1
|
Carey-Ewend K, Marten A, Muller J, Peter EE, Odas M, Dominick MC, Muller M, Chhetri S, Amagai K, Rutha I, Kisandu F, Beka L, Kharabora O, Popkin-Hall ZR, Bailey J, Edwards JK, Gower EW, Juliano JJ, Ngasala BE, Lin JT. Seasonal variation and interspecies dynamics among Plasmodium falciparum and ovale species in Bagamoyo, Tanzania. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.12.25323778. [PMID: 40162288 PMCID: PMC11952601 DOI: 10.1101/2025.03.12.25323778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Malaria control in sub-Saharan Africa is typically focused on Plasmodium falciparum (Pf), but non-falciparum species like P. ovale curtisi (Poc) and P. ovale wallikeri (Pow) appear to be rising in prevalence, especially in East Africa. Methods We conducted polymerase chain reaction (PCR)-based screening of 7,173 asymptomatic individuals over 5 years of age in coastal Tanzania from 2018-2022, employing real-time 18S rRNA PCR assays for P. falciparum and P. ovale, followed by Poc/Pow detection. Plasmodium positivity was compared across seasons and demographic groups, and interactions between species were analyzed via binomial regression. Results Pf infection (prevalence 27.4%) was associated with younger age, male sex, and higher recent cumulative rainfall, whereas these associations were not apparent for P. ovale (Po, prevalence 11.5%). Po infections appeared to peak during months with lower Pf prevalence, especially during the long wet season, when Po mono-infections predominated and fewer Pf-Po co-infections were detected than expected by independent assortment. This apparent antagonism was reversed during the short wet season: Pf-Po co-infections were comparatively enriched despite low overall Po prevalence. In contrast, excess mixed Poc/Pow infections were detected across all seasons, composing 23% of the Po-positive isolates in which a specific Po species could be detected. Conclusions The epidemiology of P. ovale species in coastal Tanzania suggests they are frequently present when P. falciparum recedes, but also co-infect the same hosts during the short wet season. Meanwhile, the individual Poc and Pow species often co-exist within individuals, perhaps due to co-transmission or concurrent relapse.
Collapse
Affiliation(s)
- Kelly Carey-Ewend
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Aidan Marten
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Julia Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Editruda Ernest Peter
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, PO Box 65001, Tanzania
| | - Melic Odas
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, PO Box 65001, Tanzania
| | - Msolo Credo Dominick
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, PO Box 65001, Tanzania
| | - Meredith Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Srijana Chhetri
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Kano Amagai
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Isaack Rutha
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, PO Box 65001, Tanzania
| | - Fatuma Kisandu
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, PO Box 65001, Tanzania
| | - Lusekelo Beka
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, PO Box 65001, Tanzania
| | - Oksana Kharabora
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Zachary R. Popkin-Hall
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Jeffrey Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Jessie K. Edwards
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Emily W. Gower
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Jonathan J. Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Billy E. Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, PO Box 65001, Tanzania
| | - Jessica T. Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Murdiyarso LS, Rajahram GS, Tan AF, Piera KA, William T, Oyong DA, Sakam SSB, Jelip J, Dony J, Jantim A, Teo R, Manah AM, Barber BE, Anstey NM, Grigg MJ. Plasmodium cynomolgi Infections Not Found in Microscopy-Diagnosed Malaria Cases across Sabah, Malaysia. Am J Trop Med Hyg 2025; 112:85-88. [PMID: 39531730 PMCID: PMC11720798 DOI: 10.4269/ajtmh.24-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024] Open
Abstract
Zoonotic malaria presents a major public health challenge in Southeast Asia. Plasmodium cynomolgi coinfects the same macaque hosts and mosquito vectors as the most common cause of zoonotic malaria, Plasmodium knowlesi. Plasmodium cynomolgi appears morphologically similar to Plasmodium vivax on microscopy and can amplify P. vivax polymerase chain reaction (PCR) assays, confounding transmission estimates. We screened 2,103 samples for P. cynomolgi across all 26 districts in Sabah, Malaysia, from 2010 to 2021. Samples comprised 1,425 P. knowlesi, 256 P. vivax, 293 P. falciparum, and 31 Plasmodium malariae PCR-confirmed malaria cases and 100 malaria microscopy-positive and species-specific PCR-negative samples. A nested PCR assay targeting P. cynomolgi-specific 18S small subunit ribosomal ribonucleic acid with a detection limit of ∼2 parasites/µL was conducted on whole blood samples. No P. cynomolgi infections were detected. Symptomatic P. cynomolgi co-infections appear rare in Malaysia, although prevalence may be underestimated owing to the absence of routine molecular screening and the sensitivity of available assays.
Collapse
Affiliation(s)
- Lydia S. Murdiyarso
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Giri S. Rajahram
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Malaysia
- Queen Elizabeth Hospital II, Kota Kinabalu, Malaysia
| | - Angelica F. Tan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Kim A. Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Timothy William
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | | | - Sitti Saimah Binti Sakam
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Jenarun Jelip
- Vector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia
| | - Jiloris Dony
- Kota Kinabalu Public Health Laboratory, Ministry of Health, Kota Kinabalu, Malaysia
| | - Anisah Jantim
- Kota Kinabalu Public Health Laboratory, Ministry of Health, Kota Kinabalu, Malaysia
| | - Roddy Teo
- Public Health Research Section, Sabah State Department of Health, Kota Kinabalu, Malaysia
| | - Abdul Marsudi Manah
- Vector Borne Disease Unit, Sabah State Department of Health, Kota Kinabalu, Malaysia
| | - Bridget E. Barber
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| |
Collapse
|
3
|
Grimée M, Taylor AR, White MT. Heterogeneous mosquito exposure increases Plasmodium vivax and Plasmodium falciparum co-infections: a modelling study. Proc Biol Sci 2024; 291:20242061. [PMID: 39626757 PMCID: PMC11614531 DOI: 10.1098/rspb.2024.2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
In malaria-endemic regions, Plasmodium vivax and Plasmodium falciparum coexist and may interact. For instance, fevers induced by P. falciparum might activate dormant P. vivax parasites and concurrent radical cure of both species has been proposed to prevent relapses. Heterogeneous mosquito exposure may contribute to the dependence of both parasites. We conducted a literature review on their respective prevalence and that of co-infections. The data revealed a positive correlation between P. vivax and P. falciparum prevalence, and co-infection prevalences exceeding expectations assuming infections occur independently. We used the review data to fit a compartmental model of co-infections that features heterogenous mosquito exposure. The fit suggests that heterogeneous exposure sufficiently explains the observed departure from independence. Finally, we performed simulations under the model assessing the impact on P. vivax prevalence of the activation-by-fever hypothesis and the radical cure proposition. We demonstrated a moderate impact of allowing P. falciparum fevers to reactivate P. vivax and a substantial impact of treating P. falciparum cases with radical cure. Our model highlights dependence between P. falciparum and P. vivax and emphasizes the influence of heterogeneous mosquito exposure. This simple framework can inform the design of more complex models assessing integrated malaria control strategies in coendemic regions.
Collapse
Affiliation(s)
- Mathilde Grimée
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Aimee R. Taylor
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michael T. White
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
O'Mahony E, Ryan F, Hemandas H, Al-Sabbagh A, Cunnington A, Fitzgerald F. Cryptic Congenital Malaria Infection Causing Fever of Unknown Origin in an Infant. J Pediatr 2024; 275:114237. [PMID: 39151606 DOI: 10.1016/j.jpeds.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Affiliation(s)
| | | | | | - Afraa Al-Sabbagh
- North West Anglia Foundation Trust, Peterborough, United Kingdom
| | - Aubrey Cunnington
- Department of Infectious Disease and Centre for Paediatrics and Child Health Imperial College London, London, United Kingdom
| | - Felicity Fitzgerald
- Department of Infectious Disease and Centre for Paediatrics and Child Health Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Silva R, Lopes LF, Rodrigues A, Arez AP, Medeiros MM. Assessing the burden of submicroscopic Plasmodium infections in a pre-elimination malaria setting in sub-Saharan Africa, Guinea-Bissau. Malar J 2024; 23:316. [PMID: 39427159 PMCID: PMC11491027 DOI: 10.1186/s12936-024-05138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Submicroscopic Plasmodium infections can be a source of persistent malaria transmission. The aim of this study was to assess their frequency, distribution, morbidity and associated factors in a pre-elimination malaria setting in sub-Saharan Africa, Guinea-Bissau, where the Plasmodium falciparum is the predominant Plasmodium species. METHODS Dried fingerprick whole blood samples from 601 participants in the 2017 national, household-based, cross-sectional survey to estimate malaria prevalence were subjected to DNA extraction. The DNA was used in nested end-point PCR assays targeting genus- and species-specific regions of the Plasmodium 18S rRNA genes. Statistical analysis of socio-demographic, clinical and molecular data was carried out using the Statistical Package for the Social Sciences, version 29. Factors associated with submicroscopic P. falciparum infections and their magnitude were sought using Chi-square test and multiple logistic regression models, respectively. Statistically significant level was considered at P-value < 0.05. RESULTS Nested PCR assays detected submicroscopic P. falciparum infections in 20.3% (95% CI = 16.8-23.8) of individuals microscopically negative for Plasmodium species in the general population and in 21.4% (95% CI = 9.9-36.5) of microscopically negative pregnant women. Submicroscopic Plasmodium malariae infections were also detected as co-infections in 3.0% individuals who were microscopically positive only for P. falciparum. Infections with other Plasmodium species were not detected. Submicroscopic P. falciparum infections were not associated with age, sex, or the presence of fever. A logistic regression model adjusted for ethnicity and health region showed that individuals from the Balanta and Bijagos ethnic groups, most of whom live in the low malaria-transmission areas of Quinara and Bissau, and the Bijagos archipelago, respectively, were less likely to have submicroscopic P. falciparum infections than individuals from the large Fula ethnic group, most of whom live in the high malaria-transmission area of Gabu. Submicroscopic P. falciparum infections were not associated with anaemia in children under 5 years of age. CONCLUSION The results obtained highlight the contribution of asymptomatic and submicroscopic P. falciparum infections to malaria transmission in high malaria-transmission areas and the need for molecular-based tools to detect submicroscopic Plasmodium species.
Collapse
Affiliation(s)
- Ronise Silva
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
- Bandim Health Project, Apartado 861, 1004, Bissau Codex, Bissau, Guinea-Bissau
| | - Luis Filipe Lopes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Amabelia Rodrigues
- Bandim Health Project, Apartado 861, 1004, Bissau Codex, Bissau, Guinea-Bissau
| | - Ana Paula Arez
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Márcia M Medeiros
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| |
Collapse
|
6
|
Mediavilla A, Silgado A, Febrer-Sendra B, Crego-Vicente B, Martínez-Vallejo P, Maturana CR, Goterris L, Nindia A, Martínez-Campreciós J, Aixut S, Aznar-Ruiz-de-Alegría ML, Fernández-Soto P, Muro A, Salvador F, Molina I, Berzosa P, Oliveira-Souto I, Sulleiro E. Real-time PCR for malaria diagnosis and identification of Plasmodium species in febrile patients in Cubal, Angola. Parasit Vectors 2024; 17:384. [PMID: 39261971 PMCID: PMC11389249 DOI: 10.1186/s13071-024-06467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Malaria is the parasitic disease with the highest morbimortality worldwide. The World Health Organization (WHO) estimates that there were approximately 249 million cases in 2022, of which 3.4% were in Angola. Diagnosis is based on parasite identification by microscopy examination, antigen detection, and/or molecular tests, such as polymerase chain reaction (PCR). This study aimed to evaluate the usefulness of real-time PCR as a diagnostic method for malaria in an endemic area (Cubal, Angola). METHODS A cross-sectional study was carried out at the Hospital Nossa Senhora da Paz in Cubal, Angola, including 200 patients who consulted for febrile syndrome between May and July 2022. From each patient, a capillary blood sample was obtained by finger prick for malaria field diagnosis [microscopy and rapid diagnostic test (RDT)] and venous blood sample for real-time PCR performed at the Hospital Universitario Vall d'Hebron in Barcelona, Spain. Any participant with a positive result from at least one of these three methods was diagnosed with malaria. RESULTS Of the 200 participants included, 54% were female and the median age was 7 years. Malaria was diagnosed by at least one of the three techniques (microscopy, RDT, and/or real-time PCR) in 58% of the participants, with RDT having the highest percentage of positivity (49%), followed by real-time PCR (39.5%) and microscopy (33.5%). Of the 61 discordant samples, 4 were only positive by microscopy, 13 by real-time PCR, and 26 by RDT. Plasmodium falciparum was the most frequent species detected (90.63%), followed by P. malariae (17.19%) and P. ovale (9.38%). Coinfections were detected in ten participants (15.63%): six (60%) were caused by P. falciparum and P. malariae, three (30%) by P. falciparum and P. ovale, and one (10%) triple infection with these three species. In addition, it was observed that P. falciparum and P. malariae coinfection significantly increased the parasite density of the latter. CONCLUSIONS RDT was the technique with the highest positivity rate, followed by real-time PCR and microscopy. The results of the real-time PCR may have been underestimated due to suboptimal storage conditions during the transportation of the DNA eluates. However, real-time PCR techniques have an important role in the surveillance of circulating Plasmodium species, given the epidemiological importance of the increase in non-falciparum species in the country, and can provide an estimate of the intensity of infection.
Collapse
Affiliation(s)
- Alejandro Mediavilla
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Silgado
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Patricia Martínez-Vallejo
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carles Rubio Maturana
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lidia Goterris
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
| | | | - Joan Martínez-Campreciós
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Sandra Aixut
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - María Luisa Aznar-Ruiz-de-Alegría
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Fernando Salvador
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Israel Molina
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Pedro Berzosa
- Malaria and Neglected Tropical Diseases Laboratory, National Centre for Tropical Medicine, Carlos III Health Institute, CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Inés Oliveira-Souto
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain.
| | - Elena Sulleiro
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
He W, Sendor R, Potlapalli VR, Kashamuka MM, Tshefu AK, Phanzu F, Kalonji A, Ngasala B, Thwai KL, Juliano JJ, Lin JT, Parr JB. Development of new real-time PCR assays for detection and species differentiation of Plasmodium ovale. PLoS Negl Trop Dis 2024; 18:e0011759. [PMID: 39255325 PMCID: PMC11414980 DOI: 10.1371/journal.pntd.0011759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/20/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The parasite species Plasmodium ovalecurtisi (P. ovalecurtisi) and Plasmodium ovalewallikeri (P. ovalewallikeri), formerly known as Plasmodium ovale, are endemic across multiple African countries. These species are thought to differ in clinical symptomatology and latency, but only a small number of existing diagnostic assays can detect and distinguish them. In this study, we sought to develop new assays for the detection and differentiation of P. ovalecurtisi and P. ovalewallikeri by leveraging recently published whole-genome sequences for both species. METHODS Repetitive sequence motifs were identified in available P. ovalecurtisi and P. ovalewallikeri genomes and used for assay development and validation. We evaluated the analytical sensitivity of the best-performing singleplex and duplex assays using synthetic plasmids. We then evaluated the specificity of the duplex assay using a panel of samples from Tanzania and the Democratic Republic of the Congo (DRC), and validated its performance using 55 P. ovale samples and 40 non-ovale Plasmodium samples from the DRC. RESULTS The best-performing P. ovalecurtisi and P. ovalewallikeri targets had 9 and 8 copies within the reference genomes, respectively. The P. ovalecurtisi assay had high sensitivity with a 95% confidence lower limit of detection (LOD) of 3.6 parasite genome equivalents/μl, while the P. ovalewallikeri assay had a 95% confidence LOD of 25.9 parasite genome equivalents/μl. A duplex assay targeting both species had 100% specificity and 95% confidence LOD of 4.2 and 41.2 parasite genome equivalents/μl for P. ovalecurtisi and P. ovalewallikeri, respectively. CONCLUSIONS We identified promising multi-copy targets for molecular detection and differentiation of P. ovalecurtisi and P. ovalewallikeri and used them to develop real-time PCR assays. The best performing P. ovalecurtisi assay performed well in singleplex and duplex formats, while the P. ovalewallikeri assay did not reliably detect low-density infections in either format. These assays have potential use for high-throughput identification of P. ovalecurtisi, or for identification of higher density P. ovalecurtisi or P. ovalewallikeri infections that are amenable to downstream next-generation sequencing.
Collapse
Affiliation(s)
- Wenqiao He
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Rachel Sendor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Varun R. Potlapalli
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | | | | | | | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Kyaw Lay Thwai
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan J. Juliano
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jessica T. Lin
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan B. Parr
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Cao Y, Hayashi CTH, Araujo MDS, Tripathi AK, Andrade AO, Medeiros JF, Vinetz J, Kumar N. Evaluation of combination vaccines targeting transmission of Plasmodium falciparum and P. vivax. Vaccine 2024; 42:126140. [PMID: 39033079 PMCID: PMC11338703 DOI: 10.1016/j.vaccine.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Transmission-blocking vaccines interrupting malaria transmission within mosquitoes represent an ideal public health tool to eliminate malaria at the population level. Plasmodium falciparum and P. vivax account for more than 90% of the global malaria burden, co-endemic in many regions of the world. P25 and P48/45 are two leading candidates for both species and have shown promising transmission-blocking activity in preclinical and clinical studies. However, neither of these target antigens as individual vaccines has induced complete transmission inhibition in mosquitoes. In this study, we assessed immunogenicity of combination vaccines based on P25 and P48/45 using a DNA vaccine platform to broaden vaccine specificity against P. falciparum and P. vivax. Individual DNA vaccines encoding Pvs25, Pfs25, Pvs48/45 and Pfs48/45, as well as various combinations including (Pvs25 + Pvs48/45), (Pfs25 + Pfs48/45), (Pvs25 + Pfs25), and (Pvs48/45 + Pfs48/45), were evaluated in mice using in vivo electroporation. Potent antibody responses were induced in mice immunized with individual and combination DNA vaccines, and specific antibody responses were not compromised when combinations of DNA vaccines were evaluated against individual DNA vaccines. The anti-Pvs25 IgG from individual and combination groups revealed concentration-dependent transmission-reducing activity (TRA) in direct membrane feeding assays (DMFA) using blood from P. vivax-infected donors in Brazil and independently in ex vivo MFA using Pvs25-transgenic P. berghei. Similarly, anti-Pfs25 and anti-Pfs48/45 IgGs from mice immunized with Pfs25 and Pfs48/45 DNA vaccines individually and in various combinations revealed antibody dose-dependent TRA in standard membrane feeding assays (SMFA) using culture-derived P. falciparum gametocytes. However, antibodies induced by immunization with Pvs48/45 DNA vaccines were ineffective in DMFA and require further vaccine construct optimization, considering the possibility of induction of both transmission-blocking and transmission-enhancing antibodies revealed by competition ELISA. These studies provide a rationale for combining multiple antigens to simultaneously target transmission of malaria caused by P. falciparum and P. vivax.
Collapse
MESH Headings
- Malaria Vaccines/immunology
- Malaria Vaccines/administration & dosage
- Animals
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Falciparum/immunology
- Plasmodium falciparum/immunology
- Plasmodium falciparum/genetics
- Plasmodium vivax/immunology
- Plasmodium vivax/genetics
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Malaria, Vivax/immunology
- Mice
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/blood
- Female
- Vaccines, Combined/immunology
- Vaccines, Combined/administration & dosage
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Mice, Inbred BALB C
- Humans
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington D.C., USA
| | - Clifford T H Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington D.C., USA
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho RO, Brazil; Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo 01246-904, SP, Brazil
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Alice Oliveira Andrade
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho RO, Brazil; Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo 01246-904, SP, Brazil
| | - Jansen Fernandes Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - FIOCRUZ RO, Rua da Beira 7671, CEP 76812-245 Porto Velho RO, Brazil; Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia 76812-245, Brazil
| | - Joseph Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Sciences, Faculty of Sciences, and Alexander von Humboldt Institute of Tropical Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington D.C., USA.
| |
Collapse
|
9
|
Popkin-Hall ZR, Seth MD, Madebe RA, Budodo R, Bakari C, Francis F, Pereus D, Giesbrecht DJ, Mandara CI, Mbwambo D, Aaron S, Lusasi A, Lazaro S, Bailey JA, Juliano JJ, Ishengoma DS. Malaria Species Positivity Rates Among Symptomatic Individuals Across Regions of Differing Transmission Intensities in Mainland Tanzania. J Infect Dis 2024; 229:959-968. [PMID: 37992117 PMCID: PMC11011190 DOI: 10.1093/infdis/jiad522] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Recent data indicate that non-Plasmodium falciparum species may be more prevalent than thought in sub-Saharan Africa. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are less severe than P. falciparum, treatment and control are more challenging, and their geographic distributions are not well characterized. METHODS We randomly selected 3284 of 12 845 samples collected from cross-sectional surveys in 100 health facilities across 10 regions of Mainland Tanzania and performed quantitative real-time PCR to determine presence and parasitemia of each malaria species. RESULTS P. falciparum was most prevalent, but P. malariae and P. ovale were found in all but 1 region, with high levels (>5%) of P. ovale in 7 regions. The highest P. malariae positivity rate was 4.5% in Mara and 8 regions had positivity rates ≥1%. We only detected 3 P. vivax infections, all in Kilimanjaro. While most nonfalciparum malaria-positive samples were coinfected with P. falciparum, 23.6% (n = 13 of 55) of P. malariae and 14.7% (n = 24 of 163) of P. ovale spp. were monoinfections. CONCLUSIONS P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of nonfalciparum species.
Collapse
Affiliation(s)
- Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Misago D Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rule Budodo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Center, Tanga, Tanzania
| | - Dativa Pereus
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - David J Giesbrecht
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | | | | | - Samwel Lazaro
- National Malaria Control Programme, Dodoma, Tanzania
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Musundi SD, Gitaka J, Kanoi BN. Identification of conserved cross-species B-cell linear epitopes in human malaria: a subtractive proteomics and immuno-informatics approach targeting merozoite stage proteins. Front Immunol 2024; 15:1352618. [PMID: 38404581 PMCID: PMC10884153 DOI: 10.3389/fimmu.2024.1352618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Human malaria, caused by five Plasmodium species (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi), remains a significant global health burden. While most interventions target P. falciparum, the species associated with high mortality rates and severe clinical symptoms, non-falciparum species exhibit different transmission dynamics, remain hugely neglected, and pose a significant challenge to malaria elimination efforts. Recent studies have reported the presence of antigens associated with cross-protective immunity, which can potentially disrupt the transmission of various Plasmodium species. With the sequencing of the Plasmodium genome and the development of immunoinformatic tools, in this study, we sought to exploit the evolutionary history of Plasmodium species to identify conserved cross-species B-cell linear epitopes in merozoite proteins. We retrieved Plasmodium proteomes associated with human malaria and applied a subtractive proteomics approach focusing on merozoite stage proteins. Bepipred 2.0 and Epidope were used to predict B-cell linear epitopes using P. falciparum as the reference species. The predictions were further compared against human and non-falciparum databases and their antigenicity, toxicity, and allergenicity assessed. Subsequently, epitope conservation was carried out using locally sequenced P. falciparum isolates from a malaria-endemic region in western Kenya (n=27) and Kenyan isolates from MalariaGEN version 6 (n=131). Finally, physiochemical characteristics and tertiary structure of the B-cell linear epitopes were determined. The analysis revealed eight epitopes that showed high similarity (70-100%) between falciparum and non-falciparum species. These epitopes were highly conserved when assessed across local isolates and those from the MalariaGEN database and showed desirable physiochemical properties. Our results show the presence of conserved cross-species B-cell linear epitopes that could aid in targeting multiple Plasmodium species. Nevertheless, validating their efficacy in-vitro and in-vivo experimentally is essential.
Collapse
Affiliation(s)
| | | | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| |
Collapse
|
11
|
Koepfli C. Is qPCR always the most sensitive method for malaria diagnostic quality surveillance? Malar J 2023; 22:380. [PMID: 38102649 PMCID: PMC10722660 DOI: 10.1186/s12936-023-04822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
In many studies to evaluate the quality of malaria diagnosis, microscopy or rapid diagnostic tests (RDT) are compared to PCR. Depending on the method for sample collection and storage (whole blood or dried blood spot), volume of blood used for extraction, volume of DNA used as PCR template, and choice of PCR target (single vs. multi-copy gene), the limit of detection (LOD) of PCR might not exceed the LOD of expert microscopy or RDT. One should not assume that PCR always detects the highest number of infections.
Collapse
Affiliation(s)
- Cristian Koepfli
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA.
| |
Collapse
|
12
|
He W, Sendor R, Potlapalli VR, Kashamuka MM, Tshefu AK, Phanzu F, Kalonji A, Ngasala B, Thwai KL, Juliano JJ, Lin JT, Parr JB. A novel duplex qualitative real-time PCR assay for the detection and differentiation of Plasmodium ovale curtisi and Plasmodium ovale wallikeri malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.31.23297819. [PMID: 37961397 PMCID: PMC10635243 DOI: 10.1101/2023.10.31.23297819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background P. ovale spp. infections are endemic across multiple African countries and are caused by two distinct non-recombining species, P. ovale curtisi (Poc) and P. ovale wallikeri (Pow). These species are thought to differ in clinical symptomatology and latency, but existing diagnostic assays have limited ability to detect and distinguish them. In this study, we developed a new duplex assay for the detection and differentiation of Poc and Pow that can be used to improve our understanding of these parasites. Methods Repetitive sequence motifs were identified in available Poc and Pow genomes and used for assay development and validation. We evaluated the analytical sensitivity and specificity of the best-performing assay using a panel of samples from Tanzania and the Democratic Republic of the Congo (DRC), then validated its performance using 55 P. ovale spp. samples and 40 non-ovale Plasmodium samples from the DRC. Poc and Pow prevalence among symptomatic individuals sampled across three provinces of the DRC were estimated. Results The best-performing Poc and Pow targets had 9 and 8 copies within the reference genomes, respectively. Our duplex assay had 100% specificity and 95% confidence lower limits of detection of 4.2 and 41.2 parasite genome equivalents/μl for Poc and Pow, respectively. Species was determined in 80% of all P. ovale spp.-positive field samples and 100% of those with >10 parasites/μl. Most P. ovale spp. field samples from the DRC were found to be Poc infections. Conclusions We identified promising multi-copy targets for molecular detection and differentiation of Poc and Pow and used them to develop a new duplex real-time PCR assay that performed well when applied to diverse field samples. Though low-density Pow infections are not reliably detected, the assay is highly specific and can be used for high-throughput studies of P. ovale spp. epidemiology among symptomatic cases in malaria-endemic countries like the DRC.
Collapse
Affiliation(s)
- Wenqiao He
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Rachel Sendor
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States
| | - Varun R. Potlapalli
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | | | | | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Kyaw Lay Thwai
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan J. Juliano
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States
| | - Jessica T. Lin
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan B. Parr
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Malpartida-Cardenas K, Moser N, Ansah F, Pennisi I, Ahu Prah D, Amoah LE, Awandare G, Hafalla JCR, Cunnington A, Baum J, Rodriguez-Manzano J, Georgiou P. Sensitive Detection of Asymptomatic and Symptomatic Malaria with Seven Novel Parasite-Specific LAMP Assays and Translation for Use at Point-of-Care. Microbiol Spectr 2023; 11:e0522222. [PMID: 37158750 PMCID: PMC10269850 DOI: 10.1128/spectrum.05222-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Human malaria is a life-threatening parasitic disease with high impact in the sub-Saharan Africa region, where 95% of global cases occurred in 2021. While most malaria diagnostic tools are focused on Plasmodium falciparum, there is a current lack of testing non-P. falciparum cases, which may be underreported and, if undiagnosed or untreated, may lead to severe consequences. In this work, seven species-specific loop-mediated isothermal amplification (LAMP) assays were designed and evaluated against TaqMan quantitative PCR (qPCR), microscopy, and enzyme-linked immunosorbent assays (ELISAs). Their clinical performance was assessed with a cohort of 164 samples of symptomatic and asymptomatic patients from Ghana. All asymptomatic samples with a parasite load above 80 genomic DNA (gDNA) copies per μL of extracted sample were detected with the Plasmodium falciparum LAMP assay, reporting 95.6% (95% confidence interval [95% CI] of 89.9 to 98.5) sensitivity and 100% (95% CI of 87.2 to 100) specificity. This assay showed higher sensitivity than microscopy and ELISA, which were 52.7% (95% CI of 39.7 to 67%) and 67.3% (95% CI of 53.3 to 79.3%), respectively. Nine samples were positive for P. malariae, indicating coinfections with P. falciparum, which represented 5.5% of the tested population. No samples were detected as positive for P. vivax, P. ovale, P. knowlesi, or P. cynomolgi by any method. Furthermore, translation to the point-of-care was demonstrated with a subcohort of 18 samples tested locally in Ghana using our handheld lab-on-chip platform, Lacewing, showing comparable results to a conventional fluorescence-based instrument. The developed molecular diagnostic test could detect asymptomatic malaria cases, including submicroscopic parasitemia, and it has the potential to be used for point-of-care applications. IMPORTANCE The spread of Plasmodium falciparum parasites with Pfhrp2/3 gene deletions presents a major threat to reliable point-of-care diagnosis with current rapid diagnostic tests (RDTs). Novel molecular diagnostics based on nucleic acid amplification are needed to address this liability. In this work, we overcome this challenge by developing sensitive tools for the detection of Plasmodium falciparum and non-P. falciparum species. Furthermore, we evaluate these tools with a cohort of symptomatic and asymptomatic malaria patients and test a subcohort locally in Ghana. The findings of this work could lead to the implementation of DNA-based diagnostics to fight against the spread of malaria and provide reliable, sensitive, and specific diagnostics at the point of care.
Collapse
Affiliation(s)
- Kenny Malpartida-Cardenas
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Nicolas Moser
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Ivana Pennisi
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Linda Eva Amoah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Julius Clemence R. Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Aubrey Cunnington
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Jesus Rodriguez-Manzano
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Impact of the COVID-19 Pandemic on Malaria Control in Africa: A Preliminary Analysis. Trop Med Infect Dis 2023; 8:tropicalmed8010067. [PMID: 36668974 PMCID: PMC9863638 DOI: 10.3390/tropicalmed8010067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Malaria remains a significant public health concern in Africa, and the emerging coronavirus disease 2019 (COVID-19) pandemic may have negatively impacted malaria control. Here, we conducted a descriptive epidemiological analysis of malaria globally, and preliminarily explored the impact of COVID-19 on the malaria elimination program in regions of Africa (AFR). The present analysis found that there was a vast heterogeneity of incidence of deaths caused by malaria globally in different continents, and the highest malaria burden was observed in AFR. In 2020, there was an obviously increasing trend in the malaria epidemic in AFR, while the other four continents exhibited stable and declining patterns. Historically, malaria has been largely concentrated in high-malaria-burden regions, such as West Africa, and there has been an obvious increasing trend in Nigeria. These data suggest that dynamic changes in the malaria epidemic situation worldwide have primarily originated from AFR, and West Africa has played an important role in the global malaria increase in recent years. Under the coercion of COVID-19, multiple factors have co-driven the increase in malaria in AFR, including insufficient financial investments, a high native malaria burden, weak surveillance systems, limited medical resources, and low socioeconomic development levels. In addition, the shift of medical resources (e.g., health workers and personal protective equipment (PPE), the manufacturing of diagnostic reagents, and drugs) from malaria control to emergency COVID-19 response in the pandemic's early stage caused disruptions, reductions, and delays in pillar malaria control measures, leading to a significant negative impact on malaria control. In particular, a funding shortfall at both the international and domestic levels led to a "significant threat," resulting in vast gaps in access to proven malaria control tools. Although there has been a declining trend in malaria control over time due to COVID-19, the effect still cannot be ignored. Hence, we recommend the implementation of medical and technical resource assistance as a priority strategy to support Africa (West Africa) in order to curb further transmission.
Collapse
|