1
|
Clarin JD, Bouras NN, Gao WJ. Genetic Diversity in Schizophrenia: Developmental Implications of Ultra-Rare, Protein-Truncating Mutations. Genes (Basel) 2024; 15:1214. [PMID: 39336805 PMCID: PMC11431303 DOI: 10.3390/genes15091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The genetic basis of schizophrenia (SZ) remains elusive despite its characterization as a highly heritable disorder. This incomplete understanding has led to stagnation in therapeutics and treatment, leaving many suffering with insufficient relief from symptoms. However, recent large-cohort genome- and exome-wide association studies have provided insights into the underlying genetic machinery. The scale of these studies allows for the identification of ultra-rare mutations that confer substantial disease risk, guiding clinicians and researchers toward general classes of genes that are central to SZ etiology. One such large-scale collaboration effort by the Schizophrenia Exome Sequencing Meta-Analysis consortium identified ten, high-risk, ultra-rare, protein-truncating variants, providing the clearest picture to date of the dysfunctional gene products that substantially increase risk for SZ. While genetic studies of SZ provide valuable information regarding "what" genes are linked with the disorder, it is an open question as to "when" during brain development these genetic mutations impose deleterious effects. To shed light on this unresolved aspect of SZ etiology, we queried the BrainSpan developmental mRNA expression database for these ten high-risk genes and discovered three general expression trajectories throughout pre- and postnatal brain development. The elusiveness of SZ etiology, we infer, is not only borne out of the genetic heterogeneity across clinical cases, but also in our incomplete understanding of how genetic mutations perturb neurodevelopment during multiple critical periods. We contextualize this notion within the National Institute of Mental Health's Research Domain Criteria framework and emphasize the utility of considering both genetic variables and developmental context in future studies.
Collapse
Affiliation(s)
| | | | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.D.C.); (N.N.B.)
| |
Collapse
|
2
|
Zhang J, Qiu H, Zhao Q, Liao C, Guoli Y, Luo Q, Zhao G, Zhang N, Wang S, Zhang Z, Lei M, Liu F, Peng Y. Genetic overlap between schizophrenia and cognitive performance. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:31. [PMID: 38443399 PMCID: PMC10914834 DOI: 10.1038/s41537-024-00453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Schizophrenia (SCZ), a highly heritable mental disorder, is characterized by cognitive impairment, yet the extent of the shared genetic basis between schizophrenia and cognitive performance (CP) remains poorly understood. Therefore, we aimed to explore the polygenic overlap between SCZ and CP. Specifically, the bivariate causal mixture model (MiXeR) was employed to estimate the extent of genetic overlap between SCZ (n = 130,644) and CP (n = 257,841), and conjunctional false discovery rate (conjFDR) approach was used to identify shared genetic loci. Subsequently, functional annotation and enrichment analysis were carried out on the identified genomic loci. The MiXeR analyses revealed that 9.6 K genetic variants are associated with SCZ and 10.9 K genetic variants for CP, of which 9.5 K variants are shared between these two traits (Dice coefficient = 92.8%). By employing conjFDR, 236 loci were identified jointly associated with SCZ and CP, of which 139 were novel for the two traits. Within these shared loci, 60 exhibited consistent effect directions, while 176 had opposite effect directions. Functional annotation analysis indicated that the shared genetic loci were mainly located in intronic and intergenic regions, and were found to be involved in relevant biological processes such as nervous system development, multicellular organism development, and generation of neurons. Together, our findings provide insights into the shared genetic architecture between SCZ and CP, suggesting common pathways and mechanisms contributing to both traits.
Collapse
Affiliation(s)
- Jianfei Zhang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Hao Qiu
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongjian Liao
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Yuxuan Guoli
- The Second Hospital of Tianjin Medial University, Tianjin, China
| | - Qi Luo
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yanmin Peng
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Schumacher MA. Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic. Curr Neuropharmacol 2024; 22:6-14. [PMID: 37559537 PMCID: PMC10716877 DOI: 10.2174/1570159x21666230808111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 08/11/2023] Open
Abstract
The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| |
Collapse
|
4
|
Young JW. Development of cross-species translational paradigms for psychiatric research in the Research Domain Criteria era. Neurosci Biobehav Rev 2023; 148:105119. [PMID: 36889561 DOI: 10.1016/j.neubiorev.2023.105119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The past 30 years of IBNS has included research attempting to treat the cognitive and behavioral deficits observed in people with psychiatric conditions. Early work utilized drugs identified from tests thought to be cognition-relevant, however the high failure rate crossing the translational-species barrier led to focus on developing valid cross-species translational tests. The face, predictive, and neurobiological validities used to assess animal models of psychiatry can be used to validate these tests. Clinical sensitivity is another important aspect however, for if the clinical population targeted for treatment does not exhibit task deficits, then why develop treatments? This review covers some work validating cross-species translational tests and suggests future directions. Also covered is the contribution IBNS made to fostering such research and my role in IBNS, making it more available to all including fostering mentor/mentee programs plus spearheading diversity and inclusivity initiatives. All science needs support and IBNS has supported research recreating the behavioral abnormalities that define psychiatric conditions with the aim to improve the lives of people with such conditions.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
5
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
6
|
Translational cognitive systems: focus on attention. Emerg Top Life Sci 2022; 6:529-539. [PMID: 36408755 DOI: 10.1042/etls20220009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
Cognitive dysfunction, particularly attentional impairment, is a core feature of many psychiatric disorders, yet is inadequately addressed by current treatments. Development of targeted therapeutics for the remediation of attentional deficits requires knowledge of underlying neurocircuit, cellular, and molecular mechanisms that cannot be directly assayed in the clinic. This level of detail can only be acquired by testing animals in cross-species translatable attentional paradigms, in combination with preclinical neuroscience techniques. The 5-choice continuous performance test (5C-CPT) and rodent continuous performance test (rCPT) represent the current state of the art of preclinical assessment of the most commonly studied subtype of attention: sustained attention, or vigilance. These tasks present animals with continuous streams of target stimuli to which they must respond (attention), in addition to non-target stimuli from which they must withhold responses (behavioral inhibition). The 5C-CPT and rCPT utilize the same measures as gold-standard clinical continuous performance tests and predict clinical efficacy of known pro-attentional drugs. They also engage common brain regions across species, although efforts to definitively establish neurophysiological construct validity are ongoing. The validity of these tasks as translational vigilance assessments enables their use in characterizing the neuropathology underlying attentional deficits of animal models of psychiatric disease, and in determining therapeutic potential of drugs ahead of clinical testing. Here, we briefly review the development and validation of such tests of attentional functioning, as well as the data they have generated pertaining to inattention, disinhibition, and impulsivity in psychiatric disorders.
Collapse
|
7
|
Cui Y, Wang W, Luo P, Feng Y, Mi C, Jia A. The genetic polymorphisms in the SP4 gene and the risk of gastric cancer. Future Oncol 2022; 18:3993-4004. [PMID: 36346067 DOI: 10.2217/fon-2022-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Aim: Gastric cancer (GC) is the leading cause of cancer death, and is associated with host genetic factors. This study aimed to determine the impact of SP4 polymorphisms on GC. Materials & methods: Four hundred and eighty-nine GC patients and 481 healthy subjects were recruited. The association between single nucleotide polymorphisms and GC risk was investigated by logistic regression analysis. Results: It was observed that rs39302 and rs7811417 were related to a decreased GC risk. Stratified analyses showed that rs39302 decreased GC susceptibility at ages ≤60 years, in men, GC patients who had previously smoked and drank. rs7811417 had a risk-decreasing impact on the patients aged ≤60 years, in men, GC patients who were nonsmoking and nondrinking. rs35929923 decreased the GC risk of patients in grade III-IV and the lymph node metastasis subgroup. Conclusion: SP4 gene polymorphisms are associated with GC risk.
Collapse
Affiliation(s)
- Yihan Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, China
| | - Wenjin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, China
| | - Peipei Luo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, China
| | - Yun Feng
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, China
| | - Chen Mi
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, China
| | - Ai Jia
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, 710061, China
| |
Collapse
|
8
|
Arasappan D, Eickhoff SB, Nemeroff CB, Hofmann HA, Jabbi M. Transcription Factor Motifs Associated with Anterior Insula Gene Expression Underlying Mood Disorder Phenotypes. Mol Neurobiol 2021; 58:1978-1989. [PMID: 33411239 DOI: 10.1007/s12035-020-02195-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022]
Abstract
Mood disorders represent a major cause of morbidity and mortality worldwide but the brain-related molecular pathophysiology in mood disorders remains largely undefined. Because the anterior insula is reduced in volume in patients with mood disorders, RNA was extracted from the anterior insula postmortem anterior insula of mood disorder samples and compared with unaffected controls for RNA-sequencing identification of differentially expressed genes (DEGs) in (a) bipolar disorder (BD; n = 37) versus (vs.) controls (n = 33), and (b) major depressive disorder (MDD n = 30) vs. controls, and (c) low vs. high axis I comorbidity (a measure of cumulative psychiatric disease burden). Given the regulatory role of transcription factors (TFs) in gene expression via specific-DNA-binding domains (motifs), we used JASPAR TF binding database to identify TF-motifs. We found that DEGs in BD vs. controls, MDD vs. controls, and high vs. low axis I comorbidity were associated with TF-motifs that are known to regulate expression of toll-like receptor genes, cellular homeostatic-control genes, and genes involved in embryonic, cellular/organ, and brain development. Robust imaging-guided transcriptomics by using meta-analytic imaging results to guide independent postmortem dissection for RNA-sequencing was applied by targeting the gray matter volume reduction in the anterior insula in mood disorders, to guide independent postmortem identification of TF motifs regulating DEG. Our findings of TF-motifs that regulate the expression of immune, cellular homeostatic-control, and developmental genes provide novel information about the hierarchical relationship between gene regulatory networks, the TFs that control them, and proximate underlying neuroanatomical phenotypes in mood disorders.
Collapse
Affiliation(s)
- Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Charles B Nemeroff
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute of Early Life Adversity Research, Austin, TX, USA
| | - Hans A Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Mbemba Jabbi
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Sheehan K, Lee J, Chong J, Zavala K, Sharma M, Philipsen S, Maruyama T, Xu Z, Guan Z, Eilers H, Kawamata T, Schumacher M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One 2019; 14:e0211349. [PMID: 30811405 PMCID: PMC6392229 DOI: 10.1371/journal.pone.0211349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding how painful hypersensitive states develop and persist beyond the initial hours to days is critically important in the effort to devise strategies to prevent and/or reverse chronic painful states. Changes in nociceptor transcription can alter the abundance of nociceptive signaling elements, resulting in longer-term change in nociceptor phenotype. As a result, sensitized nociceptive signaling can be further amplified and nocifensive behaviors sustained for weeks to months. Building on our previous finding that transcription factor Sp4 positively regulates the expression of the pain transducing channel TRPV1 in Dorsal Root Ganglion (DRG) neurons, we sought to determine if Sp4 serves a broader role in the development and persistence of hypersensitive states in mice. We observed that more than 90% of Sp4 staining DRG neurons were small to medium sized, primarily unmyelinated (NF200 neg) and the majority co-expressed nociceptor markers TRPV1 and/or isolectin B4 (IB4). Genetically modified mice (Sp4+/-) with a 50% reduction of Sp4 showed a reduction in DRG TRPV1 mRNA and neuronal responses to the TRPV1 agonist-capsaicin. Importantly, Sp4+/- mice failed to develop persistent inflammatory thermal hyperalgesia, showing a reversal to control values after 6 hours. Despite a reversal of inflammatory thermal hyperalgesia, there was no difference in CFA-induced hindpaw swelling between CFA Sp4+/- and CFA wild type mice. Similarly, Sp4+/- mice failed to develop persistent mechanical hypersensitivity to hind-paw injection of NGF. Although Sp4+/- mice developed hypersensitivity to traumatic nerve injury, Sp4+/- mice failed to develop persistent cold or mechanical hypersensitivity to the platinum-based chemotherapeutic agent oxaliplatin, a non-traumatic model of neuropathic pain. Overall, Sp4+/- mice displayed a remarkable ability to reverse the development of multiple models of persistent inflammatory and neuropathic hypersensitivity. This suggests that Sp4 functions as a critical control point for a network of genes that conspire in the persistence of painful hypersensitive states.
Collapse
Affiliation(s)
- Kayla Sheehan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jessica Lee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jillian Chong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Kathryn Zavala
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tomoyuki Maruyama
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Zheyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Tomoyuki Kawamata
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wang X, Pinto-Duarte A, Behrens MM, Zhou X, Sejnowski TJ. Ketamine independently modulated power and phase-coupling of theta oscillations in Sp4 hypomorphic mice. PLoS One 2018. [PMID: 29513708 PMCID: PMC5841791 DOI: 10.1371/journal.pone.0193446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reduced expression of Sp4, the murine homolog of human SP4, a risk gene of multiple psychiatric disorders, led to N-methyl-D-aspartate (NMDA) hypofunction in mice, producing behavioral phenotypes reminiscent of schizophrenia, including hypersensitivity to ketamine. As accumulating evidence on molecular mechanisms and behavioral phenotypes established Sp4 hypomorphism as a promising animal model, systems-level neural circuit mechanisms of Sp4 hypomorphism, especially network dynamics underlying cognitive functions, remain poorly understood. We attempted to close this gap in knowledge in the present study by recording multi-channel epidural electroencephalogram (EEG) from awake behaving wildtype and Sp4 hypomorphic mice. We characterized cortical theta-band power and phase-coupling phenotypes, a known neural circuit substrate underlying cognitive functions, and further studied the effects of a subanesthetic dosage of ketamine on theta abnormalities unique to Sp4 hypomorphism. Sp4 hypomorphic mice had markedly elevated theta power localized frontally and parietally, a more pronounced theta phase progression along the neuraxis, and a stronger frontal-parietal theta coupling. Acute subanesthetic ketamine did not affect theta power in wildtype animals but significantly reduced it in Sp4 hypomorphic mice, nearly completely neutralizing their excessive frontal/parietal theta power. Ketamine did not significantly alter cortical theta phase progression in either wildtype or Sp4 hypomorphic animals, but significantly strengthened cortical theta phase-coupling in wildtype, but not in Sp4 hypomorphic animals. Our results suggested that the resting-state phenotypes of cortical theta oscillations unique to Sp4 hypomorphic mice closely mimicked a schizophrenic endophenotype. Further, ketamine independently modulated Sp4 hypomorphic anomalies in theta power and phase-coupling, suggesting separate underlying neural circuit mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| | - António Pinto-Duarte
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - M. Margarita Behrens
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Xianjin Zhou
- Department of Psychiatry, University of California at San Diego, La Jolla, California, United States of America
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California, United States of America
- Division of Biology, University of California at San Diego, La Jolla, California, United States of America
| |
Collapse
|
11
|
Porcelli S, Lee SJ, Han C, Patkar AA, Albani D, Jun TY, Pae CU, Serretti A. Hot Genes in Schizophrenia: How Clinical Datasets Could Help to Refine their Role. J Mol Neurosci 2017; 64:273-286. [DOI: 10.1007/s12031-017-1016-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
|
12
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Species composition and environmental adaptation of indigenous Chinese cattle. Sci Rep 2017; 7:16196. [PMID: 29170422 PMCID: PMC5700937 DOI: 10.1038/s41598-017-16438-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Indigenous Chinese cattle combine taurine and indicine origins and occupy a broad range of different environments. By 50 K SNP genotyping we found a discontinuous distribution of taurine and indicine cattle ancestries with extremes of less than 10% indicine cattle in the north and more than 90% in the far south and southwest China. Model-based clustering and f4-statistics indicate introgression of both banteng and gayal into southern Chinese cattle while the sporadic yak influence in cattle in or near Tibetan area validate earlier findings of mitochondrial DNA analysis. Geographic patterns of taurine and indicine mitochondrial and Y-chromosomal DNA diversity largely agree with the autosomal cline. The geographic distribution of the genomic admixture of different bovine species is proposed to be the combined effect of prehistoric immigrations, gene flow, major rivers acting as genetic barriers, local breeding objectives and environmental adaptation. Whole-genome scan for genetic differentiation and association analyses with both environmental and morphological covariables are remarkably consistent with previous studies and identify a number of genes implicated in adaptation, which include TNFRSF19, RFX4, SP4 and several coat color genes. We propose indigenous Chinese cattle as a unique and informative resource for gene-level studies of climate adaptation in mammals.
Collapse
|
14
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
15
|
Chen J, He K, Wang Q, Li Z, Shen J, Li T, Wang M, Wen Z, Li W, Qiang Y, Wang T, Ji J, Wu N, Wang Z, Zhang B, Feng G, He L, Xu Y, Shi Y. Role played by the SP4 gene in schizophrenia and major depressive disorder in the Han Chinese population. Br J Psychiatry 2016; 208:441-445. [PMID: 26450579 DOI: 10.1192/bjp.bp.114.151688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/07/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Psychiatric disorders such as schizophrenia and major depressive disorder (MDD) are likely to be caused by multiple susceptibility genes, each with small effects in increasing the risk of illness. Identifying DNA variants associated with schizophrenia and MDD is a crucial step in understanding the pathophysiology of these disorders. AIMS To investigate whether the SP4 gene plays a significant role in schizophrenia or MDD in the Han Chinese population. METHOD We focused on nine single nucleotide polymorphisms (SNPs) harbouring the SP4 gene and carried out case-control studies in 1235 patients with schizophrenia, 1045 patients with MDD and 1235 healthy controls recruited from the Han Chinese population. RESULTS We found that rs40245 was significantly associated with schizophrenia in both allele and genotype distributions (Pallele = 0.0005, Pallele = 0.004 after Bonferroni correction; Pgenotype = 0.0023, Pgenotype = 0.0184 after Bonferroni correction). The rs6461563 SNP was significantly associated with schizophrenia in the allele distributions (Pallele = 0.0033, Pallele = 0.0264 after Bonferroni correction). CONCLUSIONS Our results suggest that common risk factors in the SP4 gene are associated with schizophrenia, although not with MDD, in the Han Chinese population.
Collapse
Affiliation(s)
- Jianhua Chen
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Kuanjun He
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qingzhong Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Shen
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zujia Wen
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Li
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Qiang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ti Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jue Ji
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Na Wu
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiao Wang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhang
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Jianhua Chen, MD, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, and Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Kuanjun He, PhD, Qingzhong Wang, PhD, Zhiqiang Li, PhD, Jiawei Shen, PhD, Tao Li, PhD, Meng Wang, MSc, Zujia Wen, PhD, Wenjin Li, PhD, Yu Qiang, MSc, Ti Wang, PhD, Jue Ji, BS, Na Wu, BS, Zhiqiao Wang, BS, Bo Zhang, BS, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Guoyin Feng, BS, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Lin He, PhD, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Yifeng Xu, MD, MSc, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yongyong Shi, PhD, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, Shanghai Changning Mental Health Center, Shanghai, Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, and Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Young JW, Kamenski ME, Higa KK, Light GA, Geyer MA, Zhou X. GlyT-1 Inhibition Attenuates Attentional But Not Learning or Motivational Deficits of the Sp4 Hypomorphic Mouse Model Relevant to Psychiatric Disorders. Neuropsychopharmacology 2015; 40:2715-26. [PMID: 25907107 PMCID: PMC4864647 DOI: 10.1038/npp.2015.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/29/2023]
Abstract
Serious mental illness occurs in 25% of the general population, with many disorders being neurodevelopmental, lifelong, and debilitating. The wide variation and overlap in symptoms across disorders increases the difficulty of research and treatment development. The NIMH Research Domain of Criteria initiative aims to improve our understanding of the molecular and behavioral consequences of specific neurodevelopmental mechanisms across disorders, enabling targeted treatment development. The transcription factor Specificity Protein 4 (SP4) is important for neurodevelopment and is genetically associated with both schizophrenia and bipolar disorder. Reduced Sp4 expression in mice (hypomorphic) reproduces several characteristics of psychiatric disorders. We further tested the utility of Sp4 hypomorphic mice as a model organism relevant to psychiatric disorders by assessing cognitive control plus effort and decision-making aspects of approach motivation using cross-species-relevant tests. Sp4 hypomorphic mice exhibited impaired attention as measured by the 5-Choice Continuous Performance Test, an effect that was attenuated by glycine type-1 transporter (GlyT-1) inhibition. Hypomorphic mice also exhibited reduced motivation to work for a reward and impaired probabilistic learning. These deficits may stem from affected anticipatory reward, analogous to anhedonia in patients with schizophrenia and other psychiatric disorders. Neither positive valence deficit was attenuated by GlyT-1 treatment, suggesting that these and the attentional deficits stem from different underlying mechanisms. Given the association of SP4 gene with schizophrenia and bipolar disorder, the present studies provide support that personalized GlyT-1 inhibition may treat attentional deficits in neuropsychiatric patients with low SP4 levels.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA, Tel: +1 619 543 3582, Fax: +1 619 735 9205, E-mail:
| | - Mary E Kamenski
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kerin K Higa
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
17
|
Pinacho R, Saia G, Meana JJ, Gill G, Ramos B. Transcription factor SP4 phosphorylation is altered in the postmortem cerebellum of bipolar disorder and schizophrenia subjects. Eur Neuropsychopharmacol 2015; 25:1650-1660. [PMID: 26049820 PMCID: PMC4600646 DOI: 10.1016/j.euroneuro.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 11/27/2022]
Abstract
Transcription factors play important roles in the control of neuronal function in physiological and pathological conditions. We previously reported reduced levels of transcription factor SP4 protein, but not transcript, in the cerebellum in bipolar disorder and associated with more severe negative symptoms in schizophrenia. We have recently reported phosphorylation of Sp4 at S770, which is regulated by membrane depolarization and NMDA receptor activity. The aim of this study was to investigate SP4 S770 phosphorylation in bipolar disorder and its association with negative symptoms in schizophrenia, and to explore the potential relationship between phosphorylation and protein abundance. Here we report a significant increase in SP4 phosphorylation in the cerebellum, but not the prefrontal cortex, of bipolar disorder subjects (n=10) (80% suicide) compared to matched controls (n=10). We found that SP4 phosphorylation inversely correlated with SP4 levels independently of disease status in both areas of the human brain. Moreover, SP4 phosphorylation in the cerebellum positively correlated with negative symptoms in schizophrenia subjects (n=15). Further, we observed that a phospho-mimetic mutation in truncated Sp4 was sufficient to significantly decrease Sp4 steady-state levels, while a non-phosphorylatable mutant showed increased stability in cultured rat cerebellar granule neurons. Our results indicate that SP4 S770 phosphorylation is increased in the cerebellum in bipolar disorder subjects that committed suicide and in severe schizophrenia subjects, and may be part of a degradation signal that controls Sp4 abundance in cerebellar granule neurons. This opens the possibility that modulation of SP4 phosphorylation may contribute to the molecular pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830- Sant Boi de Llobregat, Barcelona, Spain
| | - Gregory Saia
- Department of Developmental, Molecular, and Chemical Biology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111.,Cell, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - J Javier Meana
- Departamento de Farmacología, Universidad del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, B Sarriena s/n 48940-Leioa, Bizkaia, Spain
| | - Grace Gill
- Department of Developmental, Molecular, and Chemical Biology, Sackler School of Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830- Sant Boi de Llobregat, Barcelona, Spain
| |
Collapse
|
18
|
Santos MCT, Tegge AN, Correa BR, Mahesula S, Kohnke LQ, Qiao M, Ferreira MAR, Kokovay E, Penalva LOF. miR-124, -128, and -137 Orchestrate Neural Differentiation by Acting on Overlapping Gene Sets Containing a Highly Connected Transcription Factor Network. Stem Cells 2015; 34:220-32. [PMID: 26369286 DOI: 10.1002/stem.2204] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022]
Abstract
The ventricular-subventricular zone harbors neural stem cells (NSCs) that can differentiate into neurons, astrocytes, and oligodendrocytes. This process requires loss of stem cell properties and gain of characteristics associated with differentiated cells. miRNAs function as important drivers of this transition; miR-124, -128, and -137 are among the most relevant ones and have been shown to share commonalities and act as proneurogenic regulators. We conducted biological and genomic analyses to dissect their target repertoire during neurogenesis and tested the hypothesis that they act cooperatively to promote differentiation. To map their target genes, we transfected NSCs with antagomiRs and analyzed differences in their mRNA profile throughout differentiation with respect to controls. This strategy led to the identification of 910 targets for miR-124, 216 for miR-128, and 652 for miR-137. The target sets show extensive overlap. Inspection by gene ontology and network analysis indicated that transcription factors are a major component of these miRNAs target sets. Moreover, several of these transcription factors form a highly interconnected network. Sp1 was determined to be the main node of this network and was further investigated. Our data suggest that miR-124, -128, and -137 act synergistically to regulate Sp1 expression. Sp1 levels are dramatically reduced as cells differentiate and silencing of its expression reduced neuronal production and affected NSC viability and proliferation. In summary, our results show that miRNAs can act cooperatively and synergistically to regulate complex biological processes like neurogenesis and that transcription factors are heavily targeted to branch out their regulatory effect.
Collapse
Affiliation(s)
- Márcia C T Santos
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Allison N Tegge
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA.,Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Bruna R Correa
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Swetha Mahesula
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Luana Q Kohnke
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mei Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Erzsebet Kokovay
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Luiz O F Penalva
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
19
|
A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder. Transl Psychiatry 2015; 5:e614. [PMID: 26241352 PMCID: PMC4564565 DOI: 10.1038/tp.2015.110] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 12/11/2022] Open
Abstract
Gene expression in peripheral blood has the potential to inform on pathophysiological mechanisms and has emerged as a viable avenue for the identification of biomarkers. Here, we aimed to identify gene expression candidate genes and to explore the potential for a composite gene expression measure as a diagnostic and state biomarker in bipolar disorder. First, messenger RNA levels of 19 candidate genes were assessed in peripheral blood mononuclear cells of 37 rapid cycling bipolar disorder patients in different affective states (depression, mania and euthymia) during a 6-12-month period and in 40 age- and gender-matched healthy control subjects. Second, a composite gene expression measure was constructed in the first half study sample and independently validated in the second half of the sample. We found downregulation of POLG and OGG1 expression in bipolar disorder patients compared with healthy control subjects. In patients with bipolar disorder, upregulation of NDUFV2 was observed in a depressed state compared with a euthymic state. The composite gene expression measure for discrimination between patients and healthy control subjects on the basis of 19 genes generated an area under the receiver-operating characteristic curve of 0.81 (P < 0.0001) in sample 1, which was replicated with a value of 0.73 (P < 0.0001) in sample 2, corresponding with a moderately accurate test. The present findings of altered POLG, OGG1 and NDUFV2 expression point to disturbances within mitochondrial function and DNA repair mechanisms in bipolar disorder. Further, a composite gene expression measure could hold promise as a potential diagnostic biomarker.
Collapse
|
20
|
Higa KK, Ji B, Buell MR, Risbrough VB, Powell SB, Young JW, Geyer MA, Zhou X. Restoration of Sp4 in Forebrain GABAergic Neurons Rescues Hypersensitivity to Ketamine in Sp4 Hypomorphic Mice. Int J Neuropsychopharmacol 2015; 18:pyv063. [PMID: 26037489 PMCID: PMC4756721 DOI: 10.1093/ijnp/pyv063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ketamine produces schizophrenia-like behavioral phenotypes in healthy people. Prolonged ketamine effects and exacerbation of symptoms after the administration of ketamine have been observed in patients with schizophrenia. More recently, ketamine has been used as a potent antidepressant to treat patients with major depression. The genes and neurons that regulate behavioral responses to ketamine, however, remain poorly understood. Sp4 is a transcription factor for which gene expression is restricted to neuronal cells in the brain. Our previous studies demonstrated that Sp4 hypomorphic mice display several behavioral phenotypes relevant to psychiatric disorders, consistent with human SP4 gene associations with schizophrenia, bipolar disorder, and major depression. Among those behavioral phenotypes, hypersensitivity to ketamine-induced hyperlocomotion has been observed in Sp4 hypomorphic mice. METHODS In the present study, we used the Cre-LoxP system to restore Sp4 gene expression, specifically in either forebrain excitatory or GABAergic inhibitory neurons in Sp4 hypomorphic mice. Mouse behavioral phenotypes related to psychiatric disorders were examined in these distinct rescue mice. RESULTS Restoration of Sp4 in forebrain excitatory neurons did not rescue deficient sensorimotor gating nor ketamine-induced hyperlocomotion. Restoration of Sp4 in forebrain GABAergic neurons, however, rescued ketamine-induced hyperlocomotion, but did not rescue deficient sensorimotor gating. CONCLUSIONS Our studies suggest that the Sp4 gene in forebrain GABAergic neurons regulates ketamine-induced hyperlocomotion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, La Jolla, CA (Ms Higa, Drs Ji, Risbrough, Powell, Young, Geyer, and Zhou, and Ms Buell); Research Service, VA San Diego Healthcare System, La Jolla, CA (Drs Risbrough, Powell, Young, Geyer, and Zhou, and Ms Buell); Neurosciences Graduate Program, University of California San Diego, La Jolla, CA (Ms Higa).
| |
Collapse
|
21
|
Pinacho R, Saia G, Fusté M, Meléndez-Pérez I, Villalta-Gil V, Haro JM, Gill G, Ramos B. Phosphorylation of transcription factor specificity protein 4 is increased in peripheral blood mononuclear cells of first-episode psychosis. PLoS One 2015; 10:e0125115. [PMID: 25915526 PMCID: PMC4411105 DOI: 10.1371/journal.pone.0125115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Background Altered expression of transcription factor specificity protein 4 (SP4) has been found in the postmortem brain of patients with psychiatric disorders including schizophrenia and bipolar disorder. Reduced levels of SP4 protein have recently been reported in peripheral blood mononuclear cells in first-episode psychosis. Also, SP4 levels are modulated by lithium treatment in cultured neurons. Phosphorylation of SP4 at S770 is increased in the cerebellum of bipolar disorder subjects and upon inhibition of NMDA receptor signaling in cultured neurons. The aim of this study was to investigate whether SP4 S770 phosphorylation is increased in lymphocytes of first-episode psychosis patients and the effect of lithium treatment on this phosphorylation. Methods A cross-sectional study of S770 phosphorylation relative to total SP4 immunoreactivity using specific antibodies in peripheral blood mononuclear cells in first-episode psychosis patients (n = 14, treated with lithium or not) and matched healthy controls (n = 14) by immunoblot was designed. We also determined the effects of the prescribed drugs lithium, olanzapine or valproic acid on SP4 phosphorylation in rat primary cultured cerebellar granule neurons. Results We found that SP4 S770 phosphorylation was significantly increased in lymphocytes in first-episode psychosis compared to controls and decreased in patients treated with lithium compared to patients who did not receive lithium. Moreover, incubation with lithium but not olanzapine or valproic acid reduced SP4 phosphorylation in rat cultured cerebellar granule neurons. Conclusions The findings presented here indicate that SP4 S770 phosphorylation is increased in lymphocytes in first-episode psychosis which may be reduced by lithium treatment in patients. Moreover, our study shows lithium treatment prevents this phosphorylation in vitro in neurons. This pilot study suggests that S770 SP4 phosphorylation could be a peripheral biomarker of psychosis, and may be regulated by lithium treatment in first-episode psychosis.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Gregory Saia
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Cell, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Montserrat Fusté
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Iria Meléndez-Pérez
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Victoria Villalta-Gil
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Josep Maria Haro
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Grace Gill
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (BR); (GG)
| | - Belén Ramos
- Unitat de recerca, Fundació Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
- * E-mail: (BR); (GG)
| |
Collapse
|
22
|
Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U S A 2015; 112:3576-81. [PMID: 25730879 DOI: 10.1073/pnas.1424958112] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.
Collapse
|
23
|
Pinacho R, Valdizán EM, Pilar-Cuellar F, Prades R, Tarragó T, Haro JM, Ferrer I, Ramos B. Increased SP4 and SP1 transcription factor expression in the postmortem hippocampus of chronic schizophrenia. J Psychiatr Res 2014; 58:189-96. [PMID: 25175639 DOI: 10.1016/j.jpsychires.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/20/2022]
Abstract
Altered levels of transcription factor specificity protein 4 (SP4) and 1 (SP1) in the cerebellum, prefrontal cortex and/or lymphocytes have been reported in severe psychiatric disorders, including early psychosis, bipolar disorder, and chronic schizophrenia subjects who have undergone long-term antipsychotic treatments. SP4 transgenic mice show altered hippocampal-dependent psychotic-like behaviours and altered development of hippocampal dentate gyrus. Moreover, NMDAR activity regulates SP4 function. The aim of this study was to investigate SP4 and SP1 expression levels in the hippocampus in schizophrenia, and the possible effect of antipsychotics and NMDAR blockade on SP protein levels in rodent hippocampus. We analysed SP4 and SP1 expression levels in the postmortem hippocampus of chronic schizophrenia (n = 14) and control (n = 11) subjects by immunoblot and quantitative RT-PCR. We tested the effect of NMDAR blockade on SP factors in the hippocampus of mouse treated with an acute dose of MK801. We also investigated the effect of subacute treatments with haloperidol and clozapine on SP protein levels in the rat hippocampus. We report that SP4 protein and both SP4 and SP1 mRNA expression levels are significantly increased in the hippocampus in chronic schizophrenia. Likewise, acute treatment with MK801 increased both SP4 and SP1 protein levels in mouse hippocampus. In contrast, subacute treatment with haloperidol and clozapine did not significantly alter SP protein levels in rat hippocampus. These results suggest that SP4 and SP1 upregulation may be part of the mechanisms deregulated downstream of glutamate signalling pathways in schizophrenia and might be contributing to the hippocampal-dependent cognitive deficits of the disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Elsa M Valdizán
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Avda. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Fuencisla Pilar-Cuellar
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Avda. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Josep Maria Haro
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Isidre Ferrer
- Instituto de Neuropatología, IDIBELL-Hospital Universitario de Bellvitge, Universitat de Barcelona, Centro de Investigación Biomédica en Red para enfermedades neurodegenerativas, CIBERNED. Feixa Llarga s/n, 08907 Hospitalet de LLobregat, Barcelona, Spain
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain.
| |
Collapse
|
24
|
Wiles WG, Mou Z, Du Y, Long AB, Scharer CD, Bilir B, Spyropoulos DD, Jenkins NA, Copeland NG, Martin WD, Moreno CS. Mutation of murine Sox4 untranslated regions results in partially penetrant perinatal lethality. In Vivo 2014; 28:709-718. [PMID: 25189881 PMCID: PMC4237010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Sox4 is an essential gene, and genetic deletion results in embryonic lethality. In an effort to develop mice with tissue-specific deletion, we bred conditional knockout mice bearing LoxP recombination sites flanking the Sox4 gene, with the LoxP sites located in the Sox4 5'UTR and 3'UTR. RESULTS The number of mice homozygous for this LoxP-flanked conditional knockout allele was far below the expected number, suggesting embryonic lethality with reduced penetrance. From over 200 animals bred, only 11% were homozygous Sox4(flox/flox) mice, compared to the expected Mendelian ratio of 25% (p<0.001). Moreover, there was a significant reduction in the number of female Sox4(flox/flox) mice (26%) relative to male Sox4(flox/flox) mice (p=0.0371). Reduced Sox4 expression in homozygous embryos was confirmed by in-situ hybridization and Quantitative real-time polymerase chain reaction (QPCR). CONCLUSION LoxP sites in the 5' and 3' UTR of both alleles of Sox4 resulted in reduced, but variable expression of Sox4 message.
Collapse
Affiliation(s)
- Walter Guy Wiles
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Zhongming Mou
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Alyssa B Long
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Birdal Bilir
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Demetri D Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Nancy A Jenkins
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, TX, U.S.A
| | - Neal G Copeland
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, TX, U.S.A
| | - W David Martin
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, U.S.A. Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Carlos S Moreno
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, U.S.A. Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, U.S.A.
| |
Collapse
|
25
|
Sun X, Pinacho R, Saia G, Punko D, Meana JJ, Ramos B, Gill G. Transcription factor Sp4 regulates expression of nervous wreck 2 to control NMDAR1 levels and dendrite patterning. Dev Neurobiol 2014; 75:93-108. [PMID: 25045015 DOI: 10.1002/dneu.22212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/20/2014] [Accepted: 07/13/2014] [Indexed: 02/06/2023]
Abstract
Glutamatergic signaling through N-methyl-d-aspartate receptors (NMDARs) is important for neuronal development and plasticity and is often dysregulated in psychiatric disorders. Mice mutant for the transcription factor Sp4 have reduced levels of NMDAR subunit 1 (NR1) protein, but not mRNA, and exhibit behavioral and memory deficits (Zhou et al., [2010] Human Molecular Genetics 19: 3797-3805). In developing cerebellar granule neurons (CGNs), Sp4 controls dendrite patterning (Ramos et al., [2007] Proc Natl Acad Sci USA 104: 9882-9887). Sp4 target genes that regulate dendrite pruning or NR1 levels are not known. Here we report that Sp4 activates transcription of Nervous Wreck 2 (Nwk2; also known as Fchsd1) and, further, that Nwk2, an F-BAR domain-containing protein, mediates Sp4-dependent regulation of dendrite patterning and cell surface expression of NR1. Knockdown of Nwk2 in CGNs increased primary dendrite number, phenocopying Sp4 knockdown, and exogenous expression of Nwk2 in Sp4-depleted neurons rescued dendrite number. We observed that acute Sp4 depletion reduced levels of surface, but not total, NR1, and this was rescued by Nwk2 expression. Furthermore, expression of Nr1 suppressed the increase in dendrite number in Sp4- or Nwk2- depleted neurons. We previously reported that Sp4 protein levels were reduced in cerebellum of subjects with bipolar disorder (BD) (Pinacho et al., [2011] Bipolar Disorders 13: 474-485). Here we report that Nwk2 mRNA and NR1 protein levels were also reduced in postmortem cerebellum of BD subjects. Our data suggest a role for Sp4-regulated Nwk2 in NMDAR trafficking and identify a Sp4-Nwk2-NMDAR1 pathway that regulates neuronal morphogenesis during development and may be disrupted in bipolar disorder.
Collapse
Affiliation(s)
- Xinxin Sun
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02111; Genetics Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, 02111
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Almost a decade has passed since first STIM, and later Orai, proteins were identified as the molecular constituents of store-operated calcium entry (SOCE). Their roles in immune function have been intensely investigated, but the roles of STIM and Orai in neuronal cells have been much less clear. Lalonde et al. show that when neurons are hyperpolarized or "at rest," constitutive endoplasmic reticulum (ER) Ca(2+) release leads to SOCE-mediated activation of neuronal transcription factors. Precisely why ER Ca(2+) release is constitutive in neurons remains an important question. Irrespective of the answer, this observation provides an intriguing new perspective on why a relatively low-abundance, small-conductance channel such as Orai1 would be important in neurons, which contain a relative abundance of voltage-operated Ca(2+) channels.
Collapse
Affiliation(s)
- Robert Hooper
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Brad S Rothberg
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jonathan Soboloff
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
The neurobiology of bipolar disorder: identifying targets for specific agents and synergies for combination treatment. Int J Neuropsychopharmacol 2014; 17:1039-52. [PMID: 23449044 DOI: 10.1017/s1461145713000096] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness described by severe changes in mood. Extensive research has been carried out to understand the aetiology and pathophysiology of BD. Several hypotheses have been postulated, including alteration in genetic factors, protein expression, calcium signalling, neuropathological alteration, mitochondrial dysfunction and oxidative stress in BD. In the following paper, we will attempt to integrate these data in a manner which is to understand targets of treatment and how they may be, in particular, relevant to combination treatment. In summary, the data suggested that BD might be associated with neuronal and glial cellular impairment in specific brain areas, including the prefrontal cortex. From molecular and genetics: (1) alterations in dopaminergic system, through catechol-O-aminotransferase; (2) decreased expression and polymorphism on brain-derived neurotrophic factor; (3) alterations cyclic-AMP responsive element binding; (4) dysregulation of calcium signalling, including genome-wide finding for voltage-dependent calcium channel α-1 subunit are relevant findings in BD. Future studies are now necessary to understand how these molecular pathways interact and their connection to the complex clinical manifestations observed in BD.
Collapse
|
28
|
Lalonde J, Saia G, Gill G. Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons. Sci Signal 2014; 7:ra51. [PMID: 24894994 DOI: 10.1126/scisignal.2005242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calcium (Ca(2+)) signaling activated in response to membrane depolarization regulates neuronal maturation, connectivity, and plasticity. Store-operated Ca(2+) entry (SOCE) occurs in response to depletion of Ca(2+) from endoplasmic reticulum (ER), mediates refilling of this Ca(2+) store, and supports Ca(2+) signaling in nonexcitable cells. We report that maximal activation of SOCE occurred in cerebellar granule neurons cultured under resting conditions and that this Ca(2+) influx promoted the degradation of transcription factor Sp4, a regulator of neuronal morphogenesis and function. Lowering the concentration of extracellular potassium, a condition that reduces neuronal excitability, stimulated depletion of intracellular Ca(2+) stores, resulted in the relocalization of the ER Ca(2+) sensor STIM1 into punctate clusters consistent with multimerization and accumulation at junctions between the ER and plasma membrane, and induced a Ca(2+) influx with characteristics of SOCE. Compounds that block SOCE prevented the ubiquitylation and degradation of Sp4 in neurons exposed to a low concentration of extracellular potassium. Knockdown of STIM1 blocked degradation of Sp4, whereas expression of constitutively active STIM1 decreased Sp4 abundance under depolarizing conditions. Our findings indicated that, in neurons, SOCE is induced by hyperpolarization, and suggested that this Ca(2+) influx pathway is a distinct mechanism for regulating neuronal gene expression.
Collapse
Affiliation(s)
- Jasmin Lalonde
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Gregory Saia
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA. Cell, Molecular & Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Grace Gill
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
29
|
Saia G, Lalonde J, Sun X, Ramos B, Gill G. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling. J Neurochem 2014; 129:743-52. [PMID: 24475768 DOI: 10.1111/jnc.12657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 01/10/2023]
Abstract
The regulation of transcription factor function in response to neuronal activity is important for development and function of the nervous system. The transcription factor Sp4 regulates the developmental patterning of dendrites, contributes to complex processes including learning and memory, and has been linked to psychiatric disorders such as schizophrenia and bipolar disorder. Despite its many roles in the nervous system, the molecular mechanisms regulating Sp4 activity are poorly understood. Here, we report a site of phosphorylation on Sp4 at serine 770 that is decreased in response to membrane depolarization. Inhibition of the voltage-dependent NMDA receptor increased Sp4 phosphorylation. Conversely, stimulation with NMDA reduced the levels of Sp4 phosphorylation, and this was dependent on the protein phosphatase 1/2A. A phosphomimetic substitution at S770 impaired the Sp4-dependent maturation of cerebellar granule neuron primary dendrites, whereas a non-phosphorylatable Sp4 mutant behaved like wild type. These data reveal that transcription factor Sp4 is regulated by NMDA receptor-dependent activation of a protein phosphatase 1/2A signaling pathway. Our findings also suggest that the regulated control of Sp4 activity is an important mechanism governing the developmental patterning of dendrites.
Collapse
Affiliation(s)
- Gregory Saia
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA; the Cell, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
30
|
Fusté M, Pinacho R, Meléndez-Pérez I, Villalmanzo N, Villalta-Gil V, Haro JM, Ramos B. Reduced expression of SP1 and SP4 transcription factors in peripheral blood mononuclear cells in first-episode psychosis. J Psychiatr Res 2013; 47:1608-14. [PMID: 23941741 DOI: 10.1016/j.jpsychires.2013.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
Alterations of transcription factor specificity protein 4 (SP4) and 1 (SP1) have been linked to different neuropsychiatric diseases. Reduced SP4 and SP1 protein levels in the prefrontal cortex have been associated with bipolar disorder and schizophrenia, respectively, suggesting that both factors could be involved in the pathogenesis of disorders with psychotic features. The aim of this study was to investigate whether the reduction of SP1, SP4 and SP3 protein and mRNA expression in peripheral blood mononuclear cells in the early stages of psychosis may act as a potential biomarker of these disorders. A cross-sectional study of first-episode psychosis patients (n = 14) compared to gender- and age-matched healthy controls (n = 14) was designed. Patients were recruited through the adult mental health services of Parc Sanitari Sant Joan de Déu. Protein and gene expression levels of SP1, SP4 and SP3 were assessed in peripheral blood mononuclear cells of patients with first-episode psychosis and healthy control subjects. We report that protein levels of SP1 and SP4, but not SP3, are significantly reduced in patients compared to controls. In contrast, we did not observe any differences in expression levels for SP1, SP4 or SP3 genes between patient and control groups. In patients, SP4 protein levels were significantly associated with SP1 protein levels. No association was found, however, between protein and gene expression levels for each factor. Our study shows reduced SP1 and SP4 protein levels in first-episode psychosis in lymphocytes, suggesting that these transcription factors are potential peripheral biomarkers of psychotic spectrum disorders in the early stages.
Collapse
Affiliation(s)
- Montserrat Fusté
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Pinacho R, Villalmanzo N, Roca M, Iniesta R, Monje A, Haro JM, Meana JJ, Ferrer I, Gill G, Ramos B. Analysis of Sp transcription factors in the postmortem brain of chronic schizophrenia: a pilot study of relationship to negative symptoms. J Psychiatr Res 2013; 47:926-34. [PMID: 23540600 DOI: 10.1016/j.jpsychires.2013.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 01/13/2023]
Abstract
Negative symptoms are the most resilient manifestations in schizophrenia. An imbalance in dopamine and glutamate pathways has been proposed for the emergence of these symptoms. SP1, SP3 and SP4 transcription factors regulate genes in these pathways, suggesting a possible involvement in negative symptoms. In this study, we characterized Sp factors in the brains of subjects with schizophrenia and explored a possible association with negative symptoms. We also included analysis of NR1, NR2A and DRD2 as Sp target genes. Postmortem cerebellum and prefrontal cortex from an antemortem clinically well-characterized and controlled collection of elderly subjects with chronic schizophrenia (n = 16) and control individuals (n = 14) were examined. We used the Positive and Negative Syndrome and the Clinical Global Impression Schizophrenia scales, quantitative PCR and immunoblot. SP1 protein and mRNA were reduced in the prefrontal cortex in schizophrenia whereas none of Sp factors were altered in the cerebellum. However, we found that SP1, SP3 and SP4 protein levels inversely correlated with negative symptoms in the cerebellum. Furthermore, NR2A and DRD2 mRNA levels correlated with negative symptoms in the cerebellum. In the prefrontal cortex, SP1 mRNA and NR1 and DRD2 inversely correlated with these symptoms while Sp protein levels did not. This pilot study not only reinforces the involvement of SP1 in schizophrenia, but also suggests that reduced levels or function of SP1, SP4 and SP3 may participate in negative symptoms, in part through the regulation of NMDA receptor subunits and/or Dopamine D2 receptor, providing novel information about the complex negative symptoms in this disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de Recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Prolonged Ketamine Effects in Sp4 Hypomorphic Mice: Mimicking Phenotypes of Schizophrenia. PLoS One 2013; 8:e66327. [PMID: 23823008 PMCID: PMC3688895 DOI: 10.1371/journal.pone.0066327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022] Open
Abstract
It has been well established that schizophrenia patients display impaired NMDA receptor (NMDAR) functions as well as exacerbation of symptoms in response to NMDAR antagonists. Abnormal NMDAR signaling presumably contributes to cognitive deficits which substantially contribute to functional disability in schizophrenia. Establishing a mouse genetic model will help investigate molecular mechanisms of hypoglutmatergic neurotransmission in schizophrenia. Here, we examined the responses of Sp4 hypomorphic mice to NMDAR antagonists in electroencephalography and various behavioral paradigms. Sp4 hypomorphic mice, previously reported to have reduced NMDAR1 expression and LTP deficit in hippocampal CA1, displayed increased sensitivity and prolonged responses to NMDAR antagonists. Molecular studies demonstrated reduced expression of glutamic acid decarboxylase 67 (GAD67) in both cortex and hippocampus, consistent with abnormal gamma oscillations in Sp4 hypomorphic mice. On the other hand, human SP4 gene was reported to be deleted in schizophrenia. Several human genetic studies suggested the association of SP4 gene with schizophrenia and other psychiatric disorders. Therefore, elucidation of the Sp4 molecular pathway in Sp4 hypomorphic mice may provide novel insights to our understanding of abnormal NMDAR signaling in schizophrenia.
Collapse
|
33
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Dimasi DP, Burdon KP, Hewitt AW, Fitzgerald J, Wang JJ, Healey PR, Mitchell P, Mackey DA, Craig JE. Genetic investigation into the endophenotypic status of central corneal thickness and optic disc parameters in relation to open-angle glaucoma. Am J Ophthalmol 2012; 154:833-842.e2. [PMID: 22840486 DOI: 10.1016/j.ajo.2012.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/31/2022]
Abstract
PURPOSE To ascertain if single nucleotide polymorphisms (SNPs) involved in the determination of central corneal thickness, optic disc area, and vertical cup-to-disc ratio (VCDR) also are associated with open-angle glaucoma (OAG). DESIGN Retrospective case-control genetic association study. METHODS A total of 16 SNPs associated with central corneal thickness, optic disc area, and VCDR were genotyped in 876 OAG cases and 883 normal controls. To determine if the SNPs were also correlated with OAG severity, the cohort was stratified into advanced OAG (n = 326) and nonadvanced OAG (n = 550). Both the cases and controls were of European descent and were recruited from within Australia. RESULTS Two VCDR SNPs were found to be significantly associated with OAG after correction for multiple testing. The 2 SNPs were rs10483727, found adjacent to the SIX1 gene (P = 6.2 × 10(-06); odds ratio, 1.38; 95% confidence interval, 1.20 to 1.59), and rs1063192, found within the CDKN2B gene (P = 2.2 × 10(-05); odds ratio, 0.74; 95% confidence interval, 0.64 to 0.85). The CDKN2B variant rs1063192 also was found to be associated more strongly with advanced OAG. CONCLUSIONS The findings from this study indicate that variants influencing VCDR are also risk alleles for OAG in our Australian cohort of European descent. The identification of SIX1 and CDKN2B as susceptibility loci will assist in understanding the pathologic mechanisms involved in the development of OAG.
Collapse
|
35
|
Greenwood TA, Nievergelt CM, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Shekhtman T, McKinney R, Kelsoe JR. Further evidence for linkage of bipolar disorder to chromosomes 6 and 17 in a new independent pedigree series. Bipolar Disord 2012; 14:71-9. [PMID: 22329474 PMCID: PMC3965176 DOI: 10.1111/j.1399-5618.2011.00970.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We have previously reported the results of a linkage analysis of bipolar disorder in an initial set of 20 pedigrees ascertained through collaboration among three sites. We now report the results of our genome-wide linkage analysis in an independent sample of 34 pedigrees segregating bipolar disorder. METHODS Families were ascertained through a bipolar I or II disorder proband for the presence of bipolar I disorder, bipolar II disorder, or recurrent major depression in at least two other family members. A total of 440 markers at an average spacing of 8 cM were genotyped in 229 family members using fluorescent methods. RESULTS Initial nonparametric analyses of chromosomes 6 and 17 provided evidence for a modest replication of linkage to these chromosomes previously reported in other studies. Additional analyses using multipoint parametric methods provided further evidence to support the 6q25 region with a heterogeneity logarithm of odds score of 3.28. Evidence from two-point parametric analyses also provides a modest replication of our previous findings of linkage to the 23 cM region of chromosome 22q13 in our original University of California, San Diego sample of 20 families and 57 families from the National Institute of Mental Health bipolar disorder sample. CONCLUSIONS Our results suggest replication of some reported linkage peaks, such as 6q25 and 17p12; however, other peaks from our own previous study, such as 5p15, 13q32, and 22q13, were either not replicated or were only modestly replicated in these analyses.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California, San Diego,Department of Psychiatry, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| | | | - A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, British Columbia, Canada,Faculty of Medicine, Division of Neurology, University of British Columbia, British Columbia, Canada
| | | | - Paul E Keck
- Lindner Center of HOPE, Mason,Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susan L McElroy
- Lindner Center of HOPE, Mason,Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California, San Diego,Department of Psychiatry, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| | - Rebecca McKinney
- Department of Psychiatry, University of California, San Diego,Department of Psychiatry, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego,Department of Psychiatry, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| |
Collapse
|
36
|
Abstract
Since the publication of the working draft of the human genome just over a decade ago, there have been dramatic advances in our understanding of the role genetics play in both normal human functioning as well as in disease. The identification of genes, which influence an individual's susceptibility to depression, is not only an intriguing scientific endeavour in its own right, but further, if a gene can be confidently implicated in depression, then this could shed light on the aetiological processes involved in the disease. Moreover, a genetic association with depression may identify targets for consideration in the development of novel treatments for the illness. This chapter will summarise the current research into the genetic basis of depression. A number of genes of interest have been highlighted, although a genetic variant, that is unequivocally associated with increased risk for the disease, is yet to be identified. However, technologies and methodologies are evolving rapidly, and genetic approaches have helped shape how we conceptualise depression as an illness.
Collapse
|
37
|
Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 2012; 12:251-318. [PMID: 22367921 PMCID: PMC3357439 DOI: 10.1007/7854_2011_195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.
Collapse
Affiliation(s)
- Susan B. Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
38
|
Toxicogenomic and phenotypic analyses of bisphenol-A early-life exposure toxicity in zebrafish. PLoS One 2011; 6:e28273. [PMID: 22194820 PMCID: PMC3237442 DOI: 10.1371/journal.pone.0028273] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Bisphenol-A is an important environmental contaminant due to the increased early-life exposure that may pose significant health-risks to various organisms including humans. This study aimed to use zebrafish as a toxicogenomic model to capture transcriptomic and phenotypic changes for inference of signaling pathways, biological processes, physiological systems and identify potential biomarker genes that are affected by early-life exposure to bisphenol-A. Phenotypic analysis using wild-type zebrafish larvae revealed BPA early-life exposure toxicity caused cardiac edema, cranio-facial abnormality, failure of swimbladder inflation and poor tactile response. Fluorescent imaging analysis using three transgenic lines revealed suppressed neuron branching from the spinal cord, abnormal development of neuromast cells, and suppressed vascularization in the abdominal region. Using knowledge-based data mining algorithms, transcriptome analysis suggests that several signaling pathways involving ephrin receptor, clathrin-mediated endocytosis, synaptic long-term potentiation, axonal guidance, vascular endothelial growth factor, integrin and tight junction were deregulated. Physiological systems with related disorders associated with the nervous, cardiovascular, skeletal-muscular, blood and reproductive systems were implicated, hence corroborated with the phenotypic analysis. Further analysis identified a common set of BPA-targeted genes and revealed a plausible mechanism involving disruption of endocrine-regulated genes and processes in known susceptible tissue-organs. The expression of 28 genes were validated in a separate experiment using quantitative real-time PCR and 6 genes, ncl1, apoeb, mdm1, mycl1b, sp4, U1SNRNPBP homolog, were found to be sensitive and robust biomarkers for BPA early-life exposure toxicity. The susceptibility of sp4 to BPA perturbation suggests its role in altering brain development, function and subsequently behavior observed in laboratory animals exposed to BPA during early life, which is a health-risk concern of early life exposure in humans. The present study further established zebrafish as a model for toxicogenomic inference of early-life chemical exposure toxicity.
Collapse
|
39
|
Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 2011; 168:930-46. [PMID: 21498463 PMCID: PMC3751972 DOI: 10.1176/appi.ajp.2011.10050723] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The authors used a custom array of 1,536 single-nucleotide polymorphisms (SNPs) to interrogate 94 functionally relevant candidate genes for schizophrenia and identify associations with 12 heritable neurophysiological and neurocognitive endophenotypes in data collected by the Consortium on the Genetics of Schizophrenia. METHOD Variance-component association analyses of 534 genotyped subjects from 130 families were conducted by using Merlin software. A novel bootstrap total significance test was also developed to overcome the limitations of existing genomic multiple testing methods and robustly demonstrate significant associations in the context of complex family data and possible population stratification effects. RESULTS Associations with endophenotypes were observed for 46 genes of potential functional significance, with three SNPs at p<10(-4), 27 SNPs at p<10(-3), and 147 SNPs at p<0.01. The bootstrap analyses confirmed that the 47 SNP-endophenotype combinations with the strongest evidence of association significantly exceeded that expected by chance alone, with 93% of these findings expected to be true. Many of the genes interact on a molecular level, and eight genes (e.g., NRG1 and ERBB4) displayed evidence for pleiotropy, revealing associations with four or more endophenotypes. The results collectively support a strong role for genes related to glutamate signaling in mediating schizophrenia susceptibility. CONCLUSIONS This study supports use of relevant endophenotypes and the bootstrap total significance test for identifying genetic variation underlying the etiology of schizophrenia. In addition, the observation of extensive pleiotropy for some genes and singular associations for others suggests alternative, independent pathways mediating pathogenesis in the "group of schizophrenias."
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093-0804, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pinacho R, Villalmanzo N, Lalonde J, Haro JM, Meana JJ, Gill G, Ramos B. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord 2011; 13:474-85. [PMID: 22017217 PMCID: PMC3202296 DOI: 10.1111/j.1399-5618.2011.00941.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Regulation of gene expression is important for the development and function of the nervous system. However, the transcriptional programs altered in psychiatric diseases are not completely characterized. Human gene association studies and analysis of mutant mice suggest that the transcription factor specificity protein 4 (SP4) may be implicated in the pathophysiology of psychiatric diseases. We hypothesized that SP4 levels may be altered in the brain of bipolar disorder (BD) subjects and regulated by neuronal activity and drug treatment. METHODS We analyzed messenger RNA (mRNA) and protein levels of SP4 and SP1 in the postmortem prefrontal cortex and cerebellum of BD subjects (n = 10) and controls (n = 10). We also examined regulation of SP4 mRNA and protein levels by neuronal activity and lithium in rat cerebellar granule neurons. RESULTS We report a reduction of SP4 and SP1 proteins, but not mRNA levels, in the cerebellum of BD subjects. SP4 protein and mRNA levels were also reduced in the prefrontal cortex. Moreover, we found in rat cerebellar granule neurons that under non-depolarizing conditions SP4, but not SP1, was polyubiquitinated and degraded by the proteasome while lithium stabilized SP4 protein. CONCLUSIONS Our study provides the first evidence of altered SP4 protein in the cerebellum and prefrontal cortex in BD subjects supporting a possible role of transcription factor SP4 in the pathogenesis of the disease. In addition, our finding that SP4 stability is regulated by depolarization and lithium provides a pathway through which neuronal activity and lithium could control gene expression suggesting that normalization of SP4 levels could contribute to treatment of affective disorders.
Collapse
Affiliation(s)
- Raquel Pinacho
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Nuria Villalmanzo
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Jasmin Lalonde
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Josep Maria Haro
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Bizkaia,CIBERSAM, Bizkaia, Spain
| | - Grace Gill
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Belén Ramos
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM, Garriock HA, Yokoyama JS, McGrath PJ, Peters EJ, Scheftner WA, Coryell W, Lawson WB, Jancic D, Gejman PV, Sanders AR, Holmans P, Slager SL, Levinson DF, Hamilton SP. Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Mol Psychiatry 2011; 16:202-15. [PMID: 20038947 PMCID: PMC2888856 DOI: 10.1038/mp.2009.125] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 01/11/2023]
Abstract
We report a genome-wide association study (GWAS) of major depressive disorder (MDD) in 1221 cases from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study and 1636 screened controls. No genome-wide evidence for association was detected. We also carried out a meta-analysis of three European-ancestry MDD GWAS data sets: STAR*D, Genetics of Recurrent Early-onset Depression and the publicly available Genetic Association Information Network-MDD data set. These data sets, totaling 3957 cases and 3428 controls, were genotyped using four different platforms (Affymetrix 6.0, 5.0 and 500 K, and Perlegen). For each of 2.4 million HapMap II single-nucleotide polymorphisms (SNPs), using genotyped data where available and imputed data otherwise, single-SNP association tests were carried out in each sample with correction for ancestry-informative principal components. The strongest evidence for association in the meta-analysis was observed for intronic SNPs in ATP6V1B2 (P=6.78 x 10⁻⁷), SP4 (P=7.68 x 10⁻⁷) and GRM7 (P=1.11 x 10⁻⁶). Additional exploratory analyses were carried out for a narrower phenotype (recurrent MDD with onset before age 31, N=2191 cases), and separately for males and females. Several of the best findings were supported primarily by evidence from narrow cases or from either males or females. On the basis of previous biological evidence, we consider GRM7 a strong MDD candidate gene. Larger samples will be required to determine whether any common SNPs are significantly associated with MDD.
Collapse
Affiliation(s)
- SI Shyn
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - J Shi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - JB Kraft
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - JB Potash
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - JA Knowles
- Department of Psychiatry, University of Southern California, Los Angeles, CA, USA
| | - MM Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, NY, USA
| | - HA Garriock
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - JS Yokoyama
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - PJ McGrath
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, NY, USA
| | - EJ Peters
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - WA Scheftner
- Department of Psychiatry, Rush University Hospital, Chicago, IL, USA
| | - W Coryell
- Department of Psychiatry, University of Iowa, Iowa City, IW, USA
| | - WB Lawson
- Department of Psychiatry, Howard University, Washington, DC, USA
| | - D Jancic
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - PV Gejman
- NorthShore University HealthCare Research Institute and Department of Psychiatry, Northwestern University, Evanston, IL, USA
| | - AR Sanders
- NorthShore University HealthCare Research Institute and Department of Psychiatry, Northwestern University, Evanston, IL, USA
| | - P Holmans
- Department of Psychological Medicine, Cardiff University, Cardiff, UK
| | - SL Slager
- Department of Health Sciences Research, Mayo Clinic College of Medicine
| | - DF Levinson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - SP Hamilton
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, Tsuda M. Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca2+ signals evoked via the N-methyl-d-aspartate (NMDA) receptor. Brain Res 2010; 1366:18-26. [DOI: 10.1016/j.brainres.2010.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 02/06/2023]
|
43
|
Abstract
Major depressive disorder (MDD) is a common psychiatric illness with high levels of morbidity and mortality. Despite intensive research during the past several decades, the neurobiological basis and pathophysiology of depressive disorders remain unknown. Genetic factors play important roles in the development of MDD, as indicated by family, twin, and adoption studies, and may reveal important information about disease mechanisms. This article describes recent developments in the field of psychiatric genetics, with a focus on MDD. Early twin studies, linkage studies, and association studies are discussed. Recent findings from genome-wide association studies are reviewed and future directions discussed. Despite all efforts, thus far, no single genetic variation has been identified to increase the risk of depression substantially. Genetic variants are expected to have only small effects on overall disease risk, and multiple genetic factors in conjunction with environmental factors are likely necessary for the development of MDD. Future large-scale studies are needed to dissect this complex phenotype and to identify pathways involved in the etiology of MDD.
Collapse
Affiliation(s)
- Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania School of Medicine, Center for Neurobiology and Behavior, Philadelphia, 19104, USA.
| |
Collapse
|
44
|
Yu K, Cheung C, Leung M, Li Q, Chua S, McAlonan G. Are Bipolar Disorder and Schizophrenia Neuroanatomically Distinct? An Anatomical Likelihood Meta-analysis. Front Hum Neurosci 2010; 4:189. [PMID: 21103008 PMCID: PMC2987512 DOI: 10.3389/fnhum.2010.00189] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/22/2010] [Indexed: 11/13/2022] Open
Abstract
Objective: There is renewed debate on whether modern diagnostic classification should adopt a dichotomous or dimensional approach to schizophrenia and bipolar disorder. This study synthesizes data from voxel-based studies of schizophrenia and bipolar disorder to estimate the extent to which these conditions have a common neuroanatomical phenotype. Methods: A post-hoc meta-analytic estimation of the extent to which bipolar disorder, schizophrenia, or both conditions contribute to brain gray matter differences compared to controls was achieved using a novel application of the conventional anatomical likelihood estimation (ALE) method. 19 schizophrenia studies (651 patients and 693 controls) were matched as closely as possible to 19 bipolar studies (540 patients and 745 controls). Result: Substantial overlaps in the regions affected by schizophrenia and bipolar disorder included regions in prefrontal cortex, thalamus, left caudate, left medial temporal lobe, and right insula. Bipolar disorder and schizophrenia jointly contributed to clusters in the right hemisphere, but schizophrenia was almost exclusively associated with additional gray matter deficits (left insula and amygdala) in the left hemisphere. Limitation: The current meta-analytic method has a number of constraints. Importantly, only studies identifying differences between controls and patient groups could be included in this analysis. Conclusion: Bipolar disorder shares many of the same brain regions as schizophrenia. However, relative to neurotypical controls, lower gray matter volume in schizophrenia is more extensive and includes the amygdala. This fresh application of ALE accommodates multiple studies in a relatively unbiased comparison. Common biological mechanisms may explain the neuroanatomical overlap between these major disorders, but explaining why brain differences are more extensive in schizophrenia remains challenging.
Collapse
Affiliation(s)
- Kevin Yu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
45
|
Zhou X, Nie Z, Roberts A, Zhang D, Sebat J, Malhotra D, Kelsoe JR, Geyer MA. Reduced NMDAR1 expression in the Sp4 hypomorphic mouse may contribute to endophenotypes of human psychiatric disorders. Hum Mol Genet 2010; 19:3797-805. [PMID: 20634195 DOI: 10.1093/hmg/ddq298] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reduced expression of the Sp4 gene in Sp4 hypomorphic mice resulted in subtle vacuolization in the hippocampus as well as deficits in sensorimotor gating and contextual memory, putative endophenotypes for schizophrenia and other psychiatric disorders. In this study, we examined both spatial learning/memory and hippocampal long-term potentiation (LTP) of Sp4 hypomorphic mice. Impaired spatial learning/memory and markedly reduced LTP were found. To corroborate the functional studies, the expression of N-methyl-D-aspartate (NMDA) glutamate receptors was investigated with both western blot and immunohistochemical analyses. The reduced expression of the Sp4 gene decreased the level of the NR1 subunit of NMDA receptors in Sp4 hypomorphic mice. In human, SP4 gene was found to be deleted sporadically in schizophrenia patients, corroborating evidence that polymorphisms of human SP4 gene are associated with schizophrenia and other psychiatric disorders. Impaired NMDA neurotransmission has been implicated in several human psychiatric disorders. As yet, it remains unclear how mutations of candidate susceptibility genes for these disorders may contribute to the disruption of NMDA neurotransmission. Sp4 hypomorphic mice could therefore serve as a genetic model to investigate impaired NMDA functions resulting from loss-of-function mutations of human SP4 gene in schizophrenia and/or other psychiatric disorders. Furthermore, aberrant expression of additional genes, besides NMDAR1, likely also contributes to the behavioral abnormalities in Sp4 hypomorphic mice. Thus, further investigation of the Sp4 pathway may provide novel insights in our understanding of a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tam GWC, van de Lagemaat LN, Redon R, Strathdee KE, Croning MDR, Malloy MP, Muir WJ, Pickard BS, Deary IJ, Blackwood DHR, Carter NP, Grant SGN. Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochem Soc Trans 2010; 38:445-51. [PMID: 20298200 DOI: 10.1042/bst0380445] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Understanding how cognitive processes including learning, memory, decision making and ideation are encoded by the genome is a key question in biology. Identification of sets of genes underlying human mental disorders is a path towards this objective. Schizophrenia is a common disease with cognitive symptoms, high heritability and complex genetics. We have identified genes involved with schizophrenia by measuring differences in DNA copy number across the entire genome in 91 schizophrenia cases and 92 controls in the Scottish population. Our data reproduce rare and common variants observed in public domain data from >3000 schizophrenia cases, confirming known disease loci as well as identifying novel loci. We found copy number variants in PDE10A (phosphodiesterase 10A), CYFIP1 [cytoplasmic FMR1 (Fragile X mental retardation 1)-interacting protein 1], K(+) channel genes KCNE1 and KCNE2, the Down's syndrome critical region 1 gene RCAN1 (regulator of calcineurin 1), cell-recognition protein CHL1 (cell adhesion molecule with homology with L1CAM), the transcription factor SP4 (specificity protein 4) and histone deacetylase HDAC9, among others (see http://www.genes2cognition.org/SCZ-CNV). Integrating the function of these many genes into a coherent model of schizophrenia and cognition is a major unanswered challenge.
Collapse
Affiliation(s)
- Gloria W C Tam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Efforts to unlock the biology of major depressive disorder (MDD) are proceeding on multiple fronts. In this article, the authors review the current understanding of epidemiological evidence for a heritable component to MDD risk, as well as recent advances in linkage, candidate gene, and genome-wide association analyses of MDD and related disease subtypes and endophenotypes. While monoamine signaling has preoccupied the bulk of scientific investigation to date, nontraditional gene candidates such as PCLO and GRM7 are now emerging and beginning to change the landscape for future human and animal research on depression.
Collapse
Affiliation(s)
- Stanley I. Shyn
- Research fellow, Department of Psychiatry, Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA
| | - Steven P. Hamilton
- Associate professor, Department of Psychiatry, Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
48
|
Abstract
Schizophrenia may well represent one of the most heterogenous mental disorders in human history. This heterogeneity encompasses (1) etiology; where numerous putative genetic and environmental factors may contribute to disease manifestation, (2) symptomatology; with symptoms characterized by group; positive--behaviors not normally present in healthy subjects (e.g. hallucinations), negative--reduced expression of normal behaviors (e.g. reduced joy), and cognitive--reduced cognitive capabilities separable from negative symptoms (e.g. impaired attention), and (3) individual response variation to treatment. The complexity of this uniquely human disorder has complicated the development of suitable animal models with which to assay putative therapeutics. Moreover, the development of animal models is further limited by a lack of positive controls because currently approved therapeutics only addresses psychotic symptoms, with minor negative symptom treatment. Despite these complexities however, many animal models of schizophrenia have been developed mainly focusing on modeling individual symptoms. Validation criteria have been established to assay the utility of these models, determining the (1) face, (2) predictive, (3) construct, and (4) etiological validities, as well as (5) reproducibility of each model. Many of these models have been created following the development of major hypotheses of schizophrenia, including the dopaminergic, glutamatergic, and neurodevelopmental hypotheses. The former two models have largely consisted of manipulating these neurotransmitter systems to produce behavioral abnormalities with some relevance to symptoms or putative etiology of schizophrenia. Given the serotonergic link to hallucinations and cholinergic link to attention, other models have manipulated these systems also. Finally, there has also been a drive toward creating mouse models of schizophrenia utilizing transgenic technology. Thus, there are opportunities to combine both environmental and genetic factors to create more suitable models of schizophrenia. More sophisticated animal tasks are also being created with which to ascertain whether these models produce behavioral abnormalities consistent with patients with schizophrenia. While animal models of schizophrenia continue to be developed, we must be cognizant that (1) validating these models are limited to the degree by which Clinicians can provide relevant information on the behavior of these patients, and (2) any putative treatments that are developed are also likely to be given with concurrent antipsychotic treatment. While our knowledge of this devastating disorder increases and our animal models and tasks with which to measure their behaviors become more sophisticated, caution must still be taken when validating these models to limit complications when introducing putative therapeutics to human trials.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA.
| | | | | |
Collapse
|
49
|
Powell SB, Zhou X, Geyer MA. Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 2009; 204:282-94. [PMID: 19397931 PMCID: PMC2735602 DOI: 10.1016/j.bbr.2009.04.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 12/26/2022]
Abstract
Mutant mouse models related to schizophrenia have been based primarily on the pathophysiology of schizophrenia, the known effects of antipsychotic drugs, and candidate genes for schizophrenia. Sensorimotor gating deficits in schizophrenia patients, as indexed by measures of prepulse inhibition of startle (PPI), have been well characterized and suggested to meet the criteria as a useful endophenotype in human genetic studies. PPI refers to the ability of a non-startling "prepulse" to inhibit responding to the subsequent startling stimulus or "pulse." Because of the cross-species nature of PPI, it has been used primarily in pharmacological animal models to screen putative antipsychotic medications. As techniques in molecular genetics have progressed over the past 15 years, PPI has emerged as a phenotype used in assessing genetic mouse models of relevance to schizophrenia. In this review, we provide a selected overview of the use of PPI in mouse models of schizophrenia and discuss the contribution and usefulness of PPI as a phenotype in the context of genetic mouse models. To that end, we discuss mutant mice generated to address hypotheses regarding the pathophysiology of schizophrenia and candidate genes (i.e., hypothesis driven). We also briefly discuss the usefulness of PPI in phenotype-driven approaches in which a PPI phenotype could lead to "bottom up" approaches of identifying novel genes of relevance to PPI (i.e., hypothesis generating).
Collapse
Affiliation(s)
- Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|