cutaneous (stigmatizing skin lesions), mucocutaneous (destruction of mucous membranes of nose, mouth and throat) or visceral disease (a potentially fatal infection of liver, spleen and bone marrow). Although more than 1 million new cases occur annually, chemotherapeutic options are limited and their efficacy is jeopardized by increasing treatment failure rates and growing drug resistance. To delay the emergence of resistance to existing and new drugs, elucidating the currently unknown causes of variable drug efficacy (related to parasite susceptibility, host immunity and drug pharmacokinetics) and improved use of genotypic and phenotypic tools to define, measure and monitor resistance in the field are critical. This review highlights recent progress in our understanding of drug action and resistance in Leishmania, ongoing challenges (including setbacks related to the COVID-19 pandemic) and provides an overview of possible strategies to tackle this public health challenge.
Collapse
|
18
|
The Leishmania donovani Ortholog of the Glycosylphosphatidylinositol Anchor Biosynthesis Cofactor PBN1 Is Essential for Host Infection. mBio 2022; 13:e0043322. [PMID: 35420475 PMCID: PMC9239262 DOI: 10.1128/mbio.00433-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Visceral leishmaniasis is a deadly infectious disease caused by Leishmania donovani, a kinetoplastid parasite for which no licensed vaccine is available. To identify potential vaccine candidates, we systematically identified genes encoding putative cell surface and secreted proteins essential for parasite viability and host infection. We identified a protein encoded by LdBPK_061160 which, when ablated, resulted in a remarkable increase in parasite adhesion to tissue culture flasks. Here, we show that this phenotype is caused by the loss of glycosylphosphatidylinositol (GPI)-anchored surface molecules and that LdBPK_061160 encodes a noncatalytic component of the L. donovani GPI-mannosyltransferase I (GPI-MT I) complex. GPI-anchored surface molecules were rescued in the LdBPK_061160 mutant by the ectopic expression of both human genes PIG-X and PIG-M, but neither gene could complement the phenotype alone. From further sequence comparisons, we conclude that LdBPK_061160 is the functional orthologue of yeast PBN1 and mammalian PIG-X, which encode the noncatalytic subunits of their respective GPI-MT I complexes, and we assign LdBPK_061160 as LdPBN1. The LdPBN1 mutants could not establish a visceral infection in mice, a phenotype that was rescued by constitutive expression of LdPBN1. Although mice infected with the null mutant did not develop an infection, exposure to these parasites provided significant protection against subsequent infection with a virulent strain. In summary, we have identified the orthologue of the PBN1/PIG-X noncatalytic subunit of GPI-MT I in trypanosomatids, shown that it is essential for infection in a murine model of visceral leishmaniasis, and demonstrated that the LdPBN1 mutant shows promise for the development of an attenuated live vaccine.
Collapse
|
19
|
In-Depth Quantitative Proteomics Characterization of In Vitro Selected Miltefosine Resistance in Leishmania infantum. Proteomes 2022; 10:proteomes10020010. [PMID: 35466238 PMCID: PMC9036279 DOI: 10.3390/proteomes10020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although significant morbidity and mortality in tropical and subtropical regions of the world are associated with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance and treatment failure are increasing for the main medications, but the emergence of resistance phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance emergence was ~six months and label-free quantitative mass-spectrometry-based proteomics analyses revealed that this process involves a remodeling of components of the membrane and mitochondrion, with significant increase in oxidative phosphorylation complexes, particularly on complex IV and ATP synthase, accompanied by increased energy metabolism mainly dependent on β-oxidation of fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore, changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC transporters and phospholipid transport ATPase were detected. Together, our data show a more complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum.
Collapse
|
20
|
Roberts AJ, Ong HB, Clare S, Brandt C, Harcourt K, Franssen SU, Cotton JA, Müller-Sienerth N, Wright GJ. Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLoS Pathog 2022; 18:e1010364. [PMID: 35202447 PMCID: PMC8903277 DOI: 10.1371/journal.ppat.1010364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease. Leishmaniasis is a parasitic infectious disease that is responsible for many tens of thousands of human deaths per year, primarily in impoverished parts of the world. Although there are drugs to treat this parasite infection, resistance is emerging and there are no approved human vaccines. Extracellular parasite proteins can make good vaccine targets because they are directly accessible to host antibodies; however, not all parasite surface proteins can elicit protective immune responses. With the goal of identifying new vaccine targets, we selected over 90 genes that encode parasite cell surface and secreted proteins and used the latest CRISPR gene editing technology to individually target them. Using these mutant parasites, we identified four genes required for parasite growth in the laboratory. We expressed two of the proteins as subunit vaccines and a preclinical infection model was used to determine if they could elicit protective immune responses. We found that two of our candidates were able to confer significant levels of protection in a murine model of visceral leishmaniasis. Our study will contribute to the search for a highly effective vaccine against visceral leishmaniasis to improve the lives of people living in some of the poorest regions on the planet.
Collapse
Affiliation(s)
- Adam J. Roberts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Han B. Ong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Simon Clare
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cordelia Brandt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Katherine Harcourt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susanne U. Franssen
- Parasite Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - James A. Cotton
- Parasite Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nicole Müller-Sienerth
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Sirak B, Asres K, Hailu A, Dube M, Arnold N, Häberli C, Keiser J, Imming P. In Vitro Antileishmanial and Antischistosomal Activities of Anemonin Isolated from the Fresh Leaves of Ranunculus multifidus Forsk. Molecules 2021; 26:molecules26247473. [PMID: 34946555 PMCID: PMC8703683 DOI: 10.3390/molecules26247473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis and schistosomiasis are neglected tropical diseases (NTDs) infecting the world’s poorest populations. Effectiveness of the current antileishmanial and antischistosomal therapies are significantly declining, which calls for an urgent need of new effective and safe drugs. In Ethiopia fresh leaves of Ranunculus multifidus Forsk. are traditionally used for the treatment of various ailments including leishmaniasis and eradication of intestinal worms. In the current study, anemonin isolated from the fresh leaves of R. multifidus was assessed for its in vitro antileishmanial and antischistosomal activities. Anemonin was isolated from the hydro-distilled extract of the leaves of R. multifidus. Antileishmanial activity was assessed on clinical isolates of the promastigote and amastigote forms of Leishmania aethiopica and L. donovani clinical isolates. Resazurin reduction assay was used to determine antipromastigote activity, while macrophages were employed for antiamastigote and cytotoxicity assays. Antischistosomal assays were performed against adult Schistosoma mansoni and newly transformed schistosomules (NTS). Anemonin displayed significant antileishmanial activity with IC50 values of 1.33 nM and 1.58 nM against promastigotes and 1.24 nM and 1.91 nM against amastigotes of L. aethiopica and L. donovani, respectively. It also showed moderate activity against adult S. mansoni and NTS (49% activity against adult S. mansoni at 10 µM and 41% activity against NTS at 1 µM). The results obtained in this investigation indicate that anemonin has the potential to be used as a template for designing novel antileishmanial and antischistosomal pharmacophores.
Collapse
Affiliation(s)
- Betelhem Sirak
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
- Department of Pharmacy, College of Medicine and Health Sciences, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
- Correspondence: (K.A.); (P.I.)
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
| | - Mthandazo Dube
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany; (M.D.); (N.A.)
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany; (M.D.); (N.A.)
| | - Cecile Häberli
- Swiss Tropical and Public Health Institute, Socinstr. 57, CH-4051 Basel, Switzerland; (C.H.); (J.K.)
- University of Basel, CH-4051 Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstr. 57, CH-4051 Basel, Switzerland; (C.H.); (J.K.)
- University of Basel, CH-4051 Basel, Switzerland
| | - Peter Imming
- Institut fuer Pharmazie, Martin-Luther-Universitaet Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Correspondence: (K.A.); (P.I.)
| |
Collapse
|
22
|
Gonçalves G, Campos MP, Gonçalves AS, Medeiros LCS, Figueiredo FB. Increased Leishmania infantum resistance to miltefosine and amphotericin B after treatment of a dog with miltefosine and allopurinol. Parasit Vectors 2021; 14:599. [PMID: 34886876 PMCID: PMC8656069 DOI: 10.1186/s13071-021-05100-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023] Open
Abstract
Background Leishmania infantum is the most important etiological agent of visceral leishmaniasis in the Americas and Mediterranean region, and the dog is the main host. Miltefosine was authorized to treat canine leishmaniasis (CanL) in Brazil in 2017, but there is a persistent fear of the emergence of parasites resistant not only to this drug but, through cross-resistance mechanisms, also to meglumine antimoniate and amphotericin B. Additionally, the literature shows that acquisition of resistance is followed by increased parasite fitness, with higher rates of proliferation, infectivity and metacyclogenesis, which are drivers of parasite virulence. In this context, the aim of this study was to analyze the impact of treating a dog with miltefosine and allopurinol on the generation of parasites resistant to miltefosine, amphotericin B and meglumine antimoniate. Methods In vitro susceptibility tests were conducted against miltefosine, amphotericin B and meglumine antimoniate with T0 (parasites isolated from a dog before treatment with miltefosine plus allopurinol), T1 (after 1 course of treatment) and T2 (after 2 courses of treatment) isolates. The rates of cell proliferation, infectivity and metacyclogenesis of the isolates were also evaluated. Results The results indicate a gradual increase in parasite resistance to miltefosine and amphotericin B with increasing the number of treatment courses. An increasing trend in the metacyclogenesis rate of the parasites was also observed as drug resistance increased. Conclusion The data indicates an increased L. infantum resistance to miltefosine and amphotericin B after the treatment of a dog with miltefosine plus allopurinol. Further studies with a larger number of L. infantum strains isolated from dogs with varied immune response profiles and undergoing different treatment regimes, are advocated. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Gustavo Gonçalves
- Cell Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, 81310-020, Brazil.
| | - Monique Paiva Campos
- Cell Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, 81310-020, Brazil
| | | | - Lia Carolina Soares Medeiros
- Cell Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, 81310-020, Brazil
| | - Fabiano Borges Figueiredo
- Cell Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, 81310-020, Brazil
| |
Collapse
|
23
|
Olías-Molero AI, de la Fuente C, Cuquerella M, Torrado JJ, Alunda JM. Antileishmanial Drug Discovery and Development: Time to Reset the Model? Microorganisms 2021; 9:2500. [PMID: 34946102 PMCID: PMC8703564 DOI: 10.3390/microorganisms9122500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species. The disease affects humans and animals, particularly dogs, provoking cutaneous, mucocutaneous, or visceral processes depending on the Leishmania sp. and the host immune response. No vaccine for humans is available, and the control relies mainly on chemotherapy. However, currently used drugs are old, some are toxic, and the safer presentations are largely unaffordable by the most severely affected human populations. Moreover, its efficacy has shortcomings, and it has been challenged by the growing reports of resistance and therapeutic failure. This manuscript presents an overview of the currently used drugs, the prevailing model to develop new antileishmanial drugs and its low efficiency, and the impact of deconstruction of the drug pipeline on the high failure rate of potential drugs. To improve the predictive value of preclinical research in the chemotherapy of leishmaniasis, several proposals are presented to circumvent critical hurdles-namely, lack of common goals of collaborative research, particularly in public-private partnership; fragmented efforts; use of inadequate surrogate models, especially for in vivo trials; shortcomings of target product profile (TPP) guides.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Concepción de la Fuente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Montserrat Cuquerella
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - José M. Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| |
Collapse
|
24
|
DA Costa Neto JJ, Neves Martins C, Santos Março K, Furlan Paz B, Paz Monteiro G, Torres DE Melo R, Dantas Mota FC, Alves AE. NOTETongue nodules in an atypical canine leishmaniasis in Brazil. J Vet Med Sci 2021; 83:1549-1553. [PMID: 34393149 PMCID: PMC8569869 DOI: 10.1292/jvms.21-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to report a case of canine leishmaniasis with the only visible clinical sign
being the presence of nodules in the lateral region of the tongue. The bitch was treated
for a mandibular fracture, when multiple small nodules were observed on the tongue. We
identify nodular glossitis with the presence of structures compatible with amastigote
forms of Leishmania. The bitch was positive by ELISA, RIFI and PCR
assays. Clinical re-evaluation after one year of treatment for leishmaniasis showed
clinical improvement, but there was maintenance of antibody titers and infectivity.
Lingual nodules as the only clinical sign of the disease is rare, especially in endemic
areas, but should be included as differential diagnosis for leishmaniasis in the
country.
Collapse
Affiliation(s)
- João José DA Costa Neto
- Uniprofessional Residency Program in Veterinary Medicine; Faculty of Veterinary Medicine, Federal University of Uberlândia
| | - Camila Neves Martins
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia
| | - Karen Santos Março
- Postgraduate in Specialization in Small Animal Medical Clinic, Equalis-Higher Education and Qualification
| | - Beatriz Furlan Paz
- Uniprofessional Residency Program in Veterinary Medicine; Faculty of Veterinary Medicine, Federal University of Uberlândia
| | - Guilherme Paz Monteiro
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia
| | - Roberta Torres DE Melo
- Professor, Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia
| | - Francisco Cláudio Dantas Mota
- Professor, Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia
| | - Aracelle Elisane Alves
- Professor, Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia
| |
Collapse
|
25
|
Bulté D, Van Bockstal L, Dirkx L, Van den Kerkhof M, De Trez C, Timmermans JP, Hendrickx S, Maes L, Caljon G. Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition. PLoS Negl Trop Dis 2021; 15:e0009622. [PMID: 34292975 PMCID: PMC8330912 DOI: 10.1371/journal.pntd.0009622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/03/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background Miltefosine (MIL) is currently the only oral drug available to treat visceral leishmaniasis but its use as first-line monotherapy has been compromised by an increasing treatment failure. Despite the scarce number of resistant clinical isolates, MIL-resistance by mutations in a single aminophospholipid transporter gene can easily be selected in a laboratory environment. These mutations result in a reduced survival in the mammalian host, which can partially be restored by exposure to MIL, suggesting a kind of drug-dependency. Methodology/Principal findings To enable a combined study of the infection dynamics and underlying immunological events for differential in vivo survival, firefly luciferase (PpyRE9) / red fluorescent protein (DsRed) double-reporter strains were generated of MIL-resistant (MIL-R) and syngeneic MIL-sensitive (MIL-S) Leishmania infantum. Results in C57Bl/6 and BALB/c mice show that MIL-R parasites induce an increased innate immune response that is characterized by enhanced influx and infection of neutrophils, monocytes and dendritic cells in the liver and elevated serum IFN-γ levels, finally resulting in a less efficient establishment in liver macrophages. The elevated IFN-γ levels were shown to originate from an increased response of hepatic NK and NKT cells to the MIL-R parasites. In addition, we demonstrated that MIL could increase the in vivo fitness of MIL-R parasites by lowering NK and NKT cell activation, leading to a reduced IFN-γ production. Conclusions/Significance Differential induction of innate immune responses in the liver was found to underlie the attenuated phenotype of a MIL-R parasite and its peculiar feature of drug-dependency. The impact of MIL on hepatic NK and NKT activation and IFN-γ production following recognition of a MIL-R strain indicates that this mechanism may sustain infections with resistant parasites and contribute to treatment failure. Visceral leishmaniasis is a neglected tropical disease that is fatal if left untreated. Miltefosine is currently the only oral drug available but is increasingly failing to cure patients, resulting in its discontinuation as first-line drug in some endemic areas. To understand these treatment failures, we investigated the complex interplay of the parasite with the host immune system in the presence and absence of miltefosine. Our data indicate that miltefosine-resistant Leishmania parasites become severely hampered in their in vivo infectivity, which could be attributed to the induction of a pronounced innate immune response. Interestingly, the infection deficit was partially restored in the presence of miltefosine. Our results further indicate that miltefosine can exacerbate infections with resistant parasites by reducing innate immune recognition. This study provides new insights into the complex interplay between parasite, drug and host and discloses an immune-related mechanism of treatment failure.
Collapse
Affiliation(s)
- Dimitri Bulté
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Laura Dirkx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Magali Van den Kerkhof
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Carl De Trez
- Vrije Universiteit Brussel, Laboratory for Cellular and Molecular Immunology (CMIM), Brussels, Belgium
| | - Jean-Pierre Timmermans
- University of Antwerp, Department of Veterinary Sciences, Laboratory of Cell biology & Histology, Wilrijk, Belgium
| | - Sarah Hendrickx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Louis Maes
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Guy Caljon
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
26
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
27
|
Effect of Itraconazole-Ezetimibe-Miltefosine Ternary Therapy in Murine Visceral Leishmaniasis. Antimicrob Agents Chemother 2021; 65:AAC.02676-20. [PMID: 33619058 PMCID: PMC8092893 DOI: 10.1128/aac.02676-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug combination therapy is an interesting approach to increase the success of drug repurposing for neglected diseases. Thus, the objective of this work was to evaluate binary and ternary therapies composed of itraconazole, ezetimibe and miltefosine for the treatment of visceral leishmaniasis. Intracellular Leishmania infantum amastigotes were incubated with the drugs alone or in combination for 72 h. For in vivo experiments, we tested a long-course (21 days, once per day) and a short-course treatment (5 days, twice per day) for the binary combination with itraconazole and ezetimibe. For the ternary therapy including miltefosine, we adopted the short-course treatment and varied the vehicle. None of the combinations were toxic to macrophages. Binary combination of itraconazole plus ezetimibe and ternary combination of itraconazole, ezetimibe and miltefosine had synergistic effects in intracellular amastigotes, in some of the proportions evaluated. Although the in vivo long-course therapy had been more effective than the short-course protocol, it showed hepatic toxicity signs. Ezetimibe has proven to be able to reduce the parasite burden alone or in combination. Both suspensions of the ternary combination were active, but when the drugs were suspended in the commercial ORA-Plus formulation instead of purified water, the parasite burden was reduced by 98% in the liver and spleen. Altogether, the results demonstrate for the first time the activity of ezetimibe in a viscerotropic species of Leishmania and indicate that ternary treatment composed of miltefosine, itraconazole, and ezetimibe at low doses is a promising therapeutic alternative for the treatment of visceral leishmaniasis.
Collapse
|
28
|
Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio 2021; 12:mBio.00129-21. [PMID: 33824211 PMCID: PMC8092208 DOI: 10.1128/mbio.00129-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure.IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.
Collapse
|
29
|
Abstract
Purpose of Review The goal of this review is to summarize the current knowledge of the epidemiology, clinical manifestations, diagnosis, and treatment of cutaneous, mucosal, and visceral leishmaniasis. We will describe the most recent findings and suggest areas of further research in the leishmaniasis field. Recent Findings This article reviews newer leishmaniasis tests (including rapid diagnostic tests using rK39 antibodies), vaccine candidates, and updated treatment recommendations. Summary While leishmaniasis is a complex disease, learning the prominent clinical manifestations and major parasite species can guide the recommendations for diagnosis and treatment.
Collapse
|
30
|
Mangwegape DK, Zuma NH, Aucamp J, N'Da DD. Synthesis and in vitro antileishmanial efficacy of novel benzothiadiazine-1,1-dioxide derivatives. Arch Pharm (Weinheim) 2021; 354:e2000280. [PMID: 33491807 DOI: 10.1002/ardp.202000280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/14/2020] [Accepted: 11/27/2020] [Indexed: 11/07/2022]
Abstract
Leishmaniasis is a major vector-borne parasitic disease that affects thousands of people in tropical and subtropical developing countries. In 2019 alone, it killed 26,000-65,000 individuals. Leishmaniasis is curable, yet its eradication and elimination are hampered by major hurdles, such as the availability of only a handful of clinical toxic drugs and the emergence of pathogenic resistance against them. This underscores the imperative need for new and effective antileishmanial drugs. In search for such agents, we synthesized and evaluated the in vitro antileishmanial potential of a small library of benzothiadiazine derivatives by assessing their activity against the promastigotes of three strains of Leishmania and toxicity in healthy cells. The derivatives were found to have no toxicity to the mammalian cells and were, in general, active against all parasites. The benzothiadiazine derivative 1e, 3-methyl-2-[3-(trifluoromethyl)benzyl]-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was found to be the most active (IC50 , 0.2 μM) against Leishmania major, responsible for the most prevalent disease form, cutaneous leishmaniasis. Conversely, benzothiadiazine 2c, 2-(4-bromobenzyl)-3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was the most potent (IC50 , 6.5 μM) against Leishmania donovani, a causative strain of the lethal visceral leishmaniasis. Both compounds stand as antipromastigote hits for further lead investigation into their potential to act as new antileishmanial agents.
Collapse
Affiliation(s)
- Daisy K Mangwegape
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Nonkululeko H Zuma
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
31
|
Tiwari R, Banerjee S, Tyde D, Saha KD, Ethirajan A, Mukherjee N, Chattopadhy S, Pramanik SK, Das A. Redox-Responsive Nanocapsules for the Spatiotemporal Release of Miltefosine in Lysosome: Protection against Leishmania. Bioconjug Chem 2021; 32:245-253. [PMID: 33438999 DOI: 10.1021/acs.bioconjchem.0c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmaniasis, a vector-borne disease, is caused by intracellular parasite Leishmania donovani. Unlike most intracellular pathogens, Leishmania donovani are lodged in parasitophorous vacuoles and replicate within the phagolysosomes in macrophages. Effective vaccines against this disease are still under development, while the efficacy of the available drugs is being questioned owing to the toxicity for nonspecific distribution in human physiology and the reported drug-resistance developed by Leishmania donovani. Thus, a stimuli-responsive nanocarrier that allows specific localization and release of the drug in the lysosome has been highly sought after for addressing two crucial issues, lower drug toxicity and a higher drug efficacy. We report here a unique lysosome targeting polymeric nanocapsules, formed via inverse mini-emulsion technique, for stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line. A benign polymeric backbone, with a disulfide bonding susceptible to an oxidative cleavage, is utilized for the organelle-specific release of miltefosine. Oxidative rupture of the disulfide bond is induced by intracellular glutathione (GSH) as an endogenous stimulus. Such a stimuli-responsive release of the drug miltefosine in the lysosome of macrophage RAW 264.7 cell line over a few hours helped in achieving an improved drug efficacy by 200 times as compared to pure miltefosine. Such a drug formulation could contribute to a new line of treatment for leishmaniasis.
Collapse
Affiliation(s)
- Rajeshwari Tiwari
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Deepak Tyde
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Anitha Ethirajan
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | - Sumit Kumar Pramanik
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Amitava Das
- Indian Institute of Science Education and Research Kolkata; Mohanpur 741246, West Bengal, India
| |
Collapse
|
32
|
Yadav S, Ali V, Singh Y, Kanojia S, Goyal N. Leishmania donovani chaperonin TCP1γ subunit protects miltefosine induced oxidative damage. Int J Biol Macromol 2020; 165:2607-2620. [PMID: 33736277 DOI: 10.1016/j.ijbiomac.2020.10.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
T-complex protein-1 (TCP1) is a chaperonin protein known to fold various proteins like actin and tubulin. In Leishmania donovani only one subunit of TCP1 that is gamma subunit (LdTCP1γ) has been functionally characterized. It not only performs ATP dependent protein folding but is also essential for survival and virulence. The present work demonstrates that LdTCP1γ also has a role in miltefosine resistance. Overexpression of LdTCP1γ in L. donovani promastigotes results in decreased sensitivity of parasites towards miltefosine, while single-allele replacement mutants exhibited increased sensitivity as compared to wild-type promastigotes. This response was specific to miltefosine with no cross-resistance to other drugs. The LdTCP1γ-mediated drug resistance was directly related to miltefosine-induced apoptotic death of the parasite, as was evidenced by 2 to 3-fold decrease in cell death parameters in overexpressing cells and >2-fold increase in single-allele replacement mutants. Further, deciphering the mechanism revealed that resistance of overexpressing cells was associated with efficient ROS neutralization due to increased levels of thiols and upregulation of cytosolic tryparedoxin peroxidase (cTxnPx). Further, modulation of LdTCP1γ expression in parasite also modulates the levels of proinflammatory cytokine (TNF-α) and anti-inflammatory cytokine (IL-10) of the host macrophages. The study provides evidence for the involvement of a chaperonin protein LdTCP1γ in the protection against miltefosine induced oxidative damage and reveals the fundamental role of LdTCP1γ in parasite biology.
Collapse
Affiliation(s)
- Shailendra Yadav
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, India-800007
| | - Yatendra Singh
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanjeev Kanojia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neena Goyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
33
|
Ghosh S, Verma A, Kumar V, Pradhan D, Selvapandiyan A, Salotra P, Singh R. Genomic and Transcriptomic Analysis for Identification of Genes and Interlinked Pathways Mediating Artemisinin Resistance in Leishmania donovani. Genes (Basel) 2020; 11:E1362. [PMID: 33213096 PMCID: PMC7698566 DOI: 10.3390/genes11111362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Current therapy for visceral leishmaniasis (VL), compromised by drug resistance, toxicity, and high cost, demands for more effective, safer, and low-cost drugs. Artemisinin has been found to be an effectual drug alternative in experimental models of leishmaniasis. Comparative genome and transcriptome analysis of in vitro-adapted artesunate-resistant (K133AS-R) and -sensitive wild-type (K133WT) Leishmania donovani parasites was carried out using next-generation sequencing and single-color DNA microarray technology, respectively, to identify genes and interlinked pathways contributing to drug resistance. Whole-genome sequence analysis of K133WT vs. K133AS-R parasites revealed substantial variation among the two and identified 240 single nucleotide polymorphisms (SNPs), 237 insertion deletions (InDels), 616 copy number variations (CNVs) (377 deletions and 239 duplications), and trisomy of chromosome 12 in K133AS-R parasites. Transcriptome analysis revealed differential expression of 208 genes (fold change ≥ 2) in K133AS-R parasites. Functional categorization and analysis of modulated genes of interlinked pathways pointed out plausible adaptations in K133AS-R parasites, such as (i) a dependency on lipid and amino acid metabolism for generating energy, (ii) reduced DNA and protein synthesis leading to parasites in the quiescence state, and (iii) active drug efflux. The upregulated expression of cathepsin-L like protease, amastin-like surface protein, and amino acid transporter and downregulated expression of the gene encoding ABCG2, pteridine receptor, adenylatecyclase-type receptor, phosphoaceylglucosamine mutase, and certain hypothetical proteins are concordant with genomic alterations suggesting their potential role in drug resistance. The study provided an understanding of the molecular basis linked to artemisinin resistance in Leishmania parasites, which may be advantageous for safeguarding this drug for future use.
Collapse
Affiliation(s)
- Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India;
| | - Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Vinay Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi 110029, India;
| | | | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| |
Collapse
|
34
|
Kannigadu C, Aucamp J, N'Da DD. Synthesis and in vitro antileishmanial efficacy of benzyl analogues of nifuroxazide. Drug Dev Res 2020; 82:287-295. [PMID: 33141473 DOI: 10.1002/ddr.21755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
Leishmaniasis is a vector-borne parasitic disease that mostly affects populations in tropical and subtropical countries. There is currently no vaccine to protect against and only a handful of drugs are available to treat this disease. Leishmaniasis is curable, but its eradication and elimination are hindered by the emergence of multidrug resistant strains of the causative pathogens, accentuating the need for new and effective antileishmanial drugs. In search for such agents, nifuroxazide, a clinical antibiotic, was evaluated through investigation of its benzyl analogues for in vitro antileishmanial efficacy against promastigotes of various Leishmania (L.) strains. The monobenzylated analogues 1 and 2 were the most potent of all, possessing nanomolar activities up to 10-fold higher than the parent drug nifuroxazide against all three tested Leishmania strains. Both analogues stand as antipromastigote hits for further lead investigation into their potential to act as new antileishmanial agents.
Collapse
Affiliation(s)
- Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
35
|
In vitro efficacy of synthesized artemisinin derivatives against Leishmania promastigotes. Bioorg Med Chem Lett 2020; 30:127581. [DOI: 10.1016/j.bmcl.2020.127581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023]
|
36
|
Zheng Z, Chen J, Ma G, Satoskar AR, Li J. Integrative genomic, proteomic and phenotypic studies of Leishmania donovani strains revealed genetic features associated with virulence and antimony-resistance. Parasit Vectors 2020; 13:510. [PMID: 33046138 PMCID: PMC7552375 DOI: 10.1186/s13071-020-04397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Emerging drug resistance of Leishmania species poses threaten to the effective control and elimination programme of this neglected tropical disease. Methods In this work, we conducted drug-resistance testing, whole genome resequencing and proteome profiling for a recently reported clinical isolate with supposed drug resistance (HCZ), and two reference sensitive strains (DD8 and 9044) of Leishmania donovani, to explore molecular mechanisms underlying drug resistance in this parasite. Results With reference to DD8 and 9044 strains, HCZ isolate showed higher-level virulence and clear resistance to antimonials in promastigote culture, infected macrophages and animal experiment. Pairwise genomic comparisons revealed genetic variations (86 copy number variations, 271 frameshift mutations in protein-coding genes and two site mutations in non-coding genes) in HCZ isolate that were absent from the reference sensitive strains. Proteomic analysis indicated different protein expression between HCZ isolate and reference strains, including 69 exclusively detected proteins and 82 consistently down-/upregulated molecules in the HCZ isolate. Integrative analysis showed linkage of 12 genomic variations (gene duplication, insertion and deletion) and their protein expression changes in HCZ isolate, which might be associated with pathogenic and antimony-resistant phenotype. Functional annotation analyses further indicated that molecules involved in nucleotide-binding, fatty acid metabolism, oxidation-reduction and transport might play a role in host-parasite interaction and drug-resistance. Conclusions This comprehensive integrative work provided novel insights into the genetic basis underlying virulence and resistance, suggesting new aspects to be investigated for a better intervention against L. donovani and associated diseases.![]()
Collapse
Affiliation(s)
- Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.,Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus, USA.,Department of Microbiology, Ohio State University, Columbus, USA
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Antileishmanial Aminopyrazoles: Studies into Mechanisms and Stability of Experimental Drug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00152-20. [PMID: 32601168 PMCID: PMC7449183 DOI: 10.1128/aac.00152-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Resistance selection was performed by successive exposure of Leishmania infantum promastigotes (in vitro) and intracellular amastigotes (both in vitro and in golden Syrian hamsters). The stability of the resistant phenotypes was assessed after passage in mice and Lutzomyia longipalpis sandflies. Whole-genome sequencing (WGS) was performed to identify mutated genes, copy number variations (CNVs), and somy changes. The potential role of efflux pumps (the MDR and MRP efflux pumps) in the development of resistance was assessed by coincubation of aminopyrazoles with specific efflux pump inhibitors (verapamil, cyclosporine, and probenecid). Repeated drug exposure of amastigotes did not result in the emergence of drug resistance either in vitro or in vivo. Selection at the promastigote stage, however, was able to select for parasites with reduced susceptibility (resistance index, 5.8 to 24.5). This phenotype proved to be unstable after in vivo passage in mice and sandflies, suggesting that nonfixed alterations are responsible for the elevated resistance. In line with this, single nucleotide polymorphisms and indels identified by whole-genome sequencing could not be directly linked to the decreased drug susceptibility. Copy number variations were absent, whereas somy changes were detected, which may have accounted for the transient acquisition of resistance. Finally, aminopyrazole activity was not influenced by the MDR and MRP efflux pump inhibitors tested. The selection performed does not suggest the rapid development of resistance against aminopyrazoles in the field. Karyotype changes may confer elevated levels of resistance, but these do not seem to be stable in the vertebrate and invertebrate hosts. MDR/MRP efflux pumps are not likely to significantly impact the activity of the aminopyrazole leads.
Collapse
|
38
|
Douanne N, Dong G, Douanne M, Olivier M, Fernandez-Prada C. Unravelling the proteomic signature of extracellular vesicles released by drug-resistant Leishmania infantum parasites. PLoS Negl Trop Dis 2020; 14:e0008439. [PMID: 32628683 PMCID: PMC7365475 DOI: 10.1371/journal.pntd.0008439] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/16/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis constitutes the 9th largest disease burden among all infectious diseases. Control of this disease is based on a short list of chemotherapeutic agents headed by pentavalent antimonials, followed by miltefosine and amphotericin B; drugs that are far from ideal due to host toxicity, elevated cost, limited access, and high rates of drug resistance. Knowing that the composition of extracellular vesicles (EVs) can vary according to the state of their parental cell, we hypothesized that EVs released by drug-resistant Leishmania infantum parasites could contain unique and differently enriched proteins depending on the drug-resistance mechanisms involved in the survival of their parental cell line. To assess this possibility, we studied EV production, size, morphology, and protein content of three well-characterized drug-resistant L. infantum cell lines and a wild-type strain. Our results are the first to demonstrate that drug-resistance mechanisms can induce changes in the morphology, size, and distribution of L. infantum EVs. In addition, we identified L. infantum’s core EV proteome. This proteome is highly conserved among strains, with the exception of a handful of proteins that are enriched differently depending on the drug responsible for induction of antimicrobial resistance. Furthermore, we obtained the first snapshot of proteins enriched in EVs released by antimony-, miltefosine- and amphotericin-resistant parasites. These include several virulence factors, transcription factors, as well as proteins encoded by drug-resistance genes. This detailed study of L. infantum EVs sheds new light on the potential roles of EVs in Leishmania biology, particularly with respect to the parasite’s survival in stressful conditions. This work outlines a crucial first step towards the discovery of EV-based profiles capable of predicting response to antileishmanial agents. Visceral leishmaniasis is a life-threatening disease caused by Leishmania infantum parasites, which are transmitted by sand flies. In the absence of vaccines, current control of this disease is based on chemotherapy, which is comprised of a very limited arsenal threatened by the emergence and spread of drug-resistant strains. In the shadow of growing concern and treatment failure due to resistance, the characterization of extracellular vesicles (EVs) released by drug-resistant L. infantum parasites could shed some light on the complex nature of drug resistance in Leishmania and increase our understanding of the biology of the parasite. EVs are vesicles secreted by all eukaryotic cells whose contents (proteins, DNA/RNAs, lipids) vary as a function of their cellular origin. Our results demonstrate for the first time that EVs released by drug-resistant parasites are enriched in unique protein markers that reflect the drug-resistance mechanisms involved in the survival of parental cells. These unique proteins included several virulence and transcription factors, as well as drug-resistance genes; this offers a potential benefit for drug-resistant parasites in terms of parasite-to-parasite communication and host-parasite interactions. Collectively, our initial results could serve as a jumping-off point for the future development of novel EV-based diagnostic tools for the detection and appraisal of antimicrobial-resistant Leishmania populations.
Collapse
Affiliation(s)
- Noélie Douanne
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - George Dong
- The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Mélanie Douanne
- Department of Biology, Health and Ecology, “Ecole Pratique des Hautes Etudes”, Paris, France
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- * E-mail: (MO); (CFP)
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- * E-mail: (MO); (CFP)
| |
Collapse
|
39
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
40
|
Eberhardt E, Bulté D, Van Bockstal L, Van den Kerkhof M, Cos P, Delputte P, Hendrickx S, Maes L, Caljon G. Miltefosine enhances the fitness of a non-virulent drug-resistant Leishmania infantum strain. J Antimicrob Chemother 2020; 74:395-406. [PMID: 30412253 DOI: 10.1093/jac/dky450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023] Open
Abstract
Objectives Miltefosine is currently the only oral drug for visceral leishmaniasis, and although deficiency in an aminophospholipid/miltefosine transporter (MT) is sufficient to elicit drug resistance, very few naturally miltefosine-resistant (MIL-R) strains have yet been isolated. This study aimed to make a detailed analysis of the impact of acquired miltefosine resistance and miltefosine treatment on in vivo infection. Methods Bioluminescent versions of a MIL-R strain and its syngeneic parental line were generated by integration of the red-shifted firefly luciferase PpyRE9. The fitness of both lines was compared in vitro (growth rate, metacyclogenesis and macrophage infectivity) and in BALB/c mice through non-invasive bioluminescence imaging under conditions with and without drug pressure. Results This study demonstrated a severe fitness loss of MT-deficient parasites, resulting in a complete inability to multiply and cause a typical visceral leishmaniasis infection pattern in BALB/c mice. The observed fitness loss could not be rescued by host immune suppression with cyclophosphamide, whereas episomal reconstitution with a wild-type MT restored parasite virulence, hence linking parasite fitness to MT mutation. Remarkably, in vivo miltefosine treatment or in vitro miltefosine pre-exposure significantly rescued MIL-R parasite virulence. The in vitro pre-exposed MIL-R promastigotes showed a longer and more slender morphology, suggesting an altered membrane composition. Conclusions The profound fitness loss of MT-deficient parasites most likely explains the low frequency of MIL-R clinical isolates. The observation that miltefosine can reverse this phenotype indicates a drug dependency of the MT-deficient parasites and emphasizes the importance of resistance profiling prior to miltefosine administration.
Collapse
Affiliation(s)
- Eline Eberhardt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
41
|
Tavares GSV, Mendonça DVC, Pereira IAG, Oliveira-da-Silva JA, Ramos FF, Lage DP, Machado AS, Carvalho LM, Reis TAR, Perin L, Carvalho AMRS, Ottoni FM, Ludolf F, Freitas CS, Bandeira RS, Silva AM, Chávez-Fumagalli MA, Duarte MC, Menezes-Souza D, Alves RJ, Roatt BM, Coelho EAF. A clioquinol-containing Pluronic ® F127 polymeric micelle system is effective in the treatment of visceral leishmaniasis in a murine model. ACTA ACUST UNITED AC 2020; 27:29. [PMID: 32351209 PMCID: PMC7191975 DOI: 10.1051/parasite/2020027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
A clioquinol (ICHQ)-containing Pluronic® F127 polymeric micelle system (ICHQ/Mic) was recently shown to be effective against Leishmania amazonensis infection in a murine model. In the present study, ICHQ/Mic was tested against L. infantum infection. BALB/c mice (n = 12 per group) were infected with L. infantum stationary promastigotes through subcutaneous injection and, 45 days after challenge, received saline or were treated via the subcutaneous route with empty micelles, ICHQ or ICHQ/Mic. In addition, animals were treated with miltefosine by the oral route, as a drug control. Half of the animals were euthanized 1 and 15 days after treatment, aiming to evaluate two endpoints after therapy, when parasitological and immunological parameters were investigated. Results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significantly higher anti-parasite IFN-γ, IL-12, GM-CSF, nitrite and IgG2a isotype antibody levels, which were associated with low IL-4 and IL-10 production. In addition, a higher frequency of IFN-γ and TNF-α-producing CD4+ and CD8+ T-cells was found in these animals. The parasite load was evaluated in distinct organs, and results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significant reductions in organic parasitism in the treated and infected mice. A comparison between the treatments suggested that ICHQ/Mic was the most effective in inducing a highly polarized Th1-type response, as well as reducing the parasite load in significant levels in the treated and infected animals. Data obtained 15 days after treatment suggested maintenance of the immunological and parasitological responses. In conclusion, ICHQ/Mic could be considered in future studies for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Grasiele S V Tavares
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fernanda F Ramos
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia M Carvalho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Thiago A R Reis
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Perin
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flaviano M Ottoni
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra M Silva
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana C Duarte
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo J Alves
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno M Roatt
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil - Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
42
|
Carnielli JBT, Monti-Rocha R, Costa DL, Molina Sesana A, Pansini LNN, Segatto M, Mottram JC, Costa CHN, Carvalho SFG, Dietze R. Natural Resistance of Leishmania infantum to Miltefosine Contributes to the Low Efficacy in the Treatment of Visceral Leishmaniasis in Brazil. Am J Trop Med Hyg 2020; 101:789-794. [PMID: 31436148 PMCID: PMC6779219 DOI: 10.4269/ajtmh.18-0949] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In India, visceral leishmaniasis (VL) caused by Leishmania donovani has been successfully treated with miltefosine with a cure rate of > 90%. To assess the efficacy and safety of oral miltefosine against Brazilian VL, which is caused by Leishmania infantum, a phase II, open-label, dose-escalation study of oral miltefosine was conducted in children (aged 2-12 years) and adolescent-adults (aged 13-60 years). Definitive cure was assessed at a 6-month follow-up visit. The cure rate was only 42% (6 of 14 patients) with a recommended treatment of 28 days and 68% (19 of 28 patients) with an extended treatment of 42 days. The in vitro miltefosine susceptibility profile of intracellular amastigote stages of the pretreatment isolates, from cured and relapsed patients, showed a positive correlation with the clinical outcome. The IC50 mean (SEM) of eventual cures was 5.1 (0.4) µM, whereas that of eventual failures was 12.8 (1.9) µM (P = 0.0002). An IC50 above 8.0 µM predicts failure with 82% sensitivity and 100% specificity. The finding of L. infantum amastigotes resistant to miltefosine in isolates from patients who eventually failed treatment strongly suggests natural resistance to this drug, as miltefosine had never been used in Brazil before this trial was carried out.
Collapse
Affiliation(s)
- Juliana B T Carnielli
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil.,York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Renata Monti-Rocha
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Dorcas Lamounier Costa
- Instituto Natan Portella para Doenças Tropicais, Universidade Federal do Piauí, Teresina, Brazil
| | - Aretha Molina Sesana
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Laura N N Pansini
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Marcela Segatto
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | | | - Sílvio F G Carvalho
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil.,Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Reimão JQ, Pita Pedro DP, Coelho AC. The preclinical discovery and development of oral miltefosine for the treatment of visceral leishmaniasis: a case history. Expert Opin Drug Discov 2020; 15:647-658. [PMID: 32202449 DOI: 10.1080/17460441.2020.1743674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a vector-borne disease caused by Leishmania donovani or Leishmania infantum. Closely related to poverty, VL is fatal and represents one of the main burdens on public health in developing countries. Treatment of VL relies exclusively on chemotherapy, a strategy still experiencing numerous limitations. Miltefosine (MF) has been used in the chemotherapy of VL in some endemic areas, and has been expanded to other regions, being considered crucial in eradication programs. AREAS COVERED This article reviews the most relevant preclinical and clinical aspects of MF, its mechanism of action and resistance to Leishmania parasites, as well as its limitations. The authors also give their perspectives on the treatment of VL. EXPERT OPINION The discovery of MF represented an enormous advance in the chemotherapy of VL, since it was the first oral drug for this neglected disease. Beyond selection of resistant parasites due to drug pressure, several other factors can lead to treatment failure such as, for example, factors intrinsic to the host, parasite and the drug itself. Although its efficacy as a monotherapy has reduced over recent years, MF is still an important alternative in VL chemotherapy, especially when used in combination with other drugs.
Collapse
Affiliation(s)
- Juliana Q Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Débora P Pita Pedro
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, Brazil
| |
Collapse
|
44
|
Hendrickx S, Van Bockstal L, Bulté D, Mondelaers A, Aslan H, Rivas L, Maes L, Caljon G. Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasit Vectors 2020; 13:96. [PMID: 32087758 PMCID: PMC7036194 DOI: 10.1186/s13071-020-3972-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Background Since the introduction of miltefosine (MIL) as first-line therapy in the kala-azar elimination programme in the Indian subcontinent, treatment failure rates have been increasing. Since parasite infectivity and virulence may become altered upon treatment relapse, this laboratory study assessed the phenotypic effects of repeated in vitro and in vivo MIL exposure. Methods Syngeneic Leishmania donovani lines either or not exposed to MIL were compared for drug susceptibility, rate of promastigote multiplication and metacyclogenesis, macrophage infectivity and behaviour in the sand fly vector, Lutzomyia longipalpis. Results Promastigotes of both in vitro and in vivo MIL-selected strains displayed a slightly reduced drug susceptibility that was associated with a reduced MIL-accumulation linked to a lower copy number (disomic state) of chromosome 13 harboring the miltefosine transporter (LdMT) gene. In vitro selected promastigotes showed a lower rate of metacyclogenesis whereas the in vivo derived promastigotes displayed a moderately increased growth rate. Repeated MIL exposure did neither influence the parasite load nor metacyclogenesis in the sand fly vector. Conclusions Recurrent in vitro and in vivo MIL exposure evokes a number of very subtle phenotypic and genotypic changes which could make promastigotes less susceptible to MIL without attaining full resistance. These changes did not significantly impact on infection in the sand fly vector.![]()
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Annelies Mondelaers
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Hamide Aslan
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Luis Rivas
- Centro de investigaciones Biológicas - CSIC, Madrid, Spain
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
45
|
Moulik S, Chaudhuri SJ, Sardar B, Ghosh M, Saha B, Das NK, Chatterjee M. Monitoring of Parasite Kinetics in Indian Post-Kala-azar Dermal Leishmaniasis. Clin Infect Dis 2019; 66:404-410. [PMID: 29020350 DOI: 10.1093/cid/cix808] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Background The potential reservoirs of leishmaniasis in South Asia include relapsed cases of visceral leishmaniasis (VL), patients with post-kala-azar dermal leishmaniasis (PKDL), and an asymptomatically infected population. Therefore, assessment of cure in terms of parasite clearance, early detection of PKDL, and asymptomatic VL are pivotal for ensuring elimination. This study aimed to monitor the efficacy of miltefosine and liposomal amphotericin B (LAmB) in PKDL based on parasite load. Methods Patients with PKDL were recruited from the dermatology outpatient departments or during active field surveys. Skin biopsies were collected at disease presentation, immediately at the end of treatment, and 6 months later. The presence of parasite DNA was assessed by internal transcribed spacer-1 polymerase chain reaction, and quantified by amplification of parasite kinetoplastid DNA. Results At disease presentation (n = 184), the median parasite load was 5229 (interquartile range [IQR], 896-50898)/μg genomic DNA (gDNA). Miltefosine cleared the parasites to <10 in the macular (n = 17) and polymorphic (n = 21) variants, and remained so up to 6 months later (<10 parasites). LAmB reduced the parasite burden substantially in macular (n = 34; 2128 [IQR, 544-5763]/µg gDNA) and polymorphic PKDL (n = 36; 2541 [IQR, 650-9073]/µg gDNA). Importantly, in patients who returned 6 months later (n = 38), a resurgence of parasites was evident, as the parasites increased to 5665 (IQR, 1840-17067)/µg gDNA. Conclusions This study established that quantifying parasite load is an effective approach for monitoring patients with PKDL, wherein miltefosine demonstrated near-total parasite clearance and resolution of symptoms. However, in cases treated with LAmB, the persistence of parasites suggested treatment inadequacy. This needs immediate redressal in view of the leishmaniasis elimination program targeted for 2020.
Collapse
Affiliation(s)
- Srija Moulik
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | | | - Bikash Sardar
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Manab Ghosh
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Nilay Kanti Das
- Department of Dermatology, Calcutta Medical College, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
46
|
Verma A, Nayek A, Kumar A, Singh R, Salotra P. Elucidation of role of an acetyltransferase like protein in paromomycin resistance in Leishmania donovani using in silico and in vitro approaches. J Biomol Struct Dyn 2019; 38:4449-4460. [PMID: 31625467 DOI: 10.1080/07391102.2019.1682674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Paromomycin, an aminoglycoside antibiotic, is an effective treatment for VL (visceral leishmaniasis) in India. The modification of aminoglycoside antibiotics by enzymes such as aminoglycoside acetyltransferases is the predominant mechanism of resistance to antibiotics in bacterial system. In the present study, we identified and characterized LdATLP (an acetyltransferase-like protein) and elucidated its role in paromomycin resistance in Leishmania donovani. Gene encoding LdATLP was consistently up-regulated (>2fold) in three distinct paromomycin resistant in comparison with sensitive parasites, although the gene sequence was identical in the two. In silico analysis revealed that LdATLP consisted of conserved GNAT (GCN5-related N-Acetyltransferase) domain which is characteristic of aminoglycoside N-acetyltransferases. Evolutionary relationship among LdATLP of Leishmania and aminoglycoside acetyltransferases of bacteria was established by phylogenetic analysis. The 3D structure of LdATLP, predicted by ab-initio modeling, constituted 6 α-helices and 6 β-sheets. A few residues, such as R175, R177, E196, R197, V198, V200, K202, R205, C206, D208, G210, R211, R215, A234, S237, S238, K239, D240, F241 and Y242 of GNAT domain were predicted to be present at active site. Molecular docking of LdATLP with paromomycin or indolicidin (broad spectrum inhibitor of aminoglycoside modifying enzymes), followed by molecular dynamics simulation of docked complex suggested that both paromomycin and indolicidin bind to LdATLP with comparable free energy of binding. In vitro studies revealed that in the presence of indolicidin, paromomycin resistant parasites exhibited reversion of phenotype into sensitive parasites with marked increase in paromomycin susceptibility, suggesting the role of LdATLP in paromomycin resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.,Faculty of Health and Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Arnab Nayek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Amit Kumar
- ICMR Computational Genomics Center, Division of ISRM, ICMR, New Delhi, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
47
|
|
48
|
Verma A, Ghosh S, Salotra P, Singh R. Artemisinin-resistant Leishmania parasite modulates host cell defense mechanism and exhibits altered expression of unfolded protein response genes. Parasitol Res 2019; 118:2705-2713. [PMID: 31359134 DOI: 10.1007/s00436-019-06404-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 07/19/2019] [Indexed: 02/01/2023]
Abstract
Artemisinin, extracted from a medicinal herb Artemisia annua, is widely used to treat malaria and has shown potent anticancer activity. Artemisinin has been found to be effective against experimental visceral and cutaneous leishmaniasis. Despite extensive research to understand the complex mechanism of resistance to artemisinin, several questions remain unanswered. The artesunate (ART)-resistant line of Leishmania donovani was selected and cellular mechanisms associated with resistance to artemisinin were investigated. ART-resistant (AS-R) parasites showed reduced susceptibility towards ART both at promastigote and amastigote stage compared with ART sensitive (WT) parasites. WT and AS-R parasites were both more susceptible to ART at the early log phase of growth compared with late log phase. AS-R parasites were more infective to the host macrophages (p < 0.05). Evaluation of parasites' tolerance towards host microbicidal mechanisms revealed that AS-R parasites were more tolerant to complement-mediated lysis and nitrosative stress. ROS levels were modulated in presence of ART in AS-R parasites infected macrophages. Interestingly, infection of macrophages by AS-R parasites led to modulated levels of host interleukins, IL-2 and IL-10, in addition to nitric oxide. Additionally, AS-R parasites showed upregulated expression of genes of unfolded protein response pathway including methyltransferase domain-containing protein (HSP40) and flagellar attachment zone protein (prefoldin), that are reported to be associated with ART resistance in Plasmodium falciparum malaria. This study presents in vitro model of artemisinin-resistant Leishmania parasite and cellular mechanisms associated with ART resistance in Leishmania.
Collapse
Affiliation(s)
- Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
49
|
Sereno D, Harrat Z, Eddaikra N. Meta-analysis and discussion on challenges to translate Leishmania drug resistance phenotyping into the clinic. Acta Trop 2019; 191:204-211. [PMID: 30639471 DOI: 10.1016/j.actatropica.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Antimicrobial resistance (AMR) threatens the prevention and treatment of infections caused by a large range of microorganisms. Leishmania is not an exception and treatment failure due to drug-resistant organisms is increasingly reported. Currently, no molecular methods and marker are validated to track drug-resistant organism and antimicrobial susceptibility tests are roughly not amenable to a clinical setting. Taking these facts into account, it is essential to reflect on ways to translate basic knowledge into methodologies aimed to diagnose leishmania drug resistance. As a matter of fact, a meta-analysis of the literature discloses the reliability of the promastigotes antimicrobial susceptibility tests (AST) to predict intracellular amastigotes susceptibility status. Promastigote cultures that are easy to perform, typically inexpensive and amenable to standardization should represent a candidate to diagnose resistance. Using AST performed on promastigote, we propose a way to improve leishmania drug resistance diagnosis in the framework of guidance and guideline of the bacterial drug resistance diagnosis. In this review, we highlight challenges that remained and discuss the definition of clinical breakpoints, including the epidemiological cutoff (ECOFF), to track drug-resistant isolates. Our analysis paves the ways to standardize and analyze anti-leishmania susceptibility tests output in order to guide the characterization of drug-resistant isolates, the clinical decision during treatment and the search for new molecular markers.
Collapse
|
50
|
Espada CR, Magalhães RM, Cruz MC, Machado PR, Schriefer A, Carvalho EM, Hornillos V, Alves JM, Cruz AK, Coelho AC, Uliana SRB. Investigation of the pathways related to intrinsic miltefosine tolerance in Leishmania (Viannia) braziliensis clinical isolates reveals differences in drug uptake. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:139-147. [PMID: 30850347 PMCID: PMC6904789 DOI: 10.1016/j.ijpddr.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
In Brazil, cutaneous leishmaniasis is caused predominantly by L. (V.) braziliensis. The few therapeutic drugs available exhibit several limitations, mainly related to drug toxicity and reduced efficacy in some regions. Miltefosine (MF), the only oral drug available for leishmaniasis treatment, is not widely available and has not yet been approved for human use in Brazil. Our group previously reported the existence of differential susceptibility among L. (V.) braziliensis clinical isolates. In this work, we further characterized three of these isolates of L. (V.) braziliensis chosen because they exhibited the lowest and the highest MF half maximal inhibitory concentrations and were therefore considered less tolerant or more tolerant, respectively. Uptake of MF, and also of phosphocholine, were found to be significantly different in more tolerant parasites compared to the less sensitive isolate, which raised the hypothesis of differences in the MF transport complex Miltefosine Transporter (MT)-Ros3. Although some polymorphisms in those genes were found, they did not correlate with the drug susceptibility phenotype. Drug efflux and compartmentalization were similar in the isolates tested, and amphotericin B susceptibility was retained in MF tolerant parasites, suggesting that increased fitness was also not the basis of observed differences. Transcriptomic analysis revealed that Ros3 mRNA levels were upregulated in the sensitive strain compared to the tolerant ones. Increased mRNA abundance in more tolerant isolates was validated by quantitative PCR. Our results suggest that differential gene expression of the MT transporter complex is the basis of the differential susceptibility in these unselected, naturally occurring parasites. Brazilian L. (V.) braziliensis isolates vary in mitefosine susceptibility. Diminished drug internalization was observed in more tolerant isolates. Drug susceptibility did not correlate with SNPs in MT-Ros3 genes. Drug efflux and compartmentalization were similar in the isolates tested. Increased drug sensitivity is accompanied by Ros3 mRNA upregulation.
Collapse
Affiliation(s)
- Caroline R Espada
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rubens M Magalhães
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mario C Cruz
- Centro de Facilidades para Apoio a Pesquisa, CEFAP-USP, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo R Machado
- Serviço de Imunologia, HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert Schriefer
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, HUPES, Universidade Federal da Bahia, Salvador, Brazil; Centro de Pesquisas Gonçalo Moniz, Fiocruz-Bahia, Salvador, Brazil
| | - Valentín Hornillos
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Sevilla, Spain
| | - João M Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Angela K Cruz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriano C Coelho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Silvia R B Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|