1
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
2
|
Soleas JP, D'Arcangelo E, Huang L, Karoubi G, Nostro MC, McGuigan AP, Waddell TK. Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension. Biomaterials 2020; 254:120128. [PMID: 32474250 DOI: 10.1016/j.biomaterials.2020.120128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022]
Abstract
During organogenesis groups of differentiating cells self-organize into a series of structural intermediates with defined architectural forms. Evidence is emerging that such architectural forms are important in guiding cell fate, yet in vitro methods to guide cell fate have focused primarily on un-patterned exposure of stems cells to developmentally relevant chemical cues. We set out to ask if organizing differentiating lung progenitors into developmentally relevant structures could be used to influence differentiation status. Specifically, we use elastomeric substrates to guide self-assembly of human pluripotent stem cell-derived lung progenitors into developmentally-relevant sized tubes and assess the impact on differentiation. Culture in 100 μm tubes reduced the percentage of SOX2+SOX9+ cells and reduced proximal fate potential compared to culture in 400 μm tubes or on flat surfaces. Cells in 100 μm tubes curved to conform to the tube surface and experienced increased cellular tension and reduced elongation. Pharmacologic disruption of tension through inhibition of ROCK, myosin II activity and actin polymerization in tubes resulted in maintenance of SOX2+SOX9+ populations. Furthermore, this effect required canonical WNT signaling. This data suggests that structural forms, when developmentally relevant, can drive fate choice during directed differentiation via a tension-based canonical WNT dependent mechanism.
Collapse
Affiliation(s)
- John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Elisa D'Arcangelo
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Linwen Huang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9
| | - Golnaz Karoubi
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, ON, M5S 3G8, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, 101 College St., Toronto, ON, M5G 1L7, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada, M5S 3G9; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON, M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Tewary M, Shakiba N, Zandstra PW. Stem cell bioengineering: building from stem cell biology. Nat Rev Genet 2019; 19:595-614. [PMID: 30089805 DOI: 10.1038/s41576-018-0040-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New fundamental discoveries in stem cell biology have yielded potentially transformative regenerative therapeutics. However, widespread implementation of stem-cell-derived therapeutics remains sporadic. Barriers that impede the development of these therapeutics can be linked to our incomplete understanding of how the regulatory networks that encode stem cell fate govern the development of the complex tissues and organs that are ultimately required for restorative function. Bioengineering tools, strategies and design principles represent core components of the stem cell bioengineering toolbox. Applied to the different layers of complexity present in stem-cell-derived systems - from gene regulatory networks in single stem cells to the systemic interactions of stem-cell-derived organs and tissues - stem cell bioengineering can address existing challenges and advance regenerative medicine and cellular therapies.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada.,Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada. .,Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada. .,Michael Smith Laboratories and School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Blin G, Wisniewski D, Picart C, Thery M, Puceat M, Lowell S. Geometrical confinement controls the asymmetric patterning of brachyury in cultures of pluripotent cells. Development 2018; 145:dev166025. [PMID: 30115626 PMCID: PMC6176930 DOI: 10.1242/dev.166025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
Abstract
Diffusible signals are known to orchestrate patterning during embryogenesis, yet diffusion is sensitive to noise. The fact that embryogenesis is remarkably robust suggests that additional layers of regulation reinforce patterning. Here, we demonstrate that geometrical confinement orchestrates the spatial organisation of initially randomly positioned subpopulations of spontaneously differentiating mouse embryonic stem cells. We use micropatterning in combination with pharmacological manipulations and quantitative imaging to dissociate the multiple effects of geometry. We show that the positioning of a pre-streak-like population marked by brachyury (T) is decoupled from the size of its population, and that breaking radial symmetry of patterns imposes polarised patterning. We provide evidence for a model in which the overall level of diffusible signals together with the history of the cell culture define the number of T+ cells, whereas geometrical constraints guide patterning in a multi-step process involving a differential response of the cells to multicellular spatial organisation. Our work provides a framework for investigating robustness of patterning and provides insights into how to guide symmetry-breaking events in aggregates of pluripotent cells.
Collapse
Affiliation(s)
- Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Darren Wisniewski
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Catherine Picart
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Manuel Thery
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire and Végétale, UMR5168, CytoMorpho Lab, 38054 Grenoble, France
- Univ. Paris Diderot, CEA, INSERM, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 75010 Paris, France
| | - Michel Puceat
- INSERM U1251, Université Aix-Marseille, MMG, 13885 Marseille, France
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
5
|
Poon JCH, Liao Z, Suzuki T, Carleton MM, Soleas JP, Aitchison JS, Karoubi G, McGuigan AP, Waddell TK. Design of biomimetic substrates for long-term maintenance of alveolar epithelial cells. Biomater Sci 2018; 6:292-303. [PMID: 29327014 DOI: 10.1039/c7bm00647k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is a need to establish in vitro lung alveolar epithelial culture models to better understand the fundamental biological mechanisms that drive lung diseases. While primary alveolar epithelial cells (AEC) are a useful option to study mature lung biology, they have limited utility in vitro. Cells that survive demonstrate limited proliferative capacity and loss of phenotype over the first 3-5 days in traditional culture conditions. To address this limitation, we generated a novel physiologically relevant cell culture system for enhanced viability and maintenance of phenotype. Here we describe a method utilizing e-beam lithography, reactive ion etching, and replica molding to generate poly-dimethylsiloxane (PDMS) substrates containing hemispherical cavities that mimic the architecture and size of mouse and human alveoli. Primary AECs grown on these cavity-containing substrates form a monolayer that conforms to the substrate enabling precise control over cell sheet architecture. AECs grown in cavity culture conditions remain viable and maintain their phenotype over one week. Specifically, cells grown on substrates consisting of 50 μm diameter cavities remained 96 ± 4% viable and maintained expression of surfactant protein C (SPC), a marker of type 2 AEC over 7 days. While this report focuses on primary lung alveolar epithelial cells, our culture platform is potentially relevant and useful for growing primary cells from other tissues with similar cavity-like architecture and could be further adapted to other biomimetic shapes or contours.
Collapse
Affiliation(s)
- James C H Poon
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Joshi R, Fuller B, Mosadegh B, Tavana H. Stem cell colony interspacing effect on differentiation to neural cells. J Tissue Eng Regen Med 2018; 12:2041-2054. [PMID: 30058271 DOI: 10.1002/term.2739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 01/30/2023]
Abstract
Efforts to enhance the efficiency of neural differentiation of stem cells are primarily focused on exogenous modulation of physical niche parameters such as surface topography and extracellular matrix proteins, or addition of certain growth factors or small molecules to culture media. We report a novel neurogenic niche to enhance the neural differentiation of embryonic stem cells (ESCs) without any external intervention by micropatterning ESCs into spatially organized colonies of controlled size and interspacing. Using an aqueous two-phase system cell microprinting technology, we generated pairs of uniformly sized isolated ESC colonies at defined interspacing distances over a layer of differentiation-inducing stromal cells. Our comprehensive analysis of temporal expression of neural genes and proteins of cells in colony pairs showed that interspacing two colonies at approximately 0.66 times the colony diameter (0.66D) significantly enhanced neural differentiation of ESCs. Cells in these colonies displayed higher expression of neural genes and proteins and formed thick neurite bundles between the two colonies. A computational model of spatial distribution of soluble factors of cells in interspaced colony pairs showed that the enhanced neural differentiation is due to the presence of stable concentration gradients of soluble signalling factors between the two colonies. Our results indicate that culturing ESCs in colony pairs with defined interspacing is a promising approach to efficiently derive neural cells. Additionally, this approach provides a platform for quantitative studies of molecular mechanisms that regulate neurogenesis of stem cells.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Brendan Fuller
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Bobak Mosadegh
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| |
Collapse
|
7
|
Joshi R, Thakuri PS, Buchanan JC, Li J, Tavana H. Microprinted Stem Cell Niches Reveal Compounding Effect of Colony Size on Stromal Cells-Mediated Neural Differentiation. Adv Healthc Mater 2018; 7:10.1002/adhm.201700832. [PMID: 29193846 PMCID: PMC5842135 DOI: 10.1002/adhm.201700832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/02/2017] [Indexed: 01/30/2023]
Abstract
Microenvironmental factors have a major impact on differentiation of embryonic stem cells (ESCs). Here, a novel phenomenon that size of ESC colonies has a significant regulatory role on stromal cells induced differentiation of ESCs to neural cells is reported. Using a robotic cell microprinting technology, defined densities of ESCs are confined within aqueous nanodrops over a layer of supporting stromal cells immersed in a second, immiscible aqueous phase to generate ESC colonies of defined sizes. Temporal protein and gene expression studies demonstrate that larger ESC colonies generate disproportionally more neural cells and longer neurite processes. Unlike previous studies that attribute neural differentiation of ESCs solely to interactions with stromal cells, it is found that increased intercellular signaling of ESCs significantly enhances neural differentiation. This study offers an approach to generate neural cells with improved efficiency for potential use in translational research.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - James C Buchanan
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jun Li
- Department of Mathematical Sciences, Kent State University, Kent, OH, 44242, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, 260 S. Forge St., Akron, OH, 44325, USA
| |
Collapse
|
8
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
9
|
Tricomi BJ, Dias AD, Corr DT. Stem cell bioprinting for applications in regenerative medicine. Ann N Y Acad Sci 2017; 1383:115-124. [PMID: 27870077 DOI: 10.1111/nyas.13266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023]
Abstract
Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Brad J Tricomi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Andrew D Dias
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
10
|
Rahman N, Brauer PM, Ho L, Usenko T, Tewary M, Zúñiga-Pflücker JC, Zandstra PW. Engineering the haemogenic niche mitigates endogenous inhibitory signals and controls pluripotent stem cell-derived blood emergence. Nat Commun 2017; 8:15380. [PMID: 28541275 PMCID: PMC5477512 DOI: 10.1038/ncomms15380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
Efforts to recapitulate haematopoiesis, a process guided by spatial and temporal inductive signals, to generate haematopoietic progenitors from human pluripotent stem cells (hPSCs) have focused primarily on exogenous signalling pathway activation or inhibition. Here we show haemogenic niches can be engineered using microfabrication strategies by micropatterning hPSC-derived haemogenic endothelial (HE) cells into spatially-organized, size-controlled colonies. CD34+VECAD+ HE cells were generated with multi-lineage potential in serum-free conditions and cultured as size-specific haemogenic niches that displayed enhanced blood cell induction over non-micropatterned cultures. Intra-colony analysis revealed radial organization of CD34 and VECAD expression levels, with CD45+ blood cells emerging primarily from the colony centroid area. We identify the induced interferon gamma protein (IP-10)/p-38 MAPK signalling pathway as the mechanism for haematopoietic inhibition in our culture system. Our results highlight the role of spatial organization in hPSC-derived blood generation, and provide a quantitative platform for interrogating molecular pathways that regulate human haematopoiesis.
Collapse
Affiliation(s)
- Nafees Rahman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3ES
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Patrick M. Brauer
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
| | - Lilian Ho
- Life Sciences (Biochemistry), University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Tatiana Usenko
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Medicine by Design, a Canada First Research Excellence Program at the University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W. Zandstra
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3ES
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Medicine by Design, a Canada First Research Excellence Program at the University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
11
|
Xu X, Wang W, Li Z, Kratz K, Ma N, Lendlein A. Surface geometry of poly(ether imide) boosts mouse pluripotent stem cell spontaneous cardiomyogenesis via modulating the embryoid body formation process. Clin Hemorheol Microcirc 2017; 64:367-382. [DOI: 10.3233/ch-168107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Zhengdong Li
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute - Multifunctional Materials in Medicine, Berlin and Teltow, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Helmholtz Virtual Institute - Multifunctional Materials in Medicine, Berlin and Teltow, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Helmholtz Virtual Institute - Multifunctional Materials in Medicine, Berlin and Teltow, Teltow, Germany
| |
Collapse
|
12
|
Pesce M, Messina E, Chimenti I, Beltrami AP. Cardiac Mechanoperception: A Life-Long Story from Early Beats to Aging and Failure. Stem Cells Dev 2016; 26:77-90. [PMID: 27736363 DOI: 10.1089/scd.2016.0206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The life-long story of the heart starts concomitantly with primary differentiation events occurring in multipotent progenitors located in the so-called heart tube. This initially tubular structure starts a looping process, which leads to formation of the final four-chambered heart with a primary contribution of geometric and position-associated cell sensing. While this establishes the correct patterning of the final cardiac structure, it also provides feedbacks to fundamental cellular machineries controlling proliferation and differentiation, thus ensuring a coordinated restriction of cell growth and a myocyte terminal differentiation. Novel evidences provided by embryological and cell engineering studies have clarified the relevance of mechanics-supported position sensing for the correct recognition of cell fate inside developing embryos and multicellular aggregates. One of the main components of this pathway, the Hippo-dependent signal transduction machinery, is responsible for cell mechanics intracellular transduction with important consequences for gene transcription and cell growth control. Being the Hippo pathway also directly connected to stress responses and altered metabolism, it is tempting to speculate that permanent alterations of mechanosensing may account for modifying self-renewal control in tissue homeostasis. In the present contribution, we translate these concepts to the aging process and the failing of the human heart, two pathophysiologic conditions that are strongly affected by stress responses and altered metabolism.
Collapse
Affiliation(s)
- Maurizio Pesce
- 1 Tissue Engineering Research Unit, Centro Cardiologico Monzino, IRCCS , Milan, Italy
| | - Elisa Messina
- 2 Department of Pediatric Cardiology, "Sapienza" University , Rome, Italy
| | - Isotta Chimenti
- 3 Department of Medical Surgical Science and Biotechnology, "Sapienza" University , Rome, Italy
| | | |
Collapse
|
13
|
Pir P, Le Novère N. Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine. Methods Mol Biol 2016; 1386:331-50. [PMID: 26677190 DOI: 10.1007/978-1-4939-3283-2_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery.
Collapse
Affiliation(s)
- Pınar Pir
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Nicolas Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
14
|
Herberg M, Roeder I. Computational modelling of embryonic stem-cell fate control. Development 2015; 142:2250-60. [DOI: 10.1242/dev.116343] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The maintenance of pluripotency in embryonic stem cells (ESCs), its loss during lineage specification or its re-induction to generate induced pluripotent stem cells are central topics in stem cell biology. To uncover the molecular basis and the design principles of pluripotency control, a multitude of experimental, but also an increasing number of computational, studies have been published. Here, we consider recent reports that apply computational or mathematical modelling approaches to describe the regulatory processes that underlie cell fate decisions in mouse ESCs. We summarise the principles, the strengths and potentials but also the limitations of different computational strategies.
Collapse
Affiliation(s)
- Maria Herberg
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden D-01307, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden D-01307, Germany
| |
Collapse
|
15
|
Digital microfluidic immunocytochemistry in single cells. Nat Commun 2015; 6:7513. [PMID: 26104298 PMCID: PMC4491823 DOI: 10.1038/ncomms8513] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
We report a new technique called Digital microfluidic Immunocytochemistry in Single Cells (DISC). DISC automates protocols for cell culture, stimulation and immunocytochemistry, enabling the interrogation of protein phosphorylation on pulsing with stimulus for as little as 3 s. DISC was used to probe the phosphorylation states of platelet-derived growth factor receptor (PDGFR) and the downstream signalling protein, Akt, to evaluate concentration- and time-dependent effects of stimulation. The high time resolution of the technique allowed for surprising new observations-for example, a 10 s pulse stimulus of a low concentration of PDGF is sufficient to cause >30% of adherent fibroblasts to commit to Akt activation. With the ability to quantitatively probe signalling events with high time resolution at the single-cell level, we propose that DISC may be an important new technique for a wide range of applications, especially for screening signalling responses of a heterogeneous cell population.
Collapse
|
16
|
Herberg M, Zerjatke T, de Back W, Glauche I, Roeder I. Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies. Cytometry A 2015; 87:481-90. [DOI: 10.1002/cyto.a.22598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/11/2014] [Accepted: 11/06/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Maria Herberg
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Walter de Back
- Center for Information Services and High Performance Computing, Technische Universität Dresden; Dresden Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
17
|
Zhou X, Smith AJH, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I, Lowell S. Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 2014; 31:1511-22. [PMID: 23649667 PMCID: PMC4063271 DOI: 10.1002/stem.1426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 04/03/2013] [Indexed: 01/22/2023]
Abstract
Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously. Stem Cells 2013;31:1511–1522
Collapse
Affiliation(s)
- Xinzhi Zhou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Delalat B, Goreham RV, Vasilev K, Harding FJ, Voelcker NH. Subtle Changes in Surface Chemistry Affect Embryoid Body Cell Differentiation: Lessons Learnt from Surface-Bound Amine Density Gradients. Tissue Eng Part A 2014; 20:1715-25. [DOI: 10.1089/ten.tea.2013.0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bahman Delalat
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Renee V. Goreham
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Krasimir Vasilev
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Frances J. Harding
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | | |
Collapse
|
19
|
Kim MH, Masuda E, Kino-oka M. Kinetic analysis of deviation from the undifferentiated state in colonies of human induced pluripotent stem cells on feeder layers. Biotechnol Bioeng 2014; 111:1128-38. [DOI: 10.1002/bit.25188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | - Eri Masuda
- Department of Biotechnology, Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| |
Collapse
|
20
|
Sart S, Schneider YJ, Li Y, Agathos SN. Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology 2014; 66:709-22. [PMID: 24500393 DOI: 10.1007/s10616-013-9687-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St, Tallahassee, FL, 32310, USA
| | | | | | | |
Collapse
|
21
|
Kamei KI. Cutting-Edge Microfabricated Biomedical Tools for Human Pluripotent Stem Cell Research. ACTA ACUST UNITED AC 2013; 18:469-81. [DOI: 10.1177/2211068213495394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Sart S, Agathos SN, Li Y. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog 2013; 29:1354-66. [PMID: 24124017 DOI: 10.1002/btpr.1825] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/29/2013] [Indexed: 12/28/2022]
Abstract
Microcarriers have been widely used for various biotechnology applications because of their high scale-up potential, high reproducibility in regulating cellular behavior, and well-documented compliance with current Good Manufacturing Practices (cGMP). Recently, microcarriers have been emerging as a novel approach for stem cell expansion and differentiation, enabling potential scale-up of stem cell-derived products in large bioreactors. This review summarizes recent advances of using microcarriers in mesenchymal stem cell (MSC) and pluripotent stem cell (PSC) cultures. From the reported data, efficient expansion and differentiation of stem cells on microcarriers rely on their ability to modulate cell shape (i.e. round or spreading) and cell organization (i.e. aggregate size). Nonetheless, current screening of microcarriers remains empirical, and accurate understanding of how stem cells interact with microcarriers still remains unknown. This review suggests that accurate characterization of biochemical and biomechanical properties of microcarriers is required to fully exploit their potential in regulating stem cell fate decision. Due to the variety of microcarriers, such detailed analyses should lead to the rational design of application-specific microcarriers, enabling the exploitation of reproducible effects for large scale biomedical applications.
Collapse
Affiliation(s)
- Sébastien Sart
- Dept. of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL
| | | | | |
Collapse
|
23
|
Jeon O, Alsberg E. Regulation of Stem Cell Fate in a Three-Dimensional Micropatterned Dual-Crosslinked Hydrogel System. ADVANCED FUNCTIONAL MATERIALS 2013; 23:4765-4775. [PMID: 24578678 PMCID: PMC3933204 DOI: 10.1002/adfm.201300529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Micropatterning technology is a powerful tool for controlling the cellular microenvironment and investigating the effects of physical parameters on cell behaviors, such as migration, proliferation, apoptosis, and differentiation. Although there have been significant developments in regulating the spatial and temporal distribution of physical properties in various materials, little is known about the role of the size of micropatterned regions of hydrogels with different crosslinking densities on the response of encapsulated cells. In this study, novel alginate hydrogel system is engineered that can be micropatterned three-dimensionally to create regions that are crosslinked by a single mechanism or dual mechanisms. By manipulating micropattern size while keeping the overall ratio of single- to dual-crosslinked hydrogel volume constant, the physical properties of the micropatterned alginate hydrogels are spatially tunable. When human adipose-derived stem cells (hASCs) are photoencapsulated within micropatterned hydrogels, their proliferation rate is a function of micropattern size. Additionally, micropattern size dictates the extent of osteogenic and chondrogenic differentiation of photoencapsulated hASC. The size of 3D micropatterned physical properties in this new hydrogel system introduces a new design parameter for regulating various cellular behaviors, and this dual-crosslinked hydrogel system provides a new platform for studying proliferation and differentiation of stem cells in a spatially controlled manner for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA. Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106 (USA)
| |
Collapse
|
24
|
Onishi K, Tonge PD, Nagy A, Zandstra PW. Microenvironment-mediated reversion of epiblast stem cells by reactivation of repressed JAK-STAT signaling. Integr Biol (Camb) 2013; 4:1367-76. [PMID: 22990140 DOI: 10.1039/c2ib20098h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Embryonic stem cells (ESC) and epiblast stem cells (EpiSC) are distinct pluripotent stem cell states that require different signaling pathways for their self-renewal. Forward transitions between ESC and EpiSC can be accomplished by changing culture conditions; however reverse transitions between EpiSC and ESC are rare events that require transgene insertion or culture on feeders. We demonstrate that transgene-free reversion of EpiSCs to ESCs can be enhanced by local microenvironmental control and the subsequent reactivation of dormant LIF-STAT3 signaling. Reactivation of LIF responsiveness occurs in regions of colony constraint (high local cell density) typical of culture on feeders, a condition that can be recapitulated using micropatterned (μP) colonies under defined conditions. This increased LIF responsiveness results in a subsequent increase in the frequency of EpiSC reversion. Importantly, the resulting revertant EpiSCs are functionally indistinguishable from naïve mESC. Our findings demonstrate that signaling pathway activation and repression create barriers to cell fate transitions that can be overcome by microenvironmental control.
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | | |
Collapse
|
25
|
Harding F, Goreham R, Short R, Vasilev K, Voelcker NH. Surface bound amine functional group density influences embryonic stem cell maintenance. Adv Healthc Mater 2013. [PMID: 23184606 DOI: 10.1002/adhm.201200119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gradient surfaces are highly effective tools to screen and optimize cell- surface interactions. Here, the response of embryonic stem (ES) cell colonies to plasma polymer gradient surfaces is investigated. Surface chemistry ranged from pure allylamine (AA) plasma polymer on one end of the gradient to pure octadiene (OD) plasma polymer on the other end. Optimal surface chemistry conditions for retention of pluripotency were identified. Expression of the stem cell markers alkaline phosphatase (AP) and Oct4 varied with the position of the ES cell colonies across the OD-AA plasma polymer gradient. Both markers were more strongly retained on the OD plasma polymer rich regions of the gradients. The observed variation of expression across the plasma polymer gradient increased with duration of stem cell culture. While maximum cell adhesion to the gradient substrate occurred at a nitrogen- to-carbon (N/C ratio) of approximately 0.1, Oct4 and AP expression was best retained at an N/C ratio < 0.04. Stem cell marker expression correlated with colony size and morphology: more compact, multilayered colonies with prominent F-actin staining arose as the N/C ratio decreased. Disruption of actin polymerization using Y-27632 ROCK inhibitor resulted in a collapse of the multilayer colony structure into monolayers with limited cell-cell contact. A corresponding decrease in expression of AP and Oct4 was observed. Oct4 expression along with 3D colony morphology was partially rescued on the OD plasma polymer rich regions of the gradient.
Collapse
|
26
|
Kunova M, Matulka K, Eiselleova L, Salykin A, Kubikova I, Kyrylenko S, Hampl A, Dvorak P. Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Transl Med 2013; 2:246-54. [PMID: 23486835 DOI: 10.5966/sctm.2012-0081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The generation of human pluripotent stem cells (hPSCs) of sufficient quantity and quality remains a major challenge for biomedical application. Here we present an efficient feeder-free, high-density monolayer system in which hPSCs become SSEA-3-high and gradually more viable than their feeder-dependent counterparts without changes attributed to culture adaptation. As a consequence, monolayer hPSCs possess advantages over their counterparts in embryoid body development, teratoma formation, freezing as a single-cell suspension, and colony-forming efficiency. Importantly, this monolayer culture system is reversible, preserving the competence of hPSCs to gradually reacquire features of colony growth, if necessary. Therefore, the monolayer culture system is highly suitable for long-term, large-scale propagation of hPSCs, which is necessary in drug development and pluripotent stem cell-based therapies.
Collapse
Affiliation(s)
- Michaela Kunova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pesce M, Pompilio G, Polvani G, Capogrossi MC. When Stemness Meets Engineering: Towards “Niche” Control of Stem Cell Functions for Enhanced Cardiovascular Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Lee ST, Yun JI, van der Vlies AJ, Kontos S, Jang M, Gong SP, Kim DY, Lim JM, Hubbell JA. Long-term maintenance of mouse embryonic stem cell pluripotency by manipulating integrin signaling within 3D scaffolds without active Stat3. Biomaterials 2012; 33:8934-42. [DOI: 10.1016/j.biomaterials.2012.08.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022]
|
29
|
Abstract
The fates of pluripotent stem cells (PSCs), including survival, self-renewal, and differentiation, are regulated by chemical and mechanical cues presented in the three-dimensional (3D) microenvironment. Most PSC studies have been performed on two-dimensional substrates. However, 3D culture systems have demonstrated the importance of intercellular interactions in regulating PSC self-renewal and differentiation. Microwell culture systems have been developed to generate homogenous PSC colonies of defined sizes and shapes and to study how colony morphology affects cell fate. Using microwells, researchers have demonstrated that PSCs remain in a self-renewing undifferentiated state as a result of autocrine and paracrine signaling. Other studies have shown that microwell regulation of embryoid body size affects lineage commitment during differentiation via cell-cell contact and expression of soluble signals. In this review, we discuss recent advances in the design and utilization of 3D microwell platforms for studying intercellular regulation of PSC cell fate decisions and the underlying molecular mechanisms.
Collapse
|
30
|
Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J, Collins T, Draper JS. Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev 2012; 22:279-95. [PMID: 22827698 DOI: 10.1089/scd.2012.0168] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The cell cycle in pluripotent stem cells is notable for the brevity of the G1 phase, permitting rapid proliferation and reducing the duration of differentiation signal sensitivity associated with the G1 phase. Changes in the length of G1 phase are understood to accompany the differentiation of human embryonic stem cells (hESCs), but the timing and extent of such changes are poorly defined. Understanding the early steps governing the differentiation of hESCs will facilitate better control over differentiation for regenerative medicine and drug discovery applications. Here we report the first use of real-time cell cycle reporters in hESCs. We coexpressed the chromatin-decorating H2B-GFP fusion protein and the fluorescence ubiquitination cell cycle indicator (FUCCI)-G1 fusion protein, a G1 phase-specific reporter, in hESCs to measure the cell cycle status in live cells. We found that FUCCI-G1 expression is weakly detected in undifferentiated hESCs, but rapidly increases upon differentiation. hESCs in the G1 phase display a reduction in undifferentiated colony-initiating cell function, underscoring the relationship between G1 phase residence and differentiation. Importantly, we demonstrate inter- and intracolony variation in response to chemicals that induce differentiation, implying extensive cell-cell variation in the threshold necessary to alter the G1 phase length. Finally, gain of differentiation markers appears to be coincident with G1 phase lengthening, with distinct G1 phase profiles associated with different markers of early hESC differentiation. Our data demonstrate the tight coupling of cell cycle changes to hESC differentiation, and highlight the cell cycle reporter system and assays we have implemented as a novel avenue for investigating pluripotency and differentiation.
Collapse
Affiliation(s)
- Ashley Calder
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kraus MRC, Grapin-Botton A. Patterning and shaping the endoderm in vivo and in culture. Curr Opin Genet Dev 2012; 22:347-53. [PMID: 22742850 DOI: 10.1016/j.gde.2012.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 05/15/2012] [Indexed: 01/30/2023]
Abstract
The definitive endoderm (DE) was first defined as the innermost germ layer found in all metazoan embryos. During development, it gives rise to a vast array of specialized epithelial cell types lining the respiratory and digestive systems, and contributes to associated organs such as thyroid, thymus, lungs, liver, and pancreas. In the adult, the DE provides a protective barrier against the environment and assumes many essential functions including digestion, nutrient absorption, and glucose homeostasis. Since general endoderm formation and patterning have been reviewed recently in a comprehensive manner [1], we will only provide a brief summary of how extracellular signals and downstream transcription factors control endoderm patterning. We will then focus on emerging work addressing the chromatin remodeling events occurring during endoderm organ specification and discuss how these molecular tools can be used to engineer endodermal organs in vitro.
Collapse
Affiliation(s)
- Marine R C Kraus
- Swiss Institute for Experimental Cancer Research, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | | |
Collapse
|
32
|
Giobbe GG, Zagallo M, Riello M, Serena E, Masi G, Barzon L, Di Camillo B, Elvassore N. Confined 3D microenvironment regulates early differentiation in human pluripotent stem cells. Biotechnol Bioeng 2012; 109:3119-32. [PMID: 22674472 DOI: 10.1002/bit.24571] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/24/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022]
Abstract
The therapeutic potential of human pluripotent stem (hPS) cells is threatened, among various problems, by the difficulty to homogenously direct cell differentiation into specific lineages. The transition from hPSC into committed differentiated cells is accompanied by secretome activity, remodeling of extracellular matrix and self-organization into germ layers. In this work, we aimed to investigate how different three-dimensional microenvironments regulate the early differentiation of the three germ layers in human embryonic stem (hES) cells derived embryoid bodies. In particular, a permeable, biocompatible, hydrogel microwell array was specifically designed for recreating a confined niche in which EB secreted molecules accumulate in accordance with hydrogel diffusional cut-off. Fluorescence recovery after photobleaching technique was performed to accurately evaluate hydrogel permeability, mesh size and diffusional cutoff for soluble molecules. Three different culture conditions of EB culture were analyzed: suspension, confinement in microwells of width/depth ratio 1:1 and 1:2. Results show that EBs cultured in microwells are viable and have comparable average size after 8 days culture. Whole genome microarrays show that significative differential gene expression was observed between suspension and confined EBs culture. In particular, EBs culture in microwells promotes the expression of genes involved in pattern specification processes, brain development, ectoderm and endoderm differentiation. On the contrary, suspension EBs express instead genes involved in mesoderm specification and heart development. These results suggest that local accumulation of EBs secreted molecules drives differentiation patterns, as confirmed by immunofluorescence of germ layer markers, in hydrogel confined EB culture from both hES cells and human induced pluripotent stem (hiPS) cells. Our findings highlight an additional potential role of biomaterial in controlling hPSC differentiation through secreted factor niche specification.
Collapse
Affiliation(s)
- Giovanni G Giobbe
- Department of Industrial Engineering (DII), University of Padua, via Marzolo 9, 35131 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Harding FJ, Clements LR, Short RD, Thissen H, Voelcker NH. Assessing embryonic stem cell response to surface chemistry using plasma polymer gradients. Acta Biomater 2012; 8:1739-48. [PMID: 22326974 DOI: 10.1016/j.actbio.2012.01.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 01/30/2023]
Abstract
The control of cell-material interactions is the key to a broad range of biomedical interactions. Gradient surfaces have recently been established as tools allowing the high-throughput screening and optimization of these interactions. In this paper, we show that plasma polymer gradients can reveal the subtle influence of surface chemistry on embryonic stem cell behavior and probe the mechanisms by which this occurs. Lateral gradients of surface chemistry were generated by plasma polymerization of diethylene glycol dimethyl ether on top of a substrate coated with an acrylic acid plasma polymer using a tilted slide as a mask. Gradient surfaces were characterized by X-ray photoelectron spectroscopy, infrared microscopy mapping and profilometry. By changing the plasma polymerization time, the gradient profile could be easily manipulated. To demonstrate the utility of these surfaces for the screening of cell-material interactions, we studied the response of mouse embryonic stem (ES) cells to these gradients and compared the performance of different plasma polymerization times during gradient fabrication. We observed a strong correlation between surface chemistry and cell attachment, colony size and retention of stem cell markers. Cell adhesion and colony formation showed striking differences on gradients with different plasma polymer deposition times. Deposition time influenced the depth of the plasma film deposited and the relative position of surface functional group density on the substrate, but not the range of plasma-generated species.
Collapse
Affiliation(s)
- Frances J Harding
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | | | | | | | | |
Collapse
|
34
|
Ranga A, Lutolf MP. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr Opin Cell Biol 2012; 24:236-44. [DOI: 10.1016/j.ceb.2012.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/10/2023]
|
35
|
Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proc Natl Acad Sci U S A 2012; 109:3264-9. [PMID: 22334649 DOI: 10.1073/pnas.1111478109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Local (cell-level) signaling environments, regulated by autocrine and paracrine signaling, and modulated by cell organization, are hypothesized to be fundamental stem cell fate control mechanisms used during development. It has, however, been challenging to demonstrate the impact of cell-level organization on stem cell fate control and to relate stem cell fate outcomes to autocrine and paracrine signaling. We address this fundamental problem using a combined in silico and experimental approach in which we directly manipulate, using laminar fluid flow, the local impact of endogenously secreted gp130-activating ligands and their activation of signal transducer and activator of transcription3 (STAT3) signaling in mouse embryonic stem cells (mESC). Our model analysis predicted that flow-dependent changes in autocrine and paracrine ligand binding would impact heterogeneity in cell- and colony-level STAT3 signaling activation and cause a gradient of cell fate determination along the direction of flow. Interestingly, analysis also predicted that local cell density would be inversely proportional to the degree to which endogenous secretion contributed to cell fate determination. Experimental validation using functional activation of STAT3 by secreted factors under microfluidic perfusion culture demonstrated that STAT3 activation and consequently mESC fate were manipulable by flow rate, position in the flow field, and local cell organization. As a unique demonstration of how quantitative control of autocrine and paracrine signaling can be integrated with spatial organization to elicit higher order cell fate effects, this work provides a general template to investigate organizing principles due to secreted factors.
Collapse
|
36
|
Purpura KA, Bratt-Leal AM, Hammersmith KA, McDevitt TC, Zandstra PW. Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials 2012; 33:1271-80. [PMID: 22079776 PMCID: PMC4280365 DOI: 10.1016/j.biomaterials.2011.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/16/2011] [Indexed: 01/23/2023]
Abstract
Pluripotent stem cells (PSC) provide insight into development and may underpin new cell therapies, yet controlling PSC differentiation to generate functional cells remains a significant challenge. In this study we explored the concept that mimicking the local in vivo microenvironment during mesoderm specification could promote the emergence of hematopoietic progenitor cells from embryonic stem cells (ESCs). First, we assessed the expression of early phenotypic markers of mesoderm differentiation (E-cadherin, brachyury (T-GFP), PDGFRα, and Flk1: +/-ETPF) to reveal that E-T+P+F+ cells have the highest capacity for hematopoiesis. Second, we determined how initial aggregate size influences the emergence of mesodermal phenotypes (E-T+P+F+, E-T-P+/-F+, and E-T-P+F-) and discovered that colony forming cell (CFC) output was maximal with ~100 cells per PSC aggregate. Finally, we introduced these 100-cell PSC aggregates into a low oxygen environment (5%; to upregulate endogenous VEGF secretion) and delivered two potent blood-inductive molecules, BMP4 and TPO (bone morphogenetic protein-4 and thrombopoietin), locally from microparticles to obtain a more robust differentiation response than soluble delivery methods alone. Approximately 1.7-fold more CFCs were generated with localized delivery in comparison to exogenous delivery, while combined growth factor use was reduced ~14.2-fold. By systematically engineering the complex and dynamic environmental signals associated with the in vivo blood developmental niche we demonstrate a significant role for inductive endogenous signaling and introduce a tunable platform for enhancing PSC differentiation efficiency to specific lineages.
Collapse
Affiliation(s)
- Kelly A. Purpura
- The Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Andrés M. Bratt-Leal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Katy A. Hammersmith
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter W. Zandstra
- The Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada
| |
Collapse
|
37
|
McHale CM, Zhang L, Smith MT. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 2012; 33:240-52. [PMID: 22166497 PMCID: PMC3271273 DOI: 10.1093/carcin/bgr297] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/21/2011] [Accepted: 12/07/2011] [Indexed: 01/01/2023] Open
Abstract
Benzene causes acute myeloid leukemia and probably other hematological malignancies. As benzene also causes hematotoxicity even in workers exposed to levels below the US permissible occupational exposure limit of 1 part per million, further assessment of the health risks associated with its exposure, particularly at low levels, is needed. Here, we describe the probable mechanism by which benzene induces leukemia involving the targeting of critical genes and pathways through the induction of genetic, chromosomal or epigenetic abnormalities and genomic instability, in a hematopoietic stem cell (HSC); stromal cell dysregulation; apoptosis of HSCs and stromal cells and altered proliferation and differentiation of HSCs. These effects modulated by benzene-induced oxidative stress, aryl hydrocarbon receptor dysregulation and reduced immunosurveillance, lead to the generation of leukemic stem cells and subsequent clonal evolution to leukemia. A mode of action (MOA) approach to the risk assessment of benzene was recently proposed. This approach is limited, however, by the challenges of defining a simple stochastic MOA of benzene-induced leukemogenesis and of identifying relevant and quantifiable parameters associated with potential key events. An alternative risk assessment approach is the application of toxicogenomics and systems biology in human populations, animals and in vitro models of the HSC stem cell niche, exposed to a range of levels of benzene. These approaches will inform our understanding of the mechanisms of benzene toxicity and identify additional biomarkers of exposure, early effect and susceptibility useful for risk assessment.
Collapse
Affiliation(s)
| | | | - Martyn T. Smith
- Division of Environmental Health Sciences, Genes and Environment Laboratory, School of Public Health, University of California, Berkeley, CA 94720-7356, USA
| |
Collapse
|
38
|
Przybyla L, Voldman J. Probing embryonic stem cell autocrine and paracrine signaling using microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:293-315. [PMID: 22524217 PMCID: PMC4030416 DOI: 10.1146/annurev-anchem-062011-143122] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.
Collapse
Affiliation(s)
- Laralynne Przybyla
- Dept. of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| | - Joel Voldman
- Dept. Of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA, 02139
| |
Collapse
|
39
|
Ungrin MD, Clarke G, Yin T, Niebrugge S, Nostro MC, Sarangi F, Wood G, Keller G, Zandstra PW. Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnol Bioeng 2011; 109:853-66. [PMID: 22139975 DOI: 10.1002/bit.24375] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/23/2022]
Abstract
We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation, and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and, with quantitative cell division tracking and fate monitoring, identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion, during directed differentiation, to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system.
Collapse
Affiliation(s)
- Mark D Ungrin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Belfiore LA, Floren ML, Paulino AT, Belfiore CJ. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain. Biophys Chem 2011; 158:1-8. [DOI: 10.1016/j.bpc.2011.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 01/30/2023]
|
41
|
XU HEN, ADDIS RUSSELLC, GOINGS DAVIDAF, NIOKA SHOKO, CHANCE BRITTON, GEARHART JOHND, LI LINZ. IMAGING REDOX STATE HETEROGENEITY WITHIN INDIVIDUAL EMBRYONIC STEM CELL COLONIES. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2011; 4:279-288. [PMID: 34046096 PMCID: PMC8153411 DOI: 10.1142/s1793545811001617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Redox state mediates embryonic stem cell (ESC) differentiation and thus offers an important complementary approach to understanding the pluripotency of stem cells. NADH redox ratio (NADH/(Fp + NADH)), where NADH is the reduced form of nicotinamide adenine dinucleotide and Fp is the oxidized flavoproteins, has been established as a sensitive indicator of mitochondrial redox state. In this paper, we report our redox imaging data on the mitochondrial redox state of mouse ESC (mESC) colonies and the implications thereof. The low-temperature NADH/Fp redox scanner was employed to image mESC colonies grown on a feeder layer of gamma-irradiated mouse embryonic fibroblasts (MEFs) on glass cover slips. The result showed significant heterogeneity in the mitochondrial redox state within individual mESC colonies (size: ∼200-440 μm), exhibiting a core with a more reduced state than the periphery. This more reduced state positively correlates with the expression pattern of Oct4, a well-established marker of pluripotency. Our observation is the first to show the heterogeneity in the mitochondrial redox state within a mESC colony, suggesting that mitochondrial redox state should be further investigated as a potential new biomarker for the stemness of embryonic stem cells.
Collapse
Affiliation(s)
- HE N. XU
- Molecular Imaging Laboratory, Department of
Radiology University of Pennsylvania, School of Medicine Philadelphia, PA 19104,
USA
- Britton Chance Laboratory of Redox Imaging Johnson
Research Foundation Department of Biochemistry and Biophysics University of
Pennsylvania, School of Medicine Philadelphia, PA 19104, USA
| | - RUSSELL C. ADDIS
- Institute for Regenerative Medicine and Department
of Cell and Developmental Biology University of Pennsylvania, School of Medicine
Philadelphia, PA 19104, USA
| | - DAVIDA F. GOINGS
- Institute for Regenerative Medicine and Department
of Cell and Developmental Biology University of Pennsylvania, School of Medicine
Philadelphia, PA 19104, USA
| | - SHOKO NIOKA
- Britton Chance Laboratory of Redox Imaging Johnson
Research Foundation Department of Biochemistry and Biophysics University of
Pennsylvania, School of Medicine Philadelphia, PA 19104, USA
| | - BRITTON CHANCE
- Britton Chance Laboratory of Redox Imaging Johnson
Research Foundation Department of Biochemistry and Biophysics University of
Pennsylvania, School of Medicine Philadelphia, PA 19104, USA
| | - JOHN D. GEARHART
- Institute for Regenerative Medicine and Department
of Cell and Developmental Biology University of Pennsylvania, School of Medicine
Philadelphia, PA 19104, USA
| | - LIN Z. LI
- Molecular Imaging Laboratory, Department of
Radiology University of Pennsylvania, School of Medicine Philadelphia, PA 19104,
USA
- Institute for Regenerative Medicine and Department
of Cell and Developmental Biology University of Pennsylvania, School of Medicine
Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging Johnson
Research Foundation Department of Biochemistry and Biophysics University of
Pennsylvania, School of Medicine Philadelphia, PA 19104, USA
- Institute of Translational Medicine and Therapeutics
University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Rodrigues CAV, Fernandes TG, Diogo MM, da Silva CL, Cabral JMS. Stem cell cultivation in bioreactors. Biotechnol Adv 2011; 29:815-29. [PMID: 21726624 DOI: 10.1016/j.biotechadv.2011.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/11/2011] [Accepted: 06/12/2011] [Indexed: 12/22/2022]
Abstract
Cell-based therapies have generated great interest in the scientific and medical communities, and stem cells in particular are very appealing for regenerative medicine, drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions, such as blood cells, nerve cells or cardiac muscle. However, the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors, particularly considerations regarding critical culture parameters, possible bioreactor configurations, and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines, while using robust and cost-effective approaches.
Collapse
Affiliation(s)
- Carlos A V Rodrigues
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
43
|
Javaherian S, O’Donnell KA, McGuigan AP. A fast and accessible methodology for micro-patterning cells on standard culture substrates using Parafilm™ inserts. PLoS One 2011; 6:e20909. [PMID: 21687691 PMCID: PMC3110254 DOI: 10.1371/journal.pone.0020909] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/16/2011] [Indexed: 01/30/2023] Open
Abstract
Micropatterning techniques provide direct control over the spatial organization of cells at the sub-mm scale. Regulation of these spatial parameters is important for controlling cell fate and cell function. While micropatterning has proved a powerful technique for understanding the impact of cell organization on cell behaviour, current methods for micropatterning cells require complex, specialized equipment that is not readily accessible in most biological and bioengineering laboratories. In addition, currently available methods require significant protocol optimization to ensure reliable and reproducible patterning. The inaccessibility of current methods has severely limited the widespread use of micropatterning as a tool in both biology and tissue engineering laboratories. Here we present a simple, cheap, and fast method to micropattern mammalian cells into stripes and circular patterns using Parafilm™, a common material found in most biology and bioengineering laboratories. Our method does not require any specialized equipment and does not require significant method optimization to ensure reproducible patterning. Although our method is limited to simple patterns, these geometries are sufficient for addressing a wide range of biological problems. Specifically, we demonstrate i) that using our Parafilm™ insert method we can pattern and co-pattern ARPE-19 and MDCK epithelial cells into circular and stripe micropatterns in tissue culture polystyrene (TCPS) wells and on glass slides, ii) that we can contain cells in the desired patterns for more than one month and iii) that upon removal of the Parafilm™ insert we can release the cells from the containment pattern and allow cell migration outward from the original pattern. We also demonstrate that we can exploit this confinement release feature to conduct an epithelial cell wound healing assay. This novel micropatterning method provides a reliable and accessible tool with the flexibility to address a wide range of biological and engineering problems that require control over the spatial and temporal organization of cells.
Collapse
Affiliation(s)
- Sahar Javaherian
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kylie A. O’Donnell
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Roeder I, Loeffler M, Glauche I, other participants. Towards a quantitative understanding of stem cell-niche interaction: experiments, models, and technologies. Blood Cells Mol Dis 2011; 46:308-17. [PMID: 21450497 DOI: 10.1016/j.bcmd.2011.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/30/2023]
Abstract
Here we report about an interdisciplinary workshop focusing on the effects of the local growth-environment on the regulation of stem cell development. Under the title "Towards a quantitative understanding of stem cell/ niche interaction: Experiments, models, and technologies", 33 experts from eight countries discussed current knowledge, new experimental and theoretical results as well as innovative measurement technologies. Specifically, the workshop addressed the following questions: What defines a stem cell niche? What are functional/regulatory characteristics of stem cell- microenvironment interactions? What experimental systems and technologies for quantifying niche function are available? As a consensus result it was recorded that there is no unique niche architecture across tissues but that there are generic principles of niche organization guaranteeing a proper function of stem cells. This functional aspect, as the major defining criterion, leads to the conclusion that stem cells and their niches need to be considered as an inseparable pair with implications for their experimental assessment: To be able to study any of those two components, the other component has to be accounted for. In this context, a number of classical in vitro assays using co-cultures of stem and stroma cells, but also new, specifically bioengineered culture systems have been discussed with respect to their advantages and disadvantages. Finally, there was a general agreement that the comprehensive understanding of niche-mediated stem cell regulation will, due to the complexity of involved mechanisms, require an interdisciplinary, systems biological approach. In addition to cell and molecular biology, biochemistry, biophysics and bioengineering also bioinformatics and mathematical modeling will play a major role in the future of this field.
Collapse
Affiliation(s)
- Ingo Roeder
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany.
| | | | | | | |
Collapse
Collaborators
Martin Bornhaeuser, Peter Buske, Geoff Clarke, Michael Cross, Sol Efroni, Bar Ilan, Marieke Essers, Joerg Galle, Adam Giangreco, Ingmar Glauche, Emmanuel Griessinger, Philipp Hoppe, Stefan Kobel, Axel Krinner, Douglas Lauffenburger, Ihor Lemischka, Cristina LoCelso, Markus Loeffler, Matthias Lutolf, Kateri Moore, Emanuel Nazareth, Robert Oostendorp, Megan Palmer, Tilo Pompe, Pierre Rocheteau, Ingo Roeder, Nico Scherf, Timm Schroeder, Shahragim Tajbakhsh, Baiba Vilne, Richard van der Wath, Claudia Waskow, Carsten Werner, Ala Yaromina, Peter Zandstra,
Collapse
|
45
|
Belfiore LA, Floren ML, Volpato FZ, Paulino AT, Belfiore CJ. Nutrient diffusion and simple nth-order consumption in regenerative tissue and biocatalytic sensors. Biophys Chem 2011; 155:65-73. [PMID: 21470767 DOI: 10.1016/j.bpc.2011.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 01/30/2023]
Abstract
This contribution addresses intra-tissue molar density profiles for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. One-dimensional transient and steady state models of the reaction-diffusion equation are solved to correct a few deficiencies in the first illustrative example of diffusion and zeroth-order rates of consumption in tissues with rectangular geometry, as discussed in Ref. [(Griffith and Swartz, 2006) 1]. The functional form of the molar density profile for each species depends on geometry and the magnitude of the species-specific intra-tissue Damköhler number. The tissue's central core is reactant starved at high consumption rates and low rates of intra-tissue diffusion when the Damköhler number exceeds its geometry-sensitive critical value. Ideal tissue engineering designs avoid the diffusion-limited regime such that attached cells are exposed to all of the ingredients required for proliferation everywhere within a regenerative matrix. Analytical and numerical molar density profiles that satisfy the unsteady state modified diffusion equation with pseudo-homogeneous n(th)-order rates of intra-tissue consumption (i.e., n=0,1,2) allow one to (i) predict von Kármán-Pohlhausen mass transfer boundary layer thicknesses, measured inward from the external biomaterial surface toward its central core, and, most importantly, (ii) estimate the time required to achieve steady state conditions for regenerative tissue growth and biocatalytic sensing.
Collapse
Affiliation(s)
- Laurence A Belfiore
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | |
Collapse
|
46
|
Raof NA, Schiele NR, Xie Y, Chrisey DB, Corr DT. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials 2011; 32:1802-8. [PMID: 21168910 PMCID: PMC3021635 DOI: 10.1016/j.biomaterials.2010.11.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/08/2010] [Indexed: 01/30/2023]
Abstract
The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment.
Collapse
Affiliation(s)
- Nurazhani Abdul Raof
- The College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203
| | - Nathan R Schiele
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Yubing Xie
- The College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203
| | - Douglas B Chrisey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Department of Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
47
|
Kang E, Choi YY, Jun Y, Chung BG, Lee SH. Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. LAB ON A CHIP 2010; 10:2651-4. [PMID: 20740239 DOI: 10.1039/c0lc00005a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have developed a multi-layer, microfluidic array platform containing concave microwells and flat cell culture chambers to culture embryonic stem (ES) cells and regulate uniform-sized embryoid body (EB) formation. The main advantage of this platform was that EBs cultured within the concave microwells of a bottom layer were automatically replated into flat cell culture chambers of a top layer, following inversion of the multi-layer microfluidic array platform. This allowed EB formation and EB replating to be controlled simultaneously inside a single microfluidic device without pipette-based manual cell retrieval, a drawback of previous EB culture methods.
Collapse
Affiliation(s)
- Edward Kang
- Department of Biomedical Engineering, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
Abstract
The potential of stem cells in clinics and as a diagnostic tool is still largely unmet, partially due to a lack of in vitro models that efficiently mimic the in vivo stem cell microenvironment-or niche-and thus would allow reproducible propagation of stem cells or their controlled differentiation in vitro. The current methodological challenges in studying and manipulating stem cells have spurred intense development and application of microfabrication and micropatterning technologies in stem cell biology. These approaches can be readily used to dissect the complex molecular interplay of stem cells and their niche and study single-cell behavior in high-throughput. Increased merging of microfabrication with advanced biomaterials technologies may ultimately result in functional artificial niches capable of recapitulating extrinsic stem cell regulation in vitro and on a single-cell level.
Collapse
|
49
|
Tavana H, Mosadegh B, Takayama S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2628-31. [PMID: 20449846 PMCID: PMC2999815 DOI: 10.1002/adma.200904271] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- H. Tavana
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - B. Mosadegh
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)
| | - S. Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)
| |
Collapse
|
50
|
Choi YY, Chung BG, Lee DH, Khademhosseini A, Kim JH, Lee SH. Controlled-size embryoid body formation in concave microwell arrays. Biomaterials 2010; 31:4296-303. [PMID: 20206991 DOI: 10.1016/j.biomaterials.2010.01.115] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/18/2010] [Indexed: 12/17/2022]
Abstract
Embryonic stem (ES) cells hold great potential as a renewable cell source for regenerative medicine and cell-based therapy. Despite the potential of ES cells, conventional stem cell culture methods do not enable the control of the microenvironment. A number of microscale engineering approaches have been recently developed to control the extracellular microenvironment and to direct embryonic stem cell fate. Here, we used engineered concave microwell arrays to regulate the size and shape of embryoid bodies (EBs)-cell aggregate intermediates derived from ES cells. Murine ES cells were aggregated within concave microwells, and their aggregate sizes were controlled by varying the microwell widths (200, 500, and 1000 mum). Differentiation of murine ES cells into three germ layers was assessed by analyzing gene expression. We found that ES cell-derived cardiogenesis and neurogenesis were strongly regulated by the EB size, showing that larger concave microwell arrays induced more neuronal and cardiomyocyte differentiation than did smaller microwell arrays. Therefore, this engineered concave microwell array could be a potentially useful tool for controlling ES cell behavior.
Collapse
Affiliation(s)
- Yoon Young Choi
- Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|