1
|
Dietz LT, Põld K, Györffy BA, Zharkovsky A, Sørensen JB, Pankratova S, Dmytriyeva O. A Peptide Motif Covering Splice Site B in Neuroligin-1 Binds to Aβ and Acts as a Neprilysin Inhibitor. Mol Neurobiol 2025; 62:3244-3257. [PMID: 39261388 PMCID: PMC11790763 DOI: 10.1007/s12035-024-04475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
The most common cause of dementia among elderly people is Alzheimer's disease (AD). The typical symptom of AD is the decline of cognitive abilities, which is caused by loss of synaptic function. Amyloid-β (Aβ) oligomers play a significant role in the development of this synaptic dysfunction. Neuroligin-(NL)1 is a postsynaptic cell-adhesion molecule located in excitatory synapses and involved in the maintenance and modulation of synaptic contacts. A recent study has found that Aβ interacts with the soluble N-terminal fragment of NL1. The present study aimed to elucidate the role of NL1 in Aβ-induced neuropathology. Employing surface plasmon resonance and competitive ELISA, we confirmed the high-affinity binding of NL1 to the Aβ peptide. We also identified a sequence motif representing the NL1-binding site for the Aβ peptide and showed that a synthetic peptide modeled after this motif, termed neurolide, binds to the Aβ peptide with high affinity, comparable to the NL1-Aβ interaction. To assess the effect of neurolide in vivo, wild-type and 5XFAD mice were subcutaneously treated with this peptide for 10 weeks. We observed an increase in Aβ plaque formation in the cortex of neurolide-treated 5XFAD mice. Furthermore, we showed that neurolide reduces the activity of neprilysin, the predominant Aβ-degrading enzyme in the brain. Accordingly, we suggest that neurolide is the NL1-binding site for Aβ peptide, and acts as an inhibitor of neprilysin activity. Based on these data, we confirm the involvement of NL1 in the development of AD and suggest a mechanism for NL1-induced Aβ plaque formation.
Collapse
Affiliation(s)
- Lene T Dietz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Põld
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Balázs A Györffy
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jakob B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Otte ED, Roper RJ. Skeletal health in DYRK1A syndrome. Front Neurosci 2024; 18:1462893. [PMID: 39308945 PMCID: PMC11413744 DOI: 10.3389/fnins.2024.1462893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
DYRK1A syndrome results from a reduction in copy number of the DYRK1A gene, which resides on human chromosome 21 (Hsa21). DYRK1A has been implicated in the development of cognitive phenotypes associated with many genetic disorders, including Down syndrome (DS) and Alzheimer's disease (AD). Additionally, overexpression of DYRK1A in DS has been implicated in the development of abnormal skeletal phenotypes in these individuals. Analyses of mouse models with Dyrk1a dosage imbalance (overexpression and underexpression) show skeletal deficits and abnormalities. Normalization of Dyrk1a copy number in an otherwise trisomic animal rescues some skeletal health parameters, and reduction of Dyrk1a copy number in an otherwise euploid (control) animal results in altered skeletal health measurements, including reduced bone mineral density (BMD) in the femur, mandible, and skull. However, little research has been conducted thus far on the implications of DYRK1A reduction on human skeletal health, specifically in individuals with DYRK1A syndrome. This review highlights the skeletal phenotypes of individuals with DYRK1A syndrome, as well as in murine models with reduced Dyrk1a copy number, and provides potential pathways altered by a reduction of DYRK1A copy number, which may impact skeletal health and phenotypes in these individuals. Understanding how decreased expression of DYRK1A in individuals with DYRK1A syndrome impacts bone health may increase awareness of skeletal traits and assist in the development of therapies to improve quality of life for these individuals.
Collapse
Affiliation(s)
- Elysabeth D Otte
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Randall J Roper
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
3
|
Pisula W, Modlinska K, Chrzanowska A, Goncikowska K. Cognitive asymmetry in rats in response to emergent vs. disappearing affordances. Anim Cogn 2024; 27:48. [PMID: 39008136 PMCID: PMC11249404 DOI: 10.1007/s10071-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
This study examines the effects of novel environmental changes on the behavior of rats in an experimental chamber. We hypothesized that newly discovered opportunities, detected by the animal's cognitive system, would motivate greater investigation of environmental changes than comparable changes that prevent a given behavior. Three experiments differed in the emergence vs. elimination of affordances represented by open or closed tunnels. In Experiment 1, rats were habituated to a chamber with all four tunnels closed, and then two tunnels were opened. In Experiment 2, rats were habituated to a chamber where all four tunnels were open, and then two tunnels were closed. In Experiment 3, rats were habituated to a chamber with two open tunnels on one side, and two closed tunnels on the other. Then, the arrangement of open and closed tunnels was swapped. Results of the Exp. 1 show that the rats responded by spending more time near the newly opened tunnels and less time near the closed tunnels, the central zone, and the transporter. This suggests that rats are more motivated to investigate the environmental change combined with the emergent affordance (opening of the tunnels) than the environmental change alone. In Exp. 2, the rats responded by spending more time near the open tunnels and less time in the central zone. This suggests that the rats are more triggered by the available affordances (open tunnels) than by the environmental change (closed tunnels). Finally, in Exp. 3, the rats responded by spending more time near the newly opened tunnels and less near the central zone. However, they did not spend less time near the newly closed tunnels. These results suggest that rats process both the novelty itself and the emergence/disappearance of available affordances. The results are discussed regarding the cognitive asymmetry in the perception of emergent vs. disappearing affordances. It is proposed that the rat's cognitive system is specialized for detecting newly emergent environmental opportunities/affordances rather than novelty in general.
Collapse
Affiliation(s)
- Wojciech Pisula
- Institute of Psychology, Polish Academy of Sciences, Jaracza 1, Warsaw, 00-378, Poland.
| | - Klaudia Modlinska
- Institute of Psychology, Polish Academy of Sciences, Jaracza 1, Warsaw, 00-378, Poland
| | - Anna Chrzanowska
- Institute of Psychology, Polish Academy of Sciences, Jaracza 1, Warsaw, 00-378, Poland
| | - Katarzyna Goncikowska
- Institute of Psychology, Polish Academy of Sciences, Jaracza 1, Warsaw, 00-378, Poland
| |
Collapse
|
4
|
Cortes DE, Escudero M, Korgan AC, Mitra A, Edwards A, Aydin SC, Munger SC, Charland K, Zhang ZW, O'Connell KMS, Reinholdt LG, Pera MF. An in vitro neurogenetics platform for precision disease modeling in the mouse. SCIENCE ADVANCES 2024; 10:eadj9305. [PMID: 38569042 PMCID: PMC10990289 DOI: 10.1126/sciadv.adj9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.
Collapse
Affiliation(s)
| | | | | | - Arojit Mitra
- The Jackson Laboratory, Bar Harbor, ME 04660, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Targeting epigenetics: A novel promise for Alzheimer's disease treatment. Ageing Res Rev 2023; 90:102003. [PMID: 37422087 DOI: 10.1016/j.arr.2023.102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
So far, the search for a cure for Alzheimer Disease (AD) has been unsuccessful. The only approved drugs attenuate some symptoms, but do not halt the progress of this disease, which affects 50 million people worldwide and will increase its incidence in the coming decades. Such scenario demands new therapeutic approaches to fight against this devastating dementia. In recent years, multi-omics research and the analysis of differential epigenetic marks in AD subjects have contributed to our understanding of AD; however, the impact of epigenetic research is yet to be seen. This review integrates the most recent data on pathological processes and epigenetic changes relevant for aging and AD, as well as current therapies targeting epigenetic machinery in clinical trials. Evidence shows that epigenetic modifications play a key role in gene expression, which could provide multi-target preventative and therapeutic approaches in AD. Both novel and repurposed drugs are employed in AD clinical trials due to their epigenetic effects, as well as increasing number of natural compounds. Given the reversible nature of epigenetic modifications and the complexity of gene-environment interactions, the combination of epigenetic-based therapies with environmental strategies and drugs with multiple targets might be needed to properly help AD patients.
Collapse
Affiliation(s)
- Danko Jeremic
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| |
Collapse
|
6
|
Pijuan I, Balducci E, Soto-Sánchez C, Fernández E, Barallobre MJ, Arbonés ML. Impaired macroglial development and axonal conductivity contributes to the neuropathology of DYRK1A-related intellectual disability syndrome. Sci Rep 2022; 12:19912. [PMID: 36402907 PMCID: PMC9675854 DOI: 10.1038/s41598-022-24284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The correct development and activity of neurons and glial cells is necessary to establish proper brain connectivity. DYRK1A encodes a protein kinase involved in the neuropathology associated with Down syndrome that influences neurogenesis and the morphological differentiation of neurons. DYRK1A loss-of-function mutations in heterozygosity cause a well-recognizable syndrome of intellectual disability and autism spectrum disorder. In this study, we analysed the developmental trajectories of macroglial cells and the properties of the corpus callosum, the major white matter tract of the brain, in Dyrk1a+/- mice, a mouse model that recapitulates the main neurological features of DYRK1A syndrome. We found that Dyrk1a+/- haploinsufficient mutants present an increase in astrogliogenesis in the neocortex and a delay in the production of cortical oligodendrocyte progenitor cells and their progression along the oligodendroglial lineage. There were fewer myelinated axons in the corpus callosum of Dyrk1a+/- mice, axons that are thinner and with abnormal nodes of Ranvier. Moreover, action potential propagation along myelinated and unmyelinated callosal axons was slower in Dyrk1a+/- mutants. All these alterations are likely to affect neuronal circuit development and alter network synchronicity, influencing higher brain functions. These alterations highlight the relevance of glial cell abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Isabel Pijuan
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Elisa Balducci
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Cristina Soto-Sánchez
- grid.26811.3c0000 0001 0586 4893Instituto de Bioingeniería, Miguel Hernández University, 03202 Elche, Spain ,grid.429738.30000 0004 1763 291XCentro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 03202 Elche, Spain
| | - Eduardo Fernández
- grid.26811.3c0000 0001 0586 4893Instituto de Bioingeniería, Miguel Hernández University, 03202 Elche, Spain ,grid.429738.30000 0004 1763 291XCentro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 03202 Elche, Spain
| | - María José Barallobre
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| | - Maria L. Arbonés
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular de Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain
| |
Collapse
|
7
|
Suresh P, Jasmin S, Yen Y, Hsu HJ, Varinthra P, Pairojana T, Chen CC, Liu IY. Attenuation of HECT-E3 ligase expression rescued memory deficits in 3xTg-AD mice. Front Aging Neurosci 2022; 14:916904. [PMID: 35966798 PMCID: PMC9372289 DOI: 10.3389/fnagi.2022.916904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative disorders that cause deterioration of cognitive functions. Recent studies suggested that the accumulation of inflammatory molecules and impaired protein degradation mechanisms might both play a critical role in the progression of AD. Autophagy is a major protein degradation pathway that can be controlled by several HECT-E3 ligases, which then regulates the expression of inflammatory molecules. E3 ubiquitin ligases are known to be upregulated in several neurodegenerative diseases. Here, we studied the expressional change of HECT-E3 ligase using M01 on autophagy and inflammasome pathways in the context of AD pathogenesis. Our results demonstrated that the M01 treatment reversed the working memory deficits in 3xTg-AD mice when examined with the T-maze and reversal learning with the Morris water maze. Additionally, the electrophysiology recordings indicated that M01 treatment enhanced the long-term potentiation in the hippocampus of 3xTg-AD mice. Together with the improved memory performance, the expression levels of the NLRP3 inflammasome protein were decreased. On the other hand, autophagy-related molecules were increased in the hippocampus of 3xTg-AD mice. Furthermore, the protein docking analysis indicated that the binding affinity of M01 to the WWP1 and NEDD4 E3 ligases was the highest among the HECT family members. The western blot analysis also confirmed the decreased expression level of NEDD4 protein in the M01-treated 3xTg-AD mice. Overall, our results demonstrate that the modulation of HECT-E3 ligase expression level can be used as a strategy to treat early memory deficits in AD by decreasing NLRP3 inflammasome molecules and increasing the autophagy pathway.
Collapse
Affiliation(s)
- Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Sureka Jasmin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien City, Taiwan
| | - Yun Yen
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, Taiwan
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien City, Taiwan
| | | | - Tanita Pairojana
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- *Correspondence: Ingrid Y. Liu
| |
Collapse
|
8
|
Sierra C, De Toma I, Cascio LL, Vegas E, Dierssen M. Social Factors Influence Behavior in the Novel Object Recognition Task in a Mouse Model of Down Syndrome. Front Behav Neurosci 2021; 15:772734. [PMID: 34803627 PMCID: PMC8602686 DOI: 10.3389/fnbeh.2021.772734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The use of mouse models has revolutionized the field of Down syndrome (DS), increasing our knowledge about neuropathology and helping to propose new therapies for cognitive impairment. However, concerns about the reproducibility of results in mice and their translatability to humans have become a major issue, and controlling for moderators of behavior is essential. Social and environmental factors, the experience of the researcher, and the sex and strain of the animals can all have effects on behavior, and their impact on DS mouse models has not been explored. Here we analyzed the influence of a number of social and environmental factors, usually not taken into consideration, on the behavior of male and female wild-type and trisomic mice (the Ts65Dn model) in one of the most used tests for proving drug effects on memory, the novel object recognition (NOR) test. Using principal component analysis and correlation matrices, we show that the ratio of trisomic mice in the cage, the experience of the experimenter, and the timing of the test have a differential impact on male and female and on wild-type and trisomic behavior. We conclude that although the NOR test is quite robust and less susceptible to environmental influences than expected, to obtain useful results, the phenotype expression must be contrasted against the influences of social and environmental factors.
Collapse
Affiliation(s)
- Cesar Sierra
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ilario De Toma
- Neurosciences Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Lorenzo Lo Cascio
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Esteban Vegas
- Department of Genetics, Microbiology and Statistics, Section of Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain
| |
Collapse
|
9
|
Brault V, Nguyen TL, Flores-Gutiérrez J, Iacono G, Birling MC, Lalanne V, Meziane H, Manousopoulou A, Pavlovic G, Lindner L, Selloum M, Sorg T, Yu E, Garbis SD, Hérault Y. Dyrk1a gene dosage in glutamatergic neurons has key effects in cognitive deficits observed in mouse models of MRD7 and Down syndrome. PLoS Genet 2021; 17:e1009777. [PMID: 34587162 PMCID: PMC8480849 DOI: 10.1371/journal.pgen.1009777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Perturbation of the excitation/inhibition (E/I) balance leads to neurodevelopmental diseases including to autism spectrum disorders, intellectual disability, and epilepsy. Loss-of-function mutations in the DYRK1A gene, located on human chromosome 21 (Hsa21,) lead to an intellectual disability syndrome associated with microcephaly, epilepsy, and autistic troubles. Overexpression of DYRK1A, on the other hand, has been linked with learning and memory defects observed in people with Down syndrome (DS). Dyrk1a is expressed in both glutamatergic and GABAergic neurons, but its impact on each neuronal population has not yet been elucidated. Here we investigated the impact of Dyrk1a gene copy number variation in glutamatergic neurons using a conditional knockout allele of Dyrk1a crossed with the Tg(Camk2-Cre)4Gsc transgenic mouse. We explored this genetic modification in homozygotes, heterozygotes and combined with the Dp(16Lipi-Zbtb21)1Yey trisomic mouse model to unravel the consequence of Dyrk1a dosage from 0 to 3, to understand its role in normal physiology, and in MRD7 and DS. Overall, Dyrk1a dosage in postnatal glutamatergic neurons did not impact locomotor activity, working memory or epileptic susceptibility, but revealed that Dyrk1a is involved in long-term explicit memory. Molecular analyses pointed at a deregulation of transcriptional activity through immediate early genes and a role of DYRK1A at the glutamatergic post-synapse by deregulating and interacting with key post-synaptic proteins implicated in mechanism leading to long-term enhanced synaptic plasticity. Altogether, our work gives important information to understand the action of DYRK1A inhibitors and have a better therapeutic approach. The Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A, DYRK1A, drives cognitive alterations with increased dose in Down syndrome (DS) or with reduced dose in DYRK1A-related intellectual disability syndromes (ORPHA:268261; ORPHA:464311) also known as mental retardation, autosomal dominant disease 7 (MRD7; OMIM #614104). Here we report that specific and complete loss of Dyrk1a in glutamatergic neurons induced a range of specific cognitive phenotypes and alter the expression of genes involved in neurotransmission in the hippocampus. We further explored the consequences of Dyrk1a dosage in glutamatergic neurons on the cognitive phenotypes observed respectively in MRD7 and DS mouse models and we found specific roles in long-term explicit memory with no impact on motor activity, short-term working memory, and susceptibility to epilepsy. Then we demonstrated that DYRK1A is a component of the glutamatergic post-synapse and interacts with several component such as NR2B and PSD95. Altogether our work describes a new role of DYRK1A at the glutamatergic synapse that must be considered to understand the consequence of treatment targeting DYRK1A in disease.
Collapse
Affiliation(s)
- Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Thu Lan Nguyen
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Javier Flores-Gutiérrez
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Valérie Lalanne
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Antigoni Manousopoulou
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Loïc Lindner
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
- Genetics, Genomics and Bioinformatics Program, State University of New York At Buffalo, Buffalo, New York, United States of America
| | - Spiros D. Garbis
- Institute for Life Sciences, University of Southampton, School of Medicine, Southampton, United Kingdom
| | - Yann Hérault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
- * E-mail:
| |
Collapse
|
10
|
Levy JA, LaFlamme CW, Tsaprailis G, Crynen G, Page DT. Dyrk1a Mutations Cause Undergrowth of Cortical Pyramidal Neurons via Dysregulated Growth Factor Signaling. Biol Psychiatry 2021; 90:295-306. [PMID: 33840455 PMCID: PMC8787822 DOI: 10.1016/j.biopsych.2021.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mutations in DYRK1A are a cause of microcephaly, autism spectrum disorder, and intellectual disability; however, the underlying cellular and molecular mechanisms are not well understood. METHODS We generated a conditional mouse model using Emx1-cre, including conditional heterozygous and homozygous knockouts, to investigate the necessity of Dyrk1a in the cortex during development. We used unbiased, high-throughput phosphoproteomics to identify dysregulated signaling mechanisms in the developing Dyrk1a mutant cortex as well as classic genetic modifier approaches and pharmacological therapeutic intervention to rescue microcephaly and neuronal undergrowth caused by Dyrk1a mutations. RESULTS We found that cortical deletion of Dyrk1a in mice causes decreased brain mass and neuronal size, structural hypoconnectivity, and autism-relevant behaviors. Using phosphoproteomic screening, we identified growth-associated signaling cascades dysregulated upon Dyrk1a deletion, including TrkB-BDNF (tyrosine receptor kinase B-brain-derived neurotrophic factor), an important regulator of ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) and mTOR (mammalian target of rapamycin) signaling. Genetic suppression of Pten or pharmacological treatment with IGF-1 (insulin-like growth factor-1), both of which impinge on these signaling cascades, rescued microcephaly and neuronal undergrowth in neonatal mutants. CONCLUSIONS Altogether, these findings identify a previously unknown mechanism through which Dyrk1a mutations disrupt growth factor signaling in the developing brain, thus influencing neuronal growth and connectivity. Our results place DYRK1A as a critical regulator of a biological pathway known to be dysregulated in humans with autism spectrum disorder and intellectual disability. In addition, these data position Dyrk1a within a larger group of autism spectrum disorder/intellectual disability risk genes that impinge on growth-associated signaling cascades to regulate brain size and connectivity, suggesting a point of convergence for multiple autism etiologies.
Collapse
Affiliation(s)
- Jenna A Levy
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida
| | - Christy W LaFlamme
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; The Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | | | - Gogce Crynen
- Center for Computational Biology and Bioinformatics, The Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida; Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, Florida.
| |
Collapse
|
11
|
Abe‐Hatano C, Iida A, Kosugi S, Momozawa Y, Terao C, Ishikawa K, Okubo M, Hachiya Y, Nishida H, Nakamura K, Miyata R, Murakami C, Takahashi K, Hoshino K, Sakamoto H, Ohta S, Kubota M, Takeshita E, Ishiyama A, Nakagawa E, Sasaki M, Kato M, Matsumoto N, Kamatani Y, Kubo M, Takahashi Y, Natsume J, Inoue K, Goto Y. Whole genome sequencing of 45 Japanese patients with intellectual disability. Am J Med Genet A 2021; 185:1468-1480. [PMID: 33624935 PMCID: PMC8247954 DOI: 10.1002/ajmg.a.62138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Intellectual disability (ID) is characterized by significant limitations in both intellectual functioning and adaptive behaviors, originating before the age of 18 years. However, the genetic etiologies of ID are still incompletely elucidated due to the wide range of clinical and genetic heterogeneity. Whole genome sequencing (WGS) has been applied as a single-step clinical diagnostic tool for ID because it detects genetic variations with a wide range of resolution from single nucleotide variants (SNVs) to structural variants (SVs). To explore the causative genes for ID, we employed WGS in 45 patients from 44 unrelated Japanese families and performed a stepwise screening approach focusing on the coding variants in the genes. Here, we report 12 pathogenic and likely pathogenic variants: seven heterozygous variants of ADNP, SATB2, ANKRD11, PTEN, TCF4, SPAST, and KCNA2, three hemizygous variants of SMS, SLC6A8, and IQSEC2, and one homozygous variant in AGTPBP1. Of these, four were considered novel. Furthermore, a novel 76 kb deletion containing exons 1 and 2 in DYRK1A was identified. We confirmed the clinical and genetic heterogeneity and high frequency of de novo causative variants (8/12, 66.7%). This is the first report of WGS analysis in Japanese patients with ID. Our results would provide insight into the correlation between novel variants and expanded phenotypes of the disease.
Collapse
Affiliation(s)
- Chihiro Abe‐Hatano
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Aritoshi Iida
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Clinical Research CenterShizuoka General HospitalShizuokaJapan
- The Department of Applied GeneticsThe School of Pharmaceutical Sciences, University of ShizuokaShizuokaJapan
| | - Keiko Ishikawa
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Mariko Okubo
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yasuo Hachiya
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Hiroya Nishida
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Kazuyuki Nakamura
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| | - Rie Miyata
- Department of PediatricsTokyo‐Kita Medical CenterTokyoJapan
| | - Chie Murakami
- Department of PediatricsKitakyusyu Children's Rehabilitation CenterFukuokaJapan
| | - Kan Takahashi
- Department of PediatricsOme Municipal General HospitalTokyoJapan
| | - Kyoko Hoshino
- Department of PediatricsMinami Wakayama Medical CenterWakayamaJapan
| | - Haruko Sakamoto
- Department of NeonatologyJapanese Red Cross Osaka HospitalOsakaJapan
| | - Sayaka Ohta
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Masaya Kubota
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Eri Takeshita
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Akihiko Ishiyama
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Eiji Nakagawa
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Masayuki Sasaki
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Mitsuhiro Kato
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineKanagawaJapan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Sciences, The University of TokyoTokyoJapan
| | - Michiaki Kubo
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yoshiyuki Takahashi
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Jun Natsume
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yu‐Ichi Goto
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
12
|
Amin SN, Sharawy N, El Tablawy N, Elberry DA, Youssef MF, Abdelhady EG, Rashed LA, Hassan SS. Melatonin-Pretreated Mesenchymal Stem Cells Improved Cognition in a Diabetic Murine Model. Front Physiol 2021; 12:628107. [PMID: 33815140 PMCID: PMC8012759 DOI: 10.3389/fphys.2021.628107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is a multisystem endocrine disorder affecting the brain. Mesenchymal stem cells (MSCs) pretreated with Melatonin have been shown to increase the potency of MSCs. This work aimed to compare Melatonin, stem cells, and stem cells pretreated with Melatonin on the cognitive functions and markers of synaptic plasticity in an animal model of type I diabetes mellitus (TIDM). Thirty-six rats represented the animal model; six rats for isolation of MSCs and 30 rats were divided into five groups: control, TIDM, TIDM + Melatonin, TIDM + Stem cells, and TIDM + Stem ex vivo Melatonin. Functional assessment was performed with Y-maze, forced swimming test and novel object recognition. Histological and biochemical evaluation of hippocampal Neuroligin 1, Sortilin, Brain-Derived Neurotrophic Factor (BDNF), inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2), Tumor necrosis factor-alpha (TNF-α), and Growth Associated Protein 43 (GAP43). The TIDM group showed a significant decrease of hippocampal Neuroligin, Sortilin, and BDNF and a significant increase in iNOS, TNF-α, TLR2, and GAP43. Melatonin or stem cells groups showed improvement compared to the diabetic group but not compared to the control group. TIDM + Stem ex vivo Melatonin group showed a significant improvement, and some values were restored to normal. Ex vivo melatonin-treated stem cells had improved spatial working and object recognition memory and depression, with positive effects on glucose homeostasis, inflammatory markers levels and synaptic plasticity markers expression.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nivin Sharawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashwa El Tablawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Azmy Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mira Farouk Youssef
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ebtehal Gamal Abdelhady
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Sabry Hassan
- Department of Medical Education, School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States.,Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Akbari-Fakhrabadi M, Najafi M, Mortazavian S, Memari AH, Shidfar F, Shahbazi A, Heshmati J. Saffron ( Crocus Sativus L.), Combined with Endurance Exercise, Synergistically Enhances BDNF, Serotonin, and NT-3 in Wistar Rats. Rep Biochem Mol Biol 2021; 9:426-434. [PMID: 33969136 PMCID: PMC8068454 DOI: 10.52547/rbmb.9.4.426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Evidence indicates that combined approaches based on exercise and nutrition benefit neural development. We aimed to determine the effect of saffron and endurance training on hippocampus neurogenic factors, neurotrophin-3 gene expression in soleus muscle, and short-term memory in Wistar rats. METHODS The study analyzed four groups of ten rats each: control, exercise, saffron, and saffron plus exercise. The rats in the exercise groups were trained on a rodent motor-driven treadmill. All rats were gavage daily with either saffron extract (40 mg/kg) or water. After eight weeks of intervention all rats were evaluated using the novel object recognition (NOR) test. Blood and tissue samples were collected to measure proteins and neurotrophin-3 gene expression. RESULTS Rats that received saffron treatment combined with exercise had significantly greater brain-derived neurotrophic factor (BDNF) and serotonin in hippocampus compared to the control and saffron-only-treated rats (p< 0.05). Neurotrophin-3 mRNA in soleus muscle was higher in the saffron plus exercise group than rats in the other three groups (p< 0.05). Hippocampus 5-hydroxyindolacetic acid and short-term memory were significantly greater in all the intervention groups than in the control group (p< 0.05). CONCLUSION Saffron, combined with endurance exercise, synergistically increased hippocampus BDNF, serotonin, and muscular neurotrophin-3 mRNA in Wistar rats.
Collapse
Affiliation(s)
- Maryam Akbari-Fakhrabadi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Corresponding author: Maryam Akbari-Fakhrabadi; Tel: +98 9129485450; E-mail:
| | - Mohammad Najafi
- Department of Biochemistry, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Soudabehsadat Mortazavian
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir-Hossein Memari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Department of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Andring JT, Fouch M, Akocak S, Angeli A, Supuran CT, Ilies MA, McKenna R. Structural Basis of Nanomolar Inhibition of Tumor-Associated Carbonic Anhydrase IX: X-Ray Crystallographic and Inhibition Study of Lipophilic Inhibitors with Acetazolamide Backbone. J Med Chem 2020; 63:13064-13075. [PMID: 33085484 DOI: 10.1021/acs.jmedchem.0c01390] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study provides a structure-activity relationship study of a series of lipophilic carbonic anhydrase (CA) inhibitors with an acetazolamide backbone. The inhibitors were tested against the tumor-expressed CA isozyme IX (CA IX), and the cytosolic CA I, CA II, and membrane-bound CA IV. The study identified several low nanomolar potent inhibitors against CA IX, with lipophilicities spanning two log units. Very potent pan-inhibitors with nanomolar potency against CA IX and sub-nanomolar potency against CA II and CA IV, and with potency against CA I one order of magnitude better than the parent acetazolamide 1 were also identified in this study, together with compounds that displayed selectivity against membrane-bound CA IV. A comprehensive X-ray crystallographic study (12 crystal structures), involving both CA II and a soluble CA IX mimetic (CA IX-mimic), revealed the structural basis of this particular inhibition profile and laid the foundation for further developments toward more potent and selective inhibitors for the tumor-expressed CA IX.
Collapse
Affiliation(s)
- Jacob T Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Mallorie Fouch
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Suleyman Akocak
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Andrea Angeli
- NEUROFARBA Department, Pharmaceutical Sciences Section, Universita degli Studi di Firenze, Polo Scientifico, Via Ugo Schiff no. 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Sciences Section, Universita degli Studi di Firenze, Polo Scientifico, Via Ugo Schiff no. 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marc A Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
15
|
Stazi M, Wirths O. Physical activity and cognitive stimulation ameliorate learning and motor deficits in a transgenic mouse model of Alzheimer's disease. Behav Brain Res 2020; 397:112951. [PMID: 33027669 DOI: 10.1016/j.bbr.2020.112951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Epidemiological studies suggest that physical exercise or cognitive stimulation might contribute to lower the risk of developing dementia disorders such as Alzheimer's disease (AD). Here, we used the well-established enrichment environment (EE) paradigm to study the impact of prolonged physical activity and cognitive stimulation in a mouse model of AD overexpressing only Aβ4-42 peptides. These mice display age-dependent memory and motor deficits, in the absence of human amyloid precursor protein (APP) overexpression. We demonstrate that housing under EE conditions leads to an entire preservation of recognition and spatial memory, as well as a rescue of motor deficits in this mouse model. Moreover, we find that Tg4-42hom mice present a typical floating phenotype in the Morris water maze task that could be completely ameliorated upon long-term EE housing. Our findings are in line with epidemiological studies suggesting that physical activity and cognitive stimulation might represent efficient strategies to prevent age-related neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Martina Stazi
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany.
| |
Collapse
|
16
|
Pannangrong W, Welbat JU, Chaichun A, Sripanidkulchai B. Effect of combined extracts of aged garlic, ginger, and chili peppers on cognitive performance and brain antioxidant markers in Aβ-induced rats. Exp Anim 2020; 69:269-278. [PMID: 32051390 PMCID: PMC7445057 DOI: 10.1538/expanim.19-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
A combination of aged garlic, ginger, and chili peppers extracts (AGC) was studied by high-performance liquid chromatography, 2,2-diphenyl-1-picrylhydrazyl, and ferric-reducing antioxidant assays, and oxidative stress markers were analyzed in Aβ1-42-induced rats. The AGC was orally administered to Wistar rats at doses of 125, 250, and 500 mg/kg body weight (AGC125, AGC250, AGC500, respectively) for 64 days. At day 56, Aβ1-42 was injected via both sides of the lateral ventricles. The effects of the AGC on spatial and recognition memory were examined using a Morris water maze and novel object recognition tasks. Rats induced with Aβ1-42 exhibited obvious cognitive deficits, as demonstrated by their increased escape latency time (ET) and decreased retention time (RT) and percentage of discriminative index (DI). When compared with the control group, all AGC-treated rats showed significantly shorter ETs and higher DIs during the 5-min delay testing phase. Rats treated with AGC250 also had significantly longer RTs. Administration of Aβ1-42 significantly increased malondialdehyde (MDA) levels and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels in the rat brain homogenate. Pretreatment with the AGC caused significant increases in SOD, GPx, and CAT activities, as well as a significant decrease in MDA in the rat brain homogenates after Aβ-induced neurotoxicity. Our results suggested that an AGC may ameliorate cognitive dysfunction in Aβ-treated rats due to its role in the upregulation of SOD, GPx, and CAT.
Collapse
Affiliation(s)
- Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Neuroscience Research and Development Group, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - Amnard Chaichun
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci Rep 2020; 10:10612. [PMID: 32606443 PMCID: PMC7326931 DOI: 10.1038/s41598-020-67619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Spontaneous recognition memory tasks build on an animal’s natural preference for novelty to assess the what, where and when components of episodic memory. Their simplicity, ethological relevance and cross-species adaptability make them extremely useful to study the physiology and pathology of memory. Recognition memory deficits are common in rodent models of neurodevelopmental disorders, and yet very little is known about the expression of spontaneous recognition memory in young rodents. This is exacerbated by the paucity of data on the developmental onset of recognition memory in mice, a major animal model of disease. To address this, we characterized the ontogeny of three types of spontaneous recognition memory in mice: object location, novel object recognition and temporal order recognition. We found that object location is the first to emerge, at postnatal day (P)21. This was followed by novel object recognition (24 h delay), at P25. Temporal order recognition was the last to emerge, at P28. Elucidating the developmental expression of recognition memory in mice is critical to improving our understanding of the ontogeny of episodic memory, and establishes a necessary blueprint to apply these tasks to probe cognitive deficits at clinically relevant time points in animal models of developmental disorders.
Collapse
|
19
|
Goodlett CR, Stringer M, LaCombe J, Patel R, Wallace JM, Roper RJ. Evaluation of the therapeutic potential of Epigallocatechin-3-gallate (EGCG) via oral gavage in young adult Down syndrome mice. Sci Rep 2020; 10:10426. [PMID: 32591597 PMCID: PMC7319987 DOI: 10.1038/s41598-020-67133-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate therapeutic for Down syndrome (DS) phenotypes based on in vitro inhibition of DYRK1A, a triplicated gene product of Trisomy 21 (Ts21). Consumption of green tea extracts containing EGCG improved some cognitive and behavioral outcomes in DS mouse models and in humans with Ts21. In contrast, treatment with pure EGCG in DS mouse models did not improve neurobehavioral phenotypes. This study tested the hypothesis that 200 mg/kg/day of pure EGCG, given via oral gavage, would improve neurobehavioral and skeletal phenotypes in the Ts65Dn DS mouse model. Serum EGCG levels post-gavage were significantly higher in trisomic mice than in euploid mice. Daily EGCG gavage treatments over three weeks resulted in growth deficits in both euploid and trisomic mice. Compared to vehicle treatment, EGCG did not significantly improve behavioral performance of Ts65Dn mice in the multivariate concentric square field, balance beam, or Morris water maze tasks, but reduced swimming speed. Furthermore, EGCG resulted in reduced cortical bone structure and strength in Ts65Dn mice. These outcomes failed to support the therapeutic potential of EGCG, and the deleterious effects on growth and skeletal phenotypes underscore the need for caution in high-dose EGCG supplements as an intervention in DS.
Collapse
Affiliation(s)
- Charles R Goodlett
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Megan Stringer
- IUPUI Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN, 46202-3275, USA
| | - Jonathan LaCombe
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Roshni Patel
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA
| | - Joseph M Wallace
- IUPUI Department of Biomedical Engineering, 723 West Michigan Street; SL 220B, Indianapolis, IN, 46202-3275, USA
| | - Randall J Roper
- IUPUI Department of Biology, 723 West Michigan Street; SL 306, Indianapolis, IN, 46202-3275, USA.
| |
Collapse
|
20
|
Gulinello M, Mitchell HA, Chang Q, Timothy O'Brien W, Zhou Z, Abel T, Wang L, Corbin JG, Veeraragavan S, Samaco RC, Andrews NA, Fagiolini M, Cole TB, Burbacher TM, Crawley JN. Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem 2019; 165:106780. [PMID: 29307548 PMCID: PMC6034984 DOI: 10.1016/j.nlm.2018.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings, well-trained investigators employ a variety of established best practices. Here we explicate some of the requirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully with a range of methods, all based on common principles of appropriate procedures, controls, and statistics. Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers contribute key aspects of their own novel object recognition protocols, offering insights into essential similarities and less-critical differences. Literature cited in this review article will lead the interested reader to source papers that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and discovering efficacious therapeutics.
Collapse
Affiliation(s)
- Maria Gulinello
- IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Heather A Mitchell
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Qiang Chang
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - W Timothy O'Brien
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ted Abel
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Current affiliation: Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Li Wang
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Joshua G Corbin
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Surabi Veeraragavan
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodney C Samaco
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nick A Andrews
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michela Fagiolini
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Toby B Cole
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Burbacher
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline N Crawley
- IDDRC Rodent Behavior Core, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
21
|
Zheng ZV, Lam PK, Poon WS, Wong KCG. The Time Course of Cognitive Deficits in Experimental Subarachnoid Hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2019; 127:121-125. [PMID: 31407072 DOI: 10.1007/978-3-030-04615-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke type. Approximately 50% of survivors suffer from the permanent disability, caused by the cognitive deficits. To enrich the pre-clinical research on the neurological deficits after SAH, we investigate the temporal cognitive deficits and the longitudinal course of cognitive recovery in endovascular perforation SAH murine model. The SAH mice show reproducible body weakness and headache-symbolized moaning symptoms, which is closed to clinical patients. SAH mice exhibit significantly impaired cognitive function in domains of learning ability, short-term and long-term memory. The cognitive deficits occur mostly in the early phase and recover gradually till day 10 after SAH. The systematical assessments of cognitive function after experimental aneurysmal SAH elucidate the time course of cognitive deficits and provide the time window of potential interventions.
Collapse
Affiliation(s)
- Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ping Kuen Lam
- Department of Surgery, Chow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Kwok Chu George Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
22
|
Jürgenson M, Zharkovskaja T, Noortoots A, Morozova M, Beniashvili A, Zapolski M, Zharkovsky A. Effects of the drug combination memantine and melatonin on impaired memory and brain neuronal deficits in an amyloid-predominant mouse model of Alzheimer's disease. J Pharm Pharmacol 2019; 71:1695-1705. [DOI: 10.1111/jphp.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is a neurodegenerative disorder with no cure. Limited treatment options available today do not offer solutions to slow or stop any of the suspected causes. The current medications used for the symptomatic treatment of AD include memantine and acetylcholine esterase inhibitors. Some studies suggest that melatonin could also be used in AD patients due to its sleep-improving properties.
Methods
In this study, we evaluated whether a combination of memantine with melatonin, administered for 32 days in drinking water, was more effective than either drug alone with respect to Aβ aggregates, neuroinflammation and cognition in the double transgenic APP/PS1 (5xFAD) mouse model of AD.
Key findings
In this study, chronic administration of memantine with melatonin improved episodic memory in the object recognition test and reduced the number of amyloid aggregates and reactive microgliosis in the brains of 5xFAD mice. Although administration of memantine or melatonin alone also reduced the number of amyloid aggregates and inflammation in brain, this study shows a clear benefit of the drug combination, which had a significantly stronger effect in this amyloid-dominant mouse model of AD.
Conclusion
Our data suggest considerable potential for the use of memantine with melatonin in patients with AD.
Collapse
Affiliation(s)
- Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Zharkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Max Zapolski
- Valentech Ltd, Skolkovo Innovation Centre, Moscow, Russia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
23
|
Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis 2019; 127:210-222. [PMID: 30831192 PMCID: PMC6753933 DOI: 10.1016/j.nbd.2019.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Juan Arranz
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Balducci
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gentzane Sánchez-Elexpuru
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Sònia Najas
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Alberto Parras
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain
| | - Elena Rebollo
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Isabel Pijuan
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gaetano Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, 08020 Barcelona, Spain
| | - Maria J Barallobre
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina P Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Susana de la Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Maria L Arbonés
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
24
|
Sullivan JM, De Rubeis S, Schaefer A. Convergence of spectrums: neuronal gene network states in autism spectrum disorder. Curr Opin Neurobiol 2019; 59:102-111. [PMID: 31220745 DOI: 10.1016/j.conb.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by social deficits and restrictive and/or repetitive behaviors. The breadth of ASD symptoms is paralleled by the multiplicity of genes that have been implicated in its etiology. Initial findings revealed numerous ASD risk genes that contribute to synaptic function. More recently, genomic and gene expression studies point to altered chromatin function and impaired transcriptional control as additional risk factors for ASD. The consequences of impaired transcriptional alterations in ASD involve consistent changes in synaptic gene expression and cortical neuron specification during brain development. The multiplicity of genetic and environmental factors associated with ASD risk and their convergence onto common molecular pathways in neurons point to ASD as a disorder of gene regulatory networks.
Collapse
Affiliation(s)
- Josefa M Sullivan
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA
| | - Silvia De Rubeis
- Department of Psychiatry, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, New York, NY, USA; Department of Psychiatry, New York, NY, USA; Friedman Brain Institute, New York, NY, USA; Seaver Autism Center for Research and Treatment, New York, NY, USA.
| |
Collapse
|
25
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
26
|
Raveau M, Shimohata A, Amano K, Miyamoto H, Yamakawa K. DYRK1A-haploinsufficiency in mice causes autistic-like features and febrile seizures. Neurobiol Dis 2018; 110:180-191. [PMID: 29223763 DOI: 10.1016/j.nbd.2017.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022] Open
Abstract
Mutations and copy number variants affecting DYRK1A gene encoding the dual-specificity tyrosine phosphorylation-regulated kinase 1A are among the most frequent genetic causes of neurodevelopmental disorders including autism spectrum disorder (ASD) associated with microcephaly, febrile seizures and severe speech acquisition delay. Here we developed a mouse model harboring a frame-shift mutation in Dyrk1a resulting in a protein truncation and elimination of its kinase activity site. Dyrk1a+/- mice showed significant impairments in cognition and cognitive flexibility, communicative ultrasonic vocalizations, and social contacts. Susceptibility to hyperthermia-induced seizures was also significantly increased in these mice. The truncation leading to haploinsufficiency of DYRK1A in mice thus recapitulates the syndromic phenotypes observed in human patients and constitutes a useful model for further investigations of the mechanisms leading to ASD, speech delay and febrile seizures.
Collapse
Affiliation(s)
- Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| |
Collapse
|
27
|
Kim OH, Cho HJ, Han E, Hong TI, Ariyasiri K, Choi JH, Hwang KS, Jeong YM, Yang SY, Yu K, Park DS, Oh HW, Davis EE, Schwartz CE, Lee JS, Kim HG, Kim CH. Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autism. Mol Autism 2017; 8:50. [PMID: 29021890 PMCID: PMC5622473 DOI: 10.1186/s13229-017-0168-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND DYRK1A maps to the Down syndrome critical region at 21q22. Mutations in this kinase-encoding gene have been reported to cause microcephaly associated with either intellectual disability or autism in humans. Intellectual disability accompanied by microcephaly was recapitulated in a murine model by overexpressing Dyrk1a which mimicked Down syndrome phenotypes. However, given embryonic lethality in homozygous knockout (KO) mice, no murine model studies could present sufficient evidence to link Dyrk1a dysfunction with autism. To understand the molecular mechanisms underlying microcephaly and autism spectrum disorders (ASD), we established an in vivo dyrk1aa KO model using zebrafish. METHODS We identified a patient with a mutation in the DYRK1A gene using microarray analysis. Circumventing the barrier of murine model studies, we generated a dyrk1aa KO zebrafish using transcription activator-like effector nuclease (TALEN)-mediated genome editing. For social behavioral tests, we have established a social interaction test, shoaling assay, and group behavior assay. For molecular analysis, we examined the neuronal activity in specific brain regions of dyrk1aa KO zebrafish through in situ hybridization with various probes including c-fos and crh which are the molecular markers for stress response. RESULTS Microarray detected an intragenic microdeletion of DYRK1A in an individual with microcephaly and autism. From behavioral tests of social interaction and group behavior, dyrk1aa KO zebrafish exhibited social impairments that reproduce human phenotypes of autism in a vertebrate animal model. Social impairment in dyrk1aa KO zebrafish was further confirmed by molecular analysis of c-fos and crh expression. Transcriptional expression of c-fos and crh was lower than that of wild type fish in specific hypothalamic regions, suggesting that KO fish brains are less activated by social context. CONCLUSIONS In this study, we established a zebrafish model to validate a candidate gene for autism in a vertebrate animal. These results illustrate the functional deficiency of DYRK1A as an underlying disease mechanism for autism. We also propose simple social behavioral assays as a tool for the broader study of autism candidate genes.
Collapse
Affiliation(s)
- Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Hyun-Ju Cho
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
| | - Enna Han
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Kyu-Seok Hwang
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Yun-Mi Jeong
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Se-Yeol Yang
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
| | - Kweon Yu
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
| | - Doo-Sang Park
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Hyun-Woo Oh
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701 USA
| | | | - Jeong-Soo Lee
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
- Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Seoul, 02792 South Korea
| | - Hyung-Goo Kim
- Department of OB/GYN, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912 USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
28
|
Dietary teasaponin ameliorates alteration of gut microbiota and cognitive decline in diet-induced obese mice. Sci Rep 2017; 7:12203. [PMID: 28939875 PMCID: PMC5610180 DOI: 10.1038/s41598-017-12156-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
A high-fat (HF) diet alters gut microbiota and promotes obesity related inflammation and cognitive impairment. Teasaponin is the major active component of tea, and has been associated with anti-inflammatory effects and improved microbiota composition. However, the potential protective effects of teasaponin, against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, obesity was induced in C57BL/6 J male mice by feeding a HF diet for 8 weeks, followed by treatment with oral teasaponin (0.5%) mixed in HF diet for a further 6 weeks. Teasaponin treatment prevented the HF diet-induced recognition memory impairment and improved neuroinflammation, gliosis and brain-derived neurotrophic factor (BDNF) deficits in the hippocampus. Furthermore, teasaponin attenuated the HF diet-induced endotoxemia, pro-inflammatory macrophage accumulation in the colon and gut microbiota alterations. Teasaponin also improved glucose tolerance and reduced body weight gain in HF diet-induced obese mice. The behavioral and neurochemical improvements suggest that teasaponin could limit unfavorable gut microbiota alterations and cognitive decline in HF diet-induced obesity.
Collapse
|
29
|
Membrane-Associated Effects of Glucocorticoid on BACE1 Upregulation and Aβ Generation: Involvement of Lipid Raft-Mediated CREB Activation. J Neurosci 2017; 37:8459-8476. [PMID: 28855330 DOI: 10.1523/jneurosci.0074-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoid has been widely accepted to induce Alzheimer's disease, but the nongenomic effect of glucocorticoid on amyloid β (Aβ) generation has yet to be studied. Here, we investigated the effect of the nongenomic pathway induced by glucocorticoid on amyloid precursor protein processing enzymes as well as Aβ production using male ICR mice and human neuroblastoma SK-N-MC cells. Mice groups exposed to restraint stress or intracerebroventricular injection of Aβ showed impaired cognition, decreased intracellular glucocorticoid receptor (GR) level, but elevated level of membrane GR (mGR). In this respect, we identified the mGR-dependent pathway evoked by glucocorticoid using impermeable cortisol conjugated to BSA (cortisol-BSA) on SK-N-MC cells. Cortisol-BSA augmented the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the level of C-terminal fragment β of amyloid precursor protein (C99) and Aβ production, which were maintained even after blocking intracellular GR. We also found that cortisol-BSA enhanced the interaction between mGR and Gαs, which colocalized in the lipid raft. The subsequently activated CREB by cortisol-BSA bound to the CRE site of the BACE1 promoter increasing its expression, which was downregulated by inhibiting CBP. Consistently, blocking CBP attenuated cognitive impairment and Aβ production induced by corticosterone treatment or intracerebroventricular injection of Aβ more efficiently than inhibiting intracellular GR in mice. In conclusion, glucocorticoid couples mGR with Gαs and triggers cAMP-PKA-CREB axis dependent on the lipid raft to stimulate BACE1 upregulation and Aβ generation.SIGNIFICANCE STATEMENT Patients with Alzheimer's disease (AD) have been growing sharply and stress is considered as the major environment factor of AD. Glucocorticoid is the primarily responsive factor to stress and is widely known to induce AD. However, most AD patients usually have impaired genomic pathway of glucocorticoid due to intracellular glucocorticoid receptor deficiency. In this respect, the genomic mechanism of glucocorticoid faces difficulties in explaining the consistent amyloid β (Aβ) production. Therefore, it is necessary to investigate the novel pathway of glucocorticoid on Aβ generation to find a more selective therapeutic approach to AD patients. In this study, we revealed the importance of nongenomic pathway induced by glucocorticoid where membrane glucocorticoid receptor plays an important role in Aβ formation.
Collapse
|
30
|
Liu Y, Xu YF, Zhang L, Huang L, Yu P, Zhu H, Deng W, Qin C. Effective expression of Drebrin in hippocampus improves cognitive function and alleviates lesions of Alzheimer's disease in APP (swe)/PS1 (ΔE9) mice. CNS Neurosci Ther 2017; 23:590-604. [PMID: 28597477 DOI: 10.1111/cns.12706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD), a progressive development dementia, is increasingly impacting patients' living conditions worldwide. Despite medical care and funding support, there are still no highly individualized drugs and practical strategies for clinical prevention and treatment. Developmentally regulated brain protein (abbreviated as Drebrin or Dbn, also known as Dbn1 in mouse) exists in neurons, especially in dendrites, and is an actin-binding protein that modulates synaptic morphology and long-term memory. However, the majority of previous studies have focused on its upstream proteins and neglected the impact Drebrin has on behavior and AD in vivo. METHODS Here, we tracked the behavioral performances of 4-, 8-, 12-, and 16-month-old AD mice and investigated the expression level of Drebrin in their hippocampi. A Pearson correlation analysis between Drebrin levels and behavioral data was performed. Subsequently, 2-month-old AD mice were injected with rAAV-zsGreen-Dbn1 vector, composing the APP/PS1-Dbn1 group, and sex- and age-matched AD mice were injected with rAAV-tdTomato vector to serve as the control group. All mice were conducted behavioral tests and molecular detection 6 months later. RESULTS (i) The expression of Drebrin is decreased in the hippocampus of aged AD mice compared with that of age-matched WT and young adult AD mice; (ii) cognitive ability of APP/PS1 mice decreases with age; (iii) Drebrin protein expression in the hippocampus correlates with behavioral performance in different aged AD mice; (iv) cognitive ability improved significantly in APP/PS1-Dbn1 mice; (v) the expression level of Drebrin in APP/PS1-Dbn1 mouse hippocampus was significantly increased; (vi) the pathological lesion of AD was alleviated in APP/PS1-Dbn1 mice; (vii) the filamentous actin (F-actin) and microtubule-associated protein 2(MAP-2) in APP/PS1-Dbn1 mice were notably more than control mice. CONCLUSION In this study, an effective expression of Drebrin improves cognitive abilities and alleviates lesions in an AD mouse model. These results may provide some valid resources for therapy and research of AD.
Collapse
Affiliation(s)
- Yan Liu
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yan-Feng Xu
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Ling Zhang
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Lan Huang
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Pin Yu
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hua Zhu
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Wei Deng
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- Comparative Medicine Centre, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
31
|
Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Sci Rep 2017; 7:43331. [PMID: 28266534 PMCID: PMC5339700 DOI: 10.1038/srep43331] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/24/2017] [Indexed: 01/05/2023] Open
Abstract
Modelling Down syndrome (DS) in mouse has been crucial for the understanding of the disease and the evaluation of therapeutic targets. Nevertheless, the modelling so far has been limited to the mouse and, even in this model, generating duplication of genomic regions has been labour intensive and time consuming. We developed the CRISpr MEdiated REarrangement (CRISMERE) strategy, which takes advantage of the CRISPR/Cas9 system, to generate most of the desired rearrangements from a single experiment at much lower expenses and in less than 9 months. Deletions, duplications, and inversions of genomic regions as large as 24.4 Mb in rat and mouse founders were observed and germ line transmission was confirmed for fragment as large as 3.6 Mb. Interestingly we have been able to recover duplicated regions from founders in which we only detected deletions. CRISMERE is even more powerful than anticipated it allows the scientific community to manipulate the rodent and probably other genomes in a fast and efficient manner which was not possible before.
Collapse
|
32
|
Vidal B, Vázquez-Roque RA, Gnecco D, Enríquez RG, Floran B, Díaz A, Flores G. Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats. Synapse 2017; 71. [DOI: 10.1002/syn.21952] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Blanca Vidal
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| | | | - Dino Gnecco
- Centro de Química; Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México; México México
| | - Benjamin Floran
- Departamento de Fisiología; Biofísica y Neurociencias, Centro de Investigaciones y Estudios Avanzados IPN, DF; México México
| | - Alfonso Díaz
- Facultad de Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| |
Collapse
|
33
|
Enginar N, Nurten A, Türkmen AZ, Gündoğan Gİ, Özünal ZG. Antimuscarinic-induced convulsions in fasted mice after food intake: no evidence of spontaneous seizures, behavioral changes or neuronal damage. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome. eNeuro 2016; 3:eN-NWR-0103-16. [PMID: 27844057 PMCID: PMC5099603 DOI: 10.1523/eneuro.0103-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.
Collapse
|
35
|
Wang S, Huang XF, Zhang P, Wang H, Zhang Q, Yu S, Yu Y. Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice. J Nutr Biochem 2016; 36:42-50. [PMID: 27567591 DOI: 10.1016/j.jnutbio.2016.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023]
Abstract
High-fat (HF) diet modulates gut microbiota and increases plasma concentration of lipopolysaccharide (LPS) which is associated with obesity and its related low-grade inflammation and cognitive decline. Rhein is the main ingredient of the rhubarb plant which has been used as an anti-inflammatory agent for several millennia. However, the potential effects of rhein against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, C57BL/6J male mice were fed an HF diet for 8 weeks to induce obesity, and then treated with oral rhein (120 mg/kg body weight/day in HF diet) for a further 6 weeks. Chronic rhein treatment prevented the HF diet-induced recognition memory impairment assessed by the novel object recognition test, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits in the perirhinal cortex. Furthermore, rhein inhibited the HF diet-induced increased plasma LPS level and the proinflammatory macrophage accumulation in the colon and alteration of microbiota, including decreasing Bacteroides-Prevotella spp. and Desulfovibrios spp. DNA and increasing Bifidobacterium spp. and Lactobacillus spp. DNA. Moreover, rhein also reduced body weight and improved glucose tolerance in HF diet-induced obese mice. In conclusion, rhein improved recognition memory and prevented obesity in mice on a chronic HF diet. These beneficial effects occur via the modulation of microbiota, hypoendotoxinemia, inhibition of macrophage accumulation, anti-neuroinflammation and the improvement of BDNF expression. Therefore, supplementation with rhein-enriched food or herbal medicine could be beneficial as a preventive strategy for chronic HF diet-induced cognitive decline, microbiota alteration and neuroinflammation.
Collapse
Affiliation(s)
- Sen Wang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Department of Endocrinology and Metabolism, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, NeuRA, Barker Street Randwick, Sydney, NSW 2031, Australia
| | - Peng Zhang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Department of Pathogen Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Hongqin Wang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, NeuRA, Barker Street Randwick, Sydney, NSW 2031, Australia
| | - Qingsheng Zhang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Shijia Yu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Department of Endocrinology and Metabolism, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China.
| | - Yinghua Yu
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, NeuRA, Barker Street Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
36
|
Kim H, Lee KS, Kim AK, Choi M, Choi K, Kang M, Chi SW, Lee MS, Lee JS, Lee SY, Song WJ, Yu K, Cho S. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech 2016; 9:839-48. [PMID: 27483355 PMCID: PMC5007978 DOI: 10.1242/dmm.025668] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 02/01/2023] Open
Abstract
DYRK1A is important in neuronal development and function, and its excessive activity is considered a significant pathogenic factor in Down syndrome and Alzheimer's disease. Thus, inhibition of DYRK1A has been suggested to be a new strategy to modify the disease. Very few compounds, however, have been reported to act as inhibitors, and their potential clinical uses require further evaluation. Here, we newly identify CX-4945, the safety of which has been already proven in the clinical setting, as a potent inhibitor of DYRK1A that acts in an ATP-competitive manner. The inhibitory potency of CX-4945 on DYRK1A (IC50=6.8 nM) in vitro was higher than that of harmine, INDY or proINDY, which are well-known potent inhibitors of DYRK1A. CX-4945 effectively reverses the aberrant phosphorylation of Tau, amyloid precursor protein (APP) and presenilin 1 (PS1) in mammalian cells. To our surprise, feeding with CX-4945 significantly restored the neurological and phenotypic defects induced by the overexpression of minibrain, an ortholog of human DYRK1A, in the Drosophila model. Moreover, oral administration of CX-4945 acutely suppressed Tau hyperphosphorylation in the hippocampus of DYRK1A-overexpressing mice. Our research results demonstrate that CX-4945 is a potent DYRK1A inhibitor and also suggest that it has therapeutic potential for DYRK1A-associated diseases. Editors' choice:In vivo validation of a potent DYRK1A inhibitor, with proven clinical safety, using Down-syndrome- and Alzheimer's-disease-like models.
Collapse
Affiliation(s)
- Hyeongki Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28115, Republic of Korea Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyu-Sun Lee
- Neurophysiology Research Group, Hazard Monitoring BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology, Deajeon 34141, Republic of Korea Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ae-Kyeong Kim
- Neurophysiology Research Group, Hazard Monitoring BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology, Deajeon 34141, Republic of Korea
| | - Miri Choi
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28115, Republic of Korea
| | - Kwangman Choi
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28115, Republic of Korea
| | - Mingu Kang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28115, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sung Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Neurophysiology Research Group, Hazard Monitoring BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology, Deajeon 34141, Republic of Korea Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - So-Young Lee
- International Cooperation Office, Ministry of Food & Drug Safety, Cheongju, Chungbuk 28159, Republic of Korea
| | - Woo-Joo Song
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kweon Yu
- Neurophysiology Research Group, Hazard Monitoring BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology, Deajeon 34141, Republic of Korea Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28115, Republic of Korea Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
37
|
Duchon A, Herault Y. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front Behav Neurosci 2016; 10:104. [PMID: 27375444 PMCID: PMC4891327 DOI: 10.3389/fnbeh.2016.00104] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS) is one of the leading causes of intellectual disability, and patients with DS face various health issues, including learning and memory deficits, congenital heart disease, Alzheimer's disease (AD), leukemia, and cancer, leading to huge medical and social costs. Remarkable advances on DS research have been made in improving cognitive function in mouse models for future therapeutic approaches in patients. Among the different approaches, DYRK1A inhibitors have emerged as promising therapeutics to reduce DS cognitive deficits. DYRK1A is a dual-specificity kinase that is overexpressed in DS and plays a key role in neurogenesis, outgrowth of axons and dendrites, neuronal trafficking and aging. Its pivotal role in the DS phenotype makes it a prime target for the development of therapeutics. Recently, disruption of DYRK1A has been found in Autosomal Dominant Mental Retardation 7 (MRD7), resulting in severe mental deficiency. Recent advances in the development of kinase inhibitors are expected, in the near future, to remove DS from the list of incurable diseases, providing certain conditions such as drug dosage and correct timing for the optimum long-term treatment. In addition the exact molecular and cellular mechanisms that are targeted by the inhibition of DYRK1A are still to be discovered.
Collapse
Affiliation(s)
- Arnaud Duchon
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France
| | - Yann Herault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France; PHENOMIN, Institut Clinique de la Souris, Groupement d'Intérêt Économique-Centre Européen de Recherche en Biologie et en Médecine, CNRS, INSERMIllkirch-Graffenstaden, France
| |
Collapse
|
38
|
Hille S, Dierck F, Kühl C, Sosna J, Adam-Klages S, Adam D, Lüllmann-Rauch R, Frey N, Kuhn C. Dyrk1a regulates the cardiomyocyte cell cycle via D-cyclin-dependent Rb/E2f-signalling. Cardiovasc Res 2016; 110:381-94. [PMID: 27056896 DOI: 10.1093/cvr/cvw074] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
Abstract
AIMS Down syndrome-associated dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) is a ubiquitously expressed protein kinase. Up to date a variety of targets have been identified, establishing a key role for Dyrk1a in selected signalling pathways. In cardiomyocytes, Dyrk1a acts as a negative regulator of hypertrophy by phosphorylating transcription factors of the NFAT family, but its mechanistic function in the heart remains poorly understood. This study was designed to investigate a potential protective role of Dyrk1a in cardiac hypertrophy in vivo. METHODS AND RESULTS We generated transgenic mice with cardiac-specific overexpression of Dyrk1a. Counterintuitively, these mice developed severe dilated cardiomyopathy associated with congestive heart failure and premature death. In search for the cause of this unexpected phenotype, we found that Dyrk1a interacts with all members of the D-cyclin family and represses their protein levels in vitro and in vivo. Particularly, forced expression of Dyrk1a leads to increased phosphorylation of Ccnd2 on Thr280 and promotes its subsequent proteasomal degradation. Accordingly, cardiomyocytes overexpressing Dyrk1a display hypo-phosphorylated Rb1, suppression of Rb/E2f-signalling, and reduced expression of E2f-target genes, which ultimately results in impaired cell cycle progression. CONCLUSIONS We identified Dyrk1a as a novel negative regulator of D-cyclin-mediated Rb/E2f-signalling. As dysregulation of this pathway with impaired cardiomyocyte proliferation leads to cardiomyopathy, dose-specific Dyrk1a expression and activity appears to be critical for the hyperplastic and hypertrophic growth of the developing heart.
Collapse
MESH Headings
- Animals
- Cardiomegaly/enzymology
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Cell Cycle
- Cell Proliferation
- Cyclin D/genetics
- Cyclin D/metabolism
- Disease Models, Animal
- E2F Transcription Factors/metabolism
- Gene Expression Regulation
- HEK293 Cells
- Heart Failure/enzymology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Humans
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Rats, Wistar
- Retinoblastoma/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Dyrk Kinases
Collapse
Affiliation(s)
- Susanne Hille
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Franziska Dierck
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Constantin Kühl
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Justyna Sosna
- Institute of Immunology, Christian-Albrechts-University Kiel, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Sabine Adam-Klages
- Institute of Immunology, Christian-Albrechts-University Kiel, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University Kiel, UKSH Campus Kiel, 24105 Kiel, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Christian Kuhn
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 (Building 6), 24105 Kiel, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| |
Collapse
|
39
|
Stotani S, Giordanetto F, Medda F. DYRK1A inhibition as potential treatment for Alzheimer's disease. Future Med Chem 2016; 8:681-96. [PMID: 27073990 DOI: 10.4155/fmc-2016-0013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In total, 47,500,000 people worldwide are affected by dementia and this number is estimated to double by 2030 and triple within 2050 resulting in a huge burden on public health. Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia, accounting for 60-70% of all the cases. The cause of AD is still poorly understood but several brain abnormalities (e.g., loss of neuronal connections and neuronal death) have been identified in affected patients. In addition to the accumulation of β-amyloid plaques in the brain tissue, aberrant phosphorylation of tau proteins has proved to increase neuronal death. DYRK1A phosphorylates tau on 11 different Ser/Thr residues, resulting in the formation of aggregates called 'neurofibrillary tangles' which, together with amyloid plaques, could be responsible for dementia, neuronal degeneration and cell death. Small molecule inhibition of DYRK1A could thus represent an interesting approach toward the treatment of Alzheimer's and other neurodegenerative diseases. Herein we review the current progress in the identification and development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
- DE Shaw Research, 120W 45th Street, New York, NY 10036, USA
| | - Federico Medda
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| |
Collapse
|
40
|
Hensley K, Poteshkina A, Johnson MF, Eslami P, Gabbita SP, Hristov AM, Venkova-Hristova KM, Harris-White ME. Autophagy Modulation by Lanthionine Ketimine Ethyl Ester Improves Long-Term Outcome after Central Fluid Percussion Injury in the Mouse. J Neurotrauma 2016; 33:1501-13. [PMID: 26530250 DOI: 10.1089/neu.2015.4196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse axonal injury is recognized as a progressive and long-term consequence of traumatic brain injury. Axonal injury can have sustained negative consequences on neuronal functions such as anterograde and retrograde transport and cellular processes such as autophagy that depend on cytoarchitecture and axon integrity. These changes can lead to somatic atrophy and an inability to repair and promote plasticity. Obstruction of the autophagic process has been noted after brain injury, and rapamycin, a drug used to stimulate autophagy, has demonstrated positive effects in brain injury models. The optimization of drugs to promote beneficial autophagy without negative side effects could be used to attenuate traumatic brain injury and promote improved outcome. Lanthionine ketimine ethyl ester, a bioavailable derivative of a natural sulfur amino acid metabolite, has demonstrated effects on autophagy both in vitro and in vivo. Thirty minutes after a moderate central fluid percussion injury and throughout the survival period, lanthionine ketimine ethyl ester was administered, and mice were subsequently evaluated for learning and memory impairments and biochemical and histological changes over a 5-week period. Lanthionine ketimine ethyl ester, which we have shown previously to modulate autophagy markers and alleviate pathology and slow cognitive decline in the 3 × TgAD mouse model, spared cognition and pathology after central fluid percussion injury through a mechanism involving autophagy modulation.
Collapse
Affiliation(s)
- Kenneth Hensley
- 1 Department of Pathology, University of Toledo Health Science Campus , Toledo, Ohio.,2 Department of Neurosciences, University of Toledo Health Science Campus , Toledo, Ohio
| | - Aleksandra Poteshkina
- 4 Veterans Administration-Greater Los Angeles Healthcare System , Los Angeles, California
| | - Ming F Johnson
- 4 Veterans Administration-Greater Los Angeles Healthcare System , Los Angeles, California
| | - Pirooz Eslami
- 4 Veterans Administration-Greater Los Angeles Healthcare System , Los Angeles, California
| | | | - Alexandar M Hristov
- 1 Department of Pathology, University of Toledo Health Science Campus , Toledo, Ohio
| | | | - Marni E Harris-White
- 4 Veterans Administration-Greater Los Angeles Healthcare System , Los Angeles, California.,5 Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, California
| |
Collapse
|
41
|
Bronicki LM, Redin C, Drunat S, Piton A, Lyons M, Passemard S, Baumann C, Faivre L, Thevenon J, Rivière JB, Isidor B, Gan G, Francannet C, Willems M, Gunel M, Jones JR, Gleeson JG, Mandel JL, Stevenson RE, Friez MJ, Aylsworth AS. Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. Eur J Hum Genet 2015; 23:1482-7. [PMID: 25920557 PMCID: PMC4613470 DOI: 10.1038/ejhg.2015.29] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/18/2014] [Accepted: 01/28/2015] [Indexed: 01/12/2023] Open
Abstract
The dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) gene, located on chromosome 21q22.13 within the Down syndrome critical region, has been implicated in syndromic intellectual disability associated with Down syndrome and autism. DYRK1A has a critical role in brain growth and development primarily by regulating cell proliferation, neurogenesis, neuronal plasticity and survival. Several patients have been reported with chromosome 21 aberrations such as partial monosomy, involving multiple genes including DYRK1A. In addition, seven other individuals have been described with chromosomal rearrangements, intragenic deletions or truncating mutations that disrupt specifically DYRK1A. Most of these patients have microcephaly and all have significant intellectual disability. In the present study, we report 10 unrelated individuals with DYRK1A-associated intellectual disability (ID) who display a recurrent pattern of clinical manifestations including primary or acquired microcephaly, ID ranging from mild to severe, speech delay or absence, seizures, autism, motor delay, deep-set eyes, poor feeding and poor weight gain. We identified unique truncating and non-synonymous mutations (three nonsense, four frameshift and two missense) in DYRK1A in nine patients and a large chromosomal deletion that encompassed DYRK1A in one patient. On the basis of increasing identification of mutations in DYRK1A, we suggest that this gene be considered potentially causative in patients presenting with ID, primary or acquired microcephaly, feeding problems and absent or delayed speech with or without seizures.
Collapse
Affiliation(s)
| | - Claire Redin
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
| | - Severine Drunat
- Department of Genetics and INSERM U1141, Robert Debré Hospital, Paris, France
| | - Amélie Piton
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
- Laboratoire de diagnostic génétique, Faculty of Medicine and CHU Strasbourg, Strasbourg, France
| | | | - Sandrine Passemard
- Department of Genetics and INSERM U1141, Robert Debré Hospital, Paris, France
| | | | - Laurence Faivre
- Fédération Hospitalo- Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- Fédération Hospitalo- Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Jean-Baptiste Rivière
- Fédération Hospitalo- Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Bertrand Isidor
- Medical Genetics- Clinical Genetics Unit, CHU de Nantes, Nantes-Cedex, France
| | - Grace Gan
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
| | - Christine Francannet
- Service de génétique médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marjolaine Willems
- Department of Medical Genetics, Reference Center for Rare Diseases, Developmental Disorders and Multiple Congenital Anomalies, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Murat Gunel
- Department of Genetics and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, Rady Children's Hospital, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Louis Mandel
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
- Laboratoire de diagnostic génétique, Faculty of Medicine and CHU Strasbourg, Strasbourg, France
| | | | | | - Arthur S Aylsworth
- Departments of Pediatrics and Genetics, Division of Genetics and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Yu Y, Wu Y, Szabo A, Wang S, Yu S, Wang Q, Huang XF. Teasaponin improves leptin sensitivity in the prefrontal cortex of obese mice. Mol Nutr Food Res 2015; 59:2371-82. [DOI: 10.1002/mnfr.201500205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Yinghua Yu
- School of Medicine; University of Wollongong and Illawarra Health and Medical Research Institute; NSW Australia
- Schizophrenia Research Institute (SRI); Sydney NSW Australia
| | - Yizhen Wu
- School of Medicine; University of Wollongong and Illawarra Health and Medical Research Institute; NSW Australia
| | - Alexander Szabo
- School of Medicine; University of Wollongong and Illawarra Health and Medical Research Institute; NSW Australia
- ANSTO Life Sciences; Australian Nuclear Science and Technology Organisation; Sydney Australia
| | - Sen Wang
- School of Medicine; University of Wollongong and Illawarra Health and Medical Research Institute; NSW Australia
- Department of Endocrinology and Metabolism; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine; Shenyang Liaoning China
| | - Shijia Yu
- School of Medicine; University of Wollongong and Illawarra Health and Medical Research Institute; NSW Australia
- Department of Endocrinology and Metabolism; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine; Shenyang Liaoning China
| | - Qing Wang
- Department of Neurology; The Third Affiliated Hospital of Sun Yat-Sen University; Guangzhou Guangdong P. R. China
| | - Xu-Feng Huang
- School of Medicine; University of Wollongong and Illawarra Health and Medical Research Institute; NSW Australia
- Schizophrenia Research Institute (SRI); Sydney NSW Australia
| |
Collapse
|
43
|
Ogden KK, Ozkan ED, Rumbaugh G. Prioritizing the development of mouse models for childhood brain disorders. Neuropharmacology 2015; 100:2-16. [PMID: 26231830 DOI: 10.1016/j.neuropharm.2015.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Mutations in hundreds of genes contribute to cognitive and behavioral dysfunction associated with developmental brain disorders (DBDs). Due to the sheer number of risk factors available for study combined with the cost of developing new animal models, it remains an open question how genes should be prioritized for in-depth neurobiological investigations. Recent reviews have argued that priority should be given to frequently mutated genes commonly found in sporadic DBD patients. Intrigued by this idea, we explored to what extent "high priority" risk factors have been studied in animals in an effort to assess their potential for generating valuable preclinical models capable of advancing the neurobiological understanding of DBDs. We found that in-depth whole animal studies are lacking for many high priority genes, with relatively few neurobiological studies performed in construct valid animal models aimed at understanding the pathological substrates associated with disease phenotypes. However, some high priority risk factors have been extensively studied in animal models and they have generated novel insights into DBD patho-neurobiology while also advancing early pre-clinical therapeutic treatment strategies. We suggest that prioritizing model development toward genes frequently mutated in non-specific DBD populations will accelerate the understanding of DBD patho-neurobiology and drive novel therapeutic strategies. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Emin D Ozkan
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
44
|
Mennenga SE, Gerson JE, Dunckley T, Bimonte-Nelson HA. Harmine treatment enhances short-term memory in old rats: Dissociation of cognition and the ability to perform the procedural requirements of maze testing. Physiol Behav 2014; 138:260-5. [PMID: 25250831 DOI: 10.1016/j.physbeh.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/28/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Harmine is a naturally occurring monoamine oxidase inhibitor that has recently been shown to selectively inhibit the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A). We investigated the cognitive effects of 1mg (low) Harmine and 5mg (high) Harmine using the delayed-match-to-sample (DMS) asymmetrical 3-choice water maze task to evaluate spatial working and recent memory, and the Morris water maze task (MM) to test spatial reference memory. Animals were also tested on the visible platform task, a water-escape task with the same motor, motivational, and reinforcement components as the other tasks used to evaluate cognition, but differing in its greater simplicity and that the platform was visible above the surface of the water. A subset of the Harmine-high treated animals showed clear motor impairments on all behavioral tasks, and the visible platform task confirmed a lack of competence to perform the procedural components of water maze testing. After excluding animals from the high dose group that could not perform the procedural components of a swim task, it was revealed that both high- and low-dose treatment with Harmine enhanced performance on the latter portion of DMS testing, but had no effect on MM performance. Thus, this study demonstrates the importance of confirming motor and visual competence when studying animal cognition, and verifies the one-day visible platform task as a reliable measure of ability to perform the procedural components necessary for completion of a swim task.
Collapse
Affiliation(s)
- Sarah E Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, United States
| | - Julia E Gerson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, United States
| | - Travis Dunckley
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, United States; Arizona Alzheimer's Consortium, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, United States.
| |
Collapse
|
45
|
Souchet B, Guedj F, Sahún I, Duchon A, Daubigney F, Badel A, Yanagawa Y, Barallobre MJ, Dierssen M, Yu E, Herault Y, Arbones M, Janel N, Créau N, Delabar JM. Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiol Dis 2014; 69:65-75. [PMID: 24801365 DOI: 10.1016/j.nbd.2014.04.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/21/2022] Open
Abstract
Cognitive deficits in Down syndrome (DS) have been linked to increased synaptic inhibition, leading to an imbalance of excitation/inhibition (E/I). Various mouse models and studies from human brains have implicated an HSA21 gene, the serine/threonine kinase DYRK1A, as a candidate for inducing cognitive dysfunction. Here, consequences of alterations in Dyrk1a dosage were assessed in mouse models with varying copy numbers of Dyrk1a: mBACtgDyrk1a, Ts65Dn and Dp(16)1Yey (with 3 gene copies) and Dyrk1a(+/-) (one functional copy). Molecular (i.e. immunoblotting/immunohistochemistry) and behavioral analyses (e.g., rotarod, Morris water maze, Y-maze) were performed in mBACtgDyrk1a mice. Increased expression of DYRK1A in mBACtgDyrk1a induced molecular alterations in synaptic plasticity pathways, particularly expression changes in GABAergic and glutaminergic related proteins. Similar alterations were observed in models with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey, and were reversed in the Dyrk1a(+/-) model. Dyrk1a overexpression produced an increased number and signal intensity of GAD67 positive neurons, indicating enhanced inhibition pathways in three different models: mBACtgDyrk1a, hYACtgDyrk1a and Dp(16)1Yey. Functionally, Dyrk1a overexpression protected mice from PTZ-induced seizures related to GABAergic neuron plasticity. Our study shows that DYRK1A overexpression affects pathways involved in synaptogenesis and synaptic plasticity and influences E/I balance toward inhibition. Inhibition of DYRK1A activity offers a therapeutic target for DS, but its inhibition/activation may also be relevant for other psychiatric diseases with E/I balance alterations.
Collapse
Affiliation(s)
- Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Fayçal Guedj
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Ignasi Sahún
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Arnaud Duchon
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Anne Badel
- MTI, Univ Paris Diderot, Sorbonne Paris Cité, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and JST, CREST, Japan
| | - Maria Jose Barallobre
- Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Mara Dierssen
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Yann Herault
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Nathalie Janel
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| |
Collapse
|
46
|
Yao ZG, Liang L, Liu Y, Zhang L, Zhu H, Huang L, Qin C. Valproate improves memory deficits in an Alzheimer's disease mouse model: investigation of possible mechanisms of action. Cell Mol Neurobiol 2014; 34:805-12. [PMID: 24939432 PMCID: PMC11488907 DOI: 10.1007/s10571-013-0012-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a very common progressive neurodegenerative disorder affecting the learning and memory abilities in the brain. Key findings from recent studies of epigenetic mechanisms of memory suggest chromatin remodeling disorders via histone hypoacetylation of the lysine residue contribute to the cognitive impairment in AD. Therefore, the deinhibition of histone acetylation induced by histone deacetylases (HDACs) inhibitors contributes to recovery of learning and memory. We show here that the antiepileptic drug sodium valproate (VPA) potently enhanced long-term recognition memory and spatial learning and memory in AD transgenic mice. Possible mechanisms showed VPA could significantly elevate histone acetylation through HDACs activity inhibition and increase plasticity-associated gene expression within the hippocampi of mice. Our study suggests that VPA, serving as a HDACs inhibitor, can be considered as a potential pharmaceutical agent for the improvement of cognitive function in AD.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Liang Liang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| |
Collapse
|
47
|
Chen CK, Bregere C, Paluch J, Lu J, Dickman DK, Chang KT. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat Commun 2014; 5:4246. [PMID: 24977345 PMCID: PMC4183159 DOI: 10.1038/ncomms5246] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/28/2014] [Indexed: 01/22/2023] Open
Abstract
Phosphorylation has emerged as a crucial regulatory mechanism in the nervous system to integrate the dynamic signalling required for proper synaptic development, function and plasticity, particularly during changes in neuronal activity. Here we present evidence that Minibrain (Mnb; also known as Dyrk1A), a serine/threonine kinase implicated in autism spectrum disorder and Down syndrome, is required presynaptically for normal synaptic growth and rapid synaptic vesicle endocytosis at the Drosophila neuromuscular junction (NMJ). We find that Mnb-dependent phosphorylation of Synaptojanin (Synj) is required, in vivo, for complex endocytic protein interactions and to enhance Synj activity. Neuronal stimulation drives Mnb mobilization to endocytic zones and triggers Mnb-dependent phosphorylation of Synj. Our data identify Mnb as a synaptic kinase that promotes efficient synaptic vesicle recycling by dynamically calibrating Synj function at the Drosophila NMJ, and in turn endocytic capacity, to adapt to conditions of high synaptic activity.
Collapse
Affiliation(s)
- Chun-Kan Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
- Dept. of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, CA 90089
| | - Catherine Bregere
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
| | - Jeremy Paluch
- Dept. of Neurobiology, University of Southern California, CA 90089
| | - Jason Lu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
| | - Dion K. Dickman
- Dept. of Neurobiology, University of Southern California, CA 90089
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
- Dept. of Cell & Neurobiology, Keck School of Medicine, University of Southern California, CA 90089
| |
Collapse
|
48
|
Cognition and hippocampal plasticity in the mouse is altered by monosomy of a genomic region implicated in Down syndrome. Genetics 2014; 197:899-912. [PMID: 24752061 PMCID: PMC4096369 DOI: 10.1534/genetics.114.165241] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is due to increased copy number of human chromosome 21. The contribution of different genetic regions has been tested using mouse models. As shown previously, the Abcg1-U2af1 genetic region contributes to cognitive defects in working and short-term recognition memory in Down syndrome mouse models. Here we analyzed the impact of monosomy of the same genetic interval, using a new mouse model, named Ms2Yah. We used several cognitive paradigms and did not detect defects in the object recognition or the Morris water maze tests. However, surprisingly, Ms2Yah mice displayed increased associative memory in a pure contextual fear-conditioning test and decreased social novelty interaction along with a larger long-term potentiation recorded in the CA1 area following stimulation of Schaffer collaterals. Whole-genome expression studies carried out on hippocampus showed that the transcription of only a small number of genes is affected, mainly from the genetic interval (Cbs, Rsph1, Wdr4), with a few additional ones, including the postsynaptic Gabrr2, Gabbr1, Grid2p, Park2, and Dlg1 and the components of the Ubiquitin-mediated proteolysis (Anapc1, Rnf7, Huwe1, Park2). The Abcg1–U2af1 region is undeniably encompassing dosage-sensitive genes or elements whose change in copy number directly affects learning and memory, synaptic function, and autistic related behavior.
Collapse
|
49
|
Andero R, Brothers SP, Jovanovic T, Chen YT, Salah-Uddin H, Cameron M, Bannister TD, Almli L, Stevens JS, Bradley B, Binder EB, Wahlestedt C, Ressler KJ. Amygdala-dependent fear is regulated by Oprl1 in mice and humans with PTSD. Sci Transl Med 2014; 5:188ra73. [PMID: 23740899 DOI: 10.1126/scitranslmed.3005656] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amygdala-dependent molecular mechanisms driving the onset and persistence of posttraumatic stress disorder (PTSD) are poorly understood. Recent observational studies have suggested that opioid analgesia in the aftermath of trauma may decrease the development of PTSD. Using a mouse model of dysregulated fear, we found altered expression within the amygdala of the Oprl1 gene (opioid receptor-like 1), which encodes the amygdala nociceptin (NOP)/orphanin FQ receptor (NOP-R). Systemic and central amygdala infusion of SR-8993, a new highly selective NOP-R agonist, impaired fear memory consolidation. In humans, a single-nucleotide polymorphism (SNP) within OPRL1 is associated with a self-reported history of childhood trauma and PTSD symptoms (n = 1847) after a traumatic event. This SNP is also associated with physiological startle measures of fear discrimination and magnetic resonance imaging analysis of amygdala-insula functional connectivity. Together, these data suggest that Oprl1 is associated with amygdala function, fear processing, and PTSD symptoms. Further, our data suggest that activation of the Oprl1/NOP receptor may interfere with fear memory consolidation, with implications for prevention of PTSD after a traumatic event.
Collapse
Affiliation(s)
- Raül Andero
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mouton-Liger F, Sahún I, Collin T, Lopes Pereira P, Masini D, Thomas S, Paly E, Luilier S, Même S, Jouhault Q, Bennaï S, Beloeil JC, Bizot JC, Hérault Y, Dierssen M, Créau N. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: implications for Down syndrome. Neurobiol Dis 2013; 63:92-106. [PMID: 24291518 DOI: 10.1016/j.nbd.2013.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.
Collapse
Affiliation(s)
- François Mouton-Liger
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Ignasi Sahún
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Thibault Collin
- CNRS UMR8118, Brain Physiology Laboratory, Universite Paris-Descartes, Centre universitaire des Saints-Pères, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Patricia Lopes Pereira
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France
| | - Debora Masini
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Sophie Thomas
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Sabrina Luilier
- Key-Obs SAS, 13 avenue Buffon, 45071 Orléans Cedex 2, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Quentin Jouhault
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | | | | | - Yann Hérault
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France; Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France; Institut de Génétique Biologie Moléculaire et Cellulaire, Translational medicine and Neuroscience program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France.
| |
Collapse
|