1
|
Emeterio K, Audet J, Zhu W, Leung A, Schulz H, He S, Drebot M, Banadyga L. Deep sequencing of serially passaged Sudan virus in guinea pigs uncovers adaptive mutations. Heliyon 2025; 11:e42322. [PMID: 39968149 PMCID: PMC11834042 DOI: 10.1016/j.heliyon.2025.e42322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/26/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Orthoebolaviruses are non-segmented, negative sense RNA viruses that make up the genus Orthoebolavirus in the family Filoviridae. Sudan virus (SUDV) is a highly pathogenic orthoebolavirus that causes severe disease in humans. In the last 45 years, SUDV has been responsible for several outbreaks in eastern Africa, particularly in Sudan and Uganda, with an average case fatality rate of approximately 50 %. Despite having caused numerous outbreaks, including a recent outbreak in 2022, no licensed therapeutics or prophylactics currently exist for Sudan virus disease. Small animal models like mice, hamsters, and guinea pigs have paved the way for the initial evaluation of filovirus countermeasures; however, since filoviruses are apathogenic in immunocompetent rodents, they must first be adapted through serial passaging. As a result of this process, viruses acquire genomic changes that may contribute to increased virulence and lethality. Currently, only a single immunocompetent small animal model exists for SUDV, where the virus was serially passaged in guinea pigs until uniform lethality was observed. To better understand the serial passaging process, we used next-generation sequencing to identify and quantify the mutations that arose throughout the adaptation process in guinea pigs. We identified 7 nonsynonymous and 9 synonymous mutations that were present at frequencies near 100 % at the end of serial passaging. The glycoprotein and virion protein (VP) 40 harboured many of the substitutions, most of which were nonsynonymous, while VP35 and VP24 each maintained a single nonsynonymous mutation. These results are consistent with the previously determined genome sequence, obtained by Sanger sequencing, with two notable exceptions: we identified a novel mutation in VP40, but we were unable to confirm the mutation in the genome leader, due to poor sequence coverage. This analysis has allowed us to identify adaptive hotspots within the viral genome, which may hint at the molecular determinants contributing to pathogenicity.
Collapse
Affiliation(s)
- Karla Emeterio
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jonathan Audet
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Helene Schulz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael Drebot
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Argade MD, Achi JG, Bott R, Morsheimer KM, Owen CD, Zielinski CA, Gaisin AM, Alvarez M, Moore TW, Bu F, Li F, Cameron M, Anantpadma M, Davey RA, Peet NP, Rong L, Gaisina IN. Guardians at the Gate: Optimization of Small Molecule Entry Inhibitors of Ebola and Marburg Viruses. J Med Chem 2025; 68:135-155. [PMID: 39680623 DOI: 10.1021/acs.jmedchem.4c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ebola and Marburg (EBOV and MARV) filoviral infections lead to fatal hemorrhagic fevers and have caused over 30 outbreaks in the last 50 years. Currently, there are no FDA-approved small molecule therapeutics for effectively treating filoviral diseases. To address this unmet medical need, we have conducted a systematic structural optimization of an early lead compound, N-(4-(4-methylpiperidin-1-yl)-3-(trifluoromethyl)phenyl)-4-(morpholinomethyl)benzamide (1), borne from our previously reported hit-to-lead effort. This secondary round of structure-activity relationship (SAR) involved the design and synthesis of several deconstructed and reconstructed analogs of compound 1, which were then tested against pseudotyped EBOV and MARV. The antiviral activities of the most promising leads were further validated in infectious assays. The optimized analogs exhibited desirable antiviral activity against different ebolaviruses and reduced off-target activity. Additionally, they also possessed druglike properties, that make them ideal candidates for in vivo efficacy studies as part of our ongoing drug discovery campaign against EBOV and MARV.
Collapse
Affiliation(s)
- Malaika D Argade
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Kimberly M Morsheimer
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Callum D Owen
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Christian A Zielinski
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Arsen M Gaisin
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Mario Alvarez
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael Cameron
- Department of Molecular Medicine, Herbert Wertheim, UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida 33458, United States
| | - Manu Anantpadma
- The Integrated Research Facility, National Institute of Allergy and Infectious Diseases, Frederick, Maryland 20892, United States
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Irina N Gaisina
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Fang J, Zhou ZJ, Yuan S, Qiu Y, Ge XY. Lineage classification and selective site identification of Orthoebolavirus zairense. Microbes Infect 2025; 27:105304. [PMID: 38278475 DOI: 10.1016/j.micinf.2024.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
As the high pathogenic species of Filoviridae virus family, Orthoebolavirus zairense (EBOV) shows frequent outbreaks in human in recently years since its first emerging in 1976 in Democratic Republic of the Congo (COD), bringing ongoing risks and burden on public health safety. Here, the phylogenetic relationship among major outbreaks was analyzed. The results showed that EBOV isolates could be divided into four lineages according to spatial and temporal epidemics. Then, the positive selection sites (PSSs) were detected on all proteins of the EBOV, exhibiting lineage characteristic. Particularly, sites in GP and VP24 were identified to be significantly under positive selection, and partial of which were maintained in the latest isolates in 2021. GP and L were found to have high variability between lineages. Substitutions including F443L and F443S in GP, as well as F1610L and I1951V in L could be characteristic of the two large outbreaks in COD (2018) and West Africa (2014), respectively. Further, substitutions of significant PSSs in VP24 and L proteins were visualized for analysis of structural changes, which may affect EBOV pathogenesis. In summary, our results gains insights in genetic characteristic and adaptive evolution of EBOV, which could facilitate gene functional research against EBOV.
Collapse
Affiliation(s)
- Jie Fang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Zhi-Jian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Shuofeng Yuan
- Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan, 410012, China.
| |
Collapse
|
4
|
Zhu L, Jin J, Wang T, Hu Y, Liu H, Gao T, Dong Q, Jin Y, Li P, Liu Z, Huang Y, Liu X, Cao C. Ebola virus sequesters IRF3 in viral inclusion bodies to evade host antiviral immunity. eLife 2024; 12:RP88122. [PMID: 38285487 PMCID: PMC10945704 DOI: 10.7554/elife.88122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Viral inclusion bodies (IBs) commonly form during the replication of Ebola virus (EBOV) in infected cells, but their role in viral immune evasion has rarely been explored. Here, we found that interferon regulatory factor 3 (IRF3), but not TANK-binding kinase 1 (TBK1) or IκB kinase epsilon (IKKε), was recruited and sequestered in viral IBs when the cells were infected by EBOV transcription- and replication-competent virus-like particles (trVLPs). Nucleoprotein/virion protein 35 (VP35)-induced IBs formation was critical for IRF3 recruitment and sequestration, probably through interaction with STING. Consequently, the association of TBK1 and IRF3, which plays a vital role in type I interferon (IFN-I) induction, was blocked by EBOV trVLPs infection. Additionally, IRF3 phosphorylation and nuclear translocation induced by Sendai virus or poly(I:C) stimulation were suppressed by EBOV trVLPs. Furthermore, downregulation of STING significantly attenuated VP35-induced IRF3 accumulation in IBs. Coexpression of the viral proteins by which IB-like structures formed was much more potent in antagonizing IFN-I than expression of the IFN-I antagonist VP35 alone. These results suggested a novel immune evasion mechanism by which EBOV evades host innate immunity.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Jing Jin
- Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina
| | - Tingting Wang
- Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina
| | - Yong Hu
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Hainan Liu
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Ting Gao
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Qincai Dong
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Yanwen Jin
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Ping Li
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Zijing Liu
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Yi Huang
- Wuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Xuan Liu
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| | - Cheng Cao
- Institute of Biotechnology, Academy of Military Medical SciencesBeijingChina
| |
Collapse
|
5
|
Almeida-Pinto F, Pinto R, Rocha J. Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches. Infect Dis Ther 2024; 13:21-55. [PMID: 38240994 PMCID: PMC10828234 DOI: 10.1007/s40121-023-00913-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
In 1976 Ebola revealed itself to the world, marking the beginning of a series of localized outbreaks. However, it was the Ebola outbreak that began in 2013 that incited fear and anxiety around the globe. Since then, our comprehension of the virus has been steadily expanding. Ebola virus (EBOV), belonging to the Orthoebolavirus genus of the Filoviridae family, possesses a non-segmented, negative single-stranded RNA genome comprising seven genes that encode multiple proteins. These proteins collectively orchestrate the intricate process of infecting host cells. It is not possible to view each protein as monofunctional. Instead, they synergistically contribute to the pathogenicity of the virus. Understanding this multifaceted replication cycle is crucial for the development of effective antiviral strategies. Currently, two antibody-based therapeutics have received approval for treating Ebola virus disease (EVD). In 2022, the first evidence-based clinical practice guideline dedicated to specific therapies for EVD was published. Although notable progress has been made in recent years, deaths still occur. Consequently, there is an urgent need to enhance the therapeutic options available to improve the outcomes of the disease. Emerging therapeutics can target viral proteins as direct-acting antivirals or host factors as host-directed antivirals. They both have advantages and disadvantages. One way to bypass some disadvantages is to repurpose already approved drugs for non-EVD indications to treat EVD. This review offers detailed insight into the role of each viral protein in the replication cycle of the virus, as understanding how the virus interacts with host cells is critical to understanding how emerging therapeutics exert their activity. Using this knowledge, this review delves into the intricate mechanisms of action of current and emerging therapeutics.
Collapse
Affiliation(s)
| | - Rui Pinto
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
- Dr. Joaquim Chaves, Medicine Laboratory, Joaquim Chaves Saúde (JCS), Carnaxide, Portugal
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
| |
Collapse
|
6
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
7
|
Yi J, Zhang M, Zhu L, Xu C, Li B, Wu P, Wu H, Zhang B. High-efficiency genetic engineering toolkit for virus based on lambda red-mediated recombination. Biotechnol Lett 2023; 45:1327-1337. [PMID: 37526868 DOI: 10.1007/s10529-023-03412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Viruses, such as Ebola virus (EBOV), evolve rapidly and threaten the human health. There is a great demand to exploit efficient gene-editing techniques for the identification of virus to probe virulence mechanism for drug development. METHODS Based on lambda Red recombination in Escherichia coli (E. coli), counter-selection, and in vitro annealing, a high-efficiency genetic method was utilized here for precisely engineering viruses. EBOV trVLPs assay and dual luciferase reporter assay were used to further test the effect of mutations on virus replication. RESULTS Considering the significance of matrix protein VP24 in EBOV replication, the types of mutations within vp24, including several single-base substitutions, one double-base substitution, two seamless deletions, and one targeted insertion, were generated on the multi-copy plasmid of E. coli. Further, the length of the homology arms for recombination and in vitro annealing, and the amount of DNA cassettes and linear plasmids were optimized to create a more elaborate and cost-efficient protocol than original approach. The effects of VP24 mutations on the expression of a reporter gene (luciferase) from the EBOV minigenome were determined, and results indicated that mutations of key sites within VP24 have significant impacts on EBOV replication. CONCLUSION This precise mutagenesis method will facilitate effective and simple editing of viral genes in E. coli.
Collapse
Affiliation(s)
- Jing Yi
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Maifei Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Lin Zhu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Changzhi Xu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Binglin Li
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Panpan Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| | - Hang Wu
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China.
| | - Buchang Zhang
- School of Life Sciences, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, People's Republic of China
| |
Collapse
|
8
|
Paul A, Chakraborty N, Sarkar A, Acharya K, Ranjan A, Chauhan A, Srivastava S, Singh AK, Rai AK, Mubeen I, Prasad R. Ethnopharmacological Potential of Phytochemicals and Phytogenic Products against Human RNA Viral Diseases as Preventive Therapeutics. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1977602. [PMID: 36860811 PMCID: PMC9970710 DOI: 10.1155/2023/1977602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
RNA viruses have been the most destructive due to their transmissibility and lack of control measures. Developments of vaccines for RNA viruses are very tough or almost impossible as viruses are highly mutable. For the last few decades, most of the epidemic and pandemic viral diseases have wreaked huge devastation with innumerable fatalities. To combat this threat to mankind, plant-derived novel antiviral products may contribute as reliable alternatives. They are assumed to be nontoxic, less hazardous, and safe compounds that have been in uses in the beginning of human civilization. In this growing COVID-19 pandemic, the present review amalgamates and depicts the role of various plant products in curing viral diseases in humans.
Collapse
Affiliation(s)
- Anamika Paul
- Department of Botany, Scottish Church College, Kolkata 700006, India
| | | | - Anik Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, U.P., India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| |
Collapse
|
9
|
Hao Y, Chen M, Othman Y, Xie XQ, Feng Z. Virus-CKB 2.0: Viral-Associated Disease-Specific Chemogenomics Knowledgebase. ACS OMEGA 2022; 7:37476-37484. [PMID: 36312370 PMCID: PMC9609052 DOI: 10.1021/acsomega.2c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Transmissible and infectious viruses can cause large-scale epidemics around the world. This is because the virus can constantly mutate and produce different variants and subvariants to counter existing treatments. Therefore, a variety of treatments are urgently needed to keep up with the mutation of the viruses. To facilitate the research of such treatment, we updated our Virus-CKB 1.0 to Virus-CKB 2.0, which contains 10 kinds of viruses, including enterovirus, dengue virus, hepatitis C virus, Zika virus, herpes simplex virus, Andes orthohantavirus, human immunodeficiency virus, Ebola virus, Lassa virus, influenza virus, coronavirus, and norovirus. To date, Virus-CKB 2.0 archived at least 65 antiviral drugs (such as remdesivir, telaprevir, acyclovir, boceprevir, and nelfinavir) in the market, 178 viral-related targets with 292 available 3D crystal or cryo-EM structures, and 3766 chemical agents reported for these target proteins. Virus-CKB 2.0 is integrated with established tools for target prediction and result visualization; these include HTDocking, TargetHunter, blood-brain barrier (BBB) predictor, Spider Plot, etc. The Virus-CKB 2.0 server is accessible at https://www.cbligand.org/g/virus-ckb. By using the established chemogenomic tools and algorithms and newly developed tools, we can screen FDA-approved drugs and chemical compounds that may bind to these proteins involved in viral-associated disease regulation. If the virus strain mutates and the vaccine loses its effect, we can still screen drugs that can be used to treat the mutated virus in a fleeting time. In some cases, we can even repurpose FDA-approved drugs through Virus-CKB 2.0.
Collapse
Affiliation(s)
| | | | - Yasmin Othman
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
10
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
11
|
Hargreaves A, Brady C, Mellors J, Tipton T, Carroll MW, Longet S. Filovirus Neutralising Antibodies: Mechanisms of Action and Therapeutic Application. Pathogens 2021; 10:pathogens10091201. [PMID: 34578233 PMCID: PMC8468515 DOI: 10.3390/pathogens10091201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/02/2022] Open
Abstract
Filoviruses, especially Ebola virus, cause sporadic outbreaks of viral haemorrhagic fever with very high case fatality rates in Africa. The 2013–2016 Ebola epidemic in West Africa provided large survivor cohorts spurring a large number of human studies which showed that specific neutralising antibodies played a key role in protection following a natural Ebola virus infection, as part of the overall humoral response and in conjunction with the cellular adaptive response. This review will discuss the studies in survivors and animal models which described protective neutralising antibody response. Their mechanisms of action will be detailed. Furthermore, the importance of neutralising antibodies in antibody-based therapeutics and in vaccine-induced responses will be explained, as well as the strategies to avoid immune escape from neutralising antibodies. Understanding the neutralising antibody response in the context of filoviruses is crucial to furthering our understanding of virus structure and function, in addition to improving current vaccines & antibody-based therapeutics.
Collapse
Affiliation(s)
- Alexander Hargreaves
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Caolann Brady
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Jack Mellors
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7ZX, UK
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Miles W. Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Correspondence: ; Tel.: +44-18-6561-7892
| |
Collapse
|
12
|
Banerjee G, Shokeen K, Chakraborty N, Agarwal S, Mitra A, Kumar S, Banerjee P. Modulation of immune response in Ebola virus disease. Curr Opin Pharmacol 2021; 60:158-167. [PMID: 34425392 DOI: 10.1016/j.coph.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Ebola virus disease targets and destroys immune cells, including macrophages and dendritic cells, leading to impairment of host response. After infection, a combination of strategies including alteration and evasion of immune response culminating in a strong inflammatory response can lead to multi-organ failure and death in most infected patients. This review discusses immune response dynamics, mainly focusing on how Ebola manipulates innate and adaptive immune responses and strategizes to thwart host immune responses. We also discuss the challenges and prospects of developing therapeutics and vaccines against Ebola.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nilanjan Chakraborty
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Saumya Agarwal
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Arindam Mitra
- Department of Microbiology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Ghosh S, Saha A, Samanta S, Saha RP. Genome structure and genetic diversity in the Ebola virus. Curr Opin Pharmacol 2021; 60:83-90. [PMID: 34364102 DOI: 10.1016/j.coph.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Ebola is a deadly pathogen responsible for Ebola virus disease, first came to prominence in the year 1976. This rapidly evolving virus imposed a serious threat to the human population in the last few decades and also continues to be a probable threat to our race. A better understanding of the virus in terms of its genomic structure is very much needed to develop an effective antiviral therapy against this deadly pathogen. Complete knowledge of its genomic structure and variations will help us and the entire scientific community to design effective therapy in terms of either vaccine development or the development of proper antiviral medicine.
Collapse
Affiliation(s)
- Sanmitra Ghosh
- Department of Microbiology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Rudra P Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| |
Collapse
|
14
|
Jain S, Baranwal M. Conserved immunogenic peptides of Ebola glycoprotein elicit immune response in human peripheral blood mononuclear cells. Microbiol Immunol 2021; 65:505-511. [PMID: 34343363 DOI: 10.1111/1348-0421.12935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/24/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
In the past 45 years, ebolaviruses have periodically caused epidemics on the African continent. In December 2019, approval of a recombinant vector-based EBOV vaccine, named Ervebo, came as encouraging news; still, there is a long way to go in the development of an accessible, global, and pan-ebolavirus vaccine. The current study expanded our previous in silico work which was conducted on ebolavirus glycoprotein and this resulted in the identification of three potentially immunogenic peptides (P1 - FKRTSFFLWVIILFQRTFSIPL, P2 - LANETTQALQLF, and P3 - RATTELRTFSILNRKAIDF). An analysis to estimate the number of expected human leukocyte antigen (HLA) responders revealed that P1, P2, and P3 can potentially interact with 2540, 2150, and 2802 HLA alleles, respectively. Further, these peptides were subject to in vitro analysis wherein the human peripheral blood mononuclear cell proliferation and interferon-gamma (IFN-γ) production by peptide stimulated cells was studied in 10 healthy human blood samples with the help of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and a sandwich enzyme-linked immunosorbent assay (ELISA) respectively. P3 presented the best results, a significant (P < 0.05) peptide induced cell proliferation and IFN-γ stimulation for 8 and 10 samples, respectively, followed by P1 (5 and 6) and P2 (5 and 7). The in silico and in vitro results obtained in this study indicate the immunogenic potential of these peptides and warrant exploration of the effects on other cytokines as well as in vivo experimental validation.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.,University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
15
|
Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. Eur J Med Chem 2021; 223:113654. [PMID: 34175537 DOI: 10.1016/j.ejmech.2021.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.
Collapse
|
16
|
Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram K, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Merchant ML, Zhang X, McClain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021; 29:2424-2440. [PMID: 33984520 PMCID: PMC8110335 DOI: 10.1016/j.ymthe.2021.05.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Fangyi Xu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Lei
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mukesh Sriwastva
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute at Hamilton Medical Center, Dalton, GA 30720, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jennifer K Wolfe
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Robert S Adcock
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Donghoon Chung
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
17
|
Jonsson-Schmunk K, Ghose R, Croyle MA. Immunization and Drug Metabolizing Enzymes: Focus on Hepatic Cytochrome P450 3A. Expert Rev Vaccines 2021; 20:623-634. [PMID: 33666138 DOI: 10.1080/14760584.2021.1899818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Infectious disease emergencies like the 2013-2016 Ebola epidemic and the 2009 influenza and current SARS-CoV-2 pandemics illustrate that vaccines are now given to diverse populations with preexisting pathologies requiring pharmacological management. Many natural biomolecules (steroid hormones, fatty acids, vitamins) and ~60% of prescribed medications are processed by hepatic cytochrome P450 (CYP) 3A4. The objective of this work was to determine the impact of infection and vaccines on drug metabolism. METHODS The impact of an adenovirus-based vaccine expressing Ebola glycoprotein (AdEBO) and H1N1 and H3N2 influenza viruses on hepatic CYP 3A4 and associated nuclear receptors was evaluated in human hepatocytes (HC-04 cells) and in mice. RESULTS CYP3A activity was suppressed by 55% in mice 24 h after administration of mouse-adapted H1N1, while ˂10% activity remained in HC-04 cells after infection with H1N1 and H3N2 due to global suppression of cellular translation capacity, indicated by reduction (70%, H1N1, 56%, H3N2) of phosphorylated eukaryotic translation initiation factor 4e (eIF4E). AdEBO suppressed CYP3A activity in vivo (44%) and in vitro (26%) 24 hours after infection. CONCLUSION As the clinical evaluation of vaccines for SARS-CoV-2 and other global pathogens rise, studies to evaluate the impact of new vaccines and emerging pathogens on CYP3A4 and other metabolic enzymes are warranted to avoid therapeutic failures that could further compromise the public health during infectious disease emergencies.
Collapse
Affiliation(s)
- Kristina Jonsson-Schmunk
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, Texas, USA
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Maria A Croyle
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, Texas, USA.,LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Schreiber G. The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Front Immunol 2020; 11:595739. [PMID: 33117408 PMCID: PMC7561359 DOI: 10.3389/fimmu.2020.595739] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered over 60 years ago in a classical experiment by Isaacs and Lindenman, who showed that IFN-Is possess antiviral activity. Later, it became one of the first approved protein drugs using heterologous protein expression systems, which allowed its large-scale production. It has been approved, and widely used in a pleiotropy of diseases, including multiple-sclerosis, hepatitis B and C, and some forms of cancer. Preliminary clinical data has supported its effectiveness against potential pandemic pathogens such as Ebola and SARS. Still, more efficient and specific drugs have taken its place in treating such diseases. The COVID-19 global pandemic has again lifted the status of IFN-Is to become one of the more promising drug candidates, with initial clinical trials showing promising results in reducing the severity and duration of the disease. Although SARS-CoV-2 inhibits the production of IFNβ and thus obstructs the innate immune response to this virus, it is sensitive to the antiviral activity of externally administrated IFN-Is. In this review I discuss the diverse modes of biological actions of IFN-Is and how these are related to biophysical parameters of IFN-I-receptor interaction and cell-type specificity in light of the large variety of binding affinities of the different IFN-I subtypes towards the common interferon receptor. Furthermore, I discuss how these may guide the optimized use IFN-Is in combatting COVID-19.
Collapse
Affiliation(s)
- Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Grikscheit K, Dolnik O, Takamatsu Y, Pereira AR, Becker S. Ebola Virus Nucleocapsid-Like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells 2020; 9:cells9071728. [PMID: 32707734 PMCID: PMC7407605 DOI: 10.3390/cells9071728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
The intracellular transport of nucleocapsids of the highly pathogenic Marburg, as well as Ebola virus (MARV, EBOV), represents a critical step during the viral life cycle. Intriguingly, a population of these nucleocapsids is distributed over long distances in a directed and polar fashion. Recently, it has been demonstrated that the intracellular transport of filoviral nucleocapsids depends on actin polymerization. While it was shown that EBOV requires Arp2/3-dependent actin dynamics, the details of how the virus exploits host actin signaling during intracellular transport are largely unknown. Here, we apply a minimalistic transfection system to follow the nucleocapsid-like structures (NCLS) in living cells, which can be used to robustly quantify NCLS transport in live cell imaging experiments. Furthermore, in cells co-expressing LifeAct, a marker for actin dynamics, NCLS transport is accompanied by pulsative actin tails appearing on the rear end of NCLS. These actin tails can also be preserved in fixed cells, and can be visualized via high resolution imaging using STORM in transfected, as well as EBOV infected, cells. The application of inhibitory drugs and siRNA depletion against actin regulators indicated that EBOV NCLS utilize the canonical Arp2/3-Wave1-Rac1 pathway for long-distance transport in cells. These findings highlight the relevance of the regulation of actin polymerization during directed EBOV nucleocapsid transport in human cells.
Collapse
Affiliation(s)
- Katharina Grikscheit
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
| | - Yuki Takamatsu
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
20
|
A Conserved Tryptophan in the Ebola Virus Matrix Protein C-Terminal Domain Is Required for Efficient Virus-Like Particle Formation. Pathogens 2020; 9:pathogens9050402. [PMID: 32455873 PMCID: PMC7281420 DOI: 10.3390/pathogens9050402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
The Ebola virus (EBOV) harbors seven genes, one of which is the matrix protein eVP40, a peripheral protein that is sufficient to induce the formation of virus-like particles from the host cell plasma membrane. eVP40 can form different structures to fulfil different functions during the viral life cycle, although the structural dynamics of eVP40 that warrant dimer, hexamer, and octamer formation are still poorly understood. eVP40 has two conserved Trp residues at positions 95 and 191. The role of Trp95 has been characterized in depth as it serves as an important residue in eVP40 oligomer formation. To gain insight into the functional role of Trp191 in eVP40, we prepared mutations of Trp191 (W191A or W191F) to determine the effects of mutation on eVP40 plasma membrane localization and budding as well as eVP40 oligomerization. These in vitro and cellular experiments were complemented by molecular dynamics simulations of the wild-type (WT) eVP40 structure versus that of W191A. Taken together, Trp is shown to be a critical amino acid at position 191 as mutation to Ala reduces the ability of VP40 to localize to the plasma membrane inner leaflet and form new virus-like particles. Further, mutation of Trp191 to Ala or Phe shifted the in vitro equilibrium to the octamer form by destabilizing Trp191 interactions with nearby residues. This study has shed new light on the importance of interdomain interactions in stability of the eVP40 structure and the critical nature of timing of eVP40 oligomerization for plasma membrane localization and viral budding.
Collapse
|
21
|
Elfiky AA. Ebola virus glycoprotein GP1-host cell-surface HSPA5 binding site prediction. Cell Stress Chaperones 2020; 25:541-548. [PMID: 32291698 PMCID: PMC7154572 DOI: 10.1007/s12192-020-01106-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Ebola virus (EBOV) infection is a widespread infection that has created a bad memory in Africa. In the 2014 and 2015 outbreak, more than 28,000 infections were reported by the World Health Organization, with about 11,300 deaths in Guinea, Liberia, and Sierra Leone. Heat shock protein A5 (HSPA5), termed also GRP78, is a host cell chaperone protein responsible for the unfolded protein response in the endoplasmic reticulum. Under stress, HSPA5 is upregulated and becomes cell-surface exposed. Recent studies report the association of cell-surface HSPA5 with EBOV glycoproteins GP1 and GP2. In this study, structural and sequence analysis and molecular docking are used to predict the possible binding site between the cell-surface HSPA5 and EBOV GP1. The results show a promising binding site that supports the hypothesis of HSPA5 selectivity for binding to a specific peptide sequence (pep42). This study paves the way to suggest possible inhibitors to stop viral association with cell-surface receptors and subsequently reduce viral infection.
Collapse
Affiliation(s)
- Abdo A Elfiky
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt.
- College of Applied Medical Sciences, University of Al-Jouf, Sakaka, Saudi Arabia.
| |
Collapse
|
22
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|
23
|
Venkatesan A, Ravichandran L, Dass JFP. Computational Drug Design against Ebola Virus Targeting Viral Matrix Protein VP30. BORNEO JOURNAL OF PHARMACY 2019. [DOI: 10.33084/bjop.v2i2.836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ebola viral disease (EVD) is a deadly infectious hemorrhagic viral fever caused by the Ebola virus with a high mortality rate. Until date, there is no effective drug or vaccination available to combat this condition. This study focuses on designing an effective antiviral drug for Ebola viral disease targeting viral protein 30 (VP30) of Ebola virus, highly required for transcription initiation. The lead molecules were screened for Lipinski rule of five, ADMET study following which molecular docking and bioactivity prediction was carried out. The compounds with the least binding energy were analyzed using interaction software. The results revealed that 6-Hydroxyluteolin and (-)-Arctigenin represent active lead compounds that inhibit the activity of VP30 protein and exhibits efficient pharmacokinetics. Both these compounds are plant-derived flavonoids and possess no known adverse effects on human health. In addition, they bind strongly to the predicted binding site centered on Lys180, suggesting that these two lead molecules can be imperative in designing a potential drug for EVD.
Collapse
|
24
|
Ebola virus replication is regulated by the phosphorylation of viral protein VP35. Biochem Biophys Res Commun 2019; 521:687-692. [PMID: 31694758 DOI: 10.1016/j.bbrc.2019.10.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Ebola virus (EBOV) is a zoonotic pathogen, the infection often results in severe, potentially fatal, systematic disease in human and nonhuman primates. VP35, an essential viral RNA-dependent RNA polymerase cofactor, is indispensable for Ebola viral replication and host innate immune escape. In this study, VP35 was demonstrated to be phosphorylated at Serine/Threonine by immunoblotting, and the major phosphorylation sites was S187, S205, T206, S208 and S317 as revealed by LC-MS/MS. By an EBOV minigenomic system, EBOV minigenome replication was shown to be significantly inhibited by the phosphorylation-defective mutant, VP35 S187A, but was potentiated by the phosphorylation mimic mutant VP35 S187D. Together, our findings demonstrate that EBOV VP35 is phosphorylated on multiple residues in host cells, especially on S187, which may contribute to efficient viral genomic replication and viral proliferation.
Collapse
|
25
|
Chaperoning the Mononegavirales: Current Knowledge and Future Directions. Viruses 2018; 10:v10120699. [PMID: 30544818 PMCID: PMC6315898 DOI: 10.3390/v10120699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The order Mononegavirales harbors numerous viruses of significant relevance to human health, including both established and emerging infections. Currently, vaccines are only available for a small subset of these viruses, and antiviral therapies remain limited. Being obligate cellular parasites, viruses must utilize the cellular machinery for their replication and spread. Therefore, targeting cellular pathways used by viruses can provide novel therapeutic approaches. One of the key challenges confronted by both hosts and viruses alike is the successful folding and maturation of proteins. In cells, this task is faced by cellular molecular chaperones, a group of conserved and abundant proteins that oversee protein folding and help maintain protein homeostasis. In this review, we summarize the current knowledge of how the Mononegavirales interact with cellular chaperones, highlight key gaps in our knowledge, and discuss the potential of chaperone inhibitors as antivirals.
Collapse
|
26
|
Forrester JV. Ebola virus and persistent chronic infection: when does replication cease? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S39. [PMID: 30613614 DOI: 10.21037/atm.2018.09.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|