1
|
Horikawa M, Fukuyama M, Antebi A, Mizunuma M. Regulatory mechanism of cold-inducible diapause in Caenorhabditis elegans. Nat Commun 2024; 15:5793. [PMID: 38987256 PMCID: PMC11237089 DOI: 10.1038/s41467-024-50111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.
Collapse
Affiliation(s)
- Makoto Horikawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
2
|
Zhang C, Xiang C, Zhou K, Liu X, Qiao G, Zhao Y, Dong K, Sun K, Liu Z. Intestinal lysozyme1 deficiency alters microbiota composition and impacts host metabolism through the emergence of NAD +-secreting ASTB Qing110 bacteria. mSystems 2024; 9:e0121423. [PMID: 38364095 PMCID: PMC10949482 DOI: 10.1128/msystems.01214-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
The intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes. IMPORTANCE The impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.
Collapse
Affiliation(s)
- Chengye Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Chen Xiang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kaichen Zhou
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingchen Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Guofeng Qiao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yabo Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kemeng Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ke Sun
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihua Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
McCann JJ, Fleenor DE, Chen J, Lai CH, Bass TE, Kastan MB. Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway. Radiat Res 2023; 199:406-421. [PMID: 36921295 PMCID: PMC10162594 DOI: 10.1667/rade-22-00219.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Altered cellular responses to DNA damage can contribute to cancer development, progression, and therapeutic resistance. Mutations in key DNA damage response factors occur across many cancer types, and the DNA damage-responsive gene, TP53, is frequently mutated in a high percentage of cancers. We recently reported that an alternative splicing pathway induced by DNA damage regulates alternative splicing of TP53 RNA and further modulates cellular stress responses. Through damage-induced inhibition of the SMG1 kinase, TP53 pre-mRNA is alternatively spliced to generate TP53b mRNA and p53b protein is required for optimal induction of cellular senescence after ionizing radiation-induced DNA damage. Herein, we confirmed and extended these observations by demonstrating that the ATM protein kinase is required for repression of SMG1 kinase activity after ionizing radiation. We found that the RNA helicase and splicing factor, DDX5, interacts with SMG1, is required for alternative splicing of TP53 pre-mRNA to TP53b and TP53c mRNAs after DNA damage, and contributes to radiation-induced cellular senescence. Interestingly, the role of SMG1 in alternative splicing of p53 appears to be distinguishable from its role in regulating nonsense-mediated RNA decay. Thus, ATM, SMG1, and DDX5 participate in a DNA damage-induced alternative splicing pathway that regulates TP53 splicing and modulates radiation-induced cellular senescence.
Collapse
Affiliation(s)
- Jennifer J. McCann
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Donald E. Fleenor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Jing Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Chun-Hsiang Lai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Thomas E. Bass
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Michael B. Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
5
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
6
|
Abstract
Nonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that eliminates transcripts containing premature termination codons (PTCs). Half-lives of the mRNAs containing PTCs demonstrate that a small percent escape surveillance and do not degrade. It is not known whether this escape represents variable mRNA degradation within cells or, alternatively cells within the population are resistant. Here we demonstrate a single-cell approach with a bi-directional reporter, which expresses two β-globin genes with or without a PTC in the same cell, to characterize the efficiency of NMD in individual cells. We found a broad range of NMD efficiency in the population; some cells degraded essentially all of the mRNAs, while others escaped NMD almost completely. Characterization of NMD efficiency together with NMD regulators in single cells showed cell-to-cell variability of NMD reflects the differential level of surveillance factors, SMG1 and phosphorylated UPF1. A single-cell fluorescent reporter system that enabled detection of NMD using flow cytometry revealed that this escape occurred either by translational readthrough at the PTC or by a failure of mRNA degradation after successful translation termination at the PTC.
Collapse
|
7
|
Wu X, Al-Amin M, Zhao C, An F, Wang Y, Huang Q, Teng H, Song H. Catechinic acid, a natural polyphenol compound, extends the lifespan of Caenorhabditis elegans via mitophagy pathways. Food Funct 2021; 11:5621-5634. [PMID: 32530444 DOI: 10.1039/d0fo00694g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catechinic acid (CA), widely present in tea and fruits, has vital biological and pharmacological properties. CA plays an important role in the regulation of lifespan. However, the mechanism behind its anti-aging properties remains poorly characterized. In the present study, Caenorhabditis elegans (C. elegans) was used as a model organism. It was found that CA induced mitophagy which prevented the accumulation of dysfunctional mitochondria with age and profoundly extended lifespan. Notably, CA significantly improved the fitness of aging worms, particularly the treatment slowed age-related decline in observed spontaneous movements. Furthermore, CA was found to eliminate dysfunctional mitochondria in the gut and muscle cells, and demonstrated that the lifespan-prolonging effects of CA can be attributed to mitophagy along with the likely regulation of the genes bec-1 and pink-1. The results of this study indicated that pharmacologically induced mitophagy has a profound impact on aging, providing a novel therapeutic intervention against aging and age-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Mohammad Al-Amin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. and Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China and Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiwei Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Cohen-Berkman M, Dudkevich R, Ben-Hamo S, Fishman A, Salzberg Y, Waldman Ben-Asher H, Lamm AT, Henis-Korenblit S. Endogenous siRNAs promote proteostasis and longevity in germline-less Caenorhabditis elegans. eLife 2020; 9:e50896. [PMID: 32213289 PMCID: PMC7136021 DOI: 10.7554/elife.50896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in Caenorhabditis elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.
Collapse
Affiliation(s)
- Moran Cohen-Berkman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Reut Dudkevich
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Shani Ben-Hamo
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Alla Fishman
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of ScienceRehovotIsrael
| | | | - Ayelet T Lamm
- Faculty of Biology, Technion-Israel Institute of Technology, Technion CityHaifaIsrael
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| |
Collapse
|
9
|
Ho U, Luff J, James A, Lee CS, Quek H, Lai HC, Apte S, Lim YC, Lavin MF, Roberts TL. SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. J Cell Mol Med 2019; 23:8151-8160. [PMID: 31565865 PMCID: PMC6850945 DOI: 10.1111/jcmm.14685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Suppressor of morphogenesis in genitalia 1 (SMG1) and ataxia telangiectasia mutated (ATM) are members of the PI3‐kinase like–kinase (PIKK) family of proteins. ATM is a well‐established tumour suppressor. Loss of one or both alleles of ATM results in an increased risk of cancer development, particularly haematopoietic cancer and breast cancer in both humans and mouse models. In mice, total loss of SMG1 is embryonic lethal and loss of a single allele results in an increased rate of cancer development, particularly haematopoietic cancers and lung cancer. In this study, we generated mice deficient in Atm and lacking one allele of Smg1, Atm−/−Smg1gt/+ mice. These mice developed cancers more rapidly than either of the parental genotypes, and all cancers were haematopoietic in origin. The combined loss of Smg1 and Atm resulted in a higher level of basal DNA damage and oxidative stress in tissues than loss of either gene alone. Furthermore, Atm−/−Smg1gt/+ mice displayed increased cytokine levels in haematopoietic tissues compared with wild‐type animals indicating the development of low‐level inflammation and a pro‐tumour microenvironment. Overall, our data demonstrated that combined loss of Atm expression and decreased Smg1 expression increases haematopoietic cancer development.
Collapse
Affiliation(s)
- Uda Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Qld, Australia
| | - John Luff
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Alexander James
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Cheok Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia.,Department of Anatomical Pathology, Molecular Pathology Laboratory, Liverpool Hospital, Liverpool, NSW, Australia
| | - Hazel Quek
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Hui-Chi Lai
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| | - Simon Apte
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Martin F Lavin
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Tara L Roberts
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| |
Collapse
|
10
|
Cuong VT, Chen W, Shi J, Zhang M, Yang H, Wang N, Yang S, Li J, Yang P, Fei J. The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans. Exp Gerontol 2018; 117:99-105. [PMID: 30476533 DOI: 10.1016/j.exger.2018.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
Abstract
As a traditional herbal medicine, the clinical efficacy of Ganoderma lucidum (G. lucidum, also known as Lingzhi in China) has been proved by clinical research and a large number of animal experiments. However, its pharmacological mechanism is not clear. Here, we used the Caenorhabditis elegans as an animal model to study the anti-oxidative stress and anti-aging effects of G. lucidum water extract. Our results showed that G. lucidum effectively promoted the nematodes to resist the oxidative stress of paraquat and heavy metal Cr6+, and significantly prolonged the lifespan of the nematodes. The underlining mechanisms were further investigated by focusing on the signaling pathways that regulate the stress responses and the lifespan. We found that G. lucidum protected the nematode against the insults of paraquat and heavy metals through the diet restriction pathway and the mTOR/S6K signaling pathway, respectively. Whereas, the effect of G. lucidum on the longevity of the nematode mainly depended on the germline signaling pathway. Microarray assays were conducted to reveal the gene expression profiles. The expression levels of 2746 genes were significantly changed during the aging process, of which 34 genes were reversed in their expression by the treatment of G. lucidum in aged nematodes. These results suggest that G. lucidum regulates the biophysiological processes in the nematodes through multiple signaling pathways.
Collapse
Affiliation(s)
- Vu Thi Cuong
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Weidong Chen
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Jiahao Shi
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Mengjie Zhang
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Hua Yang
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Ning Wang
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Sai Yang
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Jianfeng Li
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China
| | - Ping Yang
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai 201203, China.
| | - Jian Fei
- School of Life Science and Techonology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Mergoud dit Lamarche A, Molin L, Pierson L, Mariol M, Bessereau J, Gieseler K, Solari F. UNC-120/SRF independently controls muscle aging and lifespan in Caenorhabditis elegans. Aging Cell 2018; 17:e12713. [PMID: 29314608 PMCID: PMC5847867 DOI: 10.1111/acel.12713] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is commonly defined as the loss of global homeostasis, which results from progressive alteration of all organs function. This model is currently challenged by recent data showing that interventions that extend lifespan do not always increase the overall fitness of the organism. These data suggest the existence of tissue-specific factors that regulate the pace of aging in a cell-autonomous manner. Here, we investigated aging of Caenorhabditis elegans striated muscles at the subcellular and the physiological level. Our data show that muscle aging is characterized by a dramatic decrease in the expression of genes encoding proteins required for muscle contraction, followed by a change in mitochondria morphology, and an increase in autophagosome number. Myofilaments, however, remain unaffected during aging. We demonstrated that the conserved transcription factor UNC-120/SRF regulates muscle aging biomarkers. Interestingly, the role of UNC-120/SRF in the control of muscle aging can be dissociated from its broader effect on lifespan. In daf-2/insulin/IGF1 receptor mutants, which exhibit a delayed appearance of muscle aging biomarkers and are long-lived, disruption of unc-120 accelerates muscle aging but does not suppress the lifespan phenotype of daf-2 mutant. Conversely, unc-120 overexpression delays muscle aging but does not increase lifespan. Overall, we demonstrate that UNC-120/SRF controls the pace of muscle aging in a cell-autonomous manner downstream of the insulin/IGF1 receptor.
Collapse
Affiliation(s)
- Adeline Mergoud dit Lamarche
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laurent Molin
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laura Pierson
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Marie‐Christine Mariol
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Jean‐Louis Bessereau
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
- Hospices Civils de LyonFaculté de Médecine Lyon EstLyonFrance
| | - Kathrin Gieseler
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Florence Solari
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| |
Collapse
|
12
|
González-Huici V, Wang B, Gartner A. A Role for the Nonsense-Mediated mRNA Decay Pathway in Maintaining Genome Stability in Caenorhabditis elegans. Genetics 2017; 206:1853-1864. [PMID: 28634159 PMCID: PMC5560793 DOI: 10.1534/genetics.117.203414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022] Open
Abstract
Ionizing radiation (IR) is commonly used in cancer therapy and is a main source of DNA double-strand breaks (DSBs), one of the most toxic forms of DNA damage. We have used Caenorhabditis elegans as an invertebrate model to identify novel factors required for repair of DNA damage inflicted by IR. We have performed an unbiased genetic screen, finding that smg-1 mutations confer strong hyper-sensitivity to IR. SMG-1 is a phosphoinositide-3 kinase (PI3K) involved in mediating nonsense-mediated mRNA decay (NMD) of transcripts containing premature stop codons and related to the ATM and ATR kinases which are at the apex of DNA damage signaling pathways. Hyper-sensitivity to IR also occurs when other genes mediating NMD are mutated. The hyper-sensitivity to bleomycin, a drug known to induce DSBs, further supports that NMD pathway mutants are defective in DSB repair. Hyper-sensitivity was not observed upon treatment with alkylating agents or UV irradiation. We show that SMG-1 mainly acts in mitotically dividing germ cells, and during late embryonic and larval development. Based on epistasis experiments, SMG-1 does not appear to act in any of the three major pathways known to mend DNA DSBs, namely homologous recombination (HR), nonhomologous end-joining (NHEJ), and microhomology-mediated end-joining (MMEJ). We speculate that SMG-1 kinase activity could be activated following DNA damage to phosphorylate specific DNA repair proteins and/or that NMD inactivation may lead to aberrant mRNAs leading to synthesis of malfunctioning DNA repair proteins.
Collapse
Affiliation(s)
- Víctor González-Huici
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| | - Bin Wang
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| | - Anton Gartner
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| |
Collapse
|
13
|
Resseguie EA, Brookes PS, O’Reilly MA. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia. Exp Lung Res 2017; 43:229-239. [PMID: 28749708 PMCID: PMC5956894 DOI: 10.1080/01902148.2017.1339143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. MATERIALS AND METHODS Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. RESULTS Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. CONCLUSIONS Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.
Collapse
Affiliation(s)
- Emily A. Resseguie
- Department of Environmental Medicine, The University of Rochester, Rochester, New York, USA
| | - Paul S. Brookes
- Department of Anesthesiology, The University of Rochester, Rochester, New York, USA
| | - Michael A. O’Reilly
- Department of Environmental Medicine, The University of Rochester, Rochester, New York, USA
- Department of Pediatrics, The University of Rochester, Rochester, New York, USA
| |
Collapse
|
14
|
Zhang Y, Zheng Y, Faheem A, Sun T, Li C, Li Z, Zhao D, Wu C, Liu J. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type. Oncol Lett 2016; 11:1685-1692. [PMID: 26998062 PMCID: PMC4774473 DOI: 10.3892/ol.2016.4111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022] Open
Abstract
Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type.
Collapse
Affiliation(s)
- Yuncheng Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ali Faheem
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Tiantong Sun
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Chunyou Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhe Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Diantang Zhao
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chao Wu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
15
|
De Cicco M, Rahim MSA, Dames SA. Regulation of the Target of Rapamycin and Other Phosphatidylinositol 3-Kinase-Related Kinases by Membrane Targeting. MEMBRANES 2015; 5:553-75. [PMID: 26426064 PMCID: PMC4703999 DOI: 10.3390/membranes5040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase-related kinases (PIKKs) play vital roles in the regulation of cell growth, proliferation, survival, and consequently metabolism, as well as in the cellular response to stresses such as ionizing radiation or redox changes. In humans six family members are known to date, namely mammalian/mechanistic target of rapamycin (mTOR), ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), suppressor of morphogenesis in genitalia-1 (SMG-1), and transformation/transcription domain-associated protein (TRRAP). All fulfill rather diverse functions and most of them have been detected in different cellular compartments including various cellular membranes. It has been suggested that the regulation of the localization of signaling proteins allows for generating a locally specific output. Moreover, spatial partitioning is expected to improve the reliability of biochemical signaling. Since these assumptions may also be true for the regulation of PIKK function, the current knowledge about the regulation of the localization of PIKKs at different cellular (membrane) compartments by a network of interactions is reviewed. Membrane targeting can involve direct lipid-/membrane interactions as well as interactions with membrane-anchored regulatory proteins, such as, for example, small GTPases, or a combination of both.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Munirah S Abd Rahim
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Sonja A Dames
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| |
Collapse
|
16
|
Zou D, McSweeney C, Sebastian A, Reynolds DJ, Dong F, Zhou Y, Deng D, Wang Y, Liu L, Zhu J, Zou J, Shi Y, Albert I, Mao Y. A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Dev 2015; 10:18. [PMID: 26094033 PMCID: PMC4479087 DOI: 10.1186/s13064-015-0045-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 02/04/2023] Open
Abstract
Background Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. Result We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. Conclusions Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donghua Zou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Geriatrics, The 303 Hospital of Chinese People's Liberation Army, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Derrick James Reynolds
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Dazhi Deng
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Emergency, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi Province, 530021, China.
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Long Liu
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Jizhong Zou
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Yongsheng Shi
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yingwei Mao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Wang Q, Xu D, Han C, Tu M, Du Q, Zhang J, Zhu Y, Xu L. Overexpression of serine/threonine-protein kinase-1 in pancreatic cancer tissue: Serine/threonine-protein kinase-1 knockdown increases the chemosensitivity of pancreatic cancer cells. Mol Med Rep 2015; 12:475-81. [PMID: 25760059 DOI: 10.3892/mmr.2015.3434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
Abstract
Serine/threonine-protein kinase-1 (SMG-1) belongs to the phosphatidylinositol 3‑kinase‑related kinase family. Altered expression of SMG-1 contributes to human carcinogenesis and cancer progression. The present study detected the expression levels of SMG-1 in normal and cancerous pancreatic tissues and then assessed the effects of SMG-1-knockdown in pancreatic cancer cell lines in vitro. A pancreatic cancer tissue array and pancreatic cancer cell lines were used to detect the expression levels of SMG-1 and a lentivirus expressing either SMG-1 or negative control short hairpin (sh)RNA were used to knock down the expression of SMG-1 in the pancreatic cancer cell lines. Western blot, cell proliferation, Cell Counting kit-8, Transwell tumor cell migration and invasion assays, and flow cytometric analysis of cell apoptosis with or without gemcitabine or cisplatin treatment were performed to assess the tumor cells. The protein expression of SMG-1 was higher in the pancreatic cancer tissues and cells compared with the normal tissues. sh-SMG-1 lentivirus infection significantly suppressed the expression of SMG-1 in the pancreatic cancer cell lines, resulting in the inhibition of tumor cell proliferation and increased chemosensitivity to treatment with gemcitabine and cisplatin. However, SMG-1 knockdown had no effect on pancreatic cancer cell migration or invasion capacities. The protein expression of SMG-1 was increased in the pancreatic cancer tissues and was associated with an advanced tumor stage. Knock down of the expression of SMG-1 inhibited tumor cell proliferation and induced the chemosensitivity of pancreatic cancer cells in vitro.
Collapse
Affiliation(s)
- Qingguang Wang
- Department of General Surgery, Zoucheng People's Hospital, Jining, Shandong 273500, P.R. China
| | - Dong Xu
- Department of General Surgery, Gaochun People's Hospital, Nanjing, Jiangsu 211300, P.R. China
| | - Chao Han
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Min Tu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qing Du
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jingjing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lijian Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
18
|
Shi Z, Yu H, Sun Y, Yang C, Lian H, Cai P. The Energy Metabolism in Caenorhabditis elegans under The Extremely Low-Frequency Electromagnetic Field Exposure. Sci Rep 2015; 5:8471. [PMID: 25683579 PMCID: PMC4329544 DOI: 10.1038/srep08471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 02/08/2023] Open
Abstract
A literal mountain of documentation generated in the past five decades showing unmistakable health hazards associated with extremely low-frequency electromagnetic fields (ELF-EMFs) exposure. However, the relation between energy mechanism and ELF-EMF exposure is poorly understood. In this study, Caenorhabditis elegans was exposed to 50 Hz ELF-EMF at intensities of 0.5, 1, 2, and 3 mT, respectively. Their metabolite variations were analyzed by GC-TOF/MS-based metabolomics. Although minimal metabolic variations and no regular pattern were observed, the contents of energy metabolism-related metabolites such as pyruvic acid, fumaric acid, and L-malic acid were elevated in all the treatments. The expressions of nineteen related genes that encode glycolytic enzymes were analyzed by using quantitative real-time PCR. Only genes encoding GAPDH were significantly upregulated (P < 0.01), and this result was further confirmed by western blot analysis. The enzyme activity of GAPDH was increased (P < 0.01), whereas the total intracellular ATP level was decreased. While no significant difference in lifespan, hatching rate and reproduction, worms exposed to ELF-EMF exhibited less food consumption compared with that of the control (P < 0.01). In conclusion, C. elegans exposed to ELF-EMF have enhanced energy metabolism and restricted dietary, which might contribute to the resistance against exogenous ELF-EMF stress.
Collapse
Affiliation(s)
- Zhenhua Shi
- 1] Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China [2] University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Hui Yu
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| | - Yongyan Sun
- 1] Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China [2] University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Chuanjun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| | - Huiyong Lian
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| |
Collapse
|
19
|
Liu J, Chin-Sang ID. C. elegans as a model to study PTEN's regulation and function. Methods 2014; 77-78:180-90. [PMID: 25514044 DOI: 10.1016/j.ymeth.2014.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) has important roles in tumor suppression, metabolism, and development, yet its regulators, effectors, and functions are not fully understood. DAF-18 is the PTEN ortholog in Caenorhabditis elegans. DAF-18's role is highly conserved to human PTEN, and can be functionally replaced by human PTEN. Thus C. elegans provides a valuable model to study PTEN. This review assesses current and emerging methods to study DAF-18's regulators and functions in C. elegans. We propose genetic modify screens to identify genes that interact with daf-18/PTEN. These genes are potential targets for anticancer drug therapies. We also provide a review on the roles DAF-18/PTEN has during C. elegans development and how studying these physiological roles can provide mechanistic insight on DAF-18/PTEN function.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
20
|
Du Y, Lu F, Li P, Ye J, Ji M, Ma D, Ji C. SMG1 acts as a novel potential tumor suppressor with epigenetic inactivation in acute myeloid leukemia. Int J Mol Sci 2014; 15:17065-76. [PMID: 25257528 PMCID: PMC4200422 DOI: 10.3390/ijms150917065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022] Open
Abstract
Suppressor with morphogenetic effect on genitalia family member (SMG1) belongs to a family of phosphoinositide 3-kinase-related kinases and is the main kinase involved in nonsense-mediated mRNA decay. Recently, SMG1 was suggested as a novel potential tumor suppressor gene, particularly in hypoxic tumors. To investigate the function of SMG1 in acute myeloid leukemia (AML), we performed methylation-specific polymerase chain reaction and found that SMG1 was hypermethylated in the promoter region. SMG1 hypermethylation was found in 66% (33/50) of AML samples compared with none (0/14) of the normal controls. SMG1 mRNA was down-regulated in AML patients with hypermethylation status whereas it was readily expressed in patients without methylation. Moreover, treatment of AML cells with demethylating agent 5-aza-2'-deoxycytidine (decitabine) inhibited AML cell growth and induced apoptosis by reversing SMG1 methylation status and restoring SMG1 expression. On the other hand, knockdown of SMG1 by RNA interference inhibited apoptosis. We also found that mTOR expression level was negatively correlated to SMG1 expression in AML patients which indicated that SMG1 and mTOR maybe act antagonistically to regulate AML cell growth. In conclusion, our results indicate that SMG1 acts as a potential tumor suppressor with epigenetic regulation in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Bone Marrow/metabolism
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA, Neoplasm/genetics
- Decitabine
- Down-Regulation
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Gene Expression Regulation, Leukemic/physiology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia, Myelomonocytic, Acute/metabolism
- Male
- Middle Aged
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/physiology
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- TOR Serine-Threonine Kinases/physiology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Young Adult
Collapse
Affiliation(s)
- Yahui Du
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Peng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Min Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
21
|
Nam SW, Park KC, Yang KJ, Lee B, Kim SW. Genetic screen identifies suppressor of morphogenesis in genitalia-1 (SMG-1) as a modulator of sorafenib resistance in hepatocellular carcinoma cell lines. Int J Oncol 2014; 45:1450-6. [PMID: 25017961 DOI: 10.3892/ijo.2014.2540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/07/2013] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with a poor prognosis and a very complex dysregulated molecular etiology. Furthermore, conventional therapy thus far has had only limited success. A recently developed oral multikinase inhibitor, sorafenib, has been used to improve survival in HCC patients, however, follow‑up studies have revealed a high rate of cancer recurrence. Therefore, identification of genes involved in sorafenib resistance is urgently required. RNA interference (RNAi) is a powerful tool for performing loss-of-function genetic screens and can facilitate the identification of components of the cellular signaling pathway. This study describes the results of an unbiased genomic screening using RNAi in an HCC cell line to elucidate genes related to sorafenib non-responsiveness or resistance. A genome-wide in vitro RNA interference screen revealed the role of suppressor of morphogenesis in genitalia-1 (SMG-1) as a determinant of sorafenib resistance. The inhibition of SMG-1 reduced sorafenib sensitivity in the studied HCC cell lines. An immunohistochemical comparison of cancerous and non‑cancerous regions showed strong staining in the non‑neoplastic hepatocyte regions of HCC. SMG-1 may warrant investigation as an agent to reverse sorafenib resistance.
Collapse
Affiliation(s)
- Soon Woo Nam
- Hepatobiliary Unit, Division of Gastroenterology, Department of Internal Medicine, Incheon St. Mary's Hospital, Medical School of the Catholic University of Korea, Incheon, Republic of Korea
| | - Ki Cheol Park
- Clinical Medicine Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Keum Jin Yang
- Clinical Medicine Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Byoungchun Lee
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Sung-Woo Kim
- Southern Alberta Cancer Research Institute, Departments of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| |
Collapse
|
22
|
Han LL, Nan HC, Tian T, Guo H, Hu TH, Wang WJ, Ma JQ, Jiang LL, Guo QQ, Yang CC, Kang XM, Liu Y, Gao Y, Liu QL, Nan KJ. Expression and significance of the novel tumor-suppressor gene SMG-1 in hepatocellular carcinoma. Oncol Rep 2014; 31:2569-78. [PMID: 24700316 DOI: 10.3892/or.2014.3125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/20/2014] [Indexed: 11/05/2022] Open
Abstract
Recent studies have demonstrated that SMG-1, a newly characterized member of the family of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), is involved in tumorigenesis as a new tumor suppressor. However, its expression and significance in hepatocellular carcinoma (HCC) remain obscure. The present study investigated SMG-1 expression in HCC tissue specimens, aimed at defining the association with clinicopathological significance. Both immunohistochemistry and qRT-PCR were employed to analyze SMG-1 expression in 157 HCC and corresponding distant normal tissue specimens. The results revealed that expression of SMG-1 was significantly lower in the HCC tissue specimens than that in the distant normal tissues. Moreover, a lower expression level of SMG-1 was significantly correlated with serum α-fetoprotein level (P=0.001), poorly differentiated tumors (P=0.009) and more advanced TNM stage (P<0.001). Further study showed that SMG-1 expression was exactly associated with tumor differentiation and clinical stage in HCC. Kaplan-Meier analysis indicated that low SMG-1 expression was related to poor overall survival, and the prognostic impact of SMG-1 was further confirmed by stratified survival analysis. Importantly, multivariate analysis revealed that low SMG-1 expression was an independent prognostic marker for an unfavorable overall survival. We conclude that SMG-1 is downregulated in HCC and may represent a promising biomarker for predicting the prognosis of HCC, including the prognosis of early-stage patients.
Collapse
Affiliation(s)
- Li-Li Han
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hao-Cheng Nan
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Tao Tian
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hui Guo
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ting-Hua Hu
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wen-Juan Wang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie-Qun Ma
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Li Jiang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qian-Qian Guo
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Cheng-Cheng Yang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao-Min Kang
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Liu
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Gao
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qi-Lun Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital, College of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
23
|
Estevez AO, Morgan KL, Szewczyk NJ, Gems D, Estevez M. The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. Neurotoxicology 2014; 41:28-43. [PMID: 24406377 PMCID: PMC3979119 DOI: 10.1016/j.neuro.2013.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/12/2022]
Abstract
Insulin/insulin-like signaling reduction alters selenium-induced neurodegeneration. Selenium induces nuclear translocation of DAF-16/FOXO3a. DAF-16 overexpression decreases GABAergic and cholinergic motor neuron degeneration. Loss of DAF-18/PTEN increases sensitivity to selenium-induced movement deficits. Glutathione requires DAF-18/PINK-1 to improve selenium-induced movement deficits.
Exposures to high levels of environmental selenium have been associated with motor neuron disease in both animals and humans and high levels of selenite have been identified in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). We have shown previously that exposures to high levels of sodium selenite in the environment of Caenorhabditis elegans adult animals can induce neurodegeneration and cell loss resulting in motor deficits and death and that this is at least partially caused by a reduction in cholinergic signaling across the neuromuscular junction. Here we provide evidence that reduction in insulin/insulin-like (IIS) signaling alters response to high dose levels of environmental selenium which in turn can regulate the IIS pathway. Most specifically we show that nuclear localization and thus activation of the DAF-16/forkhead box transcription factor occurs in response to selenium exposure although this was not observed in motor neurons of the ventral cord. Yet, tissue specific expression and generalized overexpression of DAF-16 can partially rescue the neurodegenerative and behavioral deficits observed with high dose selenium exposures in not only the cholinergic, but also the GABAergic motor neurons. In addition, two modifiers of IIS signaling, PTEN (phosphatase and tensin homolog, deleted on chromosome 10) and PINK1 (PTEN-induced putative kinase 1) are required for the cellular antioxidant reduced glutathione to mitigate the selenium-induced movement deficits. Studies have suggested that environmental exposures can lead to ALS or other neurological diseases and this model of selenium-induced neurodegeneration developed in a genetically tractable organism provides a tool for examining the combined roles of genetics and environment in the neuro-pathologic disease process.
Collapse
Affiliation(s)
- Annette O Estevez
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Kathleen L Morgan
- Veterans Affairs Pittsburgh Healthcare System, Research and Development (151U), University Drive C, Pittsburgh, PA 15240, USA.
| | - Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - David Gems
- Institute of Healthy Ageing, and Department of Genetics, Evolution, and Environment, University College London, The Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Miguel Estevez
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Veterans Affairs Pittsburgh Healthcare System, Research and Development (151U), University Drive C, Pittsburgh, PA 15240, USA.
| |
Collapse
|
24
|
Gubanova E, Issaeva N, Gokturk C, Djureinovic T, Helleday T. SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways. Cell Cycle 2013; 12:3770-80. [PMID: 24107632 DOI: 10.4161/cc.26660] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The DNA damage response is coordinated by phosphatidylinositol 3-kinase-related kinases, ATM, ATR, and DNA-PK. SMG-1 is the least studied stress-responsive member of this family. Here, we show that SMG-1 regulates the G 1/S checkpoint through both a p53-dependent, and a p53-independent pathway. We identify Cdc25A as a new SMG-1 substrate, and show that cells depleted of SMG-1 exhibit prolonged Cdc25A stability, failing to inactivate CDK2 in response to radiation. Given an increased tumor growth following depletion of SMG-1, our data demonstrate a novel role for SMG-1 in regulating Cdc25A and suppressing oncogenic CDK2 driven proliferation, confirming SMG-1 as a tumor suppressor.
Collapse
Affiliation(s)
- Evgenia Gubanova
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden; Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm, Sweden
| | - Natalia Issaeva
- Department of Surgery, Otolaryngology; Yale University; New Haven, CT USA; Cancer Center; Yale University, New Haven, CT USA
| | - Camilla Gokturk
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm, Sweden
| | - Tatjana Djureinovic
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory; Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm, Sweden
| |
Collapse
|
25
|
Ziehm M, Thornton JM. Unlocking the potential of survival data for model organisms through a new database and online analysis platform: SurvCurv. Aging Cell 2013; 12:910-6. [PMID: 23826631 PMCID: PMC3824079 DOI: 10.1111/acel.12121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 12/01/2022] Open
Abstract
Lifespan measurements, also called survival records, are a key phenotype in research on aging. If external hazards are excluded, aging alone determines the mortality in a population of model organisms. Understanding the biology of aging is highly desirable because of the benefits for the wide range of aging-related diseases. However, it is also extremely challenging because of the underlying complexity. Here, we describe SurvCurv, a new database and online resource focused on model organisms collating survival data for storage and analysis. All data in SurvCurv are manually curated and annotated. The database, available at www.ebi.ac.uk/thornton-srv/databases/SurvCurv/, offers various functions including plotting, Cox proportional hazards analysis, mathematical mortality models and statistical tests. It facilitates reanalysis and allows users to analyse their own data and compare it with the largest repository of model-organism data from published experiments, thus unlocking the potential of survival data and demographics in model organisms.
Collapse
Affiliation(s)
- Matthias Ziehm
- EMBL – European Bioinformatics Institute Wellcome Trust Genome Campus Hinxton Cambridge CB10 1SD UK
| | - Janet M. Thornton
- EMBL – European Bioinformatics Institute Wellcome Trust Genome Campus Hinxton Cambridge CB10 1SD UK
| |
Collapse
|
26
|
Coburn C, Gems D. The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic acid and the kynurenine pathway. Front Genet 2013; 4:151. [PMID: 23967012 PMCID: PMC3735983 DOI: 10.3389/fgene.2013.00151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/21/2013] [Indexed: 12/31/2022] Open
Abstract
Gut granules are lysosome-like organelles with acidic interiors that are found in large numbers within the intestine of the nematode Caenorhabditis elegans. They are particularly prominent when viewed under ultraviolet light, which causes them to emit intense blue fluorescence. Yet the function of these large and abundant organelles in this heavily-studied model organism remains unclear. One possibility is that they serve as storage organelles, for example of zinc. A new clue to gut granule function is the identification of the blue fluorescent material that they contain as a glycosylated form of anthranilic acid, which is derived from tryptophan by action of the kynurenine pathway. This compound can also serve a surprising role as a natural, endogenous marker of organismal death.
Collapse
Affiliation(s)
| | - David Gems
- Institute of Healthy Ageing, and Department of Genetics, Evolution and Environment, University College LondonLondon, UK
| |
Collapse
|
27
|
Sommer LAM, Schaad M, Dames SA. NMR- and circular dichroism-monitored lipid binding studies suggest a general role for the FATC domain as membrane anchor of phosphatidylinositol 3-kinase-related kinases (PIKK). J Biol Chem 2013; 288:20046-63. [PMID: 23671275 DOI: 10.1074/jbc.m113.467233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The FATC domain is shared by all members of the family of phosphatidylinositol-3 kinase-related kinases (PIKKs). It has been shown that the FATC domain plays an important role for the regulation of each PIKK. However, other than an involvement in protein-protein interactions, a common principle for the action of the FATC domain has not been detected. A detailed characterization of the structure and lipid binding properties of the FATC domain of the Ser/Thr kinase target of rapamycin (TOR) revealed that it contains a redox-sensitive membrane anchor in its C terminus. Because the C-terminal regions of the FATC domains of all known PIKKs are rather hydrophobic and especially rich in aromatic residues, we examined whether the ability to interact with lipids and membranes might be a general property. Here, we present the characterization of the interactions with lipids and different membrane mimetics for the FATC domains of human DNA-PKcs, human ATM, human ATR, human SMG-1, and human TRRAP by NMR and CD spectroscopy. The data indicate that all of these can interact with different membrane mimetics and may have different preferences only for membrane properties such as surface charge, curvature, and lipid packing. The oxidized form of the TOR FATC domain is well structured overall and forms an α-helix that is followed by a disulfide-bonded loop. In contrast, the FATC domains of the other PIKKs are rather unstructured in the isolated form and only significantly populate α-helical secondary structure upon interaction with membrane mimetics.
Collapse
Affiliation(s)
- Lisa A M Sommer
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
28
|
Mitochondrial SIRT4-type proteins in Caenorhabditis elegans and mammals interact with pyruvate carboxylase and other acetylated biotin-dependent carboxylases. Mitochondrion 2013; 13:705-20. [PMID: 23438705 DOI: 10.1016/j.mito.2013.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/03/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
The biological and enzymatic function of SIRT4 is largely uncharacterized. We show that the Caenorhabditis elegans SIR-2.2 and SIR-2.3 orthologs of SIRT4 are ubiquitously expressed, also localize to mitochondria and function during oxidative stress. Further, we identified conserved interaction with mitochondrial biotin-dependent carboxylases (PC, PCC, MCCC), key enzymes in anaplerosis and ketone body formation. The carboxylases were found acetylated on multiple lysine residues and detailed analysis of mPC suggested that one of these residues, K748ac, might regulate enzymatic activity. Nevertheless, no changes in mPC acetylation levels and enzymatic activity could be detected upon overexpression or loss of functional SIRT4.
Collapse
|
29
|
Smg1 haploinsufficiency predisposes to tumor formation and inflammation. Proc Natl Acad Sci U S A 2012; 110:E285-94. [PMID: 23277562 DOI: 10.1073/pnas.1215696110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
SMG1 is a member of the phosphoinositide kinase-like kinase family of proteins that includes ATM, ATR, and DNA-PK, proteins with known roles in DNA damage and cellular stress responses. SMG1 has a well-characterized role in nonsense-mediated decay as well as suggested roles in the DNA damage response, resistance to oxidative stress, regulation of hypoxic responses, and apoptosis. To understand the roles of SMG1 further, we generated a Genetrap Smg1 mouse model. Smg1 homozygous KO mice were early embryonic lethal, but Smg1 heterozygous mice showed a predisposition to a range of cancers, particularly lung and hematopoietic malignancies, as well as development of chronic inflammation. These mice did not display deficiencies in known roles of SMG1, including nonsense-mediated decay. However, they showed elevated basal tissue and serum cytokine levels, indicating low-level inflammation before the development of tumors. Smg1 heterozygous mice also showed evidence of oxidative damage in tissues. These data suggest that the inflammation observed in Smg1 haploinsufficiency contributes to susceptibility to cancer and that Smg1-deficient animals represent a model of inflammation-enhanced cancer development.
Collapse
|
30
|
Izumi N, Yamashita A, Ohno S. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 2012; 3:29-43. [PMID: 22540023 PMCID: PMC3337166 DOI: 10.4161/nucl.18926] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative "PIKK regulatory chaperone complex" including other PIKK regulators, Hsp90 and the Tel2 complex.
Collapse
Affiliation(s)
- Natsuko Izumi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | |
Collapse
|
31
|
Kim Y, Sun H. ASM-3 acid sphingomyelinase functions as a positive regulator of the DAF-2/AGE-1 signaling pathway and serves as a novel anti-aging target. PLoS One 2012; 7:e45890. [PMID: 23049887 PMCID: PMC3457945 DOI: 10.1371/journal.pone.0045890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 08/27/2012] [Indexed: 02/05/2023] Open
Abstract
In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals.
Collapse
Affiliation(s)
- Yongsoon Kim
- Laboratory of Cancer Genomics, Nevada Cancer Institute, Las Vegas, Nevada, United States of America
- Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
- * E-mail: (YK); (HS)
| | - Hong Sun
- Laboratory of Cancer Genomics, Nevada Cancer Institute, Las Vegas, Nevada, United States of America
- Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
- * E-mail: (YK); (HS)
| |
Collapse
|
32
|
|
33
|
González-Estévez C, Felix DA, Smith MD, Paps J, Morley SJ, James V, Sharp TV, Aboobaker AA. SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genet 2012; 8:e1002619. [PMID: 22479207 PMCID: PMC3315482 DOI: 10.1371/journal.pgen.1002619] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling. Planarian flatworms have a remarkable ability to regenerate that has driven the curiosity of scientists for more than a century. They are also able to continuously grow or degrow their bodies, depending on food availability. Around 25% of the cells in the planarian body are adult stem cells, which are responsible for this incredible plasticity. The initial response of planarians to injury is characterised by a rapid increase in stem cell division. Subsequently planarians form a specialised new tissue called the regenerative blastema to replace missing tissues. Currently, very little is known about the molecular signals controlling the response to injury or the tight regulation of growth. Here we discovered that a gene called Smg-1 and the conserved mTOR signalling pathway, a central regulator of animal growth, are both regulators of this process. SMG-1 is required to limit and act as a brake on the initial response to injury and ensure that it does not run out of control, while in contrast mTOR signalling is required to drive this process forward. Loss of SMG-1 leads to hyperactive responses to injury and subsequent growth that continues out of control. Eventually, these animals form outgrowths, which display several hallmarks of human cancers. These opposing roles suggested that Smg-1 phenotype would require mTOR signalling, and by reducing mTOR signalling and SMG-1 activity at the same time we found that this was the case. We conclude that Smg-1 is a novel regulator of regeneration and animal growth with an antagonistic role to mTOR signalling in planarians.
Collapse
Affiliation(s)
- Cristina González-Estévez
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| | - Daniel A. Felix
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Matthew D. Smith
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon J. Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Victoria James
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Tyson V. Sharp
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| |
Collapse
|
34
|
Gubanova E, Brown B, Ivanov SV, Helleday T, Mills GB, Yarbrough WG, Issaeva N. Downregulation of SMG-1 in HPV-positive head and neck squamous cell carcinoma due to promoter hypermethylation correlates with improved survival. Clin Cancer Res 2012; 18:1257-67. [PMID: 22247495 DOI: 10.1158/1078-0432.ccr-11-2058] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Human papillomavirus (HPV) is linked with a subset of head and neck squamous cell carcinomas (HNSCC). HPV-positive HNSCCs show a better prognosis than HPV-negative HNSCCs, which may be explained by sensitivity of the HPV-positive HNSCCs to ionizing radiation (IR). Although the molecular mechanism behind sensitivity to IR in HPV-positive HNSCCs is unresolved, DNA damage response (DDR) might be a significant determinant of IR sensitivity. An important player in the DDR, SMG-1 (suppressor with morphogenetic effect on genitalia), is a potential tumor suppressor and may therefore be deregulated in cancer. No studies have yet been conducted linking defects in SMG-1 expression with cancer. We investigated whether deregulation of SMG-1 could be responsible for defects in the DDR in oropharyngeal HNSCC. EXPERIMENTAL DESIGN Expression and promoter methylation status of SMG-1 were investigated in HNSCCs. To identify a functional link between HPV infection and SMG-1, we transfected the HPV-negative cells with an E6/E7 expression construct. SMG-1 short hairpin RNAs were expressed in HPV-negative cells to estimate survival upon IR. RESULTS Forced E6/E7 expression in HPV-negative cells resulted in SMG-1 promoter hypermethylation and decreased SMG-1 expression. Due to promoter hypermethylation, HPV-positive HNSCC cells and tumors express SMG-1 at lower levels than HPV-negative SCCs. Depletion of SMG-1 in HPV-negative HNSCC cells resulted in increased radiation sensitivity, whereas SMG-1 overexpression protected HPV-positive tumor cells from irradiation. CONCLUSIONS Levels of SMG-1 expression negatively correlated with HPV status in cancer cell lines and tumors. Diminished SMG-1 expression may contribute to the enhanced response to therapy exhibited by HPV-positive HNSCCs.
Collapse
Affiliation(s)
- Evgenia Gubanova
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012; 11:51-66. [PMID: 21986581 PMCID: PMC3765067 DOI: 10.1016/j.arr.2011.09.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/12/2022]
Abstract
The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Group of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Meister P, Schott S, Bedet C, Xiao Y, Rohner S, Bodennec S, Hudry B, Molin L, Solari F, Gasser SM, Palladino F. Caenorhabditis elegans Heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism. Genome Biol 2011; 12:R123. [PMID: 22185090 PMCID: PMC3334618 DOI: 10.1186/gb-2011-12-12-r123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/30/2011] [Accepted: 12/20/2011] [Indexed: 01/23/2023] Open
Abstract
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Collapse
Affiliation(s)
- Peter Meister
- Laboratory of Molecular and Cellular Biology, CNRS, Université de Lyon, Ecole Normale Supérieure, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
hSMG-1 is a member of the phosphoinositide 3 kinase-like kinase (PIKK) family with established roles in nonsense-mediated decay (NMD) of mRNA containing premature termination codons and in genotoxic stress responses to DNA damage. We report here a novel role for hSMG-1 in cytoplasmic stress granule (SG) formation. Exposure of cells to stress causing agents led to the localization of hSMG-1 to SG, identified by colocalization with TIA-1, G3BP1, and eIF4G. hSMG-1 small interfering RNA and the PIKK inhibitor wortmannin prevented formation of a subset of SG, while specific inhibitors of ATM, DNA-PK(cs), or mTOR had no effect. Exposure of cells to H(2)O(2) and sodium arsenite induced (S/T)Q phosphorylation of proteins. While Upf2 and Upf1, an essential substrate for hSMG-1 in NMD, were present in SG, NMD-specific Upf1 phosphorylation was not detected in SG, indicating hSMG-1's role in SG is separate from classical NMD. Thus, SG formation appears more complex than originally envisaged and hSMG-1 plays a central role in this process.
Collapse
|
38
|
Abstract
It has long been understood that many of the same manipulations that increase longevity in Caenorhabditis elegans also increase resistance to various acute stressors, and vice-versa; moreover these findings hold in more complex organisms as well. Nevertheless, the mechanistic relationship between these phenotypes remains unclear, and in many cases the overlap between stress resistance and longevity is inexact. Here we review the known connections between stress resistance and longevity, discuss instances in which these connections are absent, and summarize the theoretical explanations that have been posited for these phenomena.
Collapse
Affiliation(s)
- Katherine I. Zhou
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Frank J. Slack
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| |
Collapse
|
39
|
Plyusnina EN, Shaposhnikov MV, Moskalev AA. Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology 2011; 12:211-26. [PMID: 21153055 DOI: 10.1007/s10522-010-9311-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023]
Abstract
The GADD45 protein family plays an important role in stress signaling and participates in the integration of cellular response to environmental and physiological factors. GADD45 proteins are involved in cell cycle control, DNA repair, apoptosis, cell survival and aging, and inflammatory response by complicated protein-protein interactions. In Drosophila melanogaster a single D-GADD45 ortholog (GG1086) has been described. Our data show that overexpression of the D-GADD45 gene in the nervous system leads to a significantly increase of Drosophila lifespan without a decrease in fecundity and locomotor activity. The lifespan extension effect is more pronounced in males than in females, which agrees with the sex-dependent expression of this gene. The longevity of D. melanogaster with D-GADD45 overexpression is apparently due to more efficient recognition and repair of DNA damage, as the DNA comet assay showed that the spontaneous DNA damage in the larva neuroblasts is reduced with statistical significance.
Collapse
Affiliation(s)
- E N Plyusnina
- Ural Division, Komi Science Center, Institute of Biology, Russian Academy of Sciences, Syktyvkar, Russia
| | | | | |
Collapse
|
40
|
Mouchiroud L, Molin L, Kasturi P, Triba MN, Dumas ME, Wilson MC, Halestrap AP, Roussel D, Masse I, Dallière N, Ségalat L, Billaud M, Solari F. Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell 2011; 10:39-54. [PMID: 21040400 DOI: 10.1111/j.1474-9726.2010.00640.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dietary restriction (DR) is the most universal intervention known to extend animal lifespan. DR also prevents tumor development in mammals, and this effect requires the tumor suppressor PTEN. However, the metabolic and cellular processes that underly the beneficial effects of DR are poorly understood. We identified slcf-1 in an RNAi screen for genes that extend Caenorhabditis elegans lifespan in a PTEN/daf-18-dependent manner. We showed that slcf-1 mutation, which increases average lifespan by 40%, mimics DR in worms fed ad libitum. An NMR-based metabolomic characterization of slcf-1 mutants revealed lower lipid levels compared to wild-type animals, as expected for dietary-restricted animals, but also higher pyruvate content. Epistasis experiments and metabolic measurements support a model in which the long lifespan of slcf-1 mutants relies on increased mitochondrial pyruvate metabolism coupled to an adaptive response to oxidative stress. This response requires DAF-18/PTEN and the previously identified DR effectors PHA-4/FOXA, HSF-1/HSF1, SIR-2.1/SIRT-1, and AMPK/AAK-2. Overall, our data show that pyruvate homeostasis plays a central role in lifespan control in C. elegans and that the beneficial effects of DR results from a hormetic mechanism involving the mitochondria. Analysis of the SLCF-1 protein sequence predicts that slcf-1 encodes a plasma membrane transporter belonging to the conserved monocarboxylate transporter family. These findings suggest that inhibition of this transporter homolog in mammals might also promote a DR response.
Collapse
Affiliation(s)
- Laurent Mouchiroud
- UMR5201, CNRS, Université de Lyon, Centre Léon Bérard, 28 Rue Laennec, Lyon 69373, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vicente-Crespo M, Palacios IM. Nonsense-mediated mRNA decay and development: shoot the messenger to survive? Biochem Soc Trans 2010; 38:1500-5. [PMID: 21118115 PMCID: PMC3432441 DOI: 10.1042/bst0381500] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
NMD (nonsense-mediated mRNA decay) is a surveillance mechanism that degrades transcripts containing nonsense mutations, preventing the translation of potentially harmful truncated proteins. Although the mechanistic details of NMD are gradually being understood, the physiological role of this RNA surveillance pathway still remains largely unknown. The core NMD genes Upf1 (up-frameshift suppressor 1) and Upf2 are essential for animal viability in the fruitfly, mouse and zebrafish. These findings may reflect an important role for NMD during animal development. Alternatively, the lethal phenotypes of upf1 and upf2 mutants might be due to their function in NMD-independent processes. In the present paper, we describe the phenotypes observed when the NMD factors are mutated in various organisms, and discuss findings that might shed light on the function of NMD in cellular growth and development of an organism.
Collapse
Affiliation(s)
- Marta Vicente-Crespo
- Division of Biology, University of California San Diego, 9500 Gilman Drive, Bonner Hall 3230, La Jolla, CA 92093-0322, U.S.A
| | - Isabel M. Palacios
- Zoology Department, University of Cambridge, Downing Street, Cambridge CB2 3EJ, U.K
| |
Collapse
|
42
|
Fernández IS, Yamashita A, Arias-Palomo E, Bamba Y, Bartolomé RA, Canales MA, Teixidó J, Ohno S, Llorca O. Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex. Nucleic Acids Res 2010; 39:347-58. [PMID: 20817927 PMCID: PMC3017601 DOI: 10.1093/nar/gkq749] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SMG-9 is part of a protein kinase complex, SMG1C, which consists of the SMG-1 kinase, SMG-8 and SMG-9. SMG1C mediated phosphorylation of Upf1 triggers nonsense-mediated mRNA decay (NMD), a eukaryotic surveillance pathway that detects and targets for degradation mRNAs harboring premature translation termination codons. Here, we have characterized SMG-9, showing that it comprises an N-terminal 180 residue intrinsically disordered region (IDR) followed by a well-folded C-terminal domain. Both domains are required for SMG-1 binding and the integrity of the SMG1C complex, whereas the C-terminus is sufficient to interact with SMG-8. In addition, we have found that SMG-9 assembles in vivo into SMG-9:SMG-9 and, most likely, SMG-8:SMG-9 complexes that are not constituents of SMG1C. SMG-9 self-association is driven by interactions between the C-terminal domains and surprisingly, some SMG-9 oligomers are completely devoid of SMG-1 and SMG-8. We propose that SMG-9 has biological functions beyond SMG1C, as part of distinct SMG-9-containing complexes. Some of these complexes may function as intermediates potentially regulating SMG1C assembly, tuning the activity of SMG-1 with the NMD machinery. The structural malleability of IDRs could facilitate the transit of SMG-9 through several macromolecular complexes.
Collapse
Affiliation(s)
- Israel S Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rutkowski R, Hofmann K, Gartner A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2010; 2:a001131. [PMID: 20595397 DOI: 10.1101/cshperspect.a001131] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The origin of the p53 superfamily predates animal evolution and first appears in unicellular Flagellates. Invertebrate p53 superfamily members appear to have a p63-like domain structure, which seems to be evolutionarily ancient. The radiation into p53, p63, and p73 proteins is a vertebrate invention. In invertebrate models amenable to genetic analysis p53 superfamily members mainly act in apoptosis regulation in response to genotoxic agents and do not have overt developmental functions. We summarize the literature on cnidarian and mollusc p53 superfamily members and focus on the function and regulation of Drosophila melanogaster and Caenorhabditis elegans p53 superfamily members in triggering apoptosis. Furthermore, we examine the emerging evidence showing that invertebrate p53 superfamily proteins also have functions unrelated to apoptosis, such as DNA repair, cell cycle checkpoint responses, compensatory proliferation, aging, autophagy, and innate immunity.
Collapse
Affiliation(s)
- Rachael Rutkowski
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
44
|
Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 2010; 67:677-700. [PMID: 19859661 PMCID: PMC11115722 DOI: 10.1007/s00018-009-0177-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/16/2009] [Accepted: 10/06/2009] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated decay is well known by the lucid definition of being a RNA surveillance mechanism that ensures the speedy degradation of mRNAs containing premature translation termination codons. However, as we review here, NMD is far from being a simple quality control mechanism; it also regulates the stability of many wild-type transcripts. We summarise the abundance of research that has characterised each of the NMD factors and present a unified model for the recognition of NMD substrates. The contentious issue of how and where NMD occurs is also discussed, particularly with regard to P-bodies and SMG6-driven endonucleolytic degradation. In recent years, the discovery of additional functions played by several of the NMD factors has further complicated the picture. Therefore, we also review the reported roles of UPF1, SMG1 and SMG6 in other cellular processes.
Collapse
Affiliation(s)
- Pamela Nicholson
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Hasmik Yepiskoposyan
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Stefanie Metze
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Rodolfo Zamudio Orozco
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Nicole Kleinschmidt
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Oliver Mühlemann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| |
Collapse
|
45
|
Ni Z, Lee SS. RNAi screens to identify components of gene networks that modulate aging in Caenorhabditis elegans. Brief Funct Genomics 2010; 9:53-64. [PMID: 20053814 DOI: 10.1093/bfgp/elp051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the genetic mechanisms of organismal aging has advanced dramatically during the past two decades. With the development of large-scale RNAi screens, the last few years saw the remarkable identifications of hundreds of new longevity genes in the roundworm Caenorhabditis elegans. The various RNAi screens revealed many biological pathways previously unknown to be related to aging. In this review, we focus on findings from the recent large-scale RNAi longevity screens, and discuss insights they have provided into the complex biological process of aging and considerations of the RNAi technology will continue to have on the future development of the aging field.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
46
|
Barberan-Soler S, Lambert NJ, Zahler AM. Global analysis of alternative splicing uncovers developmental regulation of nonsense-mediated decay in C. elegans. RNA (NEW YORK, N.Y.) 2009; 15:1652-60. [PMID: 19617316 PMCID: PMC2743056 DOI: 10.1261/rna.1711109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Alternative splicing coupled to nonsense-mediated decay (AS-NMD) is a mechanism for post-transcriptional regulation of gene expression. We analyzed the global effects of mutations in seven genes of the C. elegans NMD pathway on AS isoform ratios. We find that mutations in two NMD factors, smg-6 and smg-7, have weaker global effects relative to mutations in other smg genes. We did an in-depth analysis of 12 pre-mRNA splicing factor genes that are subject to AS-NMD. For four of these, changes in the ratio of alternatively spliced isoforms during development are caused by developmentally regulated inhibition of NMD, and not by changes in alternative splicing. Using sucrose gradient analysis of mRNAs undergoing translation, we find several examples of NMD-dependent enrichment of premature termination codon (PTC) isoforms in the monosome fraction. In contrast, we present evidence of two genes for which the PTC-containing isoforms are found in polysomes and have a translational profile similar to non-PTC-containing transcripts from the same gene. We propose that NMD of certain alternatively spliced isoforms is regulated, and that some stabilized NMD targets may be translated.
Collapse
Affiliation(s)
- Sergio Barberan-Soler
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
47
|
Heidler T, Hartwig K, Daniel H, Wenzel U. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 2009; 11:183-95. [PMID: 19597959 DOI: 10.1007/s10522-009-9239-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
In Caenorhabditis elegans pretreatment with juglone, a generator of reactive oxygen species (ROS) provides a subsequently increased ROS-resistance. We investigated whether juglone at low or high concentrations when provided via the oral route in a liquid axenic medium affects normal lifespan of C. elegans. High juglone concentrations led to premature death, low concentrations were tolerated well and caused a prolongation of lifespan. Lifespan extension under moderate oxidative stress was associated with increased expression of small heat-shock protein HSP-16.2, enhanced glutathione levels, and nuclear translocation of DAF-16. Silencing or deletion of DAF-16 prevented the juglone-induced adaptations. RNA-interference for SIR-2.1 had the same effects as the deletion of DAF-16 but did not affect nuclear accumulation of DAF-16. Our studies demonstrate that DAF-16- and SIR-2.1-dependent alterations in gene expression after a ROS challenge lead to a lifespan extension in C. elegans as long as the stressor concentration does not exceed the saturable protective capacity.
Collapse
Affiliation(s)
- Tanja Heidler
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Am Forum 5, Freising, Germany
| | | | | | | |
Collapse
|
48
|
Oberto J, Breuil N, Hecker A, Farina F, Brochier-Armanet C, Culetto E, Forterre P. Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance. Nucleic Acids Res 2009; 37:5343-52. [PMID: 19578062 PMCID: PMC2760799 DOI: 10.1093/nar/gkp557] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Yeast Qri7 and human OSGEPL are members of the orthologous Kae1(OSGEP)/YgjD protein family, the last class of universally conserved proteins without assigned function. Phylogenetic analyses indicate that the eukaryotic Qri7(OSGEPL) proteins originated from bacterial YgjD proteins. We have recently shown that the archaeal Kae1 protein is a DNA-binding protein that exhibits apurinic endonuclease activity in vitro. We show here that the Qri7/OSGEPL proteins localize in mitochondria and are involved in mitochondrial genome maintenance in two model eukaryotic organisms, Saccharomyces cerevisiae and Caenorhabditis elegans. Furthermore, S. cerevisiae Qri7 complements the loss of the bacterial YgjD protein in Escherichia coli, suggesting that Qri7/OSGEPL and YgjD proteins have retained similar functions in modern organisms. We suggest to name members of the Kae1(OSGEP)/YgjD family UGMP, for Universal Genome Maintenance Proteins.
Collapse
Affiliation(s)
- Jacques Oberto
- Université Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen RQ, Yang QK, Chen YL, Oliveira VA, Dalton WS, Fearns C, Lee JD. Kinome siRNA screen identifies SMG-1 as a negative regulator of hypoxia-inducible factor-1alpha in hypoxia. J Biol Chem 2009; 284:16752-16758. [PMID: 19406746 PMCID: PMC2719310 DOI: 10.1074/jbc.m109.014316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays a central role in tumor progression by regulating genes involved in proliferation, glycolysis, angiogenesis, and metastasis. To improve our understanding of HIF-1 regulation by kinome, we screened a kinase-specific small interference RNA library using a hypoxia-response element (HRE) luciferase reporter assay under hypoxic conditions. This screen determined that depletion of cellular SMG-1 kinase most significantly modified cellular HIF-1 activity in hypoxia. SMG-1 is the newest and least studied member of the phosphoinositide 3-kinase-related kinase family, which consists of ATM, ATR, DNA-PKcs, mTOR, and SMG-1. We individually depleted members of the phosphoinositide 3-kinase-related kinase family, and only SMG-1 deficiency significantly augmented HIF-1 activity in hypoxia. We subsequently discovered that SMG-1 kinase activity was activated by hypoxia, and depletion of SMG-1 up-regulated MAPK activity under low oxygen. Suppressing cellular MAPK by silencing ERK1/2 or by treatment with U0126, a MAPK inhibitor, partially blocked the escalation of HIF-1 activity resulting from SMG-1 deficiency in hypoxic cells. Increased expression of SMG-1 but not kinase-dead SMG-1 effectively inhibited the activity of HIF-1alpha. In addition, cellular SMG-1 deficiency increased secretion of the HIF-1alpha-regulated angiogenic factor, vascular epidermal growth factor, and survival factor, carbonic anhydrase IX (CA9), as well as promoted the hypoxic cell motility. Taken together, we discovered that SMG-1 negatively regulated HIF-1alpha activity in hypoxia, in part through blocking MAPK activation.
Collapse
Affiliation(s)
- Run-Qiang Chen
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037
| | - Qing-Kai Yang
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037
| | - Yan-Ling Chen
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037
| | - Vasco A Oliveira
- Chemistry, The Scripps Research Institute, La Jolla, California 92037
| | - William S Dalton
- Chemistry, The Scripps Research Institute, La Jolla, California 92037
| | - Colleen Fearns
- Department of Experimental Therapeutics and Interdisciplinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, Florida 33612
| | - Jiing-Dwan Lee
- From the Departments of Immunology and Microbial Science, La Jolla, California 92037.
| |
Collapse
|